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Abstract
We refine and generalize what is known about
coresets for classification problems via the sen-
sitivity sampling framework. Such coresets seek
the smallest possible subsets of input data, so one
can optimize a loss function on the coreset and en-
sure approximation guarantees with respect to the
original data. Our analysis provides the first no
dimensional coresets, so the size does not depend
on the dimension. Moreover, our results are gen-
eral, apply for distributional input and can use iid
samples, so provide sample complexity bounds,
and work for a variety of loss functions. A key
tool we develop is a Radamacher complexity ver-
sion of the main sensitivity sampling approach,
which can be of independent interest.

1. Introduction
In machine learning, coresets (Phillips, 2016) are small sub-
sets of input data that act as proxy for the full set while
guaranteeing not to deviate much in accuracy. By reducing
data size, they improve scalability and efficiency. A com-
mon approach for constructing coresets involves sampling
data points with probabilities proportional to their so-called
sensitivity score, a bound on the worst-case impact that a
point can have on the property of interest. In classification
problems, the property optimized is a loss function ℓ which
is typically a smooth and convex approximation of the mis-
classification rate. However, the ultimately goal is not just
to optimize the loss function over the observed data, but to
understand how well the classifier will perform using new
data drawn iid from the same (unknown) distribution P .

To formalize this, consider a probability distribution P over
a set X . Let W be the parameter space of potential models,

*Equal contribution 1Kahlert School of Computing, Uni-
versity of Utah, Salt Lake City, Utah, USA 2visiting
ScaDS.AI, University of Leipzig and MPI for Math in
the Sciences, Leipzig, Germany. Correspondence to:
Meysam Alishahi <meysam.alishahi@utah.edu>, Jeff M. Phillips
<jeffp@cs.utah.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

and then ℓ : X ×W −→ [0,∞) is a loss (or cost) function
defined on a single x ∈ X . Let

∫
x∈X ℓ(x,w)dP (x) be the

full loss function evaluated at w ∈ W , which we will seek
to minimize. Now a (finite) set Y ⊆ X accompanied by a
measure (or weight function) ν, is termed an ε-coreset for
(X , P,W, ℓ) for ε ∈ (0, 1) when it approximates P in the
following way for each w ∈ W:∣∣∣ ∫

X
ℓ(x,w)dP (x)−

∑
y∈Y

ν(y)ℓ(y, w)
∣∣∣ ≤ ε

∫
X
ℓ(x,w)dP (x)

Algorithms for coresets are often described with respect
to a finite sample X ⊂ X where we then assume P has
support limited to and uniform over X . We will return
later to the integral of P definition to state more general
bounds. Then a very common approach to create a coreset is
via sensitivity sampling (Feldman & Langberg, 2011). This
samples points from X proportional to their sensitivity score
s(x). Via an importance sampling argument, one can show
the size of the sample Y needed to induce an ε-coreset grows
proportionally to the total sensitivity S =

∑
x∈X s(x).

For classification, consider a non-increasing function ϕ :
R −→ (0,∞) and a set W ⊆ Rd. Define ℓϕ(x,w) =
ϕ(⟨x,w⟩); this aligns with scenarios like Logistic regression
when ϕ(t) = log(1 + e−t). However, in (Munteanu et al.,
2018), it was proven that certain types of non-increasing
functions ϕ, specifically those where ϕ(x)

ϕ(−x) approaches zero
as x goes to infinity, can lead to ε-coresets that encom-
pass all points in X (see Theorem 3.1 in (Tolochinksy
et al., 2022) which refines (Munteanu et al., 2018)). To
construct a smaller coreset, some additional problem struc-
ture needs to be introduced. We mostly focus on the nat-
ural way of regularizing the problem (Shalev-Shwartz &
Ben-David, 2014), initiated in the context of coresets by
Tolochinksy et al. (2022). For a positive integer k, de-
fine ℓk,ϕ(x,w) = ϕ(⟨x,w⟩) + 1

k∥w∥
2
2. An ε-coreset for

(X, p,W, ℓk,ϕ) was termed a coreset for a monotonic func-
tion ϕ (Tolochinksy et al., 2022; Curtin et al., 2020). Oth-
ers approached this issue in varied ways. For example,
Munteanu et al. (2018) introduced a complexity measure
µ(X) that quantifies the hardness of compressing a dataset
for logistic regression, and showed sublinear-sized coresets
can be founding depending on this parameter. Their results
were polynomially improved by Mai et al. (2021) in terms
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of µ(X) and d. Other work (Mirzasoleiman et al., 2020)
considers greedily selected coresets for learning classifiers
under incremental gradient descent where regularization is
again needed, but now to ensure strong convexity.

The most studied examples of ϕ are:

• sigmoid function: σ(t) = 1
1+et ,

• logistic function: logistic(t) = log(1 + e−t),
• svm loss function: svm(t) = max(0, 1− t).
• ReLU function: ReLU(t) = max(0, t)

Main Results. Before we describe our results in more
technical detail, we first summarize our main contributions.

• We provide the first no dimensional coreset for mono-
tone functions, of size O(k3/ε2); it has no dependence
on dimension d. A special case of our results are in
Table 1 with comparisons to prior work; this includes
a (

√
log k) factor improvement for logistic loss.

• These bounds use a uniform sample from X , and apply
to iid samples from unknown distribution P ; so this
provides a true sample complexity bound for regular-
ized classification.

• We provide a new general sensitivity sampling bound
based on Radamacher complexity (Theorem 1.1),
which leads to these no dimensional bounds, and we
believe will be of general interest.

• We provide a, in our opinion, simpler proof of the
main sensitivity sampling claim using VC dimension
(Feldman et al., 2020; Braverman et al., 2021), which
can handle issues of weighted loss functions needed
for these results.

1.1. Preliminaries

Throughout the paper, we maintain the assumption that P
is a probability measure over X . If f : X −→ [0,∞)
is P -integrable, then the expectation of f with respect to
P is defined as Ex∼P (f(x)) =

∫
X f(x)dP . While this

framework is quite broad, the most natural instances stem
from the following two examples.

Discrete: Let p be a discrete distribution defined over
a countable set X = {x1, x2, . . .} ⊆ Rd. For any sub-
set A ⊆ X , the probability measure P (A) is computed
as the sum of probabilities of elements in A, given by
P (A) =

∑
a∈A p(a). In this scenario, given a function

f : X −→ [0,∞), the expectation Ex∼P (f(x)) is ex-
pressed as

∫
X f(x)dP =

∑∞
i=1 p(xi)f(xi). The case that

X is finite falls under this framework when the distribution
p possesses finite support.

Continuous: Let p be a continuous probability density dis-
tribution defined over Rd, and m represents the Lebesgue

measure (or Borel measure) over Rd. Then the probabil-
ity measure P (A) for a measurable set A is computed as
P (A) =

∫
A
p(x)dm.

When p(x) represents a probability density function, the
notation x ∼ P denotes sampling based on p.

If F is a set of P -integrable functions from X to [0,∞)
such that

∫
f(x)dP (x) > 0 for all f ∈ F , then the tuple

(X , P,F) is termed as positive definite. A P -integrable
function s : X −→ (0,∞) is called an upper sensitivity
function for a positive definite tuple (X , P,F) if

sup
f∈F

f(x)∫
f(z)dP (z)

≤ s(x) for almost all x ∈ X . (1)

The value S =
∫
s(x)dP (x) will be referred to as the

total sensitivity for (X , P,F) with respect to the func-
tion s(·). The sensitivity normalized probability measure
for (X , P,F) is defined as dQ = s(x)

S dP or equivalently
Q(A) =

∫
A

s(x)
S dP (x) for each P -measurable A. Given

that S =
∫
s(x)dP (x), it follows that Q represents a proba-

bility measure over X since
∫
X dQ(x) =

∫
X

s(x)
S dP (x) =

1. An s-sensitivity sample from X with a size of m is a
set of m iid draws x1 . . . , xm from X based on Q which
will be expressed as as x1:m ∼ Q. To simplify, one can
imagine iid sampling from X using the probability distri-
bution q(x) = s(x)

S p(x). Define the s-augmented family of
(X , P,F) as

TF =

{
Tf (·) =

Sf(·)
s(·)

∫
X f(x)dP (x)

: f ∈ F
}
. (2)

For each f ∈ F , supx∈X Tf (x) ≤ S and

E
x∼Q

(Tf (x)) =

∫
X

Sf(x)

s(x)
∫
X f(z)dP (z)

s(x)

S
dP (x) = 1.

Thus, for any f ∈ F ,∣∣∣ ∫
X
f(x)dP (x)−

m∑
i=1

Sf(xi)

ms(xi)

∣∣∣ ≤ ε

∫
X
f(x)dP (x)

⇐⇒

∣∣∣∣∣1− 1

m

m∑
i=1

Tf (xi)

∣∣∣∣∣ ≤ ε.

(3)

The m-th Rademacher Complexity of a family F of func-
tions from X to R with respect to a probability measure P
over X is given by

RP
m(F) = E

x1:m∼P
E

σ1:m∼{−1,1}
sup
f∈F

[
1

m

m∑
i=1

σif(xi)

]
,

were σ1:m ∼ {−1, 1} denotes m iid samples σ1, . . . , σm

uniformly drawn from {−1, 1}. Rademacher Complexity
somehow serves as a more detailed dimension than VC-
dimension.
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Table 1. Comparison with prior state-of-the-art results. The notation O∗(·) hides some logarithmic factor in terms of given parameters.
Function ϕ Assumption Sampling Coreset size Reference

logistic bounded µ(X) sqrt lev. scores
O∗
(

d3µ3(X)
ε4

)
O∗
(√

nd
3
2 µ(X)
ε2

) (Munteanu et al., 2018)

logistic, svm,ReLU bounded µ(X) ℓl Lewis O
(

µ2(X)d log(d/ε)
ε2

)
(Mai et al., 2021)

logistic, svm
∥xi∥2 ≤ 1 ∀i

reg. term: 1
k∥w∥

2
2

∥w∥2 ≤ 1
sensitivity O∗

(
kd2 logn log k

ε2

)
(Tolochinksy et al., 2022)

σ reg. term: 1
k∥w∥

2
2 sensitivity O∗

(
kd2 logn log k

ε2

)
(Tolochinksy et al., 2022)

logistic, svm

∥xi∥2 ≤ 1 ∀i
reg. term: 1

k∥w∥
2
2

1
k∥w∥2, or 1

k∥w∥1
uniform O

(
dk log k

ε2

)
(Curtin et al., 2020)

σ, svm,ReLU
∥xi∥2 ≤ 1 ∀i

reg. term: 1
k∥w∥

2
2

uniform
O
(

dk log k
ε2

)
O
(

k3

ε2

) Theorems D.6,D.7, D.18,
D.20, and Section D.4

logistic
∥xi∥2 ≤ 1 ∀i

reg. term: 1
k∥w∥

2
2

uniform
O
(

dk
√
log k
ε2

)
O
(

k3

ε2
√
log k

) Theorems 2.7, 2.8

1.2. Our Contributions

Our first main result is the following theorem.

Theorem 1.1. Let (X , P,F) be a positive definite tuple and
s(·) be an upper sensitivity function with the total sensitivity
S. For any t > 0, an s-sensitivity sample from X of size m,
with probability at least 1− 2 exp

(
− 2mt2

S

)
, satisfies

∣∣∣ ∫ f(x)dP (x)−
m∑
i=1

Sf(xi)

ms(xi)

∣∣∣
≤(2Rq

m(TF ) + t)

∫
f(x)dP (x) ∀f ∈ F .

This theorem, which is pivotal in our new results, is an adap-
tation of the central result from (Feldman & Langberg, 2011;
Braverman et al., 2021; Feldman et al., 2020), extensively
employed in coreset construction results, but now centered
on Rademacher Complexity instead of VC-dimension.

Given a function f : X −→ [0,∞), for each r ≥ 0, the set
range(f,≻, r) is defined as:

range(f,≻, r) = {x ∈ X : f(x) > r}.

Now, considering a family of non-negative P -measurable
functions F , the F -linked range space (see Joshi et al. 2011)
is defined as (X ,Ranges(F ,≻)) where

Ranges(F ,≻) = {range(f,≻, r) : f ∈ F , r ≥ 0}.

Consider a range space (X ,R), where X is the ground set
and R is a collection of subsets of X . A subset Y ⊆ X
is said to be shattered by R if every subset Z ⊆ Y can
be expressed as Z = Y ∩ R for some R ∈ R. The VC-
dimension of (X ,R) is defined as the cardinality of the
largest subset Y ⊆ X that can be shattered by R.

Theorem 1.2. Let (X , P,F) be a positive definite tu-
ple, and s : X −→ (0,∞) be an upper sensitivity func-
tion for it with the total sensitivity S =

∫
s(x)dP (x).

There is a universal constant C such that, for any 0 <
ε, δ < 1, if m ≥ CS

ε2

(
VC logS + log 1

δ

)
), where VC =

VCdim(Ranges(TF ,≻)), then, with probability at least
1− δ, any s-sensitivity sample x1 . . . , xm from X satisfies∣∣∣ ∫ f(x)dP (x)− 1

m

m∑
i=1

Sf(xi)

s(xi)

∣∣∣
≤ε

∫
f(x)dP (x) ∀f ∈ F .

This theorem, with variants previously shown in (Braverman
et al., 2021; Feldman et al., 2020), are usually constrained
by the assumption that X is finite, which has been exten-
sively used to construct coresets. However, in this work we
remove this restriction. This general case was also handled
in (Langberg & Schulman, 2010). Section 2.2 showcases
a novel and simple proof for this theorem, leveraging Fu-
bini’s Theorem (Fubini, 1907)1. Moreover, in instances

1Fubini’s Theorem is applicable in our context, given we are
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where Rademacher complexity refines VC-dimension, our
new result Theorem 1.1 provides improved bounds. Next
we describe several applications stemming from these two
theorems.

Well-behaved distributions. We next describe essential
problem parameters, generalizing ones used elsewhere.

Definition 1.3. Let P be a probability measure over Rd,
ϕ : R −→ [0,∞) a non-increasing Lipschitz function. We
say P is well-behaved (w.r.t. ϕ) if

E
x∼P

∥x∥22 ≤ E2
1 and E

x∼P
ϕ

(
∥x∥2
2E1

)
≥ E2, (4)

for positive constants E1, E2. For constant k > 0 define

Lϕ,k =

{
ℓϕ,k(w, ·) = ϕ(⟨w, ·⟩) + ∥w∥22

k
: w ∈ X

}
. (5)

Given E(t2) ≥ E2(t), we can conclude that
Ex∼P (∥x∥2) ≤ E1. The assumption on the expec-
tation of ∥x∥22 is fairly standard, such as in bounded or
normalized data where it is an absolute constant. On the
other hand, when p is the Gaussian distribution Nd(0, I),
then E1 = d. The lower bound for E

x∼P
ϕ
(

∥x∥2

2E1

)
is a

constant bounded by ϕ(1/2) when ϕ is convex; then we can
apply Jensen’s inequality so

E
x∼P

ϕ

(
∥x∥2
2E1

)
≥ ϕ

(
E

x∼P

∥x∥2
2E1

)
≥ ϕ

(
1

2

)
= E2. (6)

Connecting to coresets. Assume that s(·) : X −→
(0,∞) is an upper sensitivity function for a family of
functions F with total value S =

∫
X s(x)dP . Since

f(x)∫
f(z)dP (z)

≤ s(x) for each f ∈ F , we have 1 =∫ f(x)∫
f(z)dP (z)

dP (x) ≤
∫
s(x)dP (x) = S. If we define

s′(·) = s(·) + 1, then s′ : X −→ (1,∞) is also an
upper sensitivity function for that family with total value
S′ = 1 + S = O(S), since S ≥ 1.

Theorem 1.4. Let P be a well-behaved probabil-
ity measure over Rd and ϕ be an L-Lipschitz func-
tion. If s(·) : Rd −→ (1,∞) is an upper sen-
sitivity function for Lϕ,k with total sensitivity S and
m ≥ 2S

ε2

(
8C2 + S log 2

δ )
)
, then any s-sensitivity sample

x1, . . . , xm from X with weights ui =
S

ms(xi)
provides an ε-

coreset for (Rd, P, Rd, ℓϕ,k) with probability at least 1−δ,

where C = (2LE1 + ϕ(0))max
(
2E1k,

1
E2

)
+8LkE1+1.

When E1 is independent of dimension, such as bounded
or normalized data, this theorem gives an ε-coreset for

dealing with σ-finite measures.

(Rd, P, Rd, ℓϕ,k) with size independent of dimension d and
input size n. In contrast, the coresets for (Tolochinksy et al.,
2022), also considering bounded data, used VC-dimension
(via Theorem 1.2), so their size depends on d and n.

Bounds for specific ϕ. Before describing our bounds for
common choices of ϕ we examine the context of prior work
by Tolochinksy et al. (2022). They considered absolutely
bounded data with ∥x∥22 ≤ 1; so E1 = 1 and E2 = ϕ(1).
For simpler notation we define R so that WR = {x ∈
Rd : ∥w∥2 ≤ R}. Up to a few small typos, we summarize
their results:

Theorem 1.5 (Tolochinksy et al., 2022). Let X =
{x1, . . . , xn} be a set of n points in the unit ball of Rd, u be
the uniform probability measure over X , and ε, δ ∈ (0, 1),
R, k > 0 where k is a sufficiently large constant. Then
m = O( t

ε2 (d
2 log t + log 1

δ ) sensitivity samples is, with
probability at least 1− δ, an ε-coreset for

• (X,u,Rd, ℓk,σ) with t = (1 + k) log n.

• (X,u,WR, ℓk,logistic) with t = R2(1 +Rk) log n.

• (X,u,WR, ℓk,svm) with t = R(1 +Rk) log n.

