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a b s t r a c t 

The idea of the paper concentrates on an iterative learning process in Graph Convolution Networks 

(GCNs) involved in two vital steps: one is a message propagation (message passing) step to aggregate 

neighboring node features via aggregators performed, and another is an encoding output step to encode 

node feature representations by using updaters. In our model, we propose a novel affinity-aware en- 

coding as an updater in GCNs, which aggregates the neighboring nodes of a node while updating this 

node’s features. By utilizing affinity values of our encoding, we order the neighboring nodes to determine 

the correspondence between encoding functions and the neighboring nodes. Furthermore, to explicitly 

reduce the model size, we propose a lightweight variant of our updater that integrates Depth-wise Sepa- 

rable Convolution (DSC) into it, namely Depth-wise Separable Graph Convolution (DSGC). Comprehensive 

experiments conducted on graph data demonstrate that our models’ accuracy improved significantly for 

graphs of low-dimensional node features. Also, performed in the low-dimensional node feature space we 

provide state-of-the-art results on two metrics (Macro-f1 and Matthews correlation coefficient (MCC)). 

Besides, our models are robust when taking different low-dimensional feature selection strategies. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Graphs are fundamental models used in scientific approaches 

o describe the relation between objects in the real world. Using 

raph models to study information propagation [1] or to represent 

olecular structures [2] is recently an essential research approach. 

raph models leveraging deep learning [3] have been receiving 

ore and more attention due to their great expressive ability of 

raphs across various areas, including social networks [1] , physical 

ystems [4] , protein-protein interaction networks [2] , and knowl- 

dge graphs [5] . Deep learning has yielded fruitful results in many 

reas of machine intelligence, enabling high accuracy in complex 

asks of computer vision [6] , speech recognition [7] , and natural 

anguage processing [8] . Among such methods of combining graph 

ith deep learning, Graph Convolution Networks (GCNs) rooted in 

onvolutional Neural Networks (CNNs) [3] are prevalent. They have 

lso been divided into multiple research orientations according to 
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he type of message passing, such as spectral [9] , spatial [1] , atten-

ion [10] , and gate mechanism [11] algorithms. 

The essential idea of GCNs is to propagate information between 

raph nodes that the node features are learned with considera- 

ion of the neighboring context [12] . A standard, iterative GCNs’ 

ipeline involves two indispensable steps [13] , namely, the mes- 

age propagation step (message passing) and encoding output step 

node feature encoding). The former leverages an aggregator to ag- 

regate each node’s features of its neighbors, where this aggregator 

ould be any of a predefined eigendecomposition [9] , a graph nor- 

alized Laplacian [14] , a linear or nonlinear transformation [15] , 

nd an attention [10] or gate [11] mechanism. The latter encodes 

ach node’s hidden states (representations) independently by us- 

ng an updater, which is a weight matrix to shrink node feature 

imensions uniformly without any aggregating operation for the 

eighborhood. Briefly, aggregators gather graph-structured infor- 

ation across the whole graph, and updaters learn the informa- 

ion of each node itself. The graph-structured and node-featured 

nformation determine the model performance together. However, 

he accuracy of GCNs is deteriorative when nodes are represented 

y low-dimensional features (a graph contains only a small num- 

https://doi.org/10.1016/j.patcog.2020.107788
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er of node features). The reason for this deterioration is that 

ow-dimensional features result in the node-featured information 

earned insufficiently by updaters. Since there is a lack of suffi- 

ient node features for encoding, updaters have to learn graph- 

tructured information thoroughly to make up incomplete node- 

eatured information learned for improving the accuracy. Unfortu- 

ately, current methods [13] focus on to redesign aggregators to 

ather graph-structured information, while ignoring updaters can 

lso be used to learn it. 

To solve this issue, we propose a novel affinity-aware encod- 

ng as an updater, called Local Graph Convolution (LGC). In the 

ncoding output step, compared versus the updaters of previous 

ethods, LGC can not only encode nodes’ hidden states to learn 

ode-featured information but also assist aggregators to gather the 

eatures of neighbors to capture graph-structured information. This 

pdated process also learns each node’s representation jointly via 

mbedding an aggregated architecture, i.e., weight sharing [3] . By 

ntroducing the weight sharing architecture from a standard convo- 

ution in CNNs [3] to our LGC, its receptive fields of weight shar- 

ng are the neighbors of each node, and affinity values order these 

eighboring nodes. Note that the affinity value can be node ID, 

niformly sampling [1] , or graph centrality [16] to sample a fixed- 

ize neighboring set. LGC updater can also combine with any ag- 

regators. In our approach, we choose the aggregator of the land- 

ark GCN [14] as a baseline aggregator to collaborate with LGC 

o build the LGC-GCN model. Moreover, selecting two personal- 

zed PageRank (PPR) [17] aggregators, i.e., Personalized Propaga- 

ion of Neural Predictions (PPNP) [15] and Approximate Personal- 

zed Propagation of Neural Predictions (APPNP) [15] , are combined 

ith our updater to form LGC-PPNP and LGC-APPNP respectively. 

licpera et al. [15] first designed these two PPR aggregators to 

earn more graph-structured information via using the personal- 

zed PageRank algorithm [17] to provide a desirably larger neigh- 

orhood for nodes in the periphery or a sparsely labeled setting. 

n contrast, other advanced aggregators such as spectral [14] and 

on-spectral [1] methods only use the information of a minimal 

eighborhood for each node. The unique capability of these two 

PR aggregators is that they can adjust the learning proportion 

etween graph-structured and node-featured information via the 

eleport (or restart) probability [17] . By lowering the teleport prob- 

bility, the PPR aggregators gather more graph-structured informa- 

ion to improve model accuracy when nodes are represented by 

ow-dimensional feature space. 

Furthermore, to explicitly shrink the model size, we propose a 

ightweight variant of LGC named as Depth-wise Separable Graph 

onvolution (DSGC) derived from Depth-wise Separable Convolu- 

ion (DSC). Sifre and Mallat [18] initially introduced DSC, and then 

t was used in inception models [19] to reduce the computation 

n the first few layers of the model. It is also used in MobileNet

20] and MobileNetV2 [21] to tailor the models on mobiles and 

mbedded devices. DSGC also associates GCN, PPNP, and APPNP ag- 

regators to set up MobileGCNs (i.e., MobileGCN, MobilePPNP, and 

obileAPPNP). Experiments demonstrate that our models signifi- 

antly promote the accuracy and provide state-of-the-art results on 

he other two metrics (Macro-f1 and Matthews Correlation Coef- 

cient(MCC)) compared to benchmark models for graphs involved 

y low-dimensional node features. Additionally, the experiments of 

ow-dimensional node feature selection show that the metrics of 

ur models is robust when taking different feature selection strate- 

ies. The main novelty contributions of our research can be four- 

old named. 

Modularization. Our LGC and DSGC, as the independent up- 

ater modules, can integrate with any of the other aggregators. In 

his article, we combine our updaters with aggregators of GCN [14] , 

PNP, and APPNP [15] . In future work, we will design more models, 
n

2 
uch as attention models [10] , to embed our updaters to enhance 

heir robustness in the low-dimensional node feature space. 

Expansibility. Extending from a standard convolution of CNNs 

o LGC implies that the advancement of LGC can take advantage 

f the achievement of the standard convolution improved. For ex- 

mple, DSC is a lightweight convolution extended by the standard 

onvolution, and, hence, the DSGC is a lightweight version of LGC. 

oth of LGC and DSGC derived from the standard convolution and 

ts improved version. 

Reciprocity. Compared to other GCN updaters [13] , the function 

f LGC and DSGC has cut through the boundary between aggre- 

ators and updaters because they have the reciprocity in order to 

earn the graph-structured information thoroughly across the iter- 

tive process involved the message propagation and encoding out- 

ut steps. 

Robustness. By the comparison of different strategies of feature 

election for training benchmark GCNs and our models, three met- 

ics (Accuracy, Macro-f1, and MCC) are compared to show robust- 

ess of our proposed models in the low-dimensional feature space. 

The rest of this paper is organized as follows: we describe 

he development of GCNs and introduce PPNP and APPNP in 

ection 2 . Based on these, we build an affinity-aware updater, LGC, 

n Section 3 . Further, DSGC is described in Section 4 . Section 5 de-

cribes experimental setting. Section 6 presents the results and dis- 

ussion. Section 7 concludes our work and sets the horizon of our 

uture researches. 

. Related works 

Several excellent studies have given an impetus to improve ag- 

regators and updaters continuously, and a review was given by 

hou et al. [13] . Bruna et al. [22] pioneered to propose the spectral

ethod of GCN. Their aggregator defined in the Fourier domain 

y performing the eigendecomposition of the graph Laplacian. Fur- 

hermore, the updater is part of this aggregator to parameterize 

he diagonal matrix in the eigendecomposition. However, the up- 

ater results in potentially intense computations and non-spatially 

ocalized filters. Henaff et al. [23] hence tried to design the spec- 

ral filters spatially localized by introducing a parameterized up- 

ater with smooth coefficients. Afterward, ChebNet [9] designed a 

ew K-localized updater which could remove the need to compute 

he eigenvectors of the Laplacian and be independent of the ag- 

regator. Finally, for alleviating overfitting on local neighborhood 

tructures when graphs involve vast node degree distributions, Kipf 

t al. [14] proposed the GCN model that limits the layer-wise K- 

ocalized updater to K = 1 . Recently, Liao et al. [24] proposed a

ovel deep GCN for a multi-scale graph. Wu et al. [25] simpli- 

ed GCNs by removing nonlinearities and collapsing weight ma- 

rices between consecutive layers. Abu-El-Haija et al. [26] designed 

igher-order message passing architectures by sparsified neighbor- 

ood mixing. Klicpera et al. [15] discussed an application of per- 

onalized PageRank to improve the normalization of graph Lapla- 

ian and to achieve better performance. The PPR aggregators could 

earn a larger neighboring scale of graph-structured information 

ompared to other spectral GCNs and hence be used suitably to 

ur models performed on the low-dimensional node feature space. 

In the non-spectral GCNs, aggregators operated on spatially 

lose neighbors defined convolutions directly on the graph [13] . 

hey have been used to solve a limitation of the aggregators of 

pectral approaches, that is, a spectral model trained on the Lapla- 

ian eigenbasis defined by the specific graph structure, and could 

ot be directly applied to a graph with a different structure, even 

hough, compared to spatial GCNs, the spectral model has the out- 

tanding performance on some datasets. Duvenaud et al. [27] pro- 

osed the Neural FPs model to use different weight matrices for 

odes with different degrees, but it cannot be applied to large- 
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d

n

t

cale graphs with more node degrees. Atwood et al. [28] proposed 

he diffusion-convolutional neural networks (DCNN) to use transi- 

ion matrices to define the neighborhood for nodes. MoNet pro- 

osed by Monti et al. [29] is a spatial-domain model on non- 

uclidean domains and could generalize several previous tech- 

iques. Bai et al. developed a novel Aligned-Spatial Graph Convo- 

utional Network (ASGCN) model [30] and its backtrackless variant 

31] to transform arbitrary-sized graphs into fixed-sized aligned 

rid structures in order to learn powerful features, which can 

ot only reduce information loss and imprecise information rep- 

esentation arising in existing spatially-based GCNs but also bridge 

he theoretical gap between traditional CNNs and spatially-based 

CNs. Furthermore, they propose a framework of computing the 

eep depth-based representations [32] for graph structures, apply- 

ng it to GCN models such as the depth-based [33] and quantum- 

ased [34] subgraph convolutional networks. Martino et al. investi- 

ated the graph embedding [35] and kernel [36] based on simpli- 

ial complexes. These two simplicial methods can be interpreted 

s possibly meaningful substructures (i.e., information granules) 

n the top of which an embedding space can be built employing 

ymbolic histograms. GraphSAGE [1] is a general inductive frame- 

ork which generates embeddings by sampling and aggregating 

eatures from the local neighborhood of a node. There are several 

orks [11] to use gate mechanisms like GRU or LSTM to improve 

he long-term message propagation of information across the la- 

ent graph structure in the sequential data. Recently, non-spectral 

ethods incorporate the attention mechanism into the message 

ropagation step [10] . 

However, performing these spectral and non-spectral methods 

n the low-dimensional node feature space results in incomplete 

ode-featured information learned and encounters accuracy de- 

erioration. Although their aggregators can learn graph-structured 

nformation well in the message propagation step, their separate 

pdaters, in the encoding output step, only update nodes’ hid- 

en states without any extra extracting the neighboring features 

f message passing. In the low-dimensional node feature space, to 

earn the graph-structured information only by the message propa- 

ation step is not enough. Therefore, we design the LGC and DSGC 

or aggregating the neighboring features of each node while encod- 

ng its hidden states in the encoding output step. Both the two it- 

rative steps in our models have the capability of message passing 

o learn more graph-structured information when graphs involve 

he incomplete node representations of the low-dimensional node 

eature space. 

. Extensible architecture for GCNs 

In this section, we will present the LGC used to construct the 

ncoding output step in the building block layer, showing how 

o extend a standard convolution into our LGC updater. We also 

irectly outline their benefits and limitations compared to prior 

ork in the neural graph processing domain. 