It should be emphasized that the last two results in Theo-
rem 1.5 was successfully improved to O( k

ε2 (d log k+log 1
δ )

for W = Rd and k = Θ(n1−κ) for some κ ∈ (0, 1)
by Curtin et al. (2020). The strategy utilized by Tolochinksy
et al. (2022) and Curtin et al. (2020) to demonstrate this theo-
rem can be encapsulated as: (1) find an upper bound for VC-
dimension, (2) approximate a sensitivity upper bound and
thus the total sensitivity, (3) sample m points form X accord-
ing to an appropriate distribution, and (4) use Theorem 1.2
to complete the argument. The argument by Tolochinksy
et al. (2022), however, encounters a critical issue. To apply
Theorem 1.2, we must replace d with the VC-dimension
of the linked-range space of the s-augmented family of
(X , P,Lϕ,k), i.e. VCdim(Ranges(TLϕ,k

,≻)), while they
directly used the VC-dimension of linked-range space of
F (instead of TLϕ,k

). Our work addresses this issue in that
it leads to sensitivity functions for which we can compute
the VC-dimension of the augmented function space. Fur-
thermore, by instead bounding Radamacher complexity in
step (1), we can then use our new Theorem 1.1 in step (4) to
obtain new bounds. These are summarized in Table 2 and
the next theorem; details are in appendix.

Theorem 1.6. Let P be a probability measure over Rd.
Given the conditions outlined in the initial 5 columns of
Table 2, any s-sensitivity sample size m (sampling according
to the distribution provided in Column 6) guarantees an ε-
coreset for (Rd, P,Rd,Lϕ,k) with a probability of at least
1− δ.
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Table 2. Coreset size for (Rd, P,Rd,Lϕ,k); it is common for E1, A = 1.
function ϕ data assumption total sens. S constant C sampling Coreset size reference

σ E
x∼p

∥x∥22 ≤ E2
1 O(E2

1k) O(E2
1k) p 2S

ε2 (8C
2 + S log 2

δ ) Thm D.6

σ E
x∼p

∥x∥22 ≤ E2
1 O(E2

1k) O(1) p CS
ε2

(
d logS + log 1

δ

)
Thm D.7

logistic P (∥x∥2 ≥ A) = 0 O( A2k√
log(A2k)

) O(A2k) p 2S
ε2 (8C

2 + S log 2
δ ) Thm D.10

logistic P (∥x∥2 ≥ A) = 0 O( A2k√
log(A2k)

) O(1) p CS
ε2

(
d logS + log 1

δ

)
Thm 2.8

logistic E
x∼p

∥x∥22 ≤ E1 O(
E2

1k√
log(E2

1k)
) O(E2

1k)
s
S p

2S
ε2

(
8C2 + S log 2

δ )
)

Thm D.13

logistic E
x∼p

∥x∥22 ≤ E1 O(
E2

1k√
log(E2

1k)
) O(1) s

S p
CS
ε2

(
d2 logS + log 1

δ

)
Thm D.15

svm P (∥x∥2 ≥ A) = 0 O(A2k) O(A2k) p 2S
ε2 (8C

2 + S log 2
δ ) Thm D.18

svm P (∥x∥2 ≥ A) = 0 O(A2k) O(1) p CS
ε2

(
d logS + log 1

δ

)
Thm D.20

svm E
x∼p

∥x∥22 ≤ E1 O(E2
1k) O(E2

1k)
s
S p

2S
ε2

(
8C2 + S log 2

δ )
)

Thm D.22

svm E
x∼p

∥x∥22 ≤ E1 O(E2
1k) O(1) s

S p
CS
ε2

(
d2 logS + log 1

δ

)
Thm D.23

ReLU P (∥x∥2 ≥ A) = 0 O((1 +A)2k) O((1 +A)2k) p 2S
ε2 (8C

2 + S log 2
δ ) Sec. D.4

ReLU P (∥x∥2 ≥ A) = 0 O((1 +A)2k) O(1) p CS
ε2

(
d logS + log 1

δ

)
Sec. D.4

ReLU E
x∼p

∥x∥22 ≤ E1 O((1 + E1)
2k) O((1 + E1)

2k) s
S p

2S
ε2

(
8C2 + S log 2

δ )
)

Sec. D.4

ReLU E
x∼p

∥x∥22 ≤ E1 O((1 + E1)
2k) O(1) s

S p
CS
ε2

(
d2 logS + log 1

δ

)
Sec. D.4

Sample complexity. Note that if the sampling column
of Table 2 uses p, that indicates the total sensitivity has a
constant upper bound, and we can use iid samples from the
unknown distribution P . Not only can we avoid the com-
putational issue of estimating s, but these provide sample
complexity bounds for the full (continuous) setting.

2. Proofs of Main Results
2.1. Proof of Theorem 1.1

The proof follows by McDiarmid’s inequality (see
lemma C.1), which is a strong concentration inequality that
bounds the difference between the sampled mean and the
true mean of a function satisfying the bounded differences
property: the effect of changing a single observation. Here
we outline the proof of Theorem 1.1; full proof in Appendix
C.1.

Sketch of proof of Theorem 1.1. In view of Equation (3),
we need to show that, for any iid sample x1, . . . , xm ∈ X
according to the sensitivity normalized distribution q =

p(x) s(x)S , with probability at least 1− 2 exp
(
− 2mt2

S2

)
,

sup
f∈F

∣∣∣1− m∑
i=1

Tf (xi)

m

∣∣∣ ≤ 2Rq
m(TF ) + t.

For every x ∈ X and f ∈ F , we have f(x)∫
X f(z)dP (z)

≤

s(x) which implies 0 ≤ Tf (x) = Sf(x)
s(x)

∫
X f(z)dP (z)

≤ S.

Therefore, sup
x∈X

Tf (x) ≤ S. Now, define

g(x1, . . . , xm) = sup
f∈F

[
1−

m∑
i=1

Tf (xi)

m

]
.

For each i ∈ [m] and each (x1, . . . , xm), (x′
1, . . . , x

′
m) ∈

Xm such that x′
j = xj for j ̸= i, observe that

|g(x1, . . . , xm)− g(x′
1, . . . , x

′
m)| ≤ S

m
.

Therefore, using McDiarmid’s Inequality, with a probability
at least 1− exp

(
− 2mt2

S2

)
, we have

sup
f∈F

∣∣∣1− m∑
i=1

Tf (xi)

m

∣∣∣ ≤ E
x1:m∼q

sup
f∈F

∣∣∣1− m∑
i=1

Tf (xi)

m

∣∣∣+ t

≤ 2Rq
m(TF ) + t.

2.2. Proof of Theorem 1.2

This approach to get relative error goes through VC-
dimension, which exploits combinatorial properties of range
spaces. A P -range space is a tuple (X , P,R) where (X , P )
is a probability measure space and R is a subset of 2X

whose members are P -measurable. Given a P -range space,
the best relative error possible in general is conditioned
on a small additive parameter η > 0 as follows. For an
ε, η ∈ (0, 1), the measure ν on X is called a relative (ε, η)-
approximation for (X , P,R) if each R ∈ R is ν-measurable

5



No Dimensional Sampling Coresets for Classification

and |P (R)− ν(R)| ≤ εmax(η, P (R)). Using ideas from
Li et al. (2001), then Har-Peled & Sharir (2011) showed that
a sufficiently large sample according to P provides a relative
(ε, η)-approximation for (X , P,R), if the VC-dimension is
bounded as VC. Specifically, there is a universal constant C
such that, for any η > 0, and ε, δ ∈ (0, 1), with probability
at least 1− δ, iid sample X = {x1, . . . , xm} according to
P with m ≥ C

ηε2

(
VC log 1

η + log 1
δ

)
satisfies∣∣∣∣P (R)− |R ∩X|

m

∣∣∣∣ ≤ εmax (η, P (R)) ∀R ∈ R.

In order to use this relative error conditioned on η to obtain
an unconditioned relative error, the key insight is that using
an s-sensitivity sample for an upper sensitivity function
s with total sensitivity S, then by setting η = 1/S, we
obtain unconditioned relative error. This is formalized in
the following in the next lemma – a discrete version of
which is implicit in the proof of Theorem 31 in (Feldman
et al., 2020).

Lemma 2.1. Let (X , P,F) be a positive definite tuple and
s(·) be an upper sensitivity function for it with the total sen-
sitivity S. If the measure ν is a relative (ε, η)-approximation
for (X , Q,Ranges(TF ,≻)), where dQ(x) = s(x)

S dP (x),
then for each f ∈ F ,∣∣∣ ∫

x∈X
f(x)dP (x)−

∫
x∈X

Sf(x)

s(x)
dν(x)

∣∣∣
≤ (ε+ Sηε)

∫
x∈X

f(x)dP (x).

With this, the proof of Theorem 1.2 is straightforward.

Proof of Theorem 1.2. Since (X , Q,Ranges(TF ,≻)) is a
Q-range, for an ε ∈ (0, 1) and η = 1

S , Har-Peled & Sharir
(2011)’s sampling result implies that there is a universal
constant C such that, any iid sample X = {x1, . . . , xm}
according to Q with m ≥ 4CS

ε2

(
VC logS + log 1

δ

)
satisfies∣∣∣∣Q(R)− |R ∩X|

m

∣∣∣∣ ≤ ε

2
max

(
1

S
,Q(R)

)
∀R ∈ R,

with probability at least 1 − δ. This implies that the
uniform probability measure over X serves as a relative(
ε
2 ,

1
S

)
-approximation for (X , Q,Ranges(TF ,≻)). The

proof concludes by using Lemma 2.1 to derive the error
co-efficient on the right hand side as ( ε2 + S 1

S
ε
2 ) = ε.

We next provide what we believe is a simpler and more
direct proof of Lemma 2.1. A key improvement is the use
of Fubini’s theorem to transform back and forth between
integrating over X to over the range of the function. We
first define some useful shorthand notation: Q≻(g, t) =
Q(range(g,≻, t)) =

∫
x∈X 1g(x)>tdQ.

Lemma 2.2. For any g = Tf ∈ TF and r ≥ 0,∫
x∈X

min{r, g(x)}dQ(x) =

∫ r

0

Q≻(g, t))dt.

Proof.∫
x∈X

min{r, g(x)}dQ(x)

=

∫
x∈X

(∫ r

t=0

1
t<g(x)

dt

)
dQ(x)

=

∫ r

t=0

(∫
x∈X

1
t<g(x)

dQ(x)

)
dt (*)

=

∫ r

t=0

Q≻(g, t)dt,

where (∗) is true due to Fubini’s Theorem.

Proof of Lemma 2.1. Dividing by P (f) =
∫
X f(z)dP (z),

we can now restate the goal as proving

1

P (f)

∣∣∣∣P (f)−
∫
X

Sf(x)

s(x)
dν(x)

∣∣∣∣ ≤ ε(1 + Sη).

For an arbitrary g = Tf ∈ TF , using that
∫
X g(x)dν =

1
P (f)

∫
X

Sf(x)
s(x) dν(x), and then

∫
X g(x)dQ(x) = 1 we can

transform the left-hand side

1

P (f)

∣∣∣∣P (f)−
∫
X

Sf(x)

s(x)
dν(x)

∣∣∣∣
=

∣∣∣∣1− ∫
x∈X

g(x)dν(x)

∣∣∣∣
=

∣∣∣∣∫
x∈X

g(x)dQ(x)−
∫
x∈X

g(x)dν(x)

∣∣∣∣
=
∣∣∣ ∫

x∈X
min{S, g(x)}dQ(x)

−
∫
x∈X

min{S, g(x)}dν(x)
∣∣∣, (7)

where the last line follows maxx g(x) ≤ S. Now applying
Lemma 2.2 twice on both Q and ν we have

(7) =

∣∣∣∣∣
∫ S

t=0

Q≻(g, t)−
∫ S

t=0

ν≻(g, t)dt

∣∣∣∣∣
≤
∫ S

t=0

|Q≻(g, t)− ν≻(g, t)|dt

≤ ε

∫ S

t=0

max{η,Q≻(g, t)}dt, (8)

where the last line follows by ν being an (ε, η)-
approximation of (X , Q,Ranges(TF ,≻)). We can then
split this integral on t from 0 to S into two parts at a

6
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point rg = sup{r ≥ 0: Q≻(g, t) ≥ η}. Note that for
each t ∈ [0, rg), Q≻(g, t) ≥ η and for each t > rg,
Q≻(g, t) < η. Taking these observations into account, we
obtain∫ rg

t=0

max{η,Q≻(g, t)}dt =
∫ rg

t=0

Q≻(g, t)dt

(Lemma 2.2) =
∫
x∈X

min{rg, g(x)}dQ(x)

≤
∫
x∈X

g(x)dQ(x) = 1.

and ∫ S

t=rg

max{η,Q≻(g, t)}dt =
∫ S

t=rg

ηdt ≤ Sη.

Combining these two parts, we have

(8) ≤ ε(1 + Sη)

completing the proof.

2.3. Proof of Theorem 1.4

When dealing with Rademacher complexity, we can lever-
age the helpful lemma known as Talagrand’s Contrac-
tion Lemma (refer to Theorem 4.12 in (Ledoux & Tala-
grand, 1991)). This lemma, in particular, establishes that
Rm(ϕ ◦ F) ≤ LRm(F), where ϕ : R −→ R is an L-
Lipschitz function, and ϕ ◦ F = {ϕ ◦ f : f ∈ F}. Our
requirement extends beyond this lemma to the following
generalization (for the proof, see Appendix C.2).

Corollary 2.3. Let T ⊂ Rm be a bounded set, and
ε1, . . . , εm > 0. For any L-Lipschitz functions ϕi : R −→
R with ϕi(0) = 0 for i ∈ [m], we have

E
ϱ1:m∼ε

sup
t∈T

∣∣∣ m∑
i=1

ϱ
i
ϕi(ti)

∣∣∣ ≤ 2L E
ϱ1:m∼ε

sup
t∈T

∣∣∣ m∑
i=1

ϱ
i
ti

∣∣∣,
where ε =

∏m
i=1{±εi}.

To establish the proof of Theorem 1.4, we first need to bound
the Radamacher complexity.

Lemma 2.4. For a well-behaved measure P (see Defini-
tion 1.3), if s(·) : Rd −→ (1,∞) is an upper sensitivity
function for Lϕ,k with total sensitivity S, then

Rq
m(TLϕ,k

) ≤ C

√
S

m

for C = (2LE1 + ϕ(0))max
(
4E1k,

1
E2

)
+ 8LkE1 + 1.

As the proof is detail-involved, we present a sketch of it
here. The complete proof can be found in Appendix C.3.

Sketch of proof. we start with the two following observa-
tions

E
x1:m∼q

E
σ1:m∼{−1,1}

∥∥∥ m∑
i=1

σi
xi

s(xi)

∥∥∥
2
≤
√

m

S
E1

E
x1:m∼q

E
σ1:m∼{−1,1}

∣∣∣ m∑
i=1

σi
1

s(xi)

∣∣∣ ≤√m

S
.

(9)

Next, for α(w) = S∫
X ℓϕ,k(w,x)dP (x)

, we deduce that

α(w)∥w∥22 ≤ Sk and

α(w) ≤

{
max

(
4SE1k,

S
E2

)
∥w∥2 ≤ 1

kS
22n 2n ≤ ∥w∥2 ≤ 2n+1.

For ϕ̄(·) = ϕ(·)− ϕ(0), we obtain

Rq
m(TLϕ,k

) ≤

E
x1:m ∼ q

σ1:m ∼ {−1, 1}

sup
w∈X

α(w)

∣∣∣∣∣ 1m
m∑
i=1

σi
ϕ̄(K(w, xi))

s(xi)

∣∣∣∣∣
︸ ︷︷ ︸

=M1

+ E
x1:m ∼ q

σ1:m ∼ {−1, 1}

sup
w∈X

α(w)

∣∣∣∣∣ 1m
m∑
i=1

σi
ϕ(0)

s(xi)

∣∣∣∣∣
︸ ︷︷ ︸

=M2

+
1

k
E

x1:m ∼ q
σ1:m ∼ {−1, 1}

sup
w∈X

α(w)∥w∥22

∣∣∣∣∣
m∑
i=1

σi

ms(xi)

∣∣∣∣∣
︸ ︷︷ ︸

=N

Using the provided upper bound for α(w) and Equation (9),

we conclude M1 ≤ 2LE1 max
(
2E1k,

1
E2

)√
S
m +

8LkE1

√
S
m and M2 ≤

√
S
m max

(
4E1k,

1
E2

)
ϕ(0). Uti-

lizing the bound α(w)∥w∥22 ≤ Sk and Equation (9), we

derive N ≤
√

S
mk which completes the proof.

The proof of Theorem 1.4 now follows immediately from
Theorem 1.1 and Lemma 2.4.

2.4. Proof of results in Table 2

We here only outline the proofs for ϕ = logistic. The
proofs for other cases share similarities and are presented in
full detail in Appendix D. As these results are yielded from
Theorems 1.2 and 1.4, we need to know the upper sensitivity
function. We start with a simple observation, providing us
with a method to calculate an upper sensitivity function.

7
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Lemma 2.5. For a probability measure P over X , assume
that W ⊆ X , ℓ : X × X −→ (0,∞), and γ : [0,∞) −→
[0,∞) such that 0 <

∫
X γ(∥x∥2)dP (x) < ∞ and

γ(∥x∥2) ≤
ℓ(x,w)

ℓ(y, w)
∀x, y ∈ X , w ∈ W. (10)

Then s(y) = 1∫
X γ(∥x∥2)dP (x)

is an upper sensitivity function
for (X , P,LW), where LW = {ℓ(·, w) : w ∈ W}.

Then we need the following extension of a lemma by
Tolochinksy et al. (2022).
Lemma 2.6. Let ϕ : R −→ (0,∞) be a non-increasing
function such that

ϕ(−αz) + z2

k

ϕ(αz) + z2

k

≤ β(α) 0 ≤ α ≤ B1, 0 ≤ z ≤ B2. (11)

If we set M = ϕ(−B1B2), then, for each x, y, w ∈ X with
∥x∥, ∥y∥ ≤ B1, ∥w∥ ≤ B2, we have

ϕ(0)

Mβ(∥x∥)
≤ ℓϕ,k(x,w)

ℓϕ,k(y, w)
.

If ϕ is universally bounded by M , then we do not need
upper bounds B1, B2 for α, z and consequentially do not
need upper bounds for ∥x∥, ∥y∥, and ∥w∥, and the same
statement holds.

With a detailed proof (see Lemma D.8), we observe that

logistic(−αz) + z2

k

logistic(αz) + z2

k

≤

{
85α2k

log(α2k) α2k > e

85 α2k ≤ e,

for each α, z ≥ 0. Using Lemmas 2.5 and 2.6, this con-
cludes s(y) = 1 + 170(1+kA2)√

max(1,log(kA2))
is an upper sensitivity

for (Rd, P, Llogistic,k) with probability measure P with
P ({x ∈ X : ∥x∥2 ≥ A}) = 0 (see Lemma D.9).
Theorem 2.7. Assume that P is probability measure over
Rd such that P ({x ∈ X : ∥x∥2 ≥ A}) = 0, S = 1 +

170(1+kA2)√
max(1,log(kA2))

, and C = (2A + 1)max(4Ak, 2.5) +

8Ak + 1. For m ≥ 2S
ε2 (8C

2 + S log 2
δ ), any iid sample

x1, . . . , xm from P with weights ui = 1
m provides an ε-

coreset for (Rd, P,Rd, ℓlogistic,k) with probability at least
1− δ.

Proof. We observed that s(y) = 1 + 170(1+kA2)√
max(1,log(kA2))

serves as an upper sensitivity function for
(Rd, P, Llogistic,k). Since it is a constant function,
s-sensitivity sampling is equivalent to sampling according
to P . It is worth noting that logistic is a 1-Lipschitz,
convex, and decreasing function. For E1 = A, we have

E
x∼p

logistic

(
∥x∥2
2E1

)
≥ logistic

(
1

2

)
≥ 2

5
= E2.

This implies that Definition 1.3 is satisfied for Llogistic,k

and thus Theorem 1.4 concludes the statement for m ≥
2S
ε2

(
8C2 + S log 2

δ

)
.

As the upper sensitivity function for Llogistic,k is constant,
Ranges(TLlogistic,k

,≻) = Ranges(Llogistic,k,≻): every
function in TLlogistic,k

is a function in Llogistic,k scaled by
a positive constant. Thus VCdim(Ranges(TLlogistic,k

,≻
)) = VCdim(Ranges(Llogistic,k,≻)). For an fw ∈
Llogistic,k and r ≥ 0,

range(fw,≻, r) =
{
x ∈ Rd : fw(x) > r

}
=

{
x ∈ Rd : logistic(⟨x,w⟩) + ∥w∥2

k
> r

}

=

x ∈ Rd : log
(
1 + e−⟨x,w⟩

)
> r − ∥w∥2

k︸ ︷︷ ︸
=t


=

{
Rd t ≤ 0{
x ∈ Rd : ⟨x,w⟩ < log(et − 1)

}
t > 0,

which concludes that Ranges(Llogistic,k,≻) only includes
half-spaces and the whole space Rd. Therefore, by Radon’s
theorem, VCdim(Ranges(Llogistic,k,≻)) ≤ d+1. Lever-
aging Theorem 1.2, we obtain the following theorem.

Theorem 2.8. Let P be a probability measure over
Rd such that P ({x ∈ X : ∥x∥2 ≥ A}) = 0 and
S = 1 + 170(1+kA2)√

max(1,log(kA2))
. There is an m =

O
(
S
ε2

(
d logS + log 1

δ

))
such that any iid sample

x1, . . . , xm from P with weights ui = 1
m provides an ε-

coreset for (Rd, P, Rd, ℓlogistic,k) with probability at least
1− δ.

3. Conclusion and Experimental results
This paper provides the first no dimensional sampling core-
sets for classification; they provides relative error for stan-
dard loss functions on linear classification with regulariza-
tion, and an expectation bound on the data norm. Some
results apply to iid samples from a continuous distribution,
and hence imply sample complexity bounds. The key new
ingredient is a Radamacher complexity bound for sensitivity
sample coresets, which we expect will find further use.

The appendix shows how these results can be applied to
kernelized versions of these problems, and also recover the
best sampling bounds for KDE coresets.

While we do not provide new experimental evidence of
the claims, our results are consistent with simulations in
many previous papers. For example Tolochinksy et al.
(2022) show non-uniform sensitivity sampling slightly out-
performing uniform samples; but this does not contradict
our results using iid samples since, for example, in those

8
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experiments doubling the iid sample size improves upon the
non-uniform sample results.
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A. Generalized Framework: Reproducing kernel Hilbert Space
We can establish the validity of our findings in a broader framework by employing reproducing kernels. In particular, the
above-mentioned results are automatically derived when considering X = Rd with the linear kernel K(x,w) = ⟨x,w⟩ as a
reproducing kernel Hilbert space H . For those less familiar with reproducing kernel Hilbert spaces, maintaining this latter
setting throughout the entire paper is helpful.

A.1. Kernelization of the Results

The kernel method is known as a powerful technique in machine learning that enables the handling of non-linear relationships
in data by implicitly mapping it to a higher-dimensional space. This flexibility and efficiency make it a widely used approach,
especially in scenarios where linear methods may not be sufficient. Reproducing kernel Hilbert spaces (RKHS) are intimately
connected to kernel methods. An RKHS is a type of Hilbert space associated with a positive definite kernel function. In the
context of machine learning, we can think that the input space is mapped into an RKHS through a feature map. Broadly,
the RKHS framework provides a mathematical foundation for understanding how non-linear relationships in data can be
effectively captured through implicit mappings into higher-dimensional spaces. The key insight in the context of kernel
methods is that the kernel function implicitly represents the inner product in the Hilbert space, for more see (Mercer, 1909;
Aronszajn, 1950; Boser et al., 1992; Steinwart & Christmann, 2008; Schölkopf & Smola, 2018). The following definition
extends Definition 1.3 to the context of RKHS cases.

Definition A.1. Let H be a reproducing kernel Hilbert space of real-valued functions on X with kernel K : X × X −→ R,
P a probability measure over X , ϕ : R −→ [0,∞) a non-increasing L-Lipschitz function, and k > 0 a constant. We say P
is well-behaved (w.r.t ϕ and K) if

E
x∼P

K(x, x) ≤ E2
1 and E

x∼P
ϕ

(√
K(x, x)

2E1

)
≥ E2, (12)

where E1, E2 are two positive constants. Define

LH
ϕ,k =

{
ℓHϕ,k(w, ·) = ϕ(K(w, ·)) + 1

k
K(w,w) : w ∈ X

}
(13)

and

L̄H
ϕ,k =

{
ℓ̄Hϕ,k(w, ·) = ϕ(−K(w, ·)) + 1

k
K(w,w) : w ∈ X

}
(14)

To keep things simpler, we occasionally employ ∥X∥H and ⟨·, ·⟩H instead of
√

K(x, x) and K(·, ·) respectively.

Remark A.2. Throughout the paper, we mainly focus on coresets for LH
ϕ,k. However, we will see that our analysis effortlessly

extends to L̄H
ϕ,k. This consideration is insignificant when dealing with the standard inner product as the kernel, given that

−⟨w, ·⟩ = ⟨·,−w⟩. However, this property does not hold for kernels in general.

Theorem A.3 (Theorem 1.4, Kernelized Representation). For a well-behaved probability measure P with respect to a
Hilbert space H of real-valued functions defined on X with kernel K : X × X −→ R, if s(·) : X −→ (1,∞) is an
upper sensitivity function for LH

ϕ,k with total sensitivity S and m ≥ 2S
ε2

(
8C2 + S log 2

δ )
)
, then any s-sensitivity sample

x1, . . . , xm from X with weights ui =
S

ms(xi)
provides an ε-coreset for (X , P, X , ℓHϕ,k) with probability at least 1 − δ,

where

C = (2LE1 + ϕ(0))max

(
2E1k,

1

E2

)
+ 8LkE1 + 1.

The statement remains true if we replace LH
ϕ,k and (X , P, X , ℓHϕ,k) by L̄H

ϕ,k and (X , P, X , ℓ̄Hϕ,k).

Considering Rd as a Hilbert space equipped with linear kernel, we derive Theorem 1.4 as a corollary of this theorem. In the
following, we present various applications derived from this theorem.

Theorem A.4. Let us consider H , a reproducing kernel Hilbert space of real-valued functions defined on X with kernel
K : X × X −→ R, and P , a probability measure over X . Given the conditions outlined in the initial 4 columns of Table 3,
any s-sensitivity sample of size m (sampling according to the distribution provided in Column 5) guarantees an ε-coreset
for (X , P,X ,LH

ϕ,k) with a probability of at least 1− δ.
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Table 3. Coreset size for (X , P,X ,LH
ϕ,k) where P is a probability measure over X and H is an RKHS.

function ϕ data assumption total sens. S constant C sampling Coreset size reference
σ(±·) E

x∼P
∥x∥2H ≤ E2

1 O(E2
1k) O(E2

1k) p 2S
ε2 (8C

2 + S log 2
δ ) Thm D.6

logistic(±·) P (∥x∥H ≥ A) = 0 O( A2k√
log(A2k)

) O(A2k) p 2S
ε2 (8C

2 + S log 2
δ ) Thm D.10

logistic(±·) E
x∼P

∥x∥2H ≤ E1 O(
E2

1k√
log(E2

1k)
) O(E2

1k)
s
S p

2S
ε2

(
8C2 + S log 2

δ )
)

Thm D.13

svm(±·) P (∥x∥H ≥ A) = 0 O(A2k) O(A2k) p 2S
ε2 (8C

2 + S log 2
δ ) Thm D.18

svm(±·) E
x∼P

∥x∥2H ≤ E1 O(E2
1k) O(E2

1k)
s
S p

2S
ε2

(
8C2 + S log 2

δ )
)

Thm D.22

The first five columns of each row in Table 3 outline assumptions concerning H and P , while the last two columns detail
sample complexity and the respective theorem in the paper where the result is introduced. Specifically, under the conditions
specified in the initial four columns, a sample of size m (as per the sampling distribution in Column 5) produces an ε-coreset
with a probability of 1− δ. It is worth emphasizing once more that the utilization of p in Column 5 signifies that sampling is
directly conducted from the data distribution, specifically through uniform sampling from the provided data points. This
eliminates the necessity for sensitivity computations in this context.

A.1.1. Kernel Density Estimate

Let P be a probability measure over Rd and K : Rd × Rd −→ R be a kernel, for instance the Gaussian kernel K(x,w) =
exp(−∥x−w∥2). At any point w ∈ Rd, the kernel density estimate is defined ad KDEP (w) =

∫
x∈Rd K(x,w)dP (x). When

we have finite number of points X = {x1, . . . , xn} given as the data set, we can assume that P is a uniform probability
measure over X , i.e., P (x = xi) =

1
n . In this scenario, we use KDEX instead of KDEP and and the expression for KDEX

is given by

KDEX(w) =
1

n

∑
x∈X

K(x,w).

The evaluation of KDEX demands O(n) time, which can become impractical for massive datasets. Therefore, a frequently
employed approach is to substitute X with a significantly smaller dataset Y , allowing KDEY to function as an approximation
for KDEX . Formally, for a given ε ∈ (0, 1), we look for a small size Y such that

sup
w∈Rd

|KDEX(w)−KDEY (w)| ≤ ε.

This challenge has been thoroughly explored and investigated in various studies such as (Phillips & Tai, 2020; Tai, 2022;
Charikar et al., 2024; Bobrowski et al., 2017; Taylor, 2018; Gretton et al., 2012; Phillips et al., 2015; Rinaldo & Wasserman,
2010; Scott, 2015; Silverman, 1986; Zheng & Phillips, 2015). Our primary result in this context is presented in the following
theorem, restated as Corollary D.19 along with its proof.

Theorem A.5. Let K : Rd × Rd −→ (0, 1] be a reproducing kernel, i.e., a kernel associated with an RKHS, and P be a
probability measure over Rd. For ε, δ ∈ (0, 1), there exists a universal constant C (independent of d and K) such that if
m ≥ C

ε2 log
1
δ , then, with probability at least 1− δ, for any iid random sample X = {x1, . . . , xm} based on P , we have

sup
w∈Rd

|KDEP (w)−KDEX(w)| ≤ ε.

Note that here, we treat d as a variable, and importantly, our bound is independent of d. The Gaussian, Laplacian, and
Exponential kernels are typically chosen for study. Compared to the state-of-the-art results, we can reproduce the findings
of (Lopez-Paz et al., 2015) and (Lacoste-Julien et al., 2015). Nevertheless, there are some improvements in these results,
such as works by (Phillips & Tai, 2018a; 2020; Karnin & Liberty, 2019), and more recent papers by (Tai, 2022; Charikar
et al., 2024). It is worth noting that some of these results consider d as a constant, while others treat it as a variable.

B. Related Works
In machine learning, a common scenario involves having a set of n data points and the goal of minimizing a data-driven
objective loss function. At times, for scalability reasons, it becomes necessary to choose a smaller subset of m ≪ n points.

14



No Dimensional Sampling Coresets for Classification

The aim is to minimize the objective function on these points, potentially using non-uniform weights for the selected
points. This approach aims to achieve a near-optimal solution for the entire data set. Coresets are an important tool in
scalable machine learning, providing a means to achieve this objective. Coresets have found application in various problem
domains, such as clustering (Bundefineddoiu et al., 2002; Har-Peled & Mazumdar, 2004; Frahling & Sohler, 2005; 2008;
Feldman & Langberg, 2011; Feldman & Schulman, 2012; Feldman et al., 2013; Braverman et al., 2019; Huang & Vishnoi,
2020; Feldman et al., 2020), linear regression (Drineas et al., 2006; Dasgupta et al., 2009; Clarkson et al., 2019), principal
component analysis (Cohen et al., 2015; Feldman et al., 2020), and more (Bachem et al., 2017; Sener & Savarese, 2018;
Munteanu et al., 2018; Sohler & Woodruff, 2018; Phillips & Tai, 2018b; Huang et al., 2018; Assadi et al., 2019; Mussay
et al., 2020).

Improving the prior result by (Feldman & Langberg, 2011) which suggests that common sensitivity sampling requires
O(dS2) samples, (Braverman et al., 2021) and (Feldman et al., 2020) proved that O(dS logS) would be sufficient. Here, S
represents the total sensitivity, and d is some VC-dimension associated with the function space. The proof of these results
benefits from a connection between approximating a class of functions and approximating their linked-ranges spaces, the
same concept established by (Joshi et al., 2011) in the study of ε-coresets for kernel density estimates. It is important to note
that these results are subject to the assumption that the space is finite. We eliminate this constraint in Theorem 1.2 with a
different and more straightforward proof outlined in Section 2.2. It is notable to highlight that the coreset bounds derived
from this theorem are all dependent on the dimension. More importantly, we provide a counterpart of this theorem (see
Theorem 1.1) using Rademacher complexity in place of VC-dimension, marking the first result of this kind. As a result, we
are able to present several coreset bounds independent of the dimension – the first such results of this type (see Table 2). In
the following, we focus more on the related works pertaining to these findings.

Our work shares some connections with the research conducted by (Munteanu et al., 2018; Mai et al., 2021; Tolochinksy
et al., 2022), and (Curtin et al., 2020). (Munteanu et al., 2018) demonstrated the existence of datasets for which coresets
of sublinear size do not exist. They introduced a complexity measure µ(X) for data points X , quantifying the difficulty
associated with compressing a dataset for logistic regression. They demonstrated the existence of coresets with size

O∗(
d3/2µ(X)

√
|X|

ε2 ) and O∗(d
3µ2(X)

ε4 ) through a random sampling procedure (Ø∗(·) hides some logarithmic factors in terms
of the problem’s parameters). As a downside of their method, it is not clear how to compute µ(X) and also they conjectured
that computing the value of µ(X) in general is hard. Moreover, their second bound is roughly quadratic in terms of
µ(X) and 1

ε2 when the data possesses a small µ-complexity. Following their work, (Mai et al., 2021) improved these

bounds to O∗(dµ
2(X)
ε2 ) which is linear in terms of 1

ε2 . Their method relies on subsampling data points with probabilities
proportional to their ℓ1 Lewis weights. As they utilize the complexity measure µ(X) in their context, which cannot be
directly interpreted in terms of our variables, presenting a meaningful comparison between our findings and theirs becomes
challenging. Nevertheless, as an advantage, some of our bounds are independent of dimension, surpassing their results in
this particular aspect.

The most closed works to ours are (Tolochinksy et al., 2022) and (Curtin et al., 2020). With an almost similar setting as
ours, but restricted to Euclidean space and with a bounded parameter space, (Tolochinksy et al., 2022) found the coresets
of size O∗

(
kd2 logn log k

ε2

)
for ϕ = logistic, σ, svm. Enhancing some of these results, (Curtin et al., 2020) conducted an

analysis of sampling-based coreset constructions designed for regularized loss minimization problems (logistic regression or
SVM). Their context is slightly distinct from ours. To rephrase their setting in the context of ours, we can express that in
our setting, the regularization term is 1

k whereas they roughly use 1
n1−κ for it (up to a constant). In the scenario where k is

proportional to n1−κ for a fixed κ ∈ (0, 1), they have demonstrated that a uniform sample of size O∗
(

dn1−κ

ϵ2

)
functions

as a coreset with high probability. Here, n = |X| and d represents a type of VC-dimension linked to the function space
(refer to the paper for the precise definition).They have further established the tightness of uniform sampling, accurate up
to poly-logarithmic factors. A special case of our results not only reproduces their results but also improves upon theirs
for logistic regression. It is still noteworthy that their bounds are dimension-dependent, whereas we present some bounds
independent of dimension. For a comprehensive comparison, refer to Table 1.