.1. Aggregators and updaters of GCNs 

We first present the updaters of GCN, PPNP, and APPNP on 

hich we build LGC updater architecture step by step. For the set 

odes V and set of edges E, we denote graph G = (V, E) . Let | V |
enotes the number of nodes, and | E| is the number of edges. The 

ode features represented by X ∈ R 

| V |×| F | , where F is the features 

et of each node, and | F | is the number of features. An adjacency

atrix A ∈ R 

| V |×| V | represents graph G, while if extended by self- 

oops the adjacency matrix is ˆ A = A + I | V | . Hence, the simple GCN

14] is defined 

 = sof tmax ( ̃  A ReLU ( ̃  A X W 

(0) ) W 

(1) ) (1) 
3 
here Z ∈ R 

| V |×| L | is predicted node labels set, L is node labels set, 

nd | L | is the number of node labels. ˜ A = 

ˆ D 

−1 / 2 ˆ A ̂

 D 

−1 / 2 is the nor-

alized graph Laplacian with diagonal degree matrix ˆ D = 

∑ 

j 
ˆ A i j . 

 

(0) and W 

(1) are weight matrices equal to the uniform encod- 

ng function adjusted in training. ReLU is an activation function. 

q. (1) involves two message passing layers, which can be com- 

ined by H 

(l+1) = σ ( ̃  A H 

(l) W 

(l) ) , where H 

(l) ∈ R 

| V |×| C (l) | is feature

aps in layer l, C (l) represents channels set, and | C (l) | is the num-

er of channels. H 

(l+1) ∈ R 

| V |×| C (l+1) | is feature maps in layer l + 1 .

 

(l) ∈ R 

| C (l) |×| C (l+1) | is a trainable weight matrix in layer l. The en- 

oding function W 

(l) is a multichannel unidimensional convolu- 

ion, and it is used to adjust feature dimension like 1 × 1 convo- 

ution for images. σ is an activation function. 

We can further generalize H 

(l+1) = σ ( ̃  A H 

(l) W 

(l) ) and divide it 

nto two parts. The first part is the normalized graph Laplacian 

˜ 
 H 

(l) as an aggregator, which is generalized as an optional ag- 

regator S(H 

(l) ) to perform message passing. The second part is 

f θ (S(H 

(l) )) as an updater, where f θ can be defined as an alterna- 

ive updater with a parameter set θ . Therefore, Eq. (1) can be gen- 

ralized by the composite function f θ (S(H 

(l) )) to be formalized as 

 = sof tmax ( f (1) 
θ

(S(σ ( f (0) 
θ

(S(X )))))) . (2) 

By employing the recurrent equation of personalized PageRank 

17] , πppr ( � i x ) = (1 − α) ̃  A πppr ( � i x ) + α�
 i x , which takes the root node 

 into account compared with original PageRank, πpr = A rw 

πpr , 

licpera et al. [15] proposed two PPR aggregators: PPNP and 

PPNP, where the teleport (or restart) probability α ∈ (0 , 1] con- 

rols the proportion of importance of root node x . The teleport 

ector � i x represents the root node x as a one-hot indicator vector. 

 rw 

= AD 

−1 with D i j = 

∑ 

j A i j . By solving the recurrent equation of 

ersonalized PageRank to obtain πppr ( � i x ) = α(I | V | − (1 − α) ̃  A ) −1 �
 i x 

nd substituting � i x with the unit matrix I | V | , the equation of PPNP 

s 

 = sof tmax (α(I | V | − (1 − α) ̃  A ) −1 H) 
 = f θ (X ) 

(3) 

here H is the feature maps in the last layer. The updater f θ (X ) 

s defined as an arbitrary neural network. The teleport probabil- 

ty α ∈ (0 , 1] [15] . To solve the directly calculating the inverse ma-

rix of PPNP that is computationally inefficient, a variant of topic- 

ensitive PageRank [37] used to simplify PPNP to form APPNP 

 

(0) = H = f θ (X ) 

 

(k +1) = (1 − α) ̃  A Z (k ) + αH 

 

(K) = sof tmax ((1 − α) ̃  A Z (K−1) + αH) 

(4) 

here K defines the number of power iteration steps and k ∈ 

0 , K − 2] . Note that if we take the limit k → ∞ , Eq. (4) is equiv-

lent to Eq. (3) [15] . Eqs. (3) and (4) can be generalized by the

pdater f θ and aggregator S in Eq. (2) . The modularized PPNP and 

PPNP are formalized as Eqs. (5) and (6) , respectively 

(x ) = α(I | V | − (1 − α) ̃  A ) −1 x 
 = sof tmax (S( f θ (X )) 

(5) 

(z, x ) = (1 − α) ̃  A z + αx 

 

(0) = f θ (X ) 

 

(k +1) = S(Z (k ) , Z (0) ) 

 

(K) = sof tmax (S(Z (K−1) , Z (0) )) 

(6) 

.2. Expansibility of GCNs 

Previous researchers [13] prioritized the improvement and re- 

esign of the aggregator S. We purpose to design a new updater, 

amely LGC f θ,lgc , to embed the encoding updater function f θ af- 

er modularizing GCNs. Each node in G (V, E) is equal to a unit 
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Fig. 1. Padding process from G (V, E) to the architecture of f θ,lgc . In graph G, we pad some zero nodes to connect each node by dotted edges such that they have the same 

degree, which in turn results in each unit in layer l + 1 having the same size of the neighborhood. The zero nodes participate in the construction of the architecture in which 

the dotted connections of zero units complement the size of the neighborhood to achieve a consistent size. 
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n layer l + 1 . Units are connected to itself and neighbor units in

ayer l, according to edges E of graph G (V, E) . However, each node 

n G (V, E) has a different degree, which leads to the diverse size

f the neighborhood of each unit in feature maps. To solve the 

eighborhood’s inconsistency, we initially define a mask function 

o learn the neighborhood of each unit 

F (l+1) 
n = mask n (H 

(l) ) = ρ(H 

(l) 
� M 

(l+1) 
n ) (7) 

here H 

(l) ∈ R 

| V |×| C (l) | is feature maps in layer l, especially H 

(1) = 

 ∈ R 

| V |×| F | when l = 1 and C (1) = F . RF (l+1) 
n is a neighborhood of

nit n in layer l + 1 . � is two matrices element-wise product. 

 

(l+1) 
n is a mask matrix of unit n in layer l + 1 , with elements

 or 1 and dimensions the same as H 

(l) . If unit n in layer l + 1

nd unit k in layer l have an edge in graph G, elements in the 

imension k ∈ V and n ∈ V of M 

(l+1) 
n will be set to 1. Otherwise,

hey will be set to 0. The compression function ρ deletes 0 ele- 

ents. In addition, RF (l+1) 
n ∈ R 

| D (l+1) 
n |×| C (l) | , where D 

(l+1) 
n represents 

onnections of unit n and | D 

(l+1) 
n | represents degree of node n .

he order of connections D 

(l+1) 
n is ranked by the affinity values, 

hich is either node ID, uniformly sampling [1] or graph centrality 

16] (degree, eigenvector, closeness, betweenness, harmonic, load, 

ubgraph, etc.). Particularly, connections D 

(l+1) 
n are sorted by the 

escending order of node centrality. For each node, degree central- 

ty is understood as the number of node incident links. Eigenvector 

entrality measures how the node affects the network by assigning 

cores to all nodes related to connections with high-scoring nodes. 

loseness centrality is the average length of the shortest path be- 

ween each node and all other nodes in the graph. Betweenness 

entrality is the number of bridge positions along the shortest path 

etween nodes. Harmonic centrality reverses the sum reciprocal 

perations from closeness centrality. Load centrality is a variant of 

he betweenness centrality. Subgraph centrality of a node is the 

um of weighted closed walks of all lengths starting and ending at 
4 
 node. Furthermore, Eq. (7) can be extended as 

F (l+1) 
mask 

= mask (H 

(l) ) = { RF (l+1) 
n } n ∈ V 

= ρ(H 

(l) 
� { M 

(l+1) 
n } n ∈ V ) (8) 

here RF (l+1) 
mask 

is an ordered set { RF (l+1) 
n } n ∈ V which contains each 

F (l+1) 
n ranked by node ID. We extract the inconsistent neigh- 

orhood of each unit RF (l+1) 
n , where we find the maximum de- 

ree | D 

(l+1) 
n | as | D 

(l+1) 
max | . Then, element 0 is put into RF (l+1) 

n along

he dimension | D 

(l+1) 
n | until | D 

(l+1) 
n | = | D 

(l+1) 
max | . This padding pro-

ess is shown in Fig. 1 . Each node from a to f in G (V, E) is

added by zero nodes so that they have the same degree, and 

ventually, each unit has the same size of the neighborhood. In 

he ordered set RF (l+1) 
mask 

, every RF (l+1) 
n has the same shape, that 

s, (| D 

(l+1) 
max | , | C (l) | ) , implying that every RF (l+1) 

n ∈ R 

| D (l+1) 
max |×| C (l) | and

F (l+1) 
mask 

∈ R 

| V |×| D (l+1) 
max |×| C (l) | . The padding process can be defined as 

he function pad ; therefore the updater LGC f θ,lgc is 

 

(l+1) = f θ,lgc (H 

(l) ) 

= σ ( reshape ( pad ( mask (H 

(l) ))) W 

(l) ) 

= σ ( reshape ( pad (RF (l+1) 
mask 

)) W 

(l) ) 

(9) 

here function reshape is to reshape RF (l+1) 
mask 

from shape 

| V | , | D 

(l+1) 
max | , | C (l) | ) to (| V | , | D 

(l+1) 
max | × | C (l) | ) . Supposing that W 

(l) is

 training weight matrix and its shape is (| D 

(l+1) 
max | × | C (l) | , | C (l+1) | ) ,

hen RF (l+1) 
mask 

can be multiplied by W 

(l) . Nevertheless, in excep- 

ional cases, a node in graph G has an excessively maximum de- 

ree, which makes | D 

(l+1) 
max | a tremendous value to result in super- 

uous weights of W 

(l) and thus to increase the cost of our models. 

ence, we define a threshold th to limit the excessively maximum 

egree, i.e., | D 

(l+1) 
max | = min (| D 

(l+1) 
max | , th ) . Moreover, similar to the or-

er of connections D 

(l+1) 
n , the order of connections D 

(l+1) 
max is ranked 

y the affinity values. The output H 

(l+1) ∈ R 

| V |×| C (l+1) | has the shape 

| V | , | C (l+1) | ) , which is homogeneous with the shape (| V | , | C (l) | )
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Table 1 

The difference in the frameworks of LGC-GCNs. 

Module LGC-GCN LGC-PPNP LGC-APPNP 

Aggregator S(x ) = 

˜ A x S(x ) = α(I | V | − (1 − α) ̃ A ) −1 x S(z, x ) = (1 − α) ̃ A z + αx 

LGC Updater f (l) 
θ,lgc 

(x ) = reshape ( pad ( mask (x ))) W 

(l) 

LGC Pipeline f (l) 
θ

(x ) = f (l+1) 
θ,lgc 

(S( ReLU ( f (l) 
θ,lgc 

(S(x ))))) f (l) 
θ

(x ) = f (l+1) 
θ,lgc 

( ReLU ( f (l) 
θ,lgc 

(x ))) 

Output Z = 

sof tmax ( f (0) 
θ

(X )) 

Z = 

sof tmax (S( f (0) 
θ

(X ))) 

Z (0) = f (0) 
θ

(X ) 

Z (k +1) = S(Z (k ) , Z (0) ) 

Z (K) = sof tmax (S(Z (K−1) , Z (0) )) 

o  

b

A

A

3
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s

i
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o
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e

f H 

(l) ∈ R 

| V |×| C (l) | . So far, we have built the updater LGC f θ,lgc to

e further combined with the aggregators of GCN [14] , PPNP, and 

PPNP [15] , respectively, to form LGC-GCN, LGC-PPNP, and LGC- 

PPNP. The detail of LGC-GCNs’ equations showed in Table 1 . 

.3. Comparisons to related work 

The updater LGC described in Section 3.2 has several merits 

hat were not present in prior approaches to modeling graph- 

tructured data with neural networks: 

(1) Structurally, LGC leverages the improved standard convolu- 

tions to aggregate neighbors’ features while encoding each 

node’s hidden representations in the encoding output step. 

Compared with the prior updaters [13] , our LGC can assist 

aggregators in performing message passing in the updating 

process, which breaks the barrier of aggregators and up- 

daters to learn graph-structured information when the graph 

involves the low-dimensional node features. 

(2) Another merit of leveraging the standard convolution in our 

LGC is that: we generalize convolutional methods from CNNs 

to GNNs, building a bridge between them to enrich GNNs’ 

methods via existing or up-to-date methods in CNNs intro- 

duced. For instance, in the following section, we transfer 

the depth-wise separable convolution [21] into our models 

based on generalizing the standard convolution [3] into our 

LGC. There are many variants of convolutions in CNNs worth 

trying on our model in the next work. 

(3) GraphSAGE [1] achieved some of its state-of-the-art results 

when an LSTM-based neighborhood aggregator used on it. 

Researchers assumed a consistent sequential node ordering 

across neighborhoods in their GraphSAGE via rectifying this 

model by consistently feeding randomly-ordered sequences 

to the LSTM. In our LGC, we can use any graph centrality as 

the affinity value to order neighborhoods without using ex- 

tra computations to rectify models. Choosing graph central- 

ity to our model is based on an assumption of the power- 

law distribution in graphs [38] , that is, the category of each 

node is determined by its most crucial neighbors, not by its 

all neighborhood. Our model especially costs less to rank 

neighborhoods when degree centrality is the affinity value, 

which provides a priori ordered information of the graph 

structure. 