A few other variants of coresets for classification exist; we briefly mention a few. Munteanu et al. (2021) applies sketching
to create data compression for logistic regression. Their methods are data oblivious and show improvements for sparse
high-dimensional vectors. These results are still polynomial in data parameter µ(X) and dimension d. Mirzasoleiman
et al. (2020) considers coresets for regularized classification in the context of incremental gradient descent. They greedily
select a coreset to be used in IGD, and their results use that the 1

k∥w∥
2 regularizer makes loss function strongly convex as a
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function of k. Coresets can also be found for the 0/1 mis-classification function of size O(d/ε2) via classic VC-dimension
arguments, but as this cost function is non-convex over the model parameters w, the best known algorithms (Matheny &
Phillips, 2021) to solve for the approximately optimal solution are still exponential in dimension O∗(1/εd). Or if a dataset
is known to be linearly separable, then greedy coresets based on Frank-Wolfe can be found of size roughly O(1/ε) which
approximately preserve that separation margin (Tsang et al., 2005; Gärtner & Jaggi, 2009).

C. Main Tools
This section consists of our primary tools and their accompanying proofs essential for establishing our other key findings.

C.1. Proof of Theorem 1.1

We begin by revisiting McDiarmid’s inequality, which serves as a concentration inequality that bounds the difference between
the sampled mean and the true mean of a specific function. If (X1,Σ1, P1), . . . , (Xn,Σ1, Pn) are probability measure spaces,
then P =

∏n
i=1 Pi is a probability measure over

∏n
i=1 Xi. A function f :

∏n
i=1 Xi −→ R satisfies the bounded differences

property if there are constants c1, c2, . . . , cn such that for all i ∈ [n], and for all x1 ∈ X1, x2 ∈ X2, . . . , xn ∈ Xn

sup
x′
i∈Xi

|f(x1, . . . , xi−1, xi, xi+1, . . . , xn)− f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)| ≤ ci.

Lemma C.1 ( McDiarmid 1989). Let f :

n∏
i=1

Xi −→ R satisfy the bounded differences property with bounds c1, c2, . . . , cn.

Consider independent random variables X1, X2, . . . , Xn where Xi ∈ Xi for all i. Then, for any ε > 0,

P (f(X1, X2, . . . , Xn)− E[f(X1, X2, . . . , Xn)] ≥ ε) ≤ exp

(
− 2ε2∑n

i=1 c
2
i

)
.

We are all set to demonstrate our findings for this subsection

Theorem C.2 (Theorem 1.1, Restated). Let (X , P,F) be a positive definite tuple and s(·) be an upper sensitivity function

for it with the total sensitivity S. Any s-sensitivity sample from X of size m, with probability at least 1− 2 exp
(
− 2mt2

S2

)
,

satisfies ∣∣∣∣∣
∫
x

f(x)dP (x)−
m∑
i=1

S

ms(xi)
f(xi)

∣∣∣∣∣ ≤ (2Rq
m(TF ) + t)

∫
x

f(x)dP (x) ∀f ∈ F .

Proof. In view of Equation (3), we need to show that, for any iid sample x1, . . . , xm ∈ X according to the sensitivity
normalized distribution q(x) = s(x)

S p(x), with probability at least 1− 2 exp
(
− 2mt2

S2

)
,

sup
f∈F

∣∣∣∣∣1− 1

m

m∑
i=1

Tf (xi)

∣∣∣∣∣ ≤ 2Rq
m(TF ) + t.

For every x ∈ X and f ∈ F , we have f(x)∫
X f(z)dP (z)

≤ s(x) which implies 0 ≤ Tf (x) =
Sf(x)

s(x)
∫
X f(z)dP (z)

≤ S. Therefore,
sup
x∈X

Tf (x) ≤ S. Now, define

g(x1, . . . , xm) = sup
f∈F

[
1− 1

m

m∑
i=1

Tf (xi)

]
.
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For each i ∈ [m] and each (x′
1, . . . , x

′
m) ∈ Xm such that x′

j = xj for j ̸= i, observe that

g(x1, . . . , xm)− g(x′
1, . . . , x

′
m) = sup

f∈F

[
1− 1

m

m∑
i=1

Tf (xi)

]
− sup

f∈F

[
1− 1

m

m∑
i=1

Tf (x
′
i)

]

≤ sup
f∈F

[(
1− 1

m

m∑
i=1

Tf (xi)

)
−

(
1− 1

m

m∑
i=1

Tf (x
′
i)

)]

≤ sup
f∈F

(
1

m

m∑
i=1

Tf (xi)−
1

m

m∑
i=1

Tf (x
′
i)

)

≤ sup
f∈F

∣∣∣∣Tf (xi)− Tf (x
′
i)

m

∣∣∣∣ ≤ S

m
.

We can repeat the above argument to show g(x1, . . . , xm)−g(x′
1, . . . , x

′
m) ≤ S

m . Thus |g(x1, . . . , xm)−g(x′
1, . . . , x

′
m)| ≤

S
m . Therefore, using McDiarmid’s Inequality, with a probability at least 1− exp

(
− 2mt2

S2

)
, we have

sup
f∈F

[
1− 1

m

m∑
i=1

Tf (xi)

]
≤ E

x1:m∼q

(
sup
f∈F

[
1− 1

m

m∑
i=1

Tf (xi)

])
︸ ︷︷ ︸

=A

+t.

Similarly, we can prove that, with probability at least 1− exp
(
− 2mt2

S

)
, we have

sup
f∈F

[
1

m

m∑
i=1

Tf (xi)− 1

]
≤ E

x1:m∼q

(
sup
f∈F

[
1

m

m∑
i=1

Tf (xi)− 1

])
︸ ︷︷ ︸

=B

+t.

Consequently, since A,B ≥ 0, with probability at least 1− 2 exp
(
− 2mt2

S2

)
we have

sup
f∈F

∣∣∣∣∣1− 1

m

m∑
i=1

Tf (xi)

∣∣∣∣∣ ≤ max{A,B}+ t.

Let us now deal with max{A,B}. As Ex∼q(Tf (x)) = 1, we can write

E
x1:m∼q

sup
f∈F

[
1− 1

m

m∑
i=1

Tf (xi)

]

= E
x1:m∼q

sup
f∈F

[
E

x′
1:m∼q

1

m

m∑
i=1

Tf (x
′
i)−

1

m

m∑
i=1

Tf (xi)

]

≤ E
x1:m∼q

E
x′
1:m∼q

sup
f∈F

[
1

m

m∑
i=1

Tf (x
′
i)−

1

m

m∑
i=1

Tf (xi)

]

(∗) = E
x1:m∼q

E
x′
1:m∼q

E
σ1:m∼{−1,1}

sup
f∈F

[
1

m

m∑
i=1

σi (Tf (x
′
i)− Tf (xi))

]

≤ E
x1:m∼q

E
x′
1:m∼q

E
σ1:m∼{−1,1}

(
sup
f∈F

[
1

m

m∑
i=1

σiTf (x
′
i)

]
+ sup

f∈F

[
1

m

m∑
i=1

−σiTf (xi)

])

= 2 E
x1:m∼q

E
σ1:m∼{−1,1}

sup
f∈F

[
1

m

m∑
i=1

σiTf (xi)

]
= 2Rq

m(TF ).
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The equality marked by (∗) is true since σi indeed exchanges xi and x′
i together, and since they are iid samples from q it

cannot change the expectation. With the same approach, we would have

E
x1:m∼q

sup
f∈F

[
1

m

m∑
i=1

Tf (xi)− 1

]
≤ 2Rq

m(TF ),

which concludes max{A,B} ≤ 2Rq
m(TF ) completing the proof.

C.2. Contraction Lemma

When dealing with Rademacher complexity, we can leverage the helpful lemma known as Talagrand’s Contraction Lemma
(refer to Theorem 4.12 in (Ledoux & Talagrand, 1991)). This lemma, in particular, establishes that Rm(ϕ ◦ F) ≤ LRm(F),
where ϕ : R −→ R is an L-Lipschitz function, and ϕ ◦ F = {ϕ ◦ f : f ∈ F}. Our requirement extends beyond this lemma
to a generalization.

Lemma C.3. Let Ψ : R≥0 −→ R≥0 be convex and increasing, T ⊂ Rm a bounded set, and ε1, . . . , εm > 0. For any
1-Lipschitz functions ϕi : R −→ R with ϕi(0) = 0 for each i ∈ [m], we have

E
ϱ
1:m

∼
∏m

i=1{±εi}
Ψ

(
1

2
sup
t∈T

∣∣∣∣∣
m∑
i=1

ϱiϕi(ti)

∣∣∣∣∣
)

≤ E
ϱ
1:m

∼
∏m

i=1{±εi}
Ψ

(
sup
t∈T

∣∣∣∣∣
m∑
i=1

ϱ
i
ti

∣∣∣∣∣
)
,

where ϱ
1:m

∼
∏m

i=1{±εi} means m independent samples ϱ
1
, . . . , ϱ

m
such that each ϱ

i
is uniformly drawn from {−εi, εi}.

Before turning to the proof of this lemma, note that the only difference between this lemma and Theorem 4.12 in (Ledoux &
Talagrand, 1991) is that ϱi here takes its value randomly and uniformly in {+εi,−εi} rather than {+1,−1}. However, the
proof is almost identical to that of Theorem 4.12 in (Ledoux & Talagrand, 1991).

Proof of Lemma C.3. We first prove

E
ϱ
1:m

∼
∏m

i=1{±εi}
Ψ

(
sup
t∈T

m∑
i=1

ϱ
i
ϕi(ti)

)
≤ E

ϱ
1:m

∼
∏m

i=1{±εi}
Ψ

(
sup
t∈T

m∑
i=1

ϱ
i
ti

)
. (15)

To this end, it siffices to show

E
ϱ∈{±ε}

Ψ

(
sup
t∈T

(t1 + ϱϕ(t2))

)
≤ E

ϱ∈{±ε}
Ψ

(
sup
t∈T

(t1 + ϱt2)

)
, (16)

where t = (t1, t2) ⊂ R2 is a bounded set and ϕ is a 1-Lipschitz function. It suffices to prove that for all t = (t1, t2), s =
(s1, s2) ∈ T , we have

E
ϱ∈{±ε}

Ψ

(
sup
t∈T

(t1 + ϱt2)

)
≥ 1

2
Ψ(t1 + ε2ϕ(t2)) +

1

2
Ψ(s1 − ε2ϕ(s2)) = I.

Since Ψ is increasing, without loss of generality, we may assume that

t1 + ε2ϕ(t2) ≥ s1 + ε2ϕ(s2) and s1 − ε2ϕ(s2) ≥ t1 − ε2ϕ(t2). (17)

We distinguish between the following cases.

1. Case t2, s2 ≥ 0.

• If s2 ≤ t2, set a = s1−ε2ϕ(s2), b = s1−ε2s2, a′ = t1+ε2t2, b′ = t1+ε2ϕ(t2). Since ϕ is 1-Lipschitz, ϕ(0) = 0,
and s2 ≥ 0, |ϕ(s2)| ≤ s2 which concludes a ≥ b. Also, by (17), it implies b′ ≥ s1 + ε2ϕ(s2) ≥ s1 − ε2s2 = b.
Furthermore, as s2 ≤ t2, we have ϕ(t2)− ϕ(s2) ≤ (t2 − s2) and hence

a− b = ε2(s2 − ϕ(s2)) ≤ ε2(t2 − ϕ(t2)) = a′ − b′.

18



No Dimensional Sampling Coresets for Classification

Since Ψ is convex and increasing, for any arbitrary fixed x > 0, the function Ψ(·+x)−Ψ(·) is increasing. Setting
x = a− b ≥ 0, since b ≤ b′, we have

Ψ(a)−Ψ(b) ≤ Ψ(b′ + (a− b))−Ψ(b′)

(if a = b, it is true always). As b′ + a − b ≤ a′, we obtain Ψ(b′ + (a − b)) − Ψ(b′) ≤ Ψ(a′) − Ψ(b′) and
consequently, Ψ(a)−Ψ(b) ≤ Ψ(a′)−Ψ(b′) which is equivalent to 2I ≤ Ψ(t1 + ε2t2) + Ψ(s1 − ε2s2).

• If t2 ≤ s2, set a = t1 + ε2ϕ(t2), b = t1 − ε2t2, a′ = s1 + ε2s2, b′ = s1 − ε2ϕ(s2). Since ϕ is 1-Lipschitz,
|ϕ(t2)| ≤ t2 which implies a ≥ b. Again, by (17),

b′ = s1 − ε2ϕ(s2) ≥ t1 − ε2ϕ(t2) ≥ t1 − ε2t2 = b.

As ϕ(t2)− ϕ(s2) ≤ s2 − t2,

a− b = ε2(t2 + ϕ(t2)) ≤ ε2(s2 + ϕ(s2)) = a′ − b′.

Again, as Ψ(·+ x)−Ψ(·) is increasing for each fixed x > 0 and b ≤ b′, by setting x = a− b ≥ 0, we have

Ψ(a)−Ψ(b) ≤ Ψ(b′ + (a− b))−Ψ(b′)

(if a = b, it is true always). As b′ + a − b ≤ a′, we obtain Ψ(b′ + (a − b)) − Ψ(b′) ≤ Ψ(a′) − Ψ(b′) and
consequently, Ψ(a)−Ψ(b) ≤ Ψ(a′)−Ψ(b′) which is equivalent to 2I ≤ Ψ(s1 + ε2s2) + Ψ(t1 − ε2t2).

2. Case t2, s2 ≤ 0. This case is similar to the previous case.

3. Case t2 ≥ 0, s2 ≤ 0. Since Ψ is increasing and ϕ(t2) ≤ t2,−ϕ(s2) ≤ −s2, we have

2I ≤ Ψ(t1 + ε2t2) + Ψ(s1 − ε2s2).

4. Case t2 ≤ 0, s2 ≥ 0. This case follows with a similar argument to Case (3). This completes the proof of (16) and
consequently the proof of (15).

To conclude the theorem, by convexity of Ψ,

E
ϱ
1:m

∼
∏m

i=1{±εi}
Ψ

(
1

2
sup
t∈T

∣∣∣∣∣
m∑
i=1

ϱiϕi(ti)

∣∣∣∣∣
)

≤ 1

2
E

ϱ
1:m

∼
∏m

i=1{±εi}
Ψ

sup
t∈T

[
m∑
i=1

ϱiϕi(ti)

]+
+

1

2
E

ϱ
1:m

∼
∏m

i=1{±εi}
Ψ

sup
t∈T

[
m∑
i=1

ϱ
i
ϕi(ti)

]−
≤ E

ϱ
1:m

∼
∏m

i=1{±εi}
Ψ

sup
t∈T

[
m∑
i=1

ϱ
i
ϕi(ti)

]+
= E

ϱ
1:m

∼
∏m

i=1{±εi}
Ψ

[sup
t∈T

m∑
i=1

ϱ
i
ϕi(ti)

]+
(∗) ≤ E

ϱ
1:m

∼
∏m

i=1{±εi}
Ψ

[sup
t∈T

m∑
i=1

ϱ
i
ti

]+
≤ E

ϱ
1:m

∼
∏m

i=1{±εi}
Ψ

(
sup
t∈T

∣∣∣∣∣
m∑
i=1

ϱ
i
ti

∣∣∣∣∣
)
,

where (∗) is true by applying (15) on the convex and increasing function Ψ(max(0, ·)). This completes the proof.
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Corollary C.4. Let T ⊂ Rm be a bounded set, and ε1, . . . , εm > 0. For any L-Lipschitz functions ϕi : R −→ R with
ϕi(0) = 0 for each i ∈ [m], we have

E
ϱ1:m∼

∏m
i=1{±εi}

sup
t∈T

∣∣∣∣∣
m∑
i=1

ϱ
i
ϕi(ti)

∣∣∣∣∣ ≤ 2L E
ϱ1:m∼

∏m
i=1{±εi}

sup
t∈T

∣∣∣∣∣
m∑
i=1

ϱ
i
ti

∣∣∣∣∣ .

Proof. Setting Ψ as identity and replacing ϕi with ϕi

L , we conclude the result by Lemma C.3.

In our setting, we only deal with the case that each εi ∈ (0, 1]. This particular case can be directly inferred from Theorem 4.12
in (Ledoux & Talagrand, 1991). Nevertheless, Lemma C.3 and Corollary C.4, in the presented general form, can be of
independent interest.

C.3. Proof of Theorem A.3

This subsection primarily focuses on proving Theorem A.3 (and Theorem 1.4), a crucial tool enabling us to derive our main
results. We start with bounding the Radamacher complexity of TF .

Lemma C.5. For a well-behaved measure P (see Definition A.1), if s(·) : X −→ (1,∞) is an upper sensitivity function for
LH
ϕ,k with total sensitivity S =

∫
X s(x)dP , then

Rq
m(TLH

ϕ,k
) ≤ C

√
S

m
,

where C = (2LE1 + ϕ(0))max
(
4E1k,

1
E2

)
+ 8LkE1 + 1. The same statement holds if we replace LH

ϕ,k by L̄H
ϕ,k.

Proof. Due to similarity, we only work with Lϕ,k. We first show that

E
x1:m∼q

E
σ1:m∼{−1,1}

∥∥∥∥∥
m∑
i=1

σi
K(xi, ·)
s(xi)

∥∥∥∥∥
H

≤
√

m

S
E1 and E

x1:m∼q
E

σ1:m∼{−1,1}

∣∣∣∣∣
m∑
i=1

σi
1

s(xi)

∣∣∣∣∣ ≤
√

m

S
. (18)

Because of the similarity, we only prove the first one. To this end, using Jensen’s inequality for the concave function t 7→
√
t,
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we obtain

E
x1:m∼q

E
σ1:m∼{−1,1}

∥∥∥∥∥
m∑
i=1

σi
K(xi, ·)
s(xi)

∥∥∥∥∥
H

≤

√√√√ E
x1:m∼q

E
σ1:m∼{−1,1}

∥∥∥∥∥
m∑
i=1

σi
K(xi, ·)
s(xi)

∥∥∥∥∥
2

H

=

√√√√ E
x1:m∼q

E
σ1:m∼{−1,1}

〈
m∑
i=1

σi
K(xi, ·)
s(xi)

,

m∑
i=1

σi
K(xi, ·)
s(xi)

〉
H

=

√√√√√ E
x1:m∼q

E
σ1:m∼{−1,1}

 m∑
i=1

σ2
i

K(xi, xi)

s(xi)2
+
∑
i ̸=j

σiσj
K(xi, xj)

s(xi)s(xj)


=

√√√√ E
x1:m∼q

[
m∑
i=1

K(xi, xi)

s2(xi)

]

(since q(x) =
s(x)

S
p(x)) =

1√
S

√√√√ E
x1:m∼p

[
m∑
i=1

K(xi, xi)

s(xi)

]

(since s(x) ≥ 1) ≤ 1√
S

√√√√ E
x1:m∼p

[
m∑
i=1

K(xi, xi)

]

=
1√
S

√
m E

x∼p
K(x, x) ≤

√
m

S
E1.

For simplicity set, fw(x) = ℓHϕ,k(w, x) and α(w) = S∫
X fw(x)dP (x)

. During the proof, we need some good upper bounds

for α(w)∥w∥2H and α(w). Note that
∫
X fw(x)dP (x) = 1

k∥w∥
2
H +

∫
X ϕ(K(w, x))dP (x) ≥ 1

k∥w∥
2
H which implies

α(w)∥w∥2H ≤ Sk. Also,∫
X
fw(x)dP (x) =

1

k
∥w∥2H +

∫
X
ϕ(K(w, x))dP (x)

≥ 1

k
∥w∥2H +

∫
X
ϕ(∥w∥H∥x∥H)dP (x) (ϕ is non-increasing & Cauchy–Schwarz ineq.)

≥


1

4E2
1k

∥w∥H ≥ 1
2E1∫

X ϕ(∥x∥H

2E1
)dP (x) ∥w∥H ≤ 1

2E1

≥


1

4E1k
∥w∥H ≥ 1

2E1

E2 ∥w∥H ≤ 1
2E1

= min

(
1

4E1k
,E2

)
.

This concludes α(w) ≤ max
(
4SE1k,

S
E2

)
for each w. Note that if 2n ≤ ∥w∥H ≤ 2n+1, then∫

X
fw(x)dP (x) =

1

k
∥w∥2H +

∫
X
ϕ(K(w, x))dP (x) ≥ 22n

k

which implies α(w) ≤ kS
22n . So, we obtained

α(w) ≤

{
max

(
4SE1k,

S
E2

)
∥w∥2 ≤ 1

kS
22n 2n ≤ ∥w∥H ≤ 2n+1.

(19)
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To bound the supremum within the Radamacher complexity, we utilize these inequalities to partition the parameter space. It
is necessary as we want to use Lemma C.4 in which we need a bounded property. Consequently,

Rq
m(TLH

ϕ,k
) = E

x1:m∼q
E

σ1:m∼{−1,1}
sup

f∈LH
ϕ,k

[
1

m

m∑
i=1

σiTf (xi)

]

= E
x1:m∼q

E
σ1:m∼{−1,1}

sup
w∈X

S∫
X fw(x)dµ︸ ︷︷ ︸

=α(w)

[
1

m

m∑
i=1

σi
fw(xi)

s(xi)

]

= E
x1:m∼q

E
σ1:m∼{−1,1}

sup
w∈X

α(w)

[
1

m

m∑
i=1

σi

ϕ(K(w, xi)) +
1
k∥w∥

2
H

s(xi)

]

≤ E
x1:m∼q

E
σ1:m∼{−1,1}

sup
w∈X

α(w)

∣∣∣∣∣ 1m
m∑
i=1

σi
ϕ(K(w, xi))

s(xi)

∣∣∣∣∣︸ ︷︷ ︸
=M

+
1

k
E

x1:m∼q
E

σ1:m∼{−1,1}
sup
w∈X

α(w)

∣∣∣∣∣ 1m
m∑
i=1

σi
∥w∥2H
s(xi)

∣∣∣∣∣︸ ︷︷ ︸
=N

(∗) ≤
[
2LE1 max

(
4E1k,

1

E2

)
+ 8LkE1 +max

(
4E1k,

1

E2

)
ϕ(0) + 1

]√
S

m
.

To prove (∗), we deal with M and N separately. Note that ϕ̄(·) = ϕ(·)− ϕ(0) is an L-Lipschitz functions with ϕ̄(0) = 0
and thus satisfies the condition of Corollary C.4. Note that

M ≤ E
x1:m∼q

E
σ1:m∼{−1,1}

sup
w∈X

α(w)

∣∣∣∣∣ 1m
m∑
i=1

σi
ϕ̄(K(w, xi))

s(xi)

∣∣∣∣∣︸ ︷︷ ︸
=M1

+ E
x1:m∼q

E
σ1:m∼{−1,1}

sup
w∈X

α(w)

∣∣∣∣∣ 1m
m∑
i=1

σi
ϕ(0)

s(xi)

∣∣∣∣∣︸ ︷︷ ︸
=M2

≤M1 + ϕ(0)max

(
4SE1k,

S

E2

)
E

x1:m∼q
E

σ1:m∼{−1,1}

∣∣∣∣∣ 1m
m∑
i=1

σi

s(xi)

∣∣∣∣∣
≤M1 +

√
S

m
max

(
4E1k,

1

E2

)
ϕ(0) by (18).

To upper bound M1, define

M0
1 = E

x1:m∼q
E

σ1:m∼{−1,1}
sup

∥w∥H≤1

α(w)

∣∣∣∣∣ 1m
m∑
i=1

σi
ϕ̄(K(w, xi))

s(xi)

∣∣∣∣∣
and, for n ∈ N,

Mn
1 = E

x1:m∼q
E

σ1:m∼{−1,1}
sup

2n−1≤∥w∥≤2n
α(w)

∣∣∣∣∣ 1m
m∑
i=1

σi
ϕ̄(K(w, xi))

s(xi)

∣∣∣∣∣
22
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and note that M1 ≤
∑∞

n=0 M
n
1 . We can write

M0
1 = E

x1:m∼q
E

σ1:m∼{−1,1}
sup

∥w∥H≤1

α(w)

∣∣∣∣∣ 1m
m∑
i=1

σi
ϕ̄(K(w, xi))

s(xi)

∣∣∣∣∣
(since α(w) ≤ max(4SE1k,

S

E2
)) ≤ max

(
4SE1k,

S

E2

)
E

x1:m∼q
E

σ1:m∼{−1,1}
sup

∥w∥H≤1

1

m

∣∣∣∣∣
m∑
i=1

σi
ϕ̄(K(w, xi))

s(xi)

∣∣∣∣∣
(Cor. C.4 with εi =

1

s(xi)
) ≤ 2Lmax

(
4SE1k,

S

E2

)
E

x1:m∼q
E

σ1:m∼{−1,1}
sup

∥w∥H≤1

∣∣∣∣∣ 1m
m∑
i=1

σi
K(w, xi)

s(xi)

∣∣∣∣∣
=

2L

m
max

(
4SE1k,

S

E2

)
E

x1:m∼q
E

σ1:m∼{−1,1}
sup

∥w∥H≤1

∣∣∣∣∣
〈
K(w, ·),

m∑
i=1

σi
K(xi, ·)
s(xi)

〉
H

∣∣∣∣∣
(Cauchy–Schwarz inequality) ≤ 2L

m
max

(
4SE1k,

S

E2

)
E

x1:m∼q
E

σ1:m∼{−1,1}
sup

∥w∥H≤1

∥w∥H

∥∥∥∥∥
m∑
i=1

σi
K(xi, ·)
s(xi)

∥∥∥∥∥
H

≤ 2L

m
max

(
4SE1k,

S

E2

)
E

x1:m∼q
E

σ1:m∼{−1,1}

∥∥∥∥∥
m∑
i=1

σi
K(xi, ·)
s(xi)

∥∥∥∥∥
H

(by (18)) ≤ 2LE1 max

(
4E1k,

1

E2

)√
S

m
.

and similarly,

Mn
1 = E

x1:m∼q
E

σ1:m∼{−1,1}
sup

2n−1≤∥w∥H≤2n
α(w)

∣∣∣∣∣ 1m
m∑
i=1

σi
ϕ̄(K(w, xi))

s(xi)

∣∣∣∣∣
(Since α(w) ≤ kS

22(n−1)
) ≤ kS

m4n−1
E

x1:m∼q
E

σ1:m∼{−1,1}
sup

2n−1≤∥w∥H≤2n

∣∣∣∣∣
m∑
i=1

σi
ϕ̄(K(w, xi))

s(xi)

∣∣∣∣∣
(Cor. C.4 with εi =

1

s(xi)
) ≤ 2LkS

m4n−1
E

x1:m∼q
E

σ1:m∼{−1,1}
sup

2n−1≤∥w∥H≤2n

∣∣∣∣∣
m∑
i=1

σi
K(w, xi)

s(xi)

∣∣∣∣∣
=

2LkS

m4n−1
E

x1:m∼q
E

σ1:m∼{−1,1}
sup

2n−1≤∥w∥H≤2n

∣∣∣∣∣
〈
K(w, ·),

m∑
i=1

σi
K(xi, ·)
s(xi)

〉
H

∣∣∣∣∣
≤ 2LkS

m4n−1
E

x1:m∼q
E

σ1:m∼{−1,1}
sup

2n−1≤∥w∥H≤2n
∥w∥H

∥∥∥∥∥
m∑
i=1

σi
K(xi, ·)
s(xi)

∥∥∥∥∥
H

≤ LkS

m2n−3
E

x1:m∼q
E

σ1:m∼{−1,1}

∥∥∥∥∥
m∑
i=1

σi
K(xi, ·)
s(xi)

∥∥∥∥∥
H

(by (18)) ≤ LkE1

2n−3

√
S

m
.

Therefore,

M1 ≤ M0
1 +

∞∑
n=1

Mn
1

≤ 2LE1 max

(
2E1k,

1

E2

)√
S

m
+

∞∑
n=1

LkE1

2n−3

√
S

m

= 2LE1 max

(
2E1k,

1

E2

)√
S

m
+ 8LkE1

√
S

m
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and thus

M ≤
[
2LE1 max

(
4E1k,

1

E2

)
+ 8LkE1 +max

(
4E1k,

1

E2

)
ϕ(0)

]√
S

m
.

To complete the proof, we need to upper bound N which is done as follows

N = E
x1:m∼q

E
σ1:m∼{−1,1}

sup
w∈X

α(w)

∣∣∣∣∣ 1m
m∑
i=1

σi
∥w∥2H
s(xi)

∣∣∣∣∣
=

1

m
E

x1:m∼q
E

σ1:m∼{−1,1}
sup
w∈Rd

α(w)∥w∥2H

[
m∑
i=1

σi
1

s(xi)

]

(since α(w)∥w∥2 ≤ Sk) ≤ Sk

m
E

x1:m∼q
E

σ1:k

∣∣∣∣∣
m∑
i=1

σi

s(xi)

∣∣∣∣∣
(by (18)) ≤

√
S

m
k,

which completes the proof.

We are now in a position to state the following conclusion.

Theorem C.6. [Theorem A.3, Restated] For a well behaved probability measure P (see Definition A.1), if s(·) : X −→
(1,∞) is an upper sensitivity function for LH

ϕ,k with total sensitivity S and m ≥ 2S
ε2

(
8C2 + S log 2

δ )
)
, then, with prob-

ability at least 1 − δ, any s-sensitivity sample x1, . . . , xm from X with weights ui = S
ms(xi)

provides an ε-coreset for
(X , P, X , ℓHϕ,k), where

C = (2LE1 + ϕ(0))max(4E1k,
1

E2
) + 8LkE1 + 1.

The statement remains true if we replace LH
ϕ,k and (X , P, X , ℓHϕ,k) by L̄H

ϕ,k and (X , P, X , ℓ̄Hϕ,k).

Proof. The proof immediately follows from Theorem C.2 and Lemma C.5.

When E1 is dimension independent, this theorem provides a no-dimensional ε-coreset for (Rd, P, Rd, ℓϕ,k), that is, whose
size is independent of the dimension of the space. In the following subsection, we present some applications of this theorem.
This theorem holds significant importance in deriving the dimension-free results outlined in Table 3.

D. Coresets for Monotonic Functions
Let H be a reproducing kernel Hilbert space of real-valued functions on X with kernel K : X ×X −→ R and P a probability
measure over X . For a non-increasing L-Lipschitz function ϕ : R −→ (0,∞), we remind that ℓHϕ,k : X × X −→ R where
ℓHϕ,k(x,w) = ϕ(K(x,w))+ 1

k∥w∥
2
H . An ε-coreset for (X , P,LH

ϕ,k), called ε-coreset for a monotonic function ϕ with respect
to H , is a set X = {x1, . . . , xm} ⊆ X accompanied by a measure (or weight function) ν such that∣∣∣∣∣

∫
x∈X

ℓHϕ,k(x,w)dP (x)−
m∑
i=1

ν(xi)ℓ
H(xi, w)

∣∣∣∣∣ ≤ ϵ

∫
x∈X

ℓHϕ,k(x,w)dP (x) ∀w ∈ X . (20)

We start with a straightforward observation.

Lemma D.1. If ϕ : R −→ (0,∞) is a non-increasing function and 0 < K1 ≤ K2, then

ϕ(−t) + t2

K1

ϕ(t) + t2

K1

≤
ϕ(−t) + t2

K2

ϕ(t) + t2

K2

for each t ≥ 0.
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Proof. For t ≥ 0, we should check the inequality(
ϕ(−t) +

t2

K1

)(
ϕ(t) +

t2

K2

)
≤
(
ϕ(−t) +

t2

K2

)(
ϕ(t) +

t2

K1

)
which is equivalent to

ϕ(−t)
t2

K2
+ ϕ(t)

t2

K1
≤ ϕ(−t)

t2

K1
+ ϕ(t)

t2

K2

which is valid since

ϕ(−t)t2
(

1

K1
− 1

K2

)
+ ϕ(t)t2

(
1

K2
− 1

K1

)
= t2

(
1

K1
− 1

K2

)
(ϕ(−t)− ϕ(t)) ≥ 0,

completing the proof.

A version of the lemma described below appears in (Tolochinksy et al., 2022). We carefully revisit the ideas in their proof in
order to extend and enhance the lemma.

Lemma D.2. Let ϕ : R −→ (0,∞) be a non-increasing function such that

ϕ(−αz) + z2

k

ϕ(αz) + z2

k

≤ β(α) 0 ≤ α ≤ B1, 0 ≤ z ≤ B2. (21)

If we set M = ϕ(−B1B2), then, for each x, y, w ∈ X with ∥x∥H , ∥y∥H ≤ B1, ∥w∥H ≤ B2, we have

ϕ(0)

Mβ(∥x∥H)
≤

ℓHϕ,k(x,w)

ℓHϕ,k(y, w)
and

ϕ(0)

Mβ(∥x∥H)
≤

ℓ̄Hϕ,k(x,w)

ℓ̄Hϕ,k(y, w)
.

If ϕ is universally bounded by M , then we do not need upper bounds B1, B2 for α, z and consequentially do not need upper
bounds for ∥x∥H , ∥y∥H , and ∥w∥H , and the same statement holds.

Proof. Due to similarity, we only prove the lemma for ℓHϕ,k. First, note that as ϕ is non-increasing, β(α) ≥ 1 for each α.
Consider arbitrary x, y, w ∈ X with ∥x∥H , ∥y∥H ≤ B1, ∥w∥H ≤ B2. In the following, we deal with the two different cases
K(x,w) ≤ 0 and K(x,w) > 0 separately. If K(x,w) ≤ 0, then

ϕ(K(y, w)) = ϕ(⟨y, w⟩H)

≤ ϕ(−∥y∥H∥w∥H) (ϕ is non-increasing along with Cauchy–Schwarz inequality)
≤ ϕ(−B1B2)

= M =
M

ϕ(0)
ϕ(0)

≤ M

ϕ(0)
ϕ(K(x,w)) (since K(x,w) ≤ 0 and ϕ is non-increasing)

and hence, as M
ϕ(0) , β(∥x∥H) ≥ 1, by adding ∥w∥2

H

k to both sides, we obtain

ℓϕ,k(y, w) ≤
M

ϕ(0)
ℓHϕ,k(x,w) ≤

M

ϕ(0)
β(∥x∥H)ℓHϕ,k(x,w). (22)

Now, assume that K(x,w) > 0. Similarly,

ϕ(K(y, w)) ≤ M ≤ M

ϕ(0)
ϕ(−K(x,w)) ≤ M

ϕ(0)
ϕ(−∥x∥H∥w∥H).
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Again, by adding ∥w∥2
H

k to the both sides, we have

ℓHϕ,k(y, w) = ϕ(K(y, w)) +
∥w∥2H
k

≤ M

ϕ(0)

(
ϕ(−∥x∥H∥w∥H) +

∥w∥2H
k

)
(Property 21) ≤ M

ϕ(0)
β(∥x∥H)

(
ϕ(∥x∥H∥w∥H) +

∥w∥2H
k

)
(Cauchy-Schwarts Inequality and ϕ is non-increasing) ≤ M

ϕ(0)
β(∥x∥H)

(
ϕ(K(x,w)) +

∥w∥2H
k

)
︸ ︷︷ ︸

=ℓHϕ,k(x,w)

,

which implies

ℓHϕ,k(y, w) ≤
M

ϕ(0)
β(∥x∥H)ℓHϕ,k(x,w). (23)

Combining Equations (22) and (23), we obtain the desired inequality.

This lemma provides us with a function γ(α) = ϕ(0)
Mβ(α) ≤ 1 ensuring γ(∥x∥H) ≤ ℓHϕ,k(x,w)

ℓHϕ,k(y,w)
. The subsequent lemma will

highlight the usefulness of this function.
Lemma D.3. Let P be a probability measure over X . Assume that W ⊆ X , ℓ : X × X −→ (0,∞), and γ : [0,∞) −→
[0,∞) such that 0 <

∫
X γ(∥x∥H)dP (x) < ∞ and

γ(∥x∥H) ≤ ℓ(x,w)

ℓ(y, w)
∀x, y ∈ X , w ∈ W. (24)

Then
s(y) =

1∫
X γ(∥x∥H)dP (x)

is an upper sensitivity function for (X , P,LW ), where LW = {l(·, w) : w ∈ W}.