(4) Gate mechanisms used in Tree-LSTM [11] have taken advan- 

tage of long-term message propagation of information across 

the latent graph structure in the sequential data. This model 

based on LSTM only targets to address many natural lan- 

guage processing (NLP) problems while their text input has 

an explicit, sequential relationship and a latent graph struc- 

ture. However, for most other graph-structured data, they 

have an explicit graph structure without the sequential re- 

lation. For learning these data, our LGC has hence more ap- 

plicable and feasible instead of Tree-LSTM specialized in text 

applications. Furthermore, compared with Tree-LSTM, in the 
5 
next section, we extend the lightweight convolution to our 

model to shrink model costs. 

Of course, our LGC is not perfect and has several defects to be 

mproved: 

(1) Our model has a fixed-size neighboring set similar to Graph- 

SAGE [1] or Tree-LSTM [11] (a fixed-size children nodes set). 

Despite assuming power-law distribution existed between 

most of the nodes and their most crucial neighbors, in LGC, 

the fixed-size of the neighborhood results in the loss of in- 

formation contributed by the rest of the neighbors of these 

nodes. Removing the threshold th in order to get all of the 

neighborhood can reserve the information of all neighbors 

for each node, but the calculating cost increases sharply. 

Therefore, trying to reserve all neighbors’ information as far 

as possible is an improvement direction. ASGCN [30] utilized 

the transformation from arbitrary-sized graphs into fixed- 

sized aligned grid structures to reserve the neighboring in- 

formation, which gives us inspiration for our next work. 

(2) At present, our LGC can not be used in the graph classi- 

fication task. Fortunately, the research of exploring simpli- 

cial complexes introduced in the graph embedding [35] and 

kernel [36] provides an idea to target the graph classi- 

fication, which will be employed in our LGC in future 

work. 

. Depth-wise separable graph convolution 

In this section, we describe how to integrate DSC into our pro- 

osed LGC to form the DSGC in our novel MobileGCNs. DSC is a 

ightweight variant of the standard convolution used in CNNs. We 

an use it as a building block in light neural network architectures 

21] . In DSC, we replace a standard convolution with a factorized 

ersion, which splits the standard convolution into two separate 

ayers. The first is a depth-wise convolution which performs filter- 

ng by applying a single convolution filter per input channel. The 

econd one is 1 × 1 convolution, also called a point-wise convolu- 

ion. As a result, we receive output channels of the new feature 

aps through the linear combinations of the input channels. The 

hape of the input tensor H 

(l) in images is (h (l) , w 

(l) , | C (l) | ) . The

onvolution kernel K 

(l) ∈ R 

k ×k ×| C (l) |×| C (l+1) | is applied to H 

(l) to pro- 

uce an output tensor H 

(l+1) with shape (h (l) , w 

(l) , | C (l+1) | ) , where

 

(l) is the height of an image, w 

(l) is the width of the image,

nd k is the size of the convolution kernel K 

(l) . The computational 

ost of standard convolutional layers is h (l) · w 

(l) · | C (l) | · | C (l+1) | · k ·
 . DSC works almost as well as standard convolution but costs 

nly h (l) · w 

(l) · | C (l) | · (k 2 + | C (l+1) | ) , which is the sum of depth-

ise and point-wise convolutions. The cost ratio of DSC to stan- 

ard convolutions is thereby 1 
| C (l+1) | + 

1 
k 2 

. The layer of DSGC cost is 

 V | · | C (l) | · (| D 

(l+1) 
max | + | C (l+1) | ) , which is 1 

| C (l+1) | + 

1 

| D (l+1) 
max | 

of the cost

f LGC | V | · | C (l) | · | C (l+1) | · | D 

(l+1) 
max | . 

The proposed DSGC updater has two convolutions, the same as 

SC. One is the depth-wise graph convolution, which has the same 

ffect as the depth-wise convolution and is used on graphs. The 
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Table 2 

The difference in the frameworks of MobileGCNs. 

Module MobileGCN MobilePPNP MobileAPPNP 

Aggregator S(x ) = 

˜ A x S(x ) = α(I | V | − (1 − α) ̃ A ) −1 x S(z, x ) = (1 − α) ̃ A z + αx 

DSGC Updater f (l) 
θ,d 

(x ) = ω( T M (( pad ( mask (x ))) T , W 

(l) 
d 

)) 

f (l) 
θ,p 

(x ) = xW 

(l) 
p 

DSGC Pipeline f (l) 
θ

(x ) = f (l+1) 
θ,p 

( ReLU ( f (l+1) 
θ,d 

(S( ReLU ( f (l) 
θ,p 

(S(x ))))))) f (l) 
θ

(x ) = f (l+1) 
θ,p 

( ReLU ( f (l+1) 
θ,d 

( ReLU ( f (l) 
θ,p 

(x ))))) 

Output Z = 

sof tmax ( f (0) 
θ

(X )) 

Z = 

sof tmax (S( f (0) 
θ

(X ))) 

Z (0) = f (0) 
θ

(X ) 

Z (k +1) = S(Z (k ) , Z (0) ) 

Z (K) = sof tmax (S(Z (K−1) , Z (0) )) 

o

o

H

w

f  

t

i

w

t

a  

(  

p  

p

f

m

m  

a

b

(  

L

[

t

5

5

o

[

d

b

C

l

m

d

c

d

t

d

t

o

p

d

r

r

t

o

d

c

s

o

r

I

l

fi

w

f

m

o

P

s

2

s

5

m

L

M

m

5

o

o  

a

e  

|  

G

L  

p

t

c

r

l

(

d

t

F

M

i

M

i

n

m

s

ther one is the point-wise graph convolution, which is also used 

n graphs. We define the function depth-wise graph convolution 

f θ,d and point-wise graph convolution f θ,p to split the LGC updater 

f θ,lgc ( Eq. (9) ) as 

f (l) 
θ,d 

(x ) = ω( T M (( pad ( mask (x ))) T , W 

(l) 
d 

)) 

= ω( T M (( pad (RF (l+1) 
mask 

)) T , W 

(l) 
d 

)) 

f (l) 
θ,p 

(x ) = xW 

(l) 
p 

 

(l+1) = f θ (H 

(l) ) = σ ( f (l) 
θ,p 

(σ ( f (l) 
θ,d 

(H 

(l) )))) 

(10) 

here f (l) 
θ,d 

(x ) uses the tensor transpose operation T to trans- 

orm the shape of the padded RF (l+1) 
mask 

from (| V | , | D 

(l+1) 
max | , | C (l) | )

o (| C (l) | , | V | , | D 

(l+1) 
max | ) , a tensor multiplication is defined as T M 

n which W 

(l) 
d 

∈ R 

| C (l) |×| D (l+1) 
max |×1 is training weights for depth- 

ise graph convolution. T M performs the matrix multiplica- 

ion of | C (l) | pairs of matrices (| V | , | D 

(l+1) 
max | ) in padded RF (l+1) 

mask 

nd (| D 

(l+1) 
max | , 1) in W 

(l) 
d 

. The shape of the output of T M is

| C (l) | , | V | , 1) . Hence, we define function ω to transform the out-

ut shape from (| C (l) | , | V | , 1) to (| V | , | C (l) | ) for the matrix multi-

lication of f (l) 
θ,p 

(x ) whose training weights W 

(l) 
p ∈ R 

| C (l) |×| C (l+1) | are 

or point-wise graph convolution. Particularly, f (l) 
θ,p 

(x ) = xW 

(l) 
p for 

ultichannel one-dimensional feature maps in Eq. (10) is matrix 

ultiplication. The input of layer l + 1 is H 

(l+1) ∈ R 

| V |×| C (l+1) | . σ is

n activation function. 

In this paper, we design three MobileGCNs: MobileGCN, Mo- 

ilePPNP, and MobileAPPNP. MobileGCN is a combination of DSGC 

 f θ,d , f θ,p ) and the normalized graph Laplacian S of the GCN [14] .

ikewise, MobilePPNP and MobileAPPNP are PPNP [15] and APPNP 

15] combined with DSGC, respectively. To explicitly show these 

hree MobileGCNs, we summarize them in Table 2 . 

. Experimental setup 

.1. Datasets 

For our experiments, we have used open benchmark datasets 

f four types. Citation Graphs (CITESEER, CORA, and PUBMED) 

14] contain high-dimensional node features, with each node as a 

ocument containing hundreds or thousands of features described 

y high-frequency words in the corpus of all these documents. 

ITESEER and CORA are respectively composed of the citation re- 

ation of many machine-learning papers. In CORA, these docu- 

ents are divided into one of seven classes, while the CITESEER 

ataset has six class labels. PUBMED dataset is a citation network 

ontaining a set of articles related to diabetes from the PUBMED 

atabase. We employ the Wikipedia Language Graph as the second 

ype dataset [33] . Real-word webpages as the nodes compose this 

ataset. All nodes come from nineteen classes, and hyperlinks be- 

ween them represent the edges which indicate a hyperlink from 

ne webpage to another. Node features of this dataset are web- 

age text content. Amazon Photo Graph [39] as the third type 

ataset is segments of Amazon co-purchase graph, where nodes 

epresent goods, node features are bag-of-words encoded product 
6 
eviews, and the product category gives the classes. The fourth 

ype dataset is Urban Road Graph (ROAD), which includes only 

ne node feature to predict traffic flow [40] . ROAD includes low- 

imensional node features because the traffic equipment can only 

ollect a few types of information. Nodes of ROAD graph repre- 

ent roads, while edges represent intersections between roads. The 

nly node feature of the ROAD graph is traffic density, which de- 

ived from statistics of the GPS of cars in the Didi Chuxing GAIA 

nitiative ( https://gaia.didichuxing.com ). The ROAD graph has three 

abels: Rush Traffic (traffic jam), Low Traffic (there is a little traf- 

c which usually happens at night), and Normal Traffic (the traffic 

ith no congestion). We use these six datasets mentioned above 

or semi-supervised node classification tests over our proposed 

odel. All models in our experiments have been tested exclusively 

n the same train/validation/test splits [14] of CITESEER, CORA, and 

UBMED datasets. For Wikipedia, Photo, and ROAD datasets, we 

ample randomly 10% nodes from each dataset as the training set, 

0% nodes as the validation set, and the rest of nodes as the test 

et. Table 3 reports the statistics of these datasets. 

.2. Benchmark models 

To compare our proposed models with eight state-of-the-art 

odels, we have taken examples from: the GCN [14] , GAT [10] , 

anczosNet (LNet and AdaLNet) [24] , simplified GCN (SGC) [25] , 

ixHop GCN [26] , PPNP [15] , and APPNP [15] . These benchmark 

odels have been introduced in Section 2 . 

.3. Hyper-parameters and metrics 

For the experimental research, we have used the architectures 

f LGC-GCNs and MobileGCNs with two layers. Their channels 

f the hidden layer are | C (1) | = 32 , which is also the value for

ll models except GCN 

† , PPNP † , and APPNP † . These three mod- 

ls, GCN 

† , PPNP † , and APPNP † , gathered as the control group are

 C (1) | = 1024 , and have the same number of weights as our LGC-

CNs. For PPNP, APPNP, MobilePPNP, MobileAPPNP, LGC-PPNP, and 

GC-APPNP, α = 0 . 06 and K = 2 . We also define the other hyper-

arameters of benchmark models according to the experiment set- 

ing in their papers because every model has different learning 

onditions and convergence. For our models, we set the learning 

ate to 0.0045, and epochs are 10 0 0. To implement feature se- 

ection experiments, we select a few features from five datasets 

CITESEER, CORA, PUBMED, Wikipedia, and Photo) to form the low- 

imensional feature space according to the random selection, Chi 2 

est, analysis of variance, and mutual information, respectively. 

or node classification tasks, we adopt accuracy, Macro-F1, and 

CC metrics. Accuracy is one of the most common metrics, but 

t cannot precisely describe the imbalance of learning data. Hence, 

acro-F1 gives equal weight to each category; it tends to be dom- 

nated by rare categories. MCC takes true and false positives and 

egatives into account, and it is generally regarded as a balanced 

easure which can be used even if the classes are of very different 

izes, and the range of its value is –1 to 1 (or –100% to 100%). 

https://gaia.didichuxing.com
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Table 3 

Research dataset statistics. 