Proof. For a y ∈ X , we have

sup
w∈W

ℓ(y, w)∫
X ℓ(x,w)dP (x)

= sup
w∈W

1∫
X

ℓ(x,w)
ℓ(y,w)dP (x)

≤ sup
w∈W

1∫
X
γ(∥x∥H)dP (x)

=
1∫

X
γ(∥x∥H)dP (x)

completing the proof.

It is worth noting that the provided upper sensitivity function s(y) = 1∫
X γ(∥x∥)dP remains constant, irrespective of y ∈ X .

In a specific scenario where γ is lower bounded by L, the function s(y) = 1
L serves as an upper sensitivity function,

possessing a total value of S = 1
L . It is important to note that when ϕ and k grantee Property (24) for ℓ = ℓHϕ,k (like what is

established in Lemma D.2), then Lemma D.3 provides a methodology to calculate the upper sensitivity function and its total
value for LH

ϕ,k. This enables us to obtain s-sensitivity samples from X , making Theorem C.6 (and Theorem 1.2) applicable
in this context.

D.1. Coreset for Sigmoid function

Tolochinksy et al. (2022) examined Property (24) for specific functions ϕ. They demonstrated for the sigmoid function
σ(x) = 1

1+ex that, given α > 0, there exists a threshold kα such that for any k ≥ kα

σ(−αz) + z2

k

σ(αz) + z2

k

≤ 66kα ∀z ≥ 0. (25)
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Using this result, they established the first item of Theorem 1.5 in which, as a drawback, k should be sufficiently large
contingent on the given data points X . This dependency comes from the role of kα in Equation (25). In the subsequent
lemma, we eliminate this dependency.

Lemma D.4. For σ(x) = 1
1+ex and fixed k > 0, we have

σ(−αz) + z2

k

σ(αz) + z2

k

≤ 4
(
1 + max(e, α2k)

)
∀α, z ≥ 0.

Proof. One can verify that σ : R −→ (0, 1) is a positive decreasing function and σ′(t) = −σ(t)σ(−t). For a fixed α > 0,
if we set t = αz and K = α2k,

σ(−αz) + z2

k

σ(αz) + z2

k

=
σ(−t) + t2

K

σ(t) + t2

K

≤
1 + t2

K

σ(t) + t2

K

= f(t).

To find the maximum of f(t) on (0,∞) in terms of K, we begin by calculating f ′(t), the derivative of f , after factoring out
1/(σ(t) + t2

K )2, as follows: (
σ(t) +

t2

K

)2

f ′(t) =
2t

K

(
σ(t) +

t2

K

)
−
(
σ′(t) +

2t

K

)(
1 +

t2

K

)
=σ(t)

2t

K
− σ′(t)− 2t

K
− σ′(t)

t2

K

=σ(t)
2t

K
+ σ(t)σ(−t)− 2t

K
+ σ(t)σ(−t)

t2

K

=
2t

K
(σ(t)− 1) + σ(t)σ(−t)

(
1 +

t2

K

)
(since σ(t) + σ(−t) = 1) =− σ(−t)

2t

K
+ σ(t)σ(−t)

(
1 +

t2

K

)
=σ(−t)

[
−2t

K
+ σ(t)

(
1 +

t2

K

)]
.

So, as (σ(t) + t2/K)2 > 0, whenever σ(t)
(
1 + t2

K

)
< 2t

K or equivalently K
2t +

t
2 < 1 + et, f ′ is negative. For

h(t) = 1 + et − t

2
− K

2t
,

we have
h′(t) = et − 1

2
+

K

2t2
> 0 for each t ≥ 0.

This indicates that h is increasing, implying it can have at most one zero. Since h is negative for small t and positive for
large t, it follows that h possesses a unique zero, denoted as t0. This implies that f is decreasing for t ≥ t0 and increasing
for t ≤ t0, thus attaining its maximum at t0. In the following discussion, we distinguish between two cases: K ≥ e and

K ≤ e. Initially, we focus on bounding supt∈(0,∞)
1+ t2

K

σ(t)+ t2

K

for the scenario where K ≥ e. Subsequently, we employ this

bound, along with a straightforward observation, to derive a bound for supt∈(0,∞)
1+ t2

K

σ(t)+ t2

K

when K ≤ e.

1. Case 1: K ≥ e. We start with t ≥ logK ≥ 1. As h is increasing

h(t) ≥ h(logK) = 1 +K − logK

2
− K

2 logK
≥ 1.

This means that h is positive for t ≥ logK. Now, assume that t ≤ 0.5 logK. Again, because h is increasing, we have

h(t) ≤ h(0.5 logK) ≤ 1 +
√
K − logK

4
− K

logK
< 0.
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These observations together yield t0 ∈ [0.5 logK, logK]. Consequently,

sup
t∈(0,∞)

1 + t2

K

σ(t) + t2

K

=
1 +

t20
K

σ(t0) +
t20
K

≤
1 + log2 K

K

σ(logK) + log2 K
4K

≤
1 + log2 K

K
log2 K
4K

≤ 4

(
1 +

K

log2 K

)
≤ 4(1 +K).

2. Case 2: K ≤ e. Calculation shows that if 0 < K1 ≤ K2, then

1 + t2

K1

σ(t) + t2

K1

≤
1 + t2

K2

σ(t) + t2

K2

∀t ≥ 0

which concludes

sup
t∈(0,∞)

1 + t2

K1

σ(t) + t2

K1

≤ sup
t∈(0,∞)

1 + t2

K2

σ(t) + t2

K2

.

Consequently, for K ≤ e,

sup
t∈(0,∞)

1 + t2

K

σ(t) + t2

K

≤ sup
t∈(0,∞)

1 + t2

e

σ(t) + t2

e

≤ 4(1 + e),

where the right most inequality comes from Case (1).

Putting Cases (1) and (2) together, we obtain

max
t∈[0,t0]

f(t) ≤

 4(1 +K) K ≥ e

4(1 + e) K < e.

So, replacing K with α2k, we obtain

σ(−αz) + z2

k

σ(αz) + z2

k

≤ β(α) =

 4(1 + α2k) α2k ≥ e

4(1 + e) α2k ≤ e
∀α, z > 0.

Note that for α = 0 or z = 0, the inequality is valid as well.

Lemma D.5. Assume that H is a reproducing kernel Hilbert space of real-valued functions on X with kernel K : X ×X −→
R and P is a probability measure over X such that E

x∼P
∥x∥2H ≤ E2

1 . Then s(x) = 60 + 32kE2
1 is an upper sensitivity

function for (X , P, ℓHσ,k) and (X , P, ℓ̄Hσ,k).

Proof. Given Ex∼P (∥x∥2H) ≤ E2
1 , Markov’s inequality implies that Px∼P (∥x∥H ≥ 2E2

1) ≤ 1
2 and consequently

Px∼P (∥x∥H ≤ 2E2
1) ≥ 1

2 which will be used later to derive inequality marked by in (∗). Since σ is universally bounded by
1. Lemma D.4 indicates that Lemma D.2 is applicable with

βσ(α) =

 4(1 + α2k) α2k ≥ e

4(1 + e) α2k ≤ e
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and for all x, y, w ∈ X and M = 1. Using Lemma D.3 with γ(∥x∥H) = σ(0)
Mβσ(∥x∥H) = 1

2βσ(∥x∥H) , we conclude that
s(y) = 2∫

Rd
1

βσ(∥x∥H )
dP

is an upper sensitivity function for (X , P, X , ℓHσ,k) and (X , P, X , ℓ̄Hσ,k). Note that

∫
X

1

βσ(∥x∥H)
dP (x) ≥

∫
{x:e≤k∥x∥2

H≤2kE2
1}

1

4(1 + ∥x∥2Hk)
dP (x) +

∫
{x:k∥x∥2

H<e}

1

4(1 + e)
dP (x)

≥ 1

4(1 + 2kE2
1)

P
({

x :
e

k
≤ ∥x∥2H ≤ 2E2

1

})
+

1

4(1 + e)
P
({

x : ∥x∥2H <
e

k

})
≥ P

({
x : ∥x∥2H ≤ 2E2

1

})
min

(
1

4(1 + 2kE2
1)

,
1

4(1 + e)

)
(∗) ≥ 1

2
min

(
1

4(1 + 2kE2
1)

,
1

4(1 + e)

)
≥ 1

8(1 + e+ 2kE2
1)

≥ 1

30 + 16kE2
1

.

This concludes s(x) = 60 + 32kE2
1 is an upper sensitivity function for (X , P, ℓHσ,k) and (X , P, ℓ̄Hσ,k).

Now, we are at a point to put Theorem A.3 into action.

Theorem D.6 (No Dimensional Sigmoid Coreset). Assume that H is a reproducing kernel Hilbert space of real-valued
functions on X with kernel K : X×X −→ R, P is a probability measure over X such that E

x∼p
∥x∥2H ≤ E2

1 , S = 60+32kE2
1 ,

and C =
(
2E1 +

1
2

)
max

(
4E1k,

2
5

)
+ 8kE1 + 1. For m ≥ 2S

ε2 (8C
2 + S log 2

δ ), any iid sample x1, . . . , xm from P with
weights ui =

1
m provides an ε-coreset for (X , P,X , ℓHσ,k) (respectively for (X , P,X , ℓ̄Hσ,k) ) with probability at least 1− δ.

Proof. Lemma D.5 indicates that s(x) = 60 + 32kE2
1 is an upper sensitivity function. Given that it is a constant function,

s-sensitivity sampling is equivalent to sampling according to P . Notice that σ is a 1-Lipschitz function. As log(·) is a
concave function, using Jensen’s inequality, we have E

(
log σ

(
∥xi∥H

2E1

))
≤ logE

(
σ
(

∥xi∥H

2E1

))
. On the other hand, since

− log σ(t) = log(1 + et) ≤ 1 + t, we have

E
(
log σ

(
∥xi∥H
2E1

))
≥ −E

(
1 +

∥xi∥H
2E1

)
= −1− E ∥xi∥H

2E1
≥ −3

2
,

which concludes

E
(
σ

(
∥xi∥H
2E1

))
≥ e

E
(
log σ

(
∥xi∥H
2E1

))
≥ e−

3
2 ≥ 0.4 = E2.

Hence, P is well behaved (see Definition A.1), thereby allowing Theorem A.3 to establish the statement.

While Theorem D.6 holds for any reproducing kernel Hilbert space meeting the specified criteria, the most intriguing
instance arises in Hilbert space Rd equipped with the standard inner product (also known as the dot product) as its kernel. In
this scenario, we can also employ Theorem 1.2, which leads to the subsequent theorem.

Theorem D.7. Let P be a probability measure over Rd such that E
x∼p

∥x∥22 ≤ E1 and S = 60 + 32kE2
1 . There is an

m = O
(
S
ε2

(
d logS + log 1

δ )
))

such that any iid sample x1, . . . , xm from P with weights ui =
1
m provides an ε-coreset

for (Rd, P,Rd, ℓσ,k) ( respectively for (Rd, P,Rd, ℓ̄σ,k)) with probability at least 1− δ.

Proof. Because of similarity, we only prove the statement for (Rd, P,Rd, ℓσ,k). Given that Lemma D.5 asserts the constant
function s(x) = 60+32kE2

1 as an upper sensitivity function for Lσ,k, we deduce Ranges(TLσ,k
,≻) = Ranges(Lσ,k,≻).

To clarify, every function in TLσ,k
is a function in Lσ,k scaled by a positive constant. This implies VCdim(Ranges(TLσ,k

,≻
)) = VCdim(Ranges(Lσ,k,≻)). We would like to remind that

TLσ,k
=

{
fw(·) =

σ(⟨w, ·⟩) + 1
k∥w∥

2
2

s(·)
: w ∈ Rd

}
.
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For an fw ∈ Lσ,k and r ≥ 0,

range(fw,≻, r) =
{
x ∈ Rd : fw(x) > r

}
=

{
x ∈ Rd : σ(⟨x,w⟩) + ∥w∥2

k
> r

}

=

x ∈ Rd :
1

1 + e⟨x,w⟩ > r − ∥w∥2

k︸ ︷︷ ︸
=t


=

 Rd t ≤ 0
∅ t ≥ 1{
x ∈ Rd : ⟨x,w⟩ < log( 1t − 1)

}
0 < t < 1,

which concludes that Ranges(Lσ,k,≻) only includes half-spaces, empty set, and the whole space Rd. Therefore, by
Radon’s theorem, VCdim(Ranges(Lσ,k,≻)) ≤ d+ 1 (for a proof, see Lemma 10.3.1 in (Matousek, 2002)). Leveraging
Theorem 1.2, we derive the statement for m = O( S

ε2

(
d logS + log 1

δ

)
), thereby completing the proof.

Theorems D.6 and D.7 can be considered as an advancement of the first item of Theorem 1.5. Theorem 1.5 is applicable
when X is a finite set inside the unit ball, and m is function that is linear in terms of log(|X |) and quadratic in terms d,
whereas in Theorem D.6, X can be infinite, and moreover, the presented m remains constant concerning those parameters
(assuming E1 is independent of d). Moreover, in Theorem D.7, m linearly depends on d, whereas in Theorem 1.5, it has a
quadratic dependence on d.

D.2. Coreset for Logistic Function

In binary logistic regression, minimizing the negative log-likelihood involves working with the logistic function logistic(t) =
log(1 + e−t). Therefore, having small coresets for logistic functions holds significant value. In this section, we establish an
upper bound on the size of a coreset for the logistic function.

Lemma D.8. For logistic(x) = log(1 + e−t) and fixed k > 0, we have

logistic(−αz) + z2

k

logistic(αz) + z2

k

≤


85α2k

log(α2k) α2k ≥ e

85 α2k ≤ e.

∀α, z ≥ 0.

Proof. Simplifying notation, let ϕ(t) = logistic(t). For a given α > 0, if we set t = αz and K = α2k,

ϕ(−αz) + z2

k

ϕ(αz) + z2

k

=
ϕ(−t) + t2

K

ϕ(t) + t2

K

= fK(t) t ≥ 0.
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Note that ϕ′(t) = −σ(t) = −1
1+et . Upon computing the derivative of fK , we obtain(

ϕ(t) +
t2

K

)2

f ′
K(t) =

(
−ϕ′(−t) +

2t

K

)(
ϕ(t) +

t2

K

)
−
(
ϕ′(t) +

2t

K

)(
ϕ(−t) +

t2

K

)
= −ϕ′(−t)ϕ(t)− ϕ′(−t)

t2

K
+ ϕ(t)

2t

K
− ϕ′(t)ϕ(−t)− ϕ′(t)

t2

K
− ϕ(−t)

2t

K

= − (ϕ′(−t)ϕ(t) + ϕ′(t)ϕ(−t)) + (ϕ(t)− ϕ(−t))
2t

K
− (ϕ′(t) + ϕ′(−t))

t2

K

= (σ(−t)ϕ(t) + σ(t)ϕ(−t)) + (ϕ(t)− ϕ(−t))
2t

K
+ (σ(t) + σ(−t)︸ ︷︷ ︸

=1

)
t2

K

= ((1− σ(t))ϕ(t) + σ(t)ϕ(−t)) + (ϕ(t)− ϕ(−t))
2t

K
+ (σ(t) + σ(−t)︸ ︷︷ ︸

=1

)
t2

K

= ϕ(t) + (ϕ(t)− ϕ(−t))︸ ︷︷ ︸
=−t≤0

(
2t

K
− σ(t)

)
+

t2

K
= h(t).

We investigate the two cases K ≥ e and K ≤ e separately. First, assume that K ≥ e. In the subsequent analysis, our goal is
to determine 0 < t1 < t2 such that h(t) > 0 (equivalently fK is increasing) for t ∈ [0, t1] and h(t) < 0 (equivalently fK is
decreasing) for t ∈ [t1,∞). This concludes that fK takes its maximum at some t0 ∈ [t1, t2]. Considering the formula of
h(t), if 2t

K ≤ σ(t) or equivalently g1(t) = 1 + et − K
2t ≤ 0, then h(t) is positive. Since the function g1 is increasing, for

t ∈ (0, 0.4 logK],

g1(t) ≤ g1(0.4 log k) = 1 +
5
√
K2 − 5K

4 logK
< 0 =⇒ h(t) > 0.

Thus, fK is increasing for t ∈ [0, 0.4 logK]. Note

h(t) < 0 ⇐⇒ ϕ(t) +
t2

K
< t

(
2t

K
− σ(t)

)
⇐⇒ tσ(t) + ϕ(t) <

t2

K
. (26)

As tσ(t) + ϕ(t) < te−t + e−t = e−t(1 + t), having g2(t) = e−t(1 + t)− t2

K < 0 implies h(t) < 0. One can see that g2
is decreasing and g2(2 logK) < 0. Therefore, for t ≥ t1 = 2 logK, g2(t) < 0 and hence h(t) < 0 which concludes f is
decreasing for t ≥ 2 logK. So far, we have seen that f is increasing for t ∈ [0, 0.4 logK] and decreasing for t ≥ 2 logK,
which yields

sup
t∈[0, ∞)

fK(t) = sup
t∈[0.4 logK, 2 logK]

fK(t)

= sup
t∈[0.4 logK, 2 logK]

ϕ(−t) + t2

K

ϕ(t) + t2

K

≤
ϕ(−2 logK) + (2 logK)2

K
4 log2 K
25K

(since ϕ(−t) ≤ 1 + t) ≤
1 + 2 logK + 4 log2 K

K
4 log2 K
25K

=
25K

4 log2 K
+

25K

2 logK
+ 25

≤ 25 +
75K

4 logK
.

Up to this point, we have established supt∈[0, ∞) fK(t) ≤ 25 + 75K
4 logK under the condition that K ≥ e. To conclude

the argument, we need to determine an upper bound for supt∈[0, ∞) fK(t) when 0 < K ≤ e. Utilizing Lemma D.1, for
0 < K ≤ e, we deduce

sup
t∈[0, ∞)

fK(t) ≤ sup
t∈[0, ∞)

fe(t) ≤ 25 +
75e

4
≤ 85
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which concludes

sup
t∈[0, ∞)

fK(t) ≤


25 + 75K

4 logK K ≥ e

85 K ≤ e

≤


85α2k

log(α2k) α2k ≥ e

85 α2k ≤ e.

Lemma D.9. Assume that H is a reproducing kernel Hilbert space of real-valued functions on X with kernel K : X ×X −→
R and P is a probability measure over X such that P ({x ∈ X : ∥x∥H ≥ A}) = 0. Then s(y) = 1 + 340(1+kA2)√

max(1,log(kA2))
is

an upper sensitivity function for (X , P,Llogistic) and (X , P, L̄logistic).

Proof. As P ({x ∈ X : ∥x∥H ≥ A}) = 0, we only need to determine s(y) for y with ∥y∥H ≤ A. Henceforth, we assume
that ∥y∥H ≤ A. For w ∈ W = {w ∈ X : ∥w∥H ≤ 1

A

√
max(1, log(A2k))}, Lemma D.8 indicates that Lemma D.2 is

applicable with B1 = A,B2 = 1
A

√
max(1, log(A2k)), ϕ(−B1B2) ≤ 1 +

√
max(1, log(A2k)) = M , and

βlogistic(α) =


85α2k

log(α2k) α2k ≥ e

85 α2k ≥ e.

Using Lemma D.3 with γ(∥x∥H) = logistic(0)
Mβlogistic(∥x∥H) ≥

1
2Mβlogistic(∥x∥H) , we conclude that

sup
∥w∥H≤B2

ℓH
logistic,k

(y, w)∫
x∈X ℓH

logistic,k
(x,w)dP (x)

≤ 2M∫
x∈X

1
βlogistic(∥x∥H)dP (x)

.

Note that ∫
x∈X

1

βlogistic(∥x∥H)
dP (x) ≥

∫
{x:e≤k∥x∥2

H}

log(k∥x∥2H)

85k∥x∥2H
dP (x) +

∫
{x:k∥x∥2

H<e}

1

85
dP (x)

≥ log(kA2)

85kA2
P
({

x :
e

k
≤ ∥x∥2H

})
+

1

85
P
({

x : ∥x∥2H <
e

k

})
≥


log(kA2)
85kA2 A2k ≥ e

1
85 A2k < e

≥ max(1, log(kA2))

85(1 + kA2)
.

This concludes

sup
∥w∥H≤B2

ℓH
logistic,k

(y, w)∫
x∈X ℓH

logistic,k
(x,w)dP (x)

≤ 170(1 + kA2)

max(1, log(kA2))

(
1 +

√
max(1, log(kA2))

)
≤ 340(1 + kA2)√

max(1, log(kA2))
.
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As
∫
x∈X ℓ

logistic,k
(x,w)dP ≥ 1

k∥w∥
2
H , we have

sup
∥w∥H≥B2

ℓ
logistic,k

(y, w)∫
x∈X ℓ

logistic,k
(x,w)dP

≤ sup
∥w∥≥B2

1
k∥w∥

2 + log(1 + e−⟨y,w⟩)
1
k∥w∥2

≤ sup
∥w∥H≥B2

[
1 +

k

∥w∥2H
log(1 + e−⟨y,w⟩)

]
≤ sup

∥w∥H≥B2

[
1 +

k

∥w∥2H
log(1 + e∥y∥H∥w∥H )

]
(since log(1 + et) ≤ 1 + t for t ≥ 0) ≤ sup

∥w∥H≥B2

[
1 +

k

∥w∥2H
(1 + ∥y∥H∥w∥H)

]
(since ∥w∥H ≥ B2 and ∥y∥H ≤ A) ≤ 1 +

kA2

max(1, log(A2k))
+

kA2√
max(1, log(A2k))

≤ 1 +
2kA2√

max(1, log(A2k))
.

So, s(y) = 1 + 340(1+kA2)√
max(1,log(kA2))

is an upper sensitivity function for (X , P,LH
logistic,k). The proof for (X , P, L̄H

logistic,k)

proceeds in a similar manner.

Theorem D.10 (No Dimensional Logistic Coreset). Assume that H is a reproducing kernel Hilbert space of real-valued
functions on X with kernel K : X × X −→ R, P is probability measure over X such that P ({x ∈ X : ∥x∥H ≥ A}) = 0,
S = 1 + 340(1+kA2)√

max(1,log(kA2))
, and C = (2A+ 1)max(4Ak, 2.5) + 8Ak + 1. For m ≥ 2S

ε2 (8C
2 + S log 2

δ ), any iid sample

x1, . . . , xm ∈ X according to P with weights ui = 1
m provides an ε-coreset for (X , P,X , ℓHlogistic,k) (respectively for

(X , P,X , ℓ̄Hlogistic,k) ) with probability at least 1− δ.

Proof. Lemma D.9 asserts that s(y) = 1 + 340(1+kA2)√
max(1,log(kA2))

serves as an upper sensitivity function for (X , P, LH
logistic,k)

and (X , P,X , ℓ̄Hlogistic,k). Since it is a constant function, s-sensitivity sampling is equivalent to sampling according to P . It
is worth noting that logistic is a 1-Lipschitz, convex, and decreasing function. For E1 = A, we have

E
x∼p

logistic

(
∥x∥H
2E1

)
≥ logistic

(
1

2

)
≥ 2

5
= E2.

This implies that Definition A.1 is satisfied for LH
logistic,k and thus Theorem A.3 concludes the statement for m ≥

2S
ε2

(
8C2 + S log 2

δ

)
.

In line with the most compelling scenario, Hilbert space Rd, utilizing the standard inner product as its kernel, we present the
following theorem.

Theorem D.11. Let P be a probability measure over Rd such that P ({x ∈ X : ∥x∥H ≥ A}) = 0 and S = 1 +
340(1+kA2)√

max(1,log(kA2))
. There is an m = O

(
S
ε2

(
d logS + log 1

δ

))
such that any iid sample x1, . . . , xm from P with weights

ui =
1
m provides an ε-coreset for (Rd, P,Rd, ℓlogistic,k) (respectively for (X , P,X , ℓ̄Hlogistic,k) ) with probability at least

1− δ.

Proof. Because of similarity, we only handle the case (Rd, P,Rd, ℓlogistic,k). Given that Lemma D.9 asserts the constant
function s(x) = 1 + 340(1+kA2)√

max(1,log(kA2))
as an upper sensitivity function for Llogistic,k, we deduce Ranges(TLlogistic,k

,≻
) = Ranges(Llogistic,k,≻). To clarify, every function in TLlogistic,k

is a function in Llogistic,k scaled by a positive constant.
This implies VCdim(Ranges(TLlogistic,k

,≻)) = VCdim(Ranges(Llogistic,k,≻)). We would like to remind that

TLlogistic,k
=

{
fw(·) =

logistic(⟨w, ·⟩) + 1
k∥w∥

2
2

s(·)
: w ∈ Rd

}
.
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For an fw ∈ Llogistic,k and r ≥ 0,

range(fw,≻, r) =
{
x ∈ Rd : fw(x) > r

}
=

{
x ∈ Rd : logistic(⟨x,w⟩) + ∥w∥2

k
> r

}

=

x ∈ Rd : log
(
1 + e−⟨x,w⟩

)
> r − ∥w∥2

k︸ ︷︷ ︸
=t


=

{
Rd t ≤ 0{
x ∈ Rd : ⟨x,w⟩ > log(et − 1)

}
t > 0,

which concludes that Ranges(Llogistic,k,≻) only includes half-spaces, empty set, and the whole space Rd. Therefore, by
Radon’s theorem, VCdim(Ranges(Llogistic,k,≻)) ≤ d+1 (for a proof, see Lemma 10.3.1 in Matousek 2002). Leveraging
Theorem 1.2, we derive the statement for m = O( S

ε2

(
d logS + log 1

δ

)
), thereby completing the proof.

In the previous theorem, we assumed that the data is hard-bounded. In the following results, we try to relax this assumption
to a kind of soft bounding similar to what we have in Theorem D.6.

Lemma D.12. Assume that H is a reproducing kernel Hilbert space of real-valued functions on X with kernel K : X×X −→
R and P is a probability measure over X such that E

x∼p
∥x∥2H ≤ E2

1 . Then

s(y) = 2 +

(
2 +

∥y∥H
E1

)
680(1 + kE2

1)√
max(1, log(2E2

1k)
+

2kE2
1 + 2kE1∥y∥H√

max(1, log(2E2
1k)

is an upper sensitivity function for (X , P,LH
logistic,k) and (X , P, L̄H

logistic,k) with total sensitivity S = O

(
E2

1k√
log(2E2

1k)

)
.

Proof. As Ex∼P (∥x∥2H) ≤ E2
1 , Markov’s inequality implies Px∼P (∥x∥2H ≥ 2E2

1) ≤ 1
2 . For an arbitrary y ∈ X , define

Xy =
{
x ∈ X : ∥x∥H ≤

√
2E1 max(1, ∥y∥H

E1
)
}

. Additionally, define

W =

{
w ∈ Rd : ∥w∥H ≤ 1√

2E1

√
max(1, log(2E2

1k)

}
.

Lemma D.8 indicates that Lemma D.2 is applicable with

B1 =
√
2E1 max(1,

∥y∥H
E1

), B2 =
1√
2E1

√
max(1, log(2E2

1k),

My = ϕ (−B1B2) ≤ 1 + max(1,
∥y∥H
E1

)
√

max(1, log(2E2
1k)

≤
(
2 +

∥y∥H
E1

)√
max(1, log(2E2

1k),

and

β(α) = βlogistic(α) =


85α2k

log(α2k) α2k ≥ e

84 α2k ≤ e.
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Consequently,

sup
∥w∥H≤B2

ℓH
logistic,k

(y, w)∫
x∈X ℓH

logistic,k
(x,w)dP (x)

= sup
∥w∥H≤B2

1∫
x∈X

ℓH
logistic,k

(x,w)

ℓH
logistic,k

(y,w)
dP (x)

≤ sup
∥w∥H≤B2

1∫
x∈Xy

ℓH
logistic,k

(x,w)

ℓH
logistic,k

(y,w)
dP (x)

(Lemma D.2) ≤ sup
∥w∥H≤B2

1∫
x∈Xy

logistic(0)
Myβ(∥x∥H)dP (x)

=
My

logistic(0)

1∫
x∈Xy

1
β(∥x∥H)dP (x)

(∗) ≤ 2

(
2 +

∥y∥H
E1

)√
max(1, log(2E2

1k)
340(1 + kE2

1)

max(1, log(2kE2
1))

.

=

(
2 +

∥y∥H
E1

)
680(1 + kE2

1)√
max(1, log(2E2

1k)
.

To see (∗), note that My ≤
(
2 + ∥y∥H

E1

)√
max(1, log(2E2

1k), logistic(2) ≥ 0.5, and

∫
x∈Xy

1

β(∥x∥H)
dP (x) ≥

∫
{x:e≤k∥x∥2

H≤2kE2
1}

log(∥x∥2Hk)

85∥x∥2k
dP (x) +

∫
{x:k∥x∥2

H<e}

1

85
dP (x)

≥ log(2kE2
1)

170kE2
1

P
(
{x : e ≤ k∥x∥2H ≤ 2kE2

1}
)
+

1

85
P
(
{x : k∥x∥2H < e}

)
≥ max(1, log(2kE2

1))

170(1 + kE2
1)

P
(
{x : ∥x∥2H ≤ 2E2

1}
)

≥ max(1, log(2kE2
1))

340(1 + kE2
1)

.

Up to this point, our analysis was concentrated on the scenario where ∥w∥H ≤ B2. Subsequently, we address the case that
∥w∥H ≥ B2 = 1√

2E1

√
max(1, log(2E2

1k). Since
∫
x∈X ℓH

logistic,k
(x,w)dP (x) ≥ 1

k∥w∥
2
H , we have

sup
∥w∥H≥B2

ℓH
logistic,k

(y, w)∫
x∈X ℓH

logistic,k
(x,w)dP (x)

≤ sup
∥w∥H≥B2

1
k∥w∥

2
H + log(1 + e−K(y,w))

1
k∥w∥

2
H

≤ sup
∥w∥H≥B2

[
1 +

k

∥w∥2H
log(1 + e−K(y,w))

]
≤ sup

∥w∥H≥B2

[
1 +

k

∥w∥2H
log(1 + e∥y∥H∥w∥H )

]
≤ sup

∥w∥H≥B2

[
1 +

k

∥w∥2H
(1 + ∥y∥H∥w∥H)

]
≤ 2 +

k

B2
2

+
k∥y∥H
B2

= 2 +
2kE2

1

max(1, log(2E2
1k)

+

√
2kE1∥y∥H√

max(1, log(2E2
1k)

≤ 2 +
2kE2

1 + 2kE1∥y∥H√
max(1, log(2E2

1k)
.
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Therefore,

sup
w∈X

ℓH
logistic,k

(y, w)∫
x∈X ℓH

logistic,k
(x,w)dP (x)

≤ max

{
sup

∥w∥≤B2

ℓH
logistic,k

(y, w)∫
x∈X ℓH

logistic,k
(x,w)dP (x)

,

sup
∥w∥≥B2

ℓH
logistic,k

(y, w)∫
x∈X ℓH

logistic,k
(x,w)dP (x)

}

≤ max

{(
2 +

∥y∥H
E1

)
680(1 + kE2

1)√
max(1, log(2E2

1k)
, 2 +

2kE2
1 + 2kE1∥y∥H√

max(1, log(2E2
1k)

}

≤2 +

(
2 +

∥y∥H
E1

)
680(1 + kE2

1)√
max(1, log(2E2

1k)
+

2kE2
1 + 2kE1∥y∥H√

max(1, log(2E2
1k)

= s(y).

Consequently, s(y) is an upper sensitivity for (X , P, LH
logistic,k). Since Ey∼P (∥y∥H) ≤

√
Ey∼P (∥y∥2H) ≤ E1, for the

total sensitivity, we have

S =

∫
y∈X

s(y)dP (y) = O

(
E2

1k√
max(1, log(2E2

1k)

)
.

A similar argument concludes the statement for (X , P, L̄H
logistic,k).

Theorem D.13. Assume that H is a reproducing kernel Hilbert space of real-valued functions on X with kernel K : X ×
X −→ R, P is probability measure over X such that E

x∼p
∥x∥2H ≤ E1,

s(x) = 2 +

(
2 +

∥y∥H
E1

)
680(1 + kE2

1)√
max(1, log(2E2

1k)
+

2kE2
1 + 2kE1∥y∥H√

max(1, log(2E2
1k)

,

and S = O

(
E2

1k√
max(1,log(2E2

1k)

)
. For m ≥ 2S

ε2

(
8C2 + S log 2

δ )
)
, any s-sensitivity sample x1, . . . , xm from X with weights

ui =
S

ms(xi)
provides an ε-coreset for (X , P,X , ℓlogistic,k) (respectively for (X , P,X , ℓ̄logistic,k)) with probability at least

1− δ, where C = (2E1 + 1)max(4E1k, 2.5) + 8E1k + 1.

Proof. Lemma D.12 indicates that s(·) and S are an upper sensitivity function its corresponding total sensitivity for both
(X , P,LH

logistic,k) and (X , P, L̄H
logistic,k). Note that logistic(·) is decreasing and convex. using Equation (6), we have

E
x∼p

logistic

(
∥xi∥H
2E1

)
≥ logistic

(
1

2

)
≥ 2

5
= E2.

Now, the proof follows by applying Theorem C.6.

Returning to the scenario where our Hilbert space is Rd equipped with the standard inner product as its kernel, to utilize
Theorem 1.2, the computation of VCdim(Ranges(TLlogistic,k

,≻)) is necessary. The following theorem serves as a valuable
instrument for handling the VC-dimension of linked-range spaces.

For a positive integer l, a function f : Rd −→ [0,∞) is called l-simply computable, if the inequality f(x) > r can
be verified using O(dl−1) steps via simple arithmetic operations +,−,×, /, jumps conditioned on >, ≥, <, ≤, =, ̸=
comparisons on real numbers, and O(1) evaluations of the exponential function t → et on real number t.

Theorem D.14 (Anthony & Bartlett 2009, Theorem 8.14). For a family of functions F , if each f ∈ F is l-simply computable,
then

VCdim(Ranges(F ,≻)) = O(dl).

For each r ≥ 0,

range(w,≻, r) =

{
x ∈ Rd : fw(x) =

logistic(⟨w, ·⟩) + 1
k∥w∥

2

s(·)
> r

}
.
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The inequality fw(x) > r is not simply computable since it contains the evaluation ∥x∥ (to compute s(x)), which cannot be
done by the allowed operations. To circumvent this issue, we propose a modification to the upper sensitivity function s
outlined in Lemma D.12 as follows:

s(x) = 2 +

(
2 +

∥y∥H
E1

)
680(1 + kE2

1)√
max(1, log(2E2

1k)
+

2kE2
1 + 2kE1∥y∥H√

max(1, log(2E2
1k)

= 2 +

(
3 +

∥y∥2H
E2

1

)
680(1 + kE2

1)√
max(1, log(2E2

1k)
+

2kE2
1 + 2k(E2

1 + ∥y∥2H)√
max(1, log(2E2

1k)

= s1(x).

Note that s1 is also an upper sensitivity function for (Rd, P,Rd, ℓlogistic,k) with total sensitivity S1 = O

(
E2

1k√
log(E2

1k)

)
.

Now, if we work with s1 as the upper sensitivity function for (Rd, P,Rd, ℓlogistic,k), then fw(x) =
logistic(⟨w,x⟩)+ 1

k ∥w∥2
2

s1(·) > r

is 2-simply computable. This is true since

fw(x) > r ⇐⇒ 1 + e−⟨w,x⟩ > exp

{
s1(x)r −

1

k
∥w∥2

}
.

So, using Theorems 1.2 and D.14, we have the next statement.