Dataset Type Classes Features Nodes Edges Label rate 

CITESEER Citation 6 3703 3327 4732 0.036 

CORA Citation 7 1433 2708 5429 0.052 

PUBMED Citation 3 500 19,717 44,338 0.003 

Wikipedia Language 19 4973 2405 17,981 0.100 

Photo Purchase 8 745 7487 119043 0.100 

ROAD Urban Road 3 1 14,569 27,353 0.100 

Fig. 2. The p-value heatmap of the paired t-test with respect to accuracy (1% features for all datasets). 
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6  
. Research results and discussion 

.1. Overall metrics 

Metric comparison results are presented in Table 4 , 5 , 6 , 7 , 8 , 9 ,

nd the p-value heatmap of the paired t-tests between these mod- 

ls being compared are shown in Fig. 2 , 3 , 4 . Depending on these

atasets, we sample top 1% to 10% node features to constitute the 

ow-dimensional feature space and select 100% node features to 

orm the high-dimensional feature space. We also repeat the learn- 

ng process five times and report the average performance in terms 

f accuracy, Macro-F1, and MCC, as many other works do [33] . In 

ach of presented tables the boldfaced values are the best results 

n each experiment. We have following observations in Table 4, 5, 

, 7, 8, 9 and Fig. 2, 3, 4 : 

(1) In the low-dimensional feature space, one of our six pro- 

posed models always outperforms each of the competing 

benchmark models with sampling different ratios of top 

features. Specifically, LGC-PPNP shows the most outstand- 

ing accuracy on citation graph datasets (CITESEER, CORA, 

and PUBMED), following by MobilePPNP. Moreover, the ac- 

curacy of LGC-PPNP is more prominent when fewer features 

describe graph nodes since its p-value less 0.05 shown in 
7 
Fig. 2 . For Wikipedia, Photo, and ROAD datasets represented 

by the low-dimensional feature space, LGC-PPNP has the 

dominant accuracy though it has less significance (p-value 

> 0.05 in Fig. 2 (d) Wikipedia) for differences with other 

two baseline models (GCN and SGC). It indicates the effec- 

tiveness and robustness of LGC updater to assist aggregators 

to gather graph-structured information on the node classifi- 

cation task. In brief, LGC updater acts as a powerful auxiliary 

to help aggregators to capture more graph-structured infor- 

mation, while learning node hidden states. 

(2) In general, for all datasets except Photo, LGC-APPNP per- 

formed on Macro-F1 and MCC has the state-of-the-art re- 

sults in the low-dimensional feature space, and its differ- 

ence in results against other models are significant accord- 

ing to p-value < 0.05 in Fig. 3 and 4 . A possible explanation

is that LGC-APPNP as an approximate formalization of LGC- 

PPNP has a smaller neighboring size of performing message 

passing to suppress over-smoothing [15] , which gives the fit 

individuality to node features for building distinct classifica- 

tion boundaries between nodes, rather than the homogene- 

ity to them to blur their boundaries. 

(3) Although MobilePPNP and MobileAPPNP are not the most 

outstanding on each metric, they maintain high performance 

and robustness from low- to high-dimensional node fea- 
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Table 4 

Evaluation results of node classification on the CITESEER dataset. 

Metric Model The percentage of the top node features (The number of the top node features) 

1%(37) 2%(74) 3%(111) 4%(148) 5%(185) 6%(222) 7%(259) 8%(296) 9%(333) 10%(370) 100%(3703) 

Accuracy GCN [14] 31.10 ±1.20 43.42 ±0.35 46.21 ±1.13 47.45 ±0.51 47.46 ±0.11 48.60 ±0.02 52.46 ±1.18 50.93 ±0.13 51.80 ±0.13 51.86 ±0.24 71.70 ±0.40 

GCN 

† [14] 24.50 ±2.20 37.65 ±0.15 42.60 ±0.40 45.95 ±0.55 46.70 ±0.20 48.55 ±0.15 53.50 ±0.40 54.30 ±0.20 54.30 ±0.30 53.85 ±0.25 71.85 ±0.63 

PPNP [15] 42.15 ±0.65 52.92 ±0.45 55.88 ±0.42 56.24 ±1.16 56.40 ±0.32 58.54 ±0.65 59.61 ±0.23 59.11 ±0.40 60.90 ±0.29 59.92 ±0.45 71.95 ±0.15 

PPNP † [15] 29.40 ±3.00 39.00 ±0.50 46.05 ±0.15 49.90 ±0.50 52.65 ±0.45 54.65 ±0.25 59.00 ±0.10 59.20 ±0.20 59.25 ±0.10 59.05 ±0.15 72.08 ±0.22 

APPNP [15] 31.00 ±0.35 44.12 ±0.32 45.91 ±1.27 47.98 ±0.50 47.90 ±0.67 48.76 ±0.35 51.74 ±0.31 51.85 ±0.49 52.62 ±0.60 52.00 ±1.11 72.00 ±0.50 

APPNP † [15] 24.90 ±0.90 37.65 ±0.15 41.40 ±0.10 45.45 ±0.45 46.55 ±0.45 48.70 ±0.40 52.65 ±0.25 53.00 ±0.30 53.80 ±0.20 53.30 ±0.30 72.14 ±0.10 

GAT [10] 32.62 ±0.03 47.51 ±0.25 48.53 ±1.12 50.10 ±0.42 50.96 ±0.57 50.25 ±0.58 53.22 ±1.18 53.94 ±0.43 54.00 ±0.31 54.00 ±0.28 72.15 ±0.25 

LNet [24] 40.53 ±0.24 49.86 ±1.02 50.20 ±0.10 52.34 ±0.44 52.06 ±0.14 53.56 ±0.68 56.92 ±0.25 56.90 ±0.40 57 ±0.32 57.00 ±0.82 70.46 ±0.10 

AdaNet [24] 40.02 ±0.56 48.52 ±0.41 51.78 ±0.15 52.36 ±0.70 53.00 ±0.42 53.45 ±0.10 54.74 ±0.45 55.86 ±0.68 55.29 ±0.40 56.48 ±0.60 71.13 ±0.20 

SGC [25] 39.52 ±0.11 49.08 ±0.43 49.86 ±0.80 50.36 ±0.65 51.18 ±0.40 51.86 ±1.06 52.85 ±0.36 52.14 ±0.25 52.30 ±1.40 51.15 ±0.83 70.02 ±0.02 

MixHop [26] 36.48 ±0.42 47.76 ±0.15 49.52 ±0.86 49.87 ±0.50 50.08 ±0.46 51.12 ±0.84 51.20 ±0.40 50.45 ±0.28 50.89 ±0.55 50.72 ±1.58 69.63 ±0.44 

MobileGCN 32.90 ±1.30 46.65 ±0.45 50.30 ±0.90 51.10 ±1.00 50.05 ±1.25 52.10 ±0.40 55.95 ±1.05 55.00 ±0.70 55.70 ±1.00 54.40 ±0.50 70.25 ±0.65 

MobilePPNP 47.24 ±0.33 54.41 ±0.26 56.72 ±0.15 59.30 ±1.17 57.22 ±0.20 60.00 ±1.15 59.82 ±1.20 61.38 ±0.76 61.35 ±0.15 60.67 ±0.15 70.05 ±0.35 

MobileAPPNP 38.00 ±0.10 47.61 ±0.23 49.25 ±0.05 49.73 ±0.17 51.20 ±0.18 51.42 ±0.20 54.80 ±0.26 54.12 ±0.55 55.28 ±0.37 54.50 ±0.10 70.20 ±0.80 

LGC-GCN 39.45 ±0.25 49.05 ±1.05 52.25 ±0.35 52.55 ±0.95 51.80 ±0.70 53.05 ±0.55 56.55 ±0.75 56.30 ±0.50 56.60 ±0.50 56.05 ±0.85 70.20 ±0.20 

LGC-PPNP 50.37 ±0.16 55.42 ±1.10 57.55 ±0.53 60.12 ±1.06 60.00 ±1.08 59.12 ±0.54 59.62 ±0.35 61.12 ±0.28 60.72 ±0.18 58.96 ±0.20 67.60 ±0.20 

LGC-APPNP 37.22 ±0.42 46.50 ±0.30 49.13 ±1.15 50.76 ±0.30 48.55 ±1.03 50.36 ±0.23 52.00 ±0.54 51.73 ±1.20 52.10 ±0.63 52.78 ±0.58 70.75 ±0.15 

Macro-F1 GCN [14] 32.71 ±0.46 38.64 ±0.63 40.34 ±0.79 41.68 ±0.66 41.41 ±0.55 42.24 ±0.32 43.15 ±0.57 43.33 ±0.58 43.54 ±0.34 42.92 ±0.78 53.04 ±0.74 

GCN 

† [14] 33.65 ±0.16 38.54 ±0.13 40.56 ±0.10 41.45 ±0.05 41.32 ±0.05 41.82 ±0.21 43.58 ±0.15 43.39 ±0.15 43.54 ±0.14 43.51 ±0.10 54.86 ±0.66 

PPNP [15] 37.15 ±0.35 41.72 ±0.56 43.14 ±0.40 44.22 ±0.27 44.60 ±0.46 45.55 ±0.30 46.65 ±0.25 47.08 ±0.54 47.57 ±0.46 47.21 ±0.49 54.48 ±0.72 

PPNP † [15] 36.53 ±0.14 40.82 ±0.14 42.09 ±0.11 42.50 ±0.06 43.21 ±0.10 44.01 ±0.15 45.45 ±0.17 45.89 ±0.07 45.89 ±0.20 45.87 ±0.14 54.96 ±0.24 

APPNP [15] 32.79 ±0.17 38.66 ±0.49 39.77 ±0.30 41.87 ±0.66 41.52 ±0.23 42.17 ±0.52 43.70 ±0.36 43.13 ±0.48 43.63 ±0.44 43.97 ±0.63 53.57 ±0.63 

APPNP † [15] 33.40 ±0.26 38.50 ±0.07 40.71 ±0.10 41.34 ±0.07 41.82 ±0.26 42.18 ±0.16 43.73 ±0.18 43.53 ±0.11 43.65 ±0.09 43.66 ±0.07 53.85 ±0.66 

GAT [10] 33.11 ±0.23 41.80 ±0.40 45.57 ±0.35 47.23 ±0.30 46.92 ±0.30 47.78 ±0.19 50.01 ±0.33 50.68 ±0.18 50.32 ±0.08 50.88 ±0.34 68.27 ±0.41 

LNet [24] 33.20 ±0.16 37.22 ±0.28 40.16 ±0.25 42.64 ±0.36 42.86 ±1.27 42.18 ±0.09 43.39 ±0.15 44.08 ±0.20 44.56 ±0.10 45.20 ±0.32 54.40 ±0.10 

AdaNet [24] 32.18 ±0.20 39.12 ±0.70 40.89 ±0.16 41.28 ±0.15 41.43 ±0.11 42.58 ±0.42 42.60 ±0.82 43.10 ±0.05 43.20 ±0.17 44.02 ±0.08 53.26 ±0.45 

SGC [25] 31.46 ±0.20 38.28 ±0.06 39.40 ±0.18 41.25 ±0.60 41.28 ±0.15 41.58 ±0.20 42.85 ±0.07 42.20 ±0.76 42.11 ±0.20 44.42 ±0.27 54.28 ±0.16 

MixHop [26] 34.90 ±0.24 40.86 ±0.41 41.56 ±1.00 41.98 ±0.20 42.47 ±0.39 42.81 ±0.40 43.19 ±0.28 44.56 ±0.11 44.17 ±0.10 44.89 ±0.23 53.80 ±0.16 

MobileGCN 33.80 ±0.45 40.37 ±0.87 42.29 ±0.66 42.54 ±0.69 42.69 ±0.66 42.82 ±0.68 44.21 ±0.61 44.37 ±0.72 44.33 ±0.55 44.28 ±0.27 53.91 ±0.33 

MobilePPNP 40.52 ±0.71 43.35 ±0.57 45.04 ±0.46 46.49 ±0.34 46.83 ±0.58 47.34 ±0.42 48.19 ±0.81 47.81 ±0.54 48.76 ±0.90 48.58 ±0.57 54.32 ±0.53 

MobileAPPNP 35.16 ±0.46 40.75 ±0.44 42.37 ±0.36 43.61 ±0.68 43.89 ±0.61 43.72 ±0.43 45.09 ±0.44 44.61 ±0.46 45.06 ±0.37 44.53 ±0.56 53.78 ±0.35 

LGC-GCN 36.05 ±0.26 40.66 ±0.88 42.33 ±0.64 43.22 ±0.27 43.03 ±0.51 43.50 ±0.33 44.61 ±0.91 44.83 ±1.05 45.05 ±0.82 45.05 ±0.77 54.85 ±0.60 

LGC-PPNP 42.66 ±0.68 45.12 ±0.64 46.10 ±0.67 47.39 ±0.48 47.52 ±0.43 47.90 ±0.61 47.61 ±0.29 48.20 ±0.34 48.61 ±0.27 48.80 ±0.58 55.78 ±0.25 

LGC-APPNP 36.24 ±0.34 42.79 ±0.14 45.11 ±0.21 46.78 ±0.18 46.82 ±0.18 47.75 ±0.32 50.94 ±0.13 50.79 ±0.22 50.40 ±0.06 51.11 ±0.20 64.29 ±0.30 

MCC GCN [14] 15.71 ±1.22 23.91 ±1.48 25.80 ±1.15 27.99 ±1.13 27.99 ±0.61 29.36 ±0.40 30.43 ±0.55 30.83 ±0.89 31.25 ±0.28 30.36 ±1.08 46.81 ±0.69 

GCN 

† [14] 15.78 ±0.19 23.23 ±0.16 26.32 ±0.29 27.58 ±0.20 27.67 ±0.36 28.79 ±0.18 31.40 ±0.05 31.09 ±0.24 31.31 ±0.33 31.21 ±0.16 46.60 ±0.20 

PPNP [15] 21.91 ±0.44 27.75 ±0.88 29.57 ±0.44 31.40 ±0.50 32.09 ±0.40 33.43 ±0.38 35.41 ±0.33 35.57 ±0.81 36.29 ±0.87 36.08 ±0.69 47.61 ±0.78 

PPNP † [15] 20.84 ±0.16 26.16 ±0.28 27.59 ±0.27 28.25 ±0.24 29.72 ±0.15 31.22 ±0.22 33.14 ±0.18 33.66 ±0.08 33.80 ±0.25 33.78 ±0.21 48.65 ±0.88 

APPNP [15] 15.33 ±0.48 24.18 ±1.07 24.52 ±0.13 28.17 ±1.33 27.86 ±0.26 28.68 ±0.80 30.98 ±0.78 30.41 ±0.58 31.52 ±1.06 31.47 ±0.84 47.16 ±0.87 

APPNP † [15] 15.31 ±0.50 23.23 ±0.18 26.37 ±0.14 27.18 ±0.09 28.19 ±0.52 28.91 ±0.22 31.28 ±0.25 30.79 ±0.14 30.90 ±0.15 31.10 ±0.13 48.50 ±1.25 

GAT [10] 17.39 ±0.60 29.96 ±0.88 34.09 ±0.39 36.11 ±0.47 36.21 ±0.43 37.08 ±0.31 40.14 ±0.61 40.55 ±0.20 40.12 ±0.47 40.88 ±0.78 65.03 ±0.55 

LNet [24] 21.13 ±0.28 26.72 ±0.38 27.42 ±1.03 29.12 ±0.58 30.29 ±0.80 30.26 ±0.43 31.25 ±1.78 31.60 ±1.42 32.06 ±0.10 32.86 ±1.89 46.20 ±0.11 

AdaNet [24] 20.45 ±0.82 27.10 ±0.46 28.50 ±0.40 30.83 ±0.11 30.17 ±0.10 31.86 ±1.21 31.46 ±0.90 32.82 ±1.72 32.98 ±0.40 32.89 ±1.28 47.22 ±0.18 

SGC [25] 22.27 ±0.80 29.38 ±0.12 30.19 ±1.28 31.68 ±0.60 31.20 ±0.83 32.26 ±0.11 32.50 ±1.44 32.75 ±1.16 32.57 ±0.46 33.05 ±0.19 48.28 ±2.04 

MixHop [26] 23.17 ±0.33 28.46 ±1.38 27.65 ±0.85 31.30 ±1.46 31.58 ±0.52 32.74 ±1.50 32.23 ±1.70 33.60 ±0.48 34.50 ±0.67 34.92 ±0.44 47.18 ±0.30 

MobileGCN 16.95 ±0.36 25.20 ±1.31 27.69 ±1.04 29.08 ±1.02 29.55 ±0.77 30.24 ±0.79 32.13 ±0.62 31.43 ±0.79 31.85 ±0.45 32.01 ±0.53 47.20 ±0.26 

MobilePPNP 26.17 ±0.62 30.52 ±0.64 33.20 ±1.11 34.79 ±0.68 35.39 ±1.36 36.17 ±0.56 37.23 ±1.12 36.62 ±0.88 37.83 ±1.19 37.24 ±0.73 47.20 ±0.70 

MobileAPPNP 18.66 ±0.91 26.16 ±0.62 28.33 ±0.82 30.41 ±0.96 30.64 ±0.59 31.20 ±0.66 32.86 ±1.11 31.84 ±0.52 32.49 ±0.43 32.02 ±0.99 47.45 ±0.43 

LGC-GCN 20.01 ±0.42 27.13 ±1.24 29.32 ±0.82 30.24 ±0.15 30.80 ±0.24 31.60 ±0.61 32.56 ±0.99 32.66 ±0.94 33.31 ±1.37 33.12 ±0.71 47.92 ±0.49 

LGC-PPNP 28.97 ±0.95 32.37 ±0.61 33.96 ±0.74 35.30 ±0.55 35.68 ±0.92 37.09 ±1.58 36.10 ±0.30 36.91 ±0.87 37.13 ±0.67 37.55 ±0.42 49.31 ±0.41 

LGC-APPNP 23.65 ±0.38 33.23 ±0.43 35.34 ±0.43 37.33 ±0.61 36.59 ±0.21 38.73 ±0.56 41.13 ±0.24 41.31 ±0.19 41.48 ±0.46 41.30 ±0.24 59.11 ±0.28 
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Table 5 

Evaluation results of node classification on the CORA dataset. 

Metric 

Model 

The percentage of the top node features (The number of the top node features) 

1%(14) 2%(29) 3%(43) 4%(57) 5%(72) 6%(86) 7%(100) 8%(115) 9%(129) 10%(143) 100%(1433) 

Accuracy GCN [14] 31.65 ±0.25 52.21 ±0.13 53.19 ±0.12 58.34 ±0.51 57.20 ±0.22 57.95 ±0.34 60.80 ±0.14 61.72 ±0.11 64.16 ±0.41 66.36 ±0.37 80.67 ±0.10 

GCN 

† [14] 25.90 ±0.70 46.00 ±0.10 45.85 ±0.15 53.80 ±0.30 56.25 ±0.15 65.65 ±0.85 59.90 ±0.30 60.35 ±0.25 63.25 ±0.55 66.40 ±0.60 81.54 ±0.23 

PPNP [15] 38.92 ±0.20 61.96 ±0.65 60.53 ±0.22 70.30 ±0.08 69.92 ±0.40 70.28 ±0.14 70.89 ±0.47 71.91 ±0.33 74.50 ±0.20 75.74 ±0.61 81.42 ±0.24 

PPNP † [15] 18.90 ±1.20 40.70 ±0.10 46.40 ±0.20 56.60 ±0.40 58.60 ±0.10 59.90 ±0.30 68.30 ±0.30 68.60 ±0.20 71.10 ±0.30 74.80 ±0.20 82.45 ±0.46 

APPNP [15] 30.72 ±0.12 51.90 ±0.16 51.76 ±0.18 57.83 ±0.46 56.46 ±1.10 58.48 ±0.65 59.90 ±0.22 61.53 ±0.03 63.60 ±0.35 66.28 ±0.40 80.65 ±0.30 

APPNP † [15] 25.30 ±2.20 45.40 ±0.30 45.70 ±0.30 52.70 ±0.30 55.55 ±0.25 55.35 ±0.25 58.50 ±0.40 58.90 ±0.30 61.80 ±0.30 65.75 ±0.55 81.98 ±0.32 

GAT [10] 32.00 ±0.70 54.00 ±0.52 53.81 ±0.46 60.12 ±0.64 61.60 ±0.34 63.03 ±0.30 64.82 ±0.50 65.52 ±0.47 69.51 ±0.42 71.26 ±0.28 82.61 ±0.40 

LNet [24] 34.20 ±0.52 47.03 ±0.20 50.25 ±0.40 58.24 ±0.35 60.05 ±0.63 60.89 ±0.36 64.20 ±0.10 66.30 ±0.35 68.52 ±0.66 69.62 ±0.40 81.23 ±0.64 

AdaNet [24] 36.12 ±0.42 50.20 ±0.15 56.58 ±0.65 61.04 ±0.12 63.10 ±0.40 65.28 ±0.40 66.55 ±0.68 68.16 ±0.28 69.70 ±0.24 70.51 ±0.36 82.30 ±0.20 

SGC [25] 35.08 ±0.50 48.23 ±0.26 58.61 ±0.48 63.25 ±0.05 65.05 ±0.04 67.52 ±0.20 68.76 ±0.26 70.10 ±0.15 69.27 ±0.18 72.00 ±0.06 81.52 ±0.17 

MixHop [26] 48.21 ±0.36 57.82 ±0.10 60.46 ±0.26 65.42 ±0.18 66.56 ±0.64 67.77 ±0.35 67.35 ±0.17 68.96 ±0.55 67.30 ±0.20 71.40 ±0.36 81.36 ±0.10 

MobileGCN 39.35 ±0.45 58.35 ±0.35 59.70 ±0.50 66.05 ±0.65 64.20 ±0.60 65.10 ±1.00 66.00 ±0.60 67.25 ±0.75 69.90 ±0.50 71.75 ±0.65 82.30 ±0.40 

MobilePPNP 62.32 ±0.10 68.27 ±0.84 69.57 ±0.69 76.13 ±0.30 73.98 ±0.42 74.34 ±0.63 74.85 ±0.46 76.44 ±0.10 79.26 ±0.80 78.14 ±0.21 82.39 ±0.26 

MobileAPPNP 51.23 ±0.23 64.54 ±0.33 62.81 ±0.61 68.13 ±0.58 66.56 ±0.74 67.92 ±0.15 68.41 ±0.66 67.90 ±0.20 72.30 ±0.63 72.34 ±0.45 82.62 ±0.51 

LGC-GCN 53.35 ±0.75 64.30 ±0.60 64.30 ±0.30 70.05 ±0.55 70.25 ±0.95 69.10 ±0.50 68.90 ±0.90 69.65 ±0.55 72.40 ±0.40 73.30 ±0.70 80.15 ±0.35 

LGC-PPNP 71.80 ±0.22 76.46 ±0.50 76.62 ±0.21 77.46 ±0.12 77.13 ±0.30 77.28 ±0.50 77.57 ±0.37 76.80 ±0.44 77.30 ±0.32 76.81 ±0.40 80.00 ±0.30 

LGC-APPNP 47.56 ±0.45 64.23 ±0.60 63.52 ±0.16 66.98 ±0.73 66.12 ±0.40 68.10 ±0.35 67.84 ±0.26 69.37 ±0.49 70.39 ±0.20 71.95 ±0.11 79.00 ±0.10 

Macro-F1 GCN [14] 33.68 ±0.27 37.57 ±0.66 36.84 ±0.22 39.28 ±0.32 39.58 ±0.50 40.72 ±0.63 41.52 ±0.65 41.71 ±0.75 42.69 ±0.72 44.55 ±0.24 52.47 ±0.78 

GCN 

† [14] 30.18 ±0.04 37.36 ±0.96 35.49 ±0.16 38.16 ±0.45 39.68 ±0.62 41.34 ±0.86 41.92 ±1.00 42.19 ±0.63 44.32 ±0.19 45.07 ±0.53 54.63 ±0.40 

PPNP [15] 38.06 ±0.43 39.78 ±0.40 40.28 ±0.16 41.34 ±0.57 43.72 ±1.05 43.73 ±0.53 44.62 ±0.62 45.78 ±1.74 45.53 ±0.56 47.26 ±0.58 51.48 ±0.38 

PPNP † [15] 23.42 ±0.25 34.90 ±0.35 35.78 ±0.05 38.60 ±1.20 39.96 ±1.37 40.50 ±1.16 42.76 ±1.22 42.94 ±1.54 43.90 ±0.80 44.64 ±0.29 56.25 ±1.65 

APPNP [15] 33.07 ±0.28 36.70 ±0.64 36.19 ±0.55 39.06 ±0.88 39.60 ±0.53 41.10 ±0.63 41.26 ±0.16 41.76 ±0.72 42.69 ±0.45 44.79 ±0.77 52.38 ±0.68 

APPNP † [15] 30.13 ±0.07 37.09 ±0.39 35.97 ±0.64 37.28 ±0.13 39.59 ±1.02 40.14 ±0.33 41.79 ±0.50 42.87 ±0.40 44.12 ±0.44 44.57 ±0.28 55.56 ±0.48 

GAT [10] 36.17 ±1.03 46.42 ±0.70 46.30 ±0.81 51.61 ±0.30 52.26 ±0.17 55.07 ±0.35 56.61 ±0.79 58.57 ±0.45 60.53 ±0.61 63.92 ±0.45 74.65 ±0.21 

LNet [24] 39.56 ±0.50 42.44 ±1.52 42.05 ±0.56 43.23 ±0.20 46.60 ±0.50 48.69 ±1.05 48.68 ±0.07 50.25 ±0.46 52.30 ±0.56 52.48 ±0.80 56.25 ±0.65 

AdaNet [24] 38.56 ±0.64 42.48 ±0.63 43.30 ±0.84 44.00 ±0.08 46.50 ±0.05 49.60 ±0.63 50.69 ±1.20 52.23 ±0.34 53.42 ±0.82 56.25 ±0.61 57.04 ±0.46 

SGC [25] 39.67 ±0.33 44.30 ±0.11 44.69 ±0.06 46.14 ±0.87 48.11 ±0.24 50.99 ±0.04 52.19 ±0.60 52.06 ±1.86 52.26 ±0.44 51.49 ±0.58 57.70 ±0.43 

MixHop [26] 37.80 ±0.25 39.68 ±0.22 40.00 ±0.50 42.20 ±0.14 42.50 ±0.58 45.58 ±1.25 46.10 ±0.42 48.70 ±1.45 49.52 ±1.09 48.65 ±0.40 52.86 ±1.05 

MobileGCN 36.59 ±0.65 38.42 ±0.64 38.40 ±0.55 40.41 ±0.83 41.09 ±0.23 42.36 ±0.69 42.32 ±0.44 44.07 ±1.39 43.70 ±0.34 45.60 ±0.76 54.43 ±1.15 

MobilePPNP 46.81 ±1.47 44.24 ±2.60 45.30 ±1.17 46.29 ±0.72 46.57 ±1.22 46.47 ±1.16 45.80 ±1.19 47.04 ±0.52 48.25 ±0.64 49.46 ±1.35 55.10 ±0.98 

MobileAPPNP 41.42 ±0.90 41.53 ±1.19 40.93 ±0.80 42.52 ±0.57 42.34 ±0.66 43.96 ±0.92 43.08 ±0.51 44.51 ±1.23 45.30 ±0.32 46.17 ±0.95 54.50 ±0.59 