Theorem D.15. Let P be a probability measure over Rd such that E
x∼p

∥x∥22 ≤ E2
1 ,

s(x) = 2 +

(
3 +

∥y∥2H
E2

1

)
680(1 + kE2

1)√
max(1, log(2E2

1k)
+

2kE2
1 + 2k(E2

1 + ∥y∥2H)√
max(1, log(2E2

1k)
,

and S = O

(
E2

1k√
log(E2

1k)

)
. There is m = O( 2Sε2

(
d2 logS + log 1/δ)

)
) such that any s-sensitivity sample x1, . . . , xm from

X with weights ui =
S

ms(xi)
provides an ε-coreset for (Rd, P,Rd, ℓlogistic,k) (respectively for (Rd, P,Rd, ℓ̄logistic,k)) with

probability at least 1− δ.

One might question the necessity of having Theorems D.10 and D.7 while Theorems D.13 and D.15 appear stronger and
broader. It is crucial to note that in Theorems D.13 and D.15, the process demands re-sampling using s-sensitivity samples,
which relies on evaluating the function s. In contrast, Theorems D.10 and D.7 permit the direct (via uniform sampling) use
of given data points since they were originally sampled from P .

D.3. Coreset for svm Function

We would like to remind the reader that svm(t) = max(0, 1− t). The SVM loss, also referred to as Hinge Loss, serves as a
loss function in training classifiers, such as in Support Vector Machines. Following a similar approach to the one outlined
above, we initiate the process by identifying a function β(·) that satisfies the properties stated in Lemma D.2 for ϕ = svm.

Lemma D.16. For svm(x) = max(0, 1− t) and k > 0, we have

svm(−αz) + z2

k

svm(αz) + z2

k

≤ 1 + 2max(1, α2k) ∀α, z ≥ 0.

Proof. For a fixed α > 0, set t = αz, K = α2k, and

svm(−αz) + z2

k

svm(αz) + z2

k

=
svm(−t) + t2

K

svm(t) + t2

K

= fK(t) t ≥ 0.
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We can rewrite fK as

fK(t) =


1+t+ t2

K
t2

K

1 ≤ t

1+t+ t2

K

1−t+ t2

K

0 ≤ t ≤ 1

(27)

=


K
t2 + K

t + 1 1 ≤ t

1 + 2t

1−t+ t2

K

0 ≤ t ≤ 1
(28)

One can simply check that maxt≥1 fK(t) = 1 + 2K. Also, if we assume that K ≥ 1, then, by simple calculation, we can
derive that max0≤t≤1 fK(t) = fK(1) = 1 + 2K. So, using Lemma D.1, we obtain

sup
t≥0

fK(t) ≤ 1 + 2max(1,K) ∀K > 0.

Replacing K with α2z concludes the result.

Lemma D.17. Assume that H is a reproducing kernel Hilbert space of real-valued functions on X with kernel K : X×X −→
R and P is a probability measure over X such that P ({x ∈ X : ∥x∥H ≥ A}) = 0. Then s(y) = 6 + 4kA2 is an upper
sensitivity function for (X , P, LH

svm,k) and (X , P, L̄H
svm,k).

Proof. Since P ({x ∈ X : ∥x∥H ≥ A}) = 0, our computation of s(y) is limited to ∥y∥H ≤ A. For w ∈ W = {w ∈
X : ∥w∥H ≤ 1

A}, Lemma D.16 indicates that Lemma D.2 is applicable with B1 = A,B2 = 1
A ,M = ϕ(−1) = 2, and

βsvm(α) = 1 + 2max(1, α2k). Using Lemma D.3 with γ(∥x∥H) = svm(0)
Mβsvm(∥x∥H) =

1
2βsvm(∥x∥H) , we conclude that

sup
∥w∥H≤ 1

A

ℓH
svm,k

(y, w)∫
x∈X ℓH

svm,k
(x,w)dP (x)

≤ 2∫
X

1
βsvm(∥x∥H)dP (x)

.

Note that ∫
x∈X

1

βsvm(∥x∥H)
dP (x) ≥

∫
{x:1≤k∥x∥2

H}

1

1 + 2k∥x∥2H
dP (x) +

∫
{x:k∥x∥2<1}

1

3
dP (x)

≥ 1

1 + 2kA2
P

({
x :

1

k
≤ ∥x∥2H

})
+

1

3
P

({
x : ∥x∥2H <

1

k

})
≥ 1

3 + 2kA2
.

This concludes

sup
∥w∥H≤

√
k

ℓH
svm,k

(y, w)∫
x∈X ℓH

svm,k
(x,w)dP (x)

≤ 6 + 4kA2.

Since
∫
x∈Rd ℓsvm,k

(x,w)dP ≥ 1
k∥w∥

2, we have

sup
∥w∥H≥ 1

A

ℓ
svm,k

(y, w)∫
x∈X ℓ

svm,k
(x,w)dP

≤ sup
∥w∥H≥ 1

A

1
k∥w∥

2
H +max(0, 1− ⟨y, w⟩H)

1
k∥w∥

2
H

= sup
∥w∥H≥ 1

A

[
1 +

k

∥w∥2H
max(0, 1− ⟨y, w⟩H)

]
≤ sup

∥w∥H≥ 1
A

[
1 +

k

∥w∥2H
max(0, 1 + ∥y∥H∥w∥H)

]
≤ sup

∥w∥H≥ 1
A

[
1 +

k

∥w∥2H
(1 + ∥y∥H∥w∥H)

]
≤ 1 + 2A2k.

So, s(y) = 6 + 4kA2 is an upper sensitivity function for (X , P, LH
svm,k).

38



No Dimensional Sampling Coresets for Classification

Theorem D.18. Assume that H is a reproducing kernel Hilbert space of real-valued functions on X with kernel K : X ×
X −→ R and P is a probability measure over X such that P ({x ∈ X : ∥x∥H ≥ A}) = 0. For S = 6 + 4kA2,
C = (4A + 2)max(2Ak, 1) + 8Ak + 1, and m = 2S

ε2 (8C
2 + S log 2

δ ), any iid sample x1, . . . , xm from X with weights
ui =

1
m provides an ε-coreset for (X , P,X ,LH

svm,k) (respectively for (X , P,X , ℓ̄Hsvm,k)) with probability at least 1− δ.

Proof. Lemma D.21 indicates that s(y) = 6+4kA2 is an upper sensitivity function. As it is a constant function, s-sensitivity
sampling is the same as sampling according to P . Notice that svm is convex and non-increasing. For E1 = A, using
Equation 6, we have

E
x∼p

svm

(
∥xi∥2
2E1

)
≥ svm

(
1

2

)
≥ 1

2
= E2.

This implies that Definition A.1 is satisfied for LH
svm,k and thus Theorem A.3 concludes the statement for m ≥

2S
ε2

(
8C2 + log 1

δ

)
.

Following directly from this theorem, we observe the following corollary.

Corollary D.19 (Theorem A.5, Restated). Let K : Rd × Rd −→ (0, 1] be a reproducing kernel, i.e., a kernel associated
with an RKHS, and P be a probability measure over Rd. For ε, δ ∈ (0, 1), there exists a universal constant C (independent
of d and K) such that if m ≥ C

ε2 log
1
δ , then, with probability at least 1 − δ, for any random sample X = {x1, . . . , xm}

based on P , we have

sup
w∈Rd

|KDEP (w)−KDEX(w)| ≤ ε.

Proof. Note that K and ϕ(t) = max(0, 1− t) satisfy Definition A.1 with E1 = 1, E2 = 1
2 , and

ℓHϕ,k(x,w) = ϕ(K(x,w)) +
1

k
∥w∥2H = 1− K(x,w) +

1

k
∥w∥2H ≤ 1− K(x,w) +

1

k
.

If set k = 1, then, with probability at least 1− δ, for each w ∈ Rd, we have∣∣∣∣∣
∫
x∈Rd

K(x,w)dP (x)− 1

m

m∑
i=1

K(xi, w)

∣∣∣∣∣ =
∣∣∣∣∣
∫
x∈Rd

ℓHϕ,1(x,w)dP (x)− 1

m

m∑
i=1

ℓHϕ,1(xi, w)

∣∣∣∣∣
(by Theorem D.18) ≤ ε

2

∫
x∈Rd

ℓHϕ,1(x,w)dP (x)

≤ ε

2

∫
x∈Rd

(2− K(x,w))dP (x)

(since K(x,w) ≤ 1) ≤ ε.

Theorem D.20. Let P be a probability measure over Rd such that P ({x ∈ X : ∥x∥H ≥ A}) = 0 and S = 6 + 4kA2.
There exists m = O

(
S
ε2 (d logS + log 1

δ )
)

such that any iid sample x1, . . . , xm from P with weights ui =
1
m provides an

ε-coreset for (Rd, P,Rd, ℓsvm,k) (respectively for (X , P,X , ℓ̄Hsvm,k)with probability at least 1− δ.

Proof. Given that Lemma D.21 asserts the constant function s(x) = 3 + 2kA2 +
√
kA as an upper sensitivity function for

Lsvm,k, we deduce Ranges(TLsvm,k
,≻) = Ranges(Lsvm,k,≻). Notice Ranges(TLsvm,k

,≻) = Ranges(Lsvm,k,≻)
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since each function in TLsvm,k
is a function in Lsvm,k scaled by a positive constant. For an fw ∈ Lsvm,k and r ≥ 0,

range(fw,≻, r) =
{
x ∈ Rd : fw(x) > r

}
=

{
x ∈ Rd : max(0, 1− ⟨x,w⟩) + ∥w∥2

K
> r

}

=

x ∈ Rd : max(0, 1− ⟨x,w⟩) > r − ∥w∥2

K︸ ︷︷ ︸
=t


=

 Rd t < 0{
x ∈ Rd : ⟨x,w⟩ < 1− t

}
t ≥ 0,

which concludes that Ranges(Lsvm,k,≻) only includes half-spaces and the whole space Rd. Therefore, by Radon’s
theorem, VCdim(Ranges(Lsvm,k,≻)) ≤ d+1 (for a proof, see Lemma 10.3.1 in (Matousek, 2002)). Using Theorem 1.2,
we also have the statement of Theorem D.10 for m ≥ O( S

ε2

(
d logS + log 1

δ

)
), completing the proof. A similar argument

establishes the result for (X , P, L̄H
svm,k).

Continuing in line with prior sections, we aim to establish a theorem that addresses-soft bounding on data instead of
employing a hard boundary. In the subsequent discussion, we substantiate such a result.

Lemma D.21. Assume that H is a reproducing kernel Hilbert space of real-valued functions on X with kernel K : X×X −→
R and P is a probability measure over X such that Ex∼p ∥x∥H ≤ E2

1 . Then s(x) = (6 + 8kE2
1)
(
2 + ∥y∥H

E1

)
is an upper

sensitivity function for (X , P,LH
svm,k) and (X , P, L̄H

svm,k) with total sensitivity at most 18 + 24kE2
1 .

Proof. As Ex∼P (∥x∥2H) ≤ E2
1 , Markov’s inequality implies Px∼P (∥x∥2H ≥ 2E2

1) ≤ 1
2 . For an arbitrary y ∈ X , define

Xy =
{
x ∈ X : ∥x∥H ≤

√
2max(E1, ∥y∥H)

}
. Additionally, define W = {w ∈ X : ∥w∥H ≤ 1√

2E1
}. Lemma D.8 indi-

cates that Lemma D.2 is applicable with B1 =
√
2max(E1, ∥y∥H), B2 = 1√

2E1
, svm(−B1B2) = 1 +max

(
1, ∥y∥H

E1

)
≤

2 + ∥y∥H

E1
= My , and

β(α) = βsvm(α) = 1 + 2max(1, α2k).

Consequently,

sup
∥w∥H≤B2

ℓH
svm,k

(y, w)∫
x∈X ℓH

svm,k
(x,w)dP (x)

= sup
∥w∥H≤B2

1∫
x∈X

ℓH
svm,k

(x,w)

ℓH
svm,k

(y,w)
dP (x)

≤ sup
∥w∥H≤B2

1∫
x∈Xy

ℓH
svm,k

(x,w)

ℓH
svm,k

(y,w)
dP (x)

(Lemma D.2) ≤ sup
∥w∥H≤B2

1∫
x∈X

svm(0)
Myβ(∥x∥H)dP (x)

=
My∫

x∈Xy

1
β(∥x∥H)dP (x)

≤
2 + ∥y∥H

E1∫
x∈Xy

1
β(∥x∥H)dP (x)

(∗) ≤ (6 + 8kE2
1)

(
2 +

∥y∥H
E1

)
.
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To see (∗), note that∫
x∈Xy

1

β(∥x∥H)
dP ≥

∫
{x:1≤k∥x∥2

H≤2kE2
1}

1

1 + 2k∥x∥2H
dP +

∫
{x:k∥x∥2

H<1}

1

3
dP

≥ 1

1 + 4kE2
1

P
(
{x : 1 ≤ k∥x∥2H ≤ 2kE2

1}
)
+

1

3
P
(
{x : k∥x∥2H < 1}

)
≥ min

(
1

1 + 4kE2
1

,
1

3

)
P
(
{x : ∥x∥2H ≤ 2E2

1}
)

≥ 1

6 + 8kE2
1

.

As we have only considered the case that ∥w∥H ≤ B2, to complete the proof, we should work with ∥w∥H ≥ B2 as well.
Since

∫
x∈X ℓH

svm,k
(x,w)dP ≥ 1

k∥w∥
2
H , we have

sup
∥w∥H≥B2

ℓH
svm,k

(y, w)∫
x∈X ℓH

svm,k
(x,w)dP

≤ sup
∥w∥H≥B2

1
k∥w∥

2
H +max(0, 1− ⟨y, w⟩H)

1
k∥w∥

2
H

≤ sup
∥w∥H≥B2

[
1 +

k

∥w∥2H
max(0, 1− ⟨y, w⟩H)

]
≤ sup

∥w∥H≥B2

[
1 +

k

∥w∥2H
max(0, 1 + ∥y∥H∥w∥H)

]
= sup

∥w∥H≥B2

[
1 +

k

∥w∥2H
(1 + ∥y∥H∥w∥H)

]
≤ 1 + 2kE2

1 +
√
2kE1∥y∥H .

Therefore,

sup
w∈X

ℓH
svm,k

(y, w)∫
x∈Rd ℓHsvm,k

(x,w)dP
≤max

{
sup

∥w∥≤
√
k

ℓH
svm,k

(y, w)∫
x∈Rd ℓHsvm,k

(x,w)dP
,

sup
∥w∥≥

√
k

ℓH
svm,k

(y, w)∫
x∈Rd ℓHsvm,k

(x,w)dP

}

≤max

{
(6 + 8kE2

1)

(
2 +

∥y∥H
E1

)
, 1 + 2kE2

1 +
√
2kE1∥y∥H

}
=(6 + 8kE2

1)

(
2 +

∥y∥H
E1

)
= s(y).

Consequently, s(y) is an upper sensitivity for (Rd, P,Rd, ℓsvm,k). Since Ey∼P (∥y∥H) ≤
√

Ey∼P (∥y∥2H) ≤ E1, for the
total sensitivity, we have

S =

∫
s(y)dP ≤ (18 + 24kE2

1) = O(E2
1k).

With a similar proof, we can restate the following versions of Theorems D.13 and D.15 replacing logistic by svm.
Theorem D.22. Assume that H is a reproducing kernel Hilbert space of real-valued functions on X with kernel K : X ×
X −→ R and P is a probability measure over X such that E

x∼p
∥x∥2H ≤ E1,

s(x) = (6 + 8kE2
1)

(
2 +

∥y∥H
E1

)
,

and S = O(E2
1k). For m ≥ 2S

ε2

(
8C2 + S log 2

δ

)
, any s-sensitivity sample x1, . . . , xm from X with weights ui =

S
ms(xi)

provides an ε-coreset for (X , P,X , ℓHsvm,k) ) respectively for (X , P,X , ℓ̄Hsvm,k)) with probability at least 1 − δ, where
C = (4E1 + 2)max (E1k, 1) + 8E1k + 1.
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Theorem D.23. Let P be a probability measure over Rd such that E
x∼p

∥x∥22 ≤ E2
1 , s(x) = (6 + 8kE2

1)
(
2 + ∥y∥H

E1

)
, and

S = O
(
E2

1k
)
. For m ≥ O

(
S
ε2

(
d2 logS + log 1

δ

))
, any s-sensitivity sample x1, . . . , xm from X with weights ui =

S
ms(xi)

provides an ε-coreset for (Rd, P,Rd, ℓsvm,k) ) respectively for (Rd, P,Rd, ℓ̄Hsvm,k)) with probability at least 1− δ.

D.4. Coreset for ReLU Function

For ReLU(t) = max(0, t), we derive our results from those in previous section using a simple trick. Assume that H is
a reproducing kernel Hilbert space of real-valued functions on X with kernel K : X × X −→ R and P is a probability
measure over X such that E

x∼p
∥x∥2H ≤ E2

1 or P ({x ∈ X : ∥x∥H ≥ A}) = 0. It is easy to verify that K′(·) = 1 + K(·)

is also a reproducing kernel associated with H ′ with E
x∼p

∥x∥2H′ ≤ (1 + E1)
2 or P ({x ∈ X : ∥x∥H′ ≥ 1 +A}) = 0.

As svm(1 + t) = max(0,−t), if we plug K′ in the results given in the previous section, we can replicate them for
ϕ(t) = max(0,−t) by replacing E1 and A with (1 +E1) and (1 +A). While ϕ is not precisely the ReLU function, for the
case that the kernel is the standard linear kernel in Euclidean space,

ℓϕ,k(x,w) = max(0,−⟨x,w⟩) + 1

k
∥w∥22 = max(0, ⟨x,−w⟩) + 1

k
∥w∥22 = ℓReLU,k(x,−w).

This implies that if we have a coreset for (Rd, P,Rd, ℓϕ,k), it automatically serves as a coreset for (Rd, P,Rd, ℓReLU,k) as
well. It is noteworthy that this conclusion cannot be extended to general kernels as −K(x,w) = K(x,−w) is not generally
true.
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