LGC-GCN 40.12 ±0.22 42.26 ±0.42 42.95 ±0.66 44.36 ±0.34 45.79 ±1.15 45.44 ±0.88 46.04 ±0.42 46.80 ±0.56 48.28 ±0.97 48.74 ±0.95 54.58 ±0.65 

LGC-PPNP 46.43 ±0.33 47.37 ±0.68 48.23 ±0.56 48.83 ±0.99 49.45 ±0.66 49.67 ±0.64 50.59 ±1.27 49.70 ±0.88 50.75 ±0.94 51.28 ±0.42 55.72 ±1.14 

LGC-APPNP 45.61 ±0.25 53.22 ±0.92 53.45 ±0.41 56.03 ±0.37 57.76 ±0.11 59.98 ±0.16 62.15 ±0.44 62.12 ±0.26 63.10 ±0.07 65.58 ±0.08 74.98 ±0.09 

MCC GCN [14] 20.21 ±0.46 27.95 ±1.30 27.17 ±0.33 31.14 ±0.41 31.60 ±0.40 33.19 ±0.57 34.73 ±0.89 35.29 ±1.13 36.79 ±1.20 39.66 ±0.17 51.06 ±0.91 

GCN 

† [14] 15.20 ±0.62 28.76 ±0.94 26.99 ±0.73 29.06 ±0.46 31.63 ±0.48 32.68 ±1.04 34.44 ±1.56 35.00 ±0.90 37.57 ±0.34 38.52 ±1.03 52.12 ±1.82 

PPNP [15] 27.30 ±0.53 30.98 ±0.47 31.87 ±0.32 34.37 ±0.64 36.28 ±0.55 36.46 ±0.49 37.02 ±0.63 37.76 ±0.45 40.07 ±0.63 42.05 ±0.44 49.09 ±0.55 

PPNP † [15] 6.79 ±0.50 23.24 ±1.00 25.07 ±1.31 28.74 ±1.48 30.41 ±1.28 30.24 ±0.65 33.87 ±1.87 34.10 ±1.62 34.84 ±0.89 36.99 ±0.45 49.86 ±1.72 

APPNP [15] 19.39 ±0.52 27.02 ±1.39 25.89 ±1.15 30.33 ±1.19 30.82 ±0.48 33.10 ±0.51 33.51 ±0.67 33.75 ±0.79 36.03 ±0.61 38.69 ±0.63 50.85 ±0.63 

APPNP † [15] 14.91 ±0.51 28.32 ±0.43 26.82 ±0.86 28.31 ±0.40 31.78 ±0.93 32.03 ±0.40 34.67 ±0.33 35.69 ±0.42 37.50 ±0.67 38.58 ±0.88 51.46 ±0.38 

GAT [10] 24.09 ±1.23 38.63 ±1.07 38.63 ±0.87 45.73 ±0.40 46.07 ±0.27 49.42 ±0.41 51.31 ±0.80 53.51 ±0.61 56.27 ±0.59 60.08 ±0.36 71.02 ±0.24 

LNet [24] 20.65 ±1.54 25.61 ±0.85 26.36 ±0.46 28.74 ±1.40 28.49 ±0.80 30.08 ±1.83 30.12 ±0.40 31.43 ±1.68 32.84 ±0.45 34.51 ±1.46 46.35 ±0.85 

AdaNet [24] 22.68 ±1.06 26.85 ±0.84 28.44 ±0.69 30.21 ±0.22 31.21 ±0.70 33.40 ±0.86 35.58 ±0.66 35.40 ±1.26 35.68 ±1.08 38.68 ±1.47 48.82 ±0.63 

SGC [25] 21.25 ±0.45 28.54 ±0.68 30.06 ±1.42 30.88 ±1.95 33.00 ±0.85 33.20 ±0.40 36.98 ±0.23 38.86 ±2.40 40.19 ±0.55 41.87 ±0.54 40.07 ±1.24 

MixHop [26] 22.04 ±0.78 25.80 ±0.40 27.47 ±1.40 30.58 ±0.50 33.74 ±1.06 37.46 ±0.82 38.93 ±1.50 39.25 ±0.40 40.28 ±0.60 40.86 ±0.40 50.10 ±0.52 

MobileGCN 26.84 ±0.64 29.62 ±0.76 30.77 ±0.92 33.78 ±0.74 34.60 ±0.86 36.15 ±0.34 35.56 ±0.85 37.75 ±0.57 39.32 ±0.46 40.57 ±0.50 52.63 ±0.68 

MobilePPNP 39.41 ±1.83 37.37 ±2.52 39.00 ±1.82 40.37 ±1.58 41.17 ±1.69 40.54 ±1.12 40.53 ±1.58 41.51 ±0.85 43.70 ±0.80 44.79 ±1.12 53.10 ±0.82 

MobileAPPNP 32.47 ±1.76 33.67 ±1.17 33.49 ±1.52 35.56 ±1.59 36.30 ±1.22 37.80 ±0.91 36.92 ±1.14 38.11 ±1.21 40.36 ±0.32 41.29 ±0.76 53.00 ±0.87 

LGC-GCN 31.80 ±0.41 35.76 ±0.49 37.13 ±0.85 39.70 ±0.42 41.10 ±1.22 40.82 ±1.04 41.44 ±0.92 42.12 ±1.17 44.54 ±0.89 44.70 ±0.84 52.85 ±0.74 

LGC-PPNP 40.66 ±0.64 41.78 ±0.92 43.45 ±0.70 44.35 ±1.22 45.07 ±0.90 45.43 ±0.47 46.15 ±1.41 44.89 ±0.70 46.47 ±1.09 46.93 ±0.69 54.17 ±1.05 

LGC-APPNP 35.78 ±0.22 46.81 ±0.97 47.14 ±0.86 49.63 ±0.22 52.38 ±0.30 54.52 ±0.21 56.73 ±0.73 56.81 ±0.48 58.09 ±0.33 61.46 ±0.13 71.32 ±0.21 
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Table 6 

Evaluation results of node classification on the PUBMED dataset. 

Metric Model The percentage of the top node features (The number of the top node features) 

1%(5) 2%(10) 3%(15) 4%(20) 5%(25) 6%(30) 7%(35) 8%(40) 9%(45) 10%(50) 10 0%(50 0) 

Accuracy GCN [14] 59.95 ±0.35 63.55 ±0.75 64.20 ±0.90 68.85 ±0.95 69.70 ±0.90 71.50 ±1.00 70.90 ±0.30 69.65 ±0.25 71.15 ±0.45 70.50 ±0.20 78.56 ±0.54 

GCN 

† [14] 50.60 ±0.10 52.40 ±0.40 63.10 ±0.20 69.30 ±0.10 70.35 ±0.25 71.40 ±0.26 71.15 ±0.15 70.45 ±0.35 71.50 ±0.10 72.00 ±0.10 78.89 ±0.36 

PPNP [15] 64.30 ±1.20 71.15 ±0.25 71.25 ±0.35 72.90 ±0.32 73.00 ±0.80 73.20 ±0.61 71.90 ±0.55 72.10 ±0.50 72.60 ±0.42 72.45 ±0.05 78.89 ±0.46 

PPNP † [15] 50.15 ±0.05 52.50 ±0.20 63.30 ±0.50 75.25 ±0.05 76.55 ±0.25 75.50 ±0.04 75.40 ±0.10 74.95 ±0.15 75.05 ±0.05 75.15 ±0.15 79.98 ±0.30 

APPNP [15] 51.10 ±1.30 52.00 ±2.10 56.05 ±0.55 66.30 ±0.60 66.40 ±0.30 69.15 ±0.25 66.50 ±0.10 66.05 ±0.25 67.55 ±0.25 68.00 ±0.10 78.25 ±0.54 

APPNP † [15] 50.55 ±0.15 53.30 ±0.60 61.70 ±0.30 69.10 ±0.10 70.75 ±0.15 72.05 ±0.05 71.25 ±0.15 70.05 ±0.05 71.30 ±0.20 71.50 ±0.40 78.80 ±0.42 

GAT [10] 61.92 ±0.23 60.00 ±0.50 61.43 ±0.22 66.83 ±0.20 67.30 ±0.20 68.15 ±0.13 69.52 ±0.82 69.40 ±1.20 71.66 ±0.68 71.52 ±0.18 79.69 ±0.28 

LNet [24] 56.20 ±0.10 57.20 ±0.30 61.52 ±0.28 68.25 ±0.12 69.00 ±0.40 70.08 ±0.55 70.86 ±0.30 71.25 ±0.15 71.68 ±0.10 71.16 ±0.25 78.50 ±0.39 

AdaNet [24] 58.12 ±0.24 60.14 ±0.20 63.18 ±0.20 67.26 ±0.17 69.15 ±0.24 70.25 ±0.30 70.54 ±0.14 71.52 ±0.40 72.42 ±0.11 72.20 ±0.45 78.16 ±0.43 

SGC [25] 61.50 ±0.20 65.02 ±0.10 66.76 ±0.42 68.25 ±0.44 71.78 ±0.67 72.43 ±0.10 72.40 ±0.50 72.48 ±0.55 73.84 ±0.20 73.06 ±0.50 77.12 ±0.18 

MixHop [26] 63.42 ±0.20 65.86 ±0.25 68.62 ±0.26 70.16 ±0.30 71.48 ±0.16 71.50 ±0.04 72.70 ±0.51 73.15 ±0.06 74.59 ±0.52 74.12 ±0.48 78.86 ±0.04 

MobileGCN 51.65 ±0.15 55.25 ±0.45 63.40 ±0.10 69.85 ±0.35 70.55 ±0.15 71.00 ±0.50 72.25 ±0.45 70.90 ±0.20 70.90 ±0.50 72.05 ±0.15 77.63 ±0.56 

MobilePPNP 67.82 ±0.27 70.42 ±0.56 70.68 ±0.35 76.54 ±0.21 77.70 ±0.86 76.56 ±0.50 77.16 ±0.10 76.52 ±0.46 76.68 ±0.40 77.00 ±0.16 80.25 ±0.78 

MobileAPPNP 61.52 ±0.62 62.10 ±0.25 64.96 ±1.23 71.45 ±0.34 72.65 ±0.24 72.38 ±0.60 73.25 ±0.10 72.76 ±0.86 72.54 ±0.40 72.98 ±0.80 78.65 ±0.40 

LGC-GCN 52.85 ±0.50 57.45 ±0.55 63.15 ±0.45 69.25 ±0.55 69.95 ±0.35 71.25 ±0.65 72.60 ±0.50 71.95 ±0.25 71.75 ±0.52 70.75 ±0.15 78.00 ±0.64 

LGC-PPNP 72.56 ±0.68 74.83 ±0.15 74.40 ±0.83 78.00 ±0.36 77.40 ±0.52 78.22 ±0.45 77.90 ±0.20 77.48 ±0.60 77.35 ±0.82 77.38 ±0.64 79.96 ±0.54 

LGC-APPNP 62.15 ±0.46 62.75 ±0.60 66.35 ±0.28 70.16 ±0.86 69.72 ±0.46 71.78 ±1.45 70.96 ±0.41 70.62 ±0.28 71.25 ±0.68 71.10 ±0.48 79.00 ±0.40 

Macro-F1 GCN [14] 66.84 ±0.26 67.82 ±0.56 67.86 ±0.23 69.32 ±0.64 69.31 ±0.52 68.43 ±0.05 67.90 ±0.54 67.21 ±0.33 67.40 ±0.16 67.44 ±0.18 71.56 ±0.23 

GCN 

† [14] 64.70 ±0.02 66.00 ±0.03 67.08 ±0.13 68.58 ±0.23 68.84 ±0.02 68.58 ±0.19 68.09 ±0.28 67.72 ±0.15 67.76 ±0.18 67.96 ±0.02 71.95 ±0.06 

PPNP [15] 67.39 ±0.28 68.43 ±0.30 68.33 ±0.16 68.44 ±0.09 68.51 ±0.18 68.60 ±0.13 66.82 ±0.09 66.86 ±0.11 66.71 ±0.09 67.51 ±0.03 71.98 ±0.20 

PPNP † [15] 63.93 ±0.08 65.71 ±0.01 67.26 ±0.06 69.45 ±0.06 69.48 ±0.10 69.48 ±0.14 69.48 ±0.20 69.19 ±0.14 69.43 ±0.18 69.49 ±0.07 72.08 ±0.14 

APPNP [15] 64.14 ±0.07 64.51 ±0.04 65.58 ±0.22 68.02 ±0.21 68.07 ±0.35 67.17 ±0.11 66.62 ±0.30 65.96 ±0.12 66.21 ±0.35 66.63 ±0.34 70.45 ±0.21 

APPNP † [15] 64.74 ±0.13 66.07 ±0.04 66.74 ±0.09 68.54 ±0.14 69.11 ±0.11 68.29 ±0.09 68.56 ±0.08 67.86 ±0.13 68.00 ±0.27 68.32 ±0.19 71.08 ±0.62 

GAT [10] 62.30 ±0.40 67.56 ±0.69 69.23 ±0.80 69.66 ±0.58 69.32 ±0.30 69.25 ±0.52 69.56 ±0.20 69.86 ±0.82 69.35 ±0.69 68.99 ±0.63 71.36 ±0.65 

LNet [24] 63.50 ±0.25 65.10 ±0.40 67.25 ±0.10 68.20 ±0.14 68.24 ±0.10 68.20 ±0.14 69.80 ±0.40 68.18 ±0.05 68.45 ±0.28 67.56 ±0.40 70.04 ±0.08 

AdaNet [24] 64.85 ±0.40 66.74 ±0.15 68.42 ±0.25 69.21 ±0.26 69.28 ±0.10 68.86 ±0.25 68.48 ±0.08 69.46 ±0.18 68.89 ±0.45 69.14 ±0.60 70.62 ±0.54 

SGC [25] 63.64 ±0.07 66.28 ±0.14 68.42 ±0.84 69.10 ±0.25 69.12 ±0.08 68.40 ±0.12 67.26 ±0.17 69.85 ±0.16 69.25 ±0.08 69.24 ±0.12 71.42 ±0.10 

MixHop [26] 64.09 ±0.42 65.68 ±0.11 68.25 ±0.08 68.27 ±0.10 68.74 ±0.20 68.18 ±0.26 69.11 ±0.20 68.54 ±0.15 68.10 ±0.14 69.02 ±0.20 71.50 ±0.10 

MobileGCN 65.34 ±0.20 65.86 ±0.15 66.72 ±0.34 67.07 ±0.14 67.10 ±0.22 66.74 ±0.38 66.40 ±0.28 65.91 ±0.16 65.93 ±0.23 66.61 ±0.07 71.43 ±0.85 

MobilePPNP 65.26 ±0.12 67.50 ±0.23 68.23 ±0.72 69.75 ±0.20 69.82 ±0.30 69.60 ±0.11 69.63 ±0.50 69.75 ±0.30 69.82 ±0.16 69.33 ±0.18 72.30 ±0.15 

MobileAPPNP 65.86 ±0.20 67.65 ±0.26 68.30 ±0.12 68.88 ±0.36 69.42 ±0.32 69.13 ±0.16 69.78 ±0.25 69.65 ±0.28 69.13 ±0.68 69.05 ±0.20 70.18 ±0.56 

LGC-GCN 64.38 ±0.21 66.37 ±0.05 66.65 ±0.50 66.94 ±0.11 66.58 ±0.20 66.79 ±0.23 66.92 ±0.52 66.32 ±0.24 66.33 ±0.25 66.57 ±0.32 71.50 ±0.36 

LGC-PPNP 67.63 ±0.25 68.52 ±0.50 69.36 ±0.20 69.27 ±0.23 69.86 ±0.26 69.33 ±0.06 70.02 ±0.16 70.07 ±0.25 69.92 ±0.80 70.16 ±0.26 72.06 ±0.60 

LGC-APPNP 62.85 ±0.30 68.68 ±0.21 69.73 ±0.52 70.36 ±0.50 70.62 ±0.22 70.78 ±0.52 70.55 ±0.24 70.63 ±0.30 70.46 ±0.20 70.06 ±0.34 72.14 ±0.50 

MCC GCN [14] 44.28 ±0.49 46.26 ±0.40 46.61 ±0.37 50.12 ±0.12 50.65 ±1.34 49.01 ±0.15 48.22 ±0.37 47.65 ±0.42 48.19 ±0.21 48.62 ±0.40 50.32 ±0.65 

GCN 

† [14] 41.28 ±0.04 44.02 ±0.02 45.85 ±0.21 49.38 ±0.46 50.06 ±0.11 50.00 ±0.26 49.44 ±0.48 48.85 ±0.29 49.04 ±0.12 49.31 ±0.05 50.68 ±0.35 

PPNP [15] 44.41 ±0.37 47.62 ±0.62 47.40 ±0.19 47.47 ±0.27 47.43 ±0.52 47.93 ±0.32 45.95 ±0.26 46.16 ±0.25 46.11 ±0.27 47.33 ±0.16 51.68 ±0.13 

PPNP † [15] 40.15 ±0.13 43.02 ±0.03 45.51 ±0.09 50.18 ±0.06 50.80 ±0.18 50.03 ±0.13 50.14 ±0.16 50.81 ±0.16 50.99 ±0.01 50.35 ±0.16 52.08 ±0.21 

APPNP [15] 40.52 ±0.34 41.16 ±0.13 42.48 ±0.25 47.14 ±0.35 47.18 ±0.25 46.48 ±0.55 46.11 ±0.11 45.26 ±0.30 45.56 ±0.26 46.00 ±0.23 48.04 ±1.25 

APPNP † [15] 41.43 ±0.23 43.96 ±0.09 44.84 ±0.10 48.65 ±0.18 49.46 ±0.14 48.91 ±0.15 49.58 ±0.04 48.64 ±0.17 48.74 ±0.19 49.18 ±0.47 49.56 ±0.26 

GAT [10] 42.56 ±0.65 48.65 ±0.42 49.63 ±0.30 50.03 ±0.12 50.02 ±0.14 49.87 ±0.46 50.13 ±0.25 50.36 ±0.14 49.76 ±0.80 49.24 ±0.30 51.90 ±0.40 

LNet [24] 42.21 ±0.43 44.26 ±0.72 45.27 ±0.42 47.29 ±0.32 47.62 ±0.15 47.65 ±0.23 48.52 ±0.15 48.62 ±1.24 48.26 ±0.43 47.50 ±1.40 50.06 ±0.20 

AdaNet [24] 43.25 ±0.40 46.23 ±0.15 46.10 ±0.86 46.65 ±0.15 46.28 ±0.40 47.25 ±1.12 47.21 ±0.55 47.32 ±0.24 48.32 ±0.04 48.43 ±1.50 50.46 ±0.06 

SGC [25] 44.72 ±0.25 47.20 ±1.22 47.30 ±1.63 47.31 ±0.25 47.20 ±0.31 48.35 ±0.26 48.28 ±1.20 48.57 ±0.12 47.75 ±0.40 48.15 ±0.25 51.09 ±0.14 

MixHop [26] 43.26 ±0.25 46.28 ±0.15 47.26 ±0.25 47.15 ±0.06 48.23 ±0.32 48.74 ±0.52 48.38 ±1.10 49.20 ±0.24 48.26 ±0.14 48.12 ±0.20 51.12 ±0.25 

MobileGCN 42.13 ±0.25 43.69 ±0.17 45.95 ±0.06 46.56 ±0.21 47.21 ±0.04 46.62 ±0.11 47.11 ±0.13 46.18 ±0.82 46.52 ±0.14 47.01 ±0.02 50.21 ±0.04 

MobilePPNP 41.94 ±0.20 47.32 ±0.23 48.82 ±0.24 49.80 ±1.45 49.56 ±0.42 49.25 ±0.41 50.50 ±0.14 50.42 ±1.58 50.25 ±0.24 49.43 ±0.10 51.42 ±0.20 

MobileAPPNP 40.56 ±0.30 43.54 ±0.75 45.56 ±0.14 46.52 ±0.12 47.89 ±0.32 47.85 ±1.20 48.56 ±0.21 49.23 ±0.22 49.52 ±0.04 49.20 ±0.20 50.01 ±0.20 

LGC-GCN 40.69 ±0.29 46.14 ±0.19 46.55 ±0.26 46.94 ±0.14 47.34 ±0.22 48.44 ±0.24 48.97 ±0.40 47.77 ±1.56 48.09 ±0.32 47.91 ±0.85 50.06 ±0.42 

LGC-PPNP 45.56 ±0.12 48.25 ±0.54 49.52 ±0.20 49.90 ±1.45 50.02 ±0.14 50.15 ±0.24 50.24 ±0.82 50.45 ±0.10 50.00 ±0.04 49.52 ±0.36 52.42 ±0.60 

LGC-APPNP 46.58 ±0.36 48.76 ±0.25 49.56 ±0.20 50.21 ±0.30 50.36 ±0.43 50.23 ±0.14 50.68 ±0.25 50.98 ±0.13 51.24 ±0.20 51.03 ±0.45 51.56 ±0.28 
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Table 7 

Evaluation results of node classification on the Wikipedia dataset. 

Metric Model The percentage of the top node features (The number of the top node features) 

1%(50) 2%(100) 3%(149) 4%(199) 5%(249) 6%(298) 7%(348) 8%(398) 9%(448) 10%(497) 100%(4973) 

Accuracy GCN [14] 18.26 ±6.05 12.87 ±6.11 15.30 ±6.02 16.74 ±9.49 20.18 ±8.86 20.72 ±5.39 24.61 ±4.67 37.37 ±5.81 32.63 ±6.23 37.63 ±6.08 68.20 ±0.30 

GCN 

† [14] 24.79 ±2.29 12.16 ±4.13 18.41 ±5.42 23.95 ±7.13 20.48 ±3.29 22.69 ±2.87 29.34 ±5.45 37.63 ±2.78 46.92 ±2.07 48.71 ±5.78 66.85 ±0.42 

PPNP [15] 21.47 ±4.34 8.68 ±4.97 13.56 ±4.70 13.32 ±6.26 13.26 ±7.34 11.02 ±3.95 16.38 ±5.30 24.76 ±6.50 27.75 ±4.94 19.25 ±7.63 41.95 ±0.33 

PPNP † [15] 26.26 ±0.45 8.59 ±3.38 14.62 ±5.02 14.20 ±5.80 15.65 ±4.38 11.56 ±8.96 15.27 ±6.20 24.05 ±8.09 28.50 ±3.65 21.56 ±9.03 43.22 ±0.14 

APPNP [15] 21.59 ±3.08 15.99 ±9.40 14.70 ±3.14 25.33 ±7.43 20.78 ±4.49 20.45 ±5.60 29.73 ±3.56 33.44 ±6.62 43.26 ±4.70 44.46 ±4.76 70.69 ±0.39 

APPNP † [15] 20.63 ±5.89 14.20 ±6.30 14.30 ±5.27 24.12 ±6.43 21.36 ±3.75 20.56 ±5.56 30.68 ±2.40 35.21 ±4.40 46.37 ±5.28 46.52 ±4.21 71.25 ±0.82 

GAT [10] 26.68 ±3.57 13.08 ±5.30 18.47 ±6.32 25.99 ±3.65 22.07 ±5.18 20.09 ±9.19 28.38 ±7.90 41.44 ±7.25 39.85 ±4.76 47.63 ±5.24 66.56 ±0.75 

LNet [24] 25.08 ±2.20 16.15 ±8.24 15.22 ±6.19 28.10 ±4.20 23.06 ±5.18 22.18 ±6.21 29.80 ±1.09 36.27 ±4.20 42.68 ±5.00 44.18 ±1.78 61.20 ±0.59 

AdaNet [24] 24.21 ±4.42 15.41 ±5.02 16.81 ±7.56 32.21 ±4.28 32.18 ±6.14 33.78 ±6.46 36.45 ±4.00 42.25 ±5.28 43.26 ±3.29 45.02 ±4.18 62.61 ±0.15 

SGC [25] 20.08 ±5.20 14.12 ±2.28 15.76 ±2.08 13.68 ±4.25 20.50 ±6.85 22.42 ±5.28 38.41 ±1.27 40.84 ±3.68 42.40 ±4.23 45.10 ±4.52 58.26 ±0.50 

MixHop [26] 21.24 ±4.28 13.08 ±6.04 13.75 ±2.35 16.61 ±4.20 22.36 ±4.12 25.05 ±2.44 34.72 ±4.12 40.51 ±3.12 39.29 ±3.26 43.28 ±5.28 59.47 ±0.64 

MobileGCN 16.56 ±2.49 11.32 ±4.37 24.43 ±12.69 28.29 ±13.26 31.74 ±15.63 38.11 ±10.93 61.47 ±1.83 63.02 ±3.20 67.54 ±0.72 67.57 ±0.69 64.55 ±0.42 

MobilePPNP 19.94 ±2.46 16.59 ±3.59 15.06 ±3.38 18.86 ±5.03 16.80 ±5.48 18.35 ±2.60 15.15 ±5.33 17.46 ±5.00 24.43 ±11.68 17.01 ±5.39 66.11 ±0.48 

MobileAPPNP 16.14 ±1.29 18.50 ±6.89 20.00 ±5.33 27.81 ±12.07 20.15 ±7.63 27.54 ±17.72 36.77 ±23.29 41.17 ±20.69 61.86 ±2.46 51.11 ±14.70 66.44 ±0.33 

LGC-GCN 27.72 ±0.84 31.26 ±0.36 35.36 ±0.81 35.90 ±0.39 36.71 ±0.48 38.20 ±0.54 43.56 ±0.63 48.71 ±0.33 52.75 ±0.18 51.98 ±0.24 55.54 ±0.09 

LGC-PPNP 18.02 ±0.18 48.77 ±0.69 50.00 ±0.72 51.80 ±0.24 52.69 ±0.60 53.23 ±0.78 56.14 ±0.51 57.31 ±0.36 60.00 ±0.60 60.24 ±0.24 60.81 ±0.21 

LGC-APPNP 29.10 ±4.07 25.57 ±2.51 29.55 ±1.35 30.42 ±1.68 28.26 ±0.36 27.46 ±1.23 33.53 ±0.48 39.52 ±0.12 36.29 ±0.24 37.34 ±0.15 58.95 ±0.21 

Macro-F1 GCN [14] 15.89 ±0.17 13.67 ±2.41 15.25 ±2.23 14.78 ±2.02 17.15 ±2.78 18.04 ±2.21 16.27 ±1.16 20.19 ±1.76 18.31 ±1.67 18.41 ±1.24 20.02 ±0.66 

GCN 

† [14] 12.19 ±0.63 16.60 ±1.59 16.54 ±1.02 16.28 ±1.64 17.89 ±0.31 18.76 ±0.56 18.14 ±0.43 17.70 ±0.27 17.43 ±1.52 18.42 ±1.36 21.06 ±0.25 

PPNP [15] 12.09 ±1.69 11.07 ±0.99 11.47 ±1.48 13.15 ±3.29 13.95 ±2.40 13.92 ±3.71 14.27 ±2.67 14.70 ±2.05 15.79 ±3.97 18.11 ±1.75 16.69 ±0.89 

PPNP † [15] 12.91 ±1.70 13.75 ±2.17 14.50 ±1.69 14.89 ±2.40 15.30 ±1.42 15.45 ±0.87 16.22 ±1.55 15.91 ±0.29 17.24 ±0.22 18.01 ±0.21 18.54 ±0.22 

APPNP [15] 15.23 ±0.64 14.60 ±1.43 14.53 ±1.70 16.92 ±2.88 18.85 ±2.77 19.19 ±2.05 19.12 ±0.79 18.51 ±1.31 18.72 ±1.61 18.91 ±2.43 20.29 ±0.61 

APPNP † [15] 14.48 ±0.56 15.60 ±2.02 16.84 ±1.22 17.23 ±1.58 19.70 ±0.85 19.20 ±0.42 19.80 ±1.45 19.90 ±0.25 19.58 ±1.65 19.88 ±0.55 22.08 ±0.26 

GAT [10] 15.21 ±0.51 15.48 ±2.44 17.24 ±1.10 18.13 ±1.03 19.76 ±1.14 19.22 ±1.55 16.41 ±1.73 17.69 ±2.12 19.39 ±1.92 18.68 ±1.80 27.33 ±0.43 

LNet [24] 12.25 ±1.40 15.28 ±1.13 14.15 ±1.15 14.25 ±1.24 14.34 ±0.12 16.68 ±0.20 16.69 ±0.20 16.30 ±0.10 17.50 ±0.23 18.20 ±1.42 21.10 ±0.18 

AdaNet [24] 13.96 ±0.25 14.24 ±0.20 14.26 ±1.03 15.01 ±0.20 15.10 ±1.12 16.52 ±0.60 16.27 ±1.04 16.40 ±0.27 15.29 ±0.08 17.28 ±0.46 20.20 ±0.61 

SGC [25] 13.06 ±0.28 13.18 ±1.05 14.26 ±0.55 14.12 ±0.11 13.54 ±1.07 15.25 ±0.87 16.68 ±1.17 16.20 ±0.20 17.08 ±1.08 18.44 ±1.10 22.28 ±1.17 

MixHop [26] 14.25 ±2.83 15.27 ±0.56 16.63 ±1.08 16.29 ±0.15 16.70 ±0.26 16.28 ±0.40 18.12 ±1.20 17.04 ±0.43 18.12 ±1.20 19.22 ±0.44 21.58 ±0.16 

MobileGCN 12.20 ±3.04 11.98 ±2.42 12.48 ±2.29 14.06 ±2.60 12.91 ±2.83 14.79 ±0.50 15.84 ±0.29 16.33 ±0.37 16.71 ±0.34 16.66 ±0.12 18.87 ±0.57 

MobilePPNP 12.04 ±2.08 9.63 ±1.36 10.58 ±1.41 11.08 ±1.85 10.88 ±1.35 10.43 ±1.17 11.85 ±3.13 11.52 ±1.32 12.72 ±2.29 13.37 ±1.33 19.58 ±0.57 

MobileAPPNP 12.27 ±1.80 12.74 ±1.85 15.40 ±0.66 13.63 ±2.13 14.60 ±0.44 12.78 ±2.05 14.56 ±0.68 15.11 ±1.40 16.49 ±1.77 15.59 ±0.48 18.96 ±0.50 

LGC-GCN 13.04 ±0.08 14.00 ±0.22 14.99 ±0.20 15.29 ±0.33 15.70 ±0.21 16.06 ±0.28 15.96 ±0.14 16.73 ±0.11 17.27 ±0.22 17.30 ±0.21 20.01 ±0.22 

LGC-PPNP 11.86 ±0.09 13.38 ±0.14 14.52 ±0.25 14.99 ±0.44 15.17 ±0.14 15.63 ±0.27 15.85 ±0.18 16.87 ±0.41 16.83 ±0.24 16.46 ±0.26 19.70 ±0.77 

LGC-APPNP 16.19 ±0.72 17.94 ±0.46 19.24 ±0.62 19.26 ±0.80 20.15 ±0.86 21.30 ±0.91 21.91 ±1.06 22.30 ±0.24 23.00 ±0.52 23.37 ±1.03 32.35 ±0.27 

MCC GCN [14] 14.11 ±5.26 13.44 ±4.02 14.60 ±2.90 14.59 ±5.18 17.57 ±2.33 18.14 ±2.05 20.89 ±0.99 22.41 ±1.41 23.04 ±0.22 23.01 ±0.21 26.18 ±0.38 

GCN 

† [14] 18.84 ±1.36 18.19 ±1.50 19.88 ±1.44 19.89 ±1.30 20.73 ±0.68 20.64 ±0.37 21.53 ±0.39 22.54 ±0.10 23.80 ±0.02 23.65 ±0.06 27.45 ±0.24 

PPNP [15] 14.76 ±3.99 15.37 ±1.65 16.61 ±2.00 16.58 ±1.35 16.17 ±1.58 15.21 ±2.01 16.94 ±2.19 17.56 ±1.74 18.39 ±3.79 19.53 ±2.23 22.53 ±0.24 

PPNP † [15] 19.58 ±1.06 17.71 ±0.79 17.86 ±2.50 18.45 ±1.40 19.40 ±2.14 20.65 ±0.58 20.06 ±0.48 21.35 ±0.38 22.85 ±1.52 23.24 ±1.30 25.86 ±0.20 

APPNP [15] 14.20 ±2.88 14.94 ±1.83 14.61 ±3.95 18.95 ±1.72 18.99 ±0.51 17.89 ±1.51 21.20 ±0.92 22.59 ±0.18 23.83 ±0.06 23.49 ±0.06 26.46 ±0.45 

APPNP † [15] 17.85 ±1.45 17.56 ±0.48 18.63 ±0.58 19.42 ±1.46 19.47 ±0.25 20.52 ±0.17 22.87 ±0.86 23.45 ±0.60 24.35 ±0.40 24.87 ±1.85 28.63 ±0.41 

GAT [10] 20.60 ±0.47 14.27 ±3.41 16.76 ±2.87 17.74 ±1.83 18.05 ±2.94 17.57 ±2.41 21.51 ±1.57 22.17 ±0.47 24.15 ±0.78 24.49 ±0.43 35.92 ±0.47 

LNet [24] 16.00 ±3.64 14.58 ±2.12 15.10 ±1.20 16.10 ±2.52 17.20 ±1.38 17.28 ±1.03 18.16 ±1.27 20.45 ±1.24 22.75 ±2.06 22.51 ±2.81 24.18 ±0.66 

AdaNet [24] 17.10 ±2.26 16.20 ±1.27 16.15 ±1.54 17.10 ±2.06 18.18 ±1.46 18.00 ±1.26 19.25 ±1.36 21.36 ±2.04 22.38 ±1.44 22.41 ±1.68 25.63 ±0.42 

SGC [25] 15.68 ±2.10 13.22 ±2.40 14.36 ±2.13 16.54 ±1.00 17.42 ±1.68 18.50 ±2.15 18.68 ±1.47 18.24 ±1.28 20.15 ±2.06 21.20 ±1.20 24.91 ±0.27 

MixHop [26] 16.20 ±2.20 15.20 ±1.20 15.68 ±2.40 16.27 ±1.68 17.20 ±1.30 17.70 ±1.50 19.38 ±2.06 21.22 ±2.00 22.25 ±1.14 22.86 ±1.07 24.69 ±0.34 

MobileGCN 12.88 ±4.21 13.88 ±4.90 13.40 ±6.03 14.58 ±5.56 17.14 ±2.78 19.18 ±0.67 21.59 ±0.64 21.96 ±1.10 22.61 ±0.51 22.68 ±0.24 24.48 ±0.19 

MobilePPNP 13.53 ±5.53 11.26 ±3.95 11.19 ±1.55 13.82 ±1.01 15.46 ±1.54 12.31 ±2.41 14.47 ±2.45 13.68 ±2.72 16.81 ±1.20 14.70 ±2.79 25.50 ±0.50 

MobileAPPNP 12.08 ±4.08 13.79 ±3.33 15.53 ±3.27 15.74 ±3.91 16.93 ±2.79 15.83 ±3.05 18.82 ±2.13 16.98 ±4.31 20.25 ±1.68 20.70 ±1.23 25.75 ±0.20 

LGC-GCN 18.79 ±0.14 20.40 ±0.13 21.51 ±0.09 22.27 ±0.28 22.72 ±0.20 23.31 ±0.28 23.65 ±0.47 24.71 ±0.36 25.37 ±0.27 25.22 ±0.33 25.22 ±0.40 

LGC-PPNP 18.30 ±0.03 19.34 ±0.17 18.58 ±0.36 18.80 ±0.32 18.97 ±0.19 19.12 ±0.33 19.31 ±0.24 19.09 ±0.21 19.65 ±0.23 19.71 ±0.42 23.17 ±0.67 

LGC-APPNP 21.05 ±0.29 23.01 ±0.10 23.99 ±0.66 24.00 ±0.18 24.63 ±0.16 25.15 ±0.33 26.05 ±0.60 26.44 ±0.31 27.55 ±0.16 27.51 ±0.34 36.31 ±0.36 
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Table 8 

Evaluation results of node classification on the Photo dataset. 

Metric Model The percentage of the top node features (The number of the top node features) 

1%(7) 2%(15) 3%(22) 4%(30) 5%(37) 6%(45) 7%(52) 8%(60) 9%(67) 10%(75) 100%(745) 

Accuracy GCN [14] 40.01 ±3.70 32.26 ±0.88 31.82 ±2.24 28.20 ±0.02 37.67 ±6.69 23.94 ±0.77 32.95 ±8.42 36.77 ±3.46 37.87 ±5.67 29.98 ±6.19 86.40 ±0.11 

GCN 

† [14] 37.06 ±1.12 38.14 ±2.06 34.62 ±0.39 35.74 ±2.23 37.54 ±2.34 34.45 ±3.93 41.51 ±2.35 39.15 ±3.41 39.91 ±4.15 40.96 ±3.16 87.24 ±0.08 

PPNP [15] 31.81 ±0.32 35.61 ±5.24 33.33 ±0.71 31.28 ±1.79 29.66 ±4.10 32.55 ±1.21 35.60 ±3.04 37.63 ±5.24 32.42 ±0.94 31.19 ±1.43 80.54 ±0.22 

PPNP † [15] 32.99 ±0.96 34.71 ±0.67 34.02 ±0.26 34.49 ±0.18 34.69 ±0.23 34.23 ±0.18 34.36 ±0.76 34.09 ±0.39 33.34 ±0.18 33.71 ±0.08 83.87 ±0.56 

APPNP [15] 40.82 ±2.08 33.20 ±4.42 32.86 ±2.91 24.14 ±1.78 26.99 ±5.14 29.35 ±6.99 36.99 ±3.58 30.98 ±3.06 39.12 ±2.94 38.05 ±2.57 87.60 ±0.05 

APPNP † [15] 38.36 ±4.90 35.80 ±3.21 34.52 ±2.49 31.59 ±5.85 32.98 ±0.70 30.76 ±7.99 36.61 ±5.18 38.31 ±1.81 39.24 ±2.89 38.56 ±0.99 89.25 ±0.54 

GAT [10] 39.29 ±2.64 38.07 ±3.36 40.54 ±6.83 27.86 ±0.90 34.73 ±4.24 41.78 ±6.36 44.21 ±7.75 43.78 ±18.98 47.91 ±5.51 42.06 ±9.36 88.94 ±1.07 

LNet [24] 35.12 ±2.56 36.86 ±2.50 34.08 ±1.20 34.56 ±2.65 33.28 ±2.05 36.22 ±5.10 37.05 ±2.16 38.19 ±3.28 39.15 ±4.05 39.02 ±2.25 88.03 ±0.22 

AdaNet [24] 34.34 ±3.16 36.85 ±2.56 36.87 ±5.50 35.25 ±4.26 35.17 ±4.20 37.76 ±3.42 38.12 ±2.15 38.20 ±2.26 39.52 ±3.19 41.12 ±3.08 89.27 ±0.05 

SGC [25] 35.28 ±2.25 33.26 ±4.21 34.08 ±2.10 36.54 ±5.08 37.12 ±2.18 39.51 ±4.04 40.21 ±2.56 40.84 ±2.66 40.14 ±2.27 41.12 ±5.42 88.20 ±0.25 

MixHop [26] 36.45 ±4.16 38.12 ±4.25 37.25 ±1.40 37.26 ±4.25 38.16 ±4.54 39.25 ±2.57 38.73 ±2.16 39.25 ±2.16 39.21 ±1.20 40.00 ±2.20 88.26 ±0.10 

MobileGCN 38.86 ±2.65 69.59 ±0.14 71.01 ±0.59 72.69 ±0.43 75.34 ±0.34 77.33 ±0.30 79.39 ±0.24 82.25 ±0.25 82.38 ±0.35 82.61 ±0.18 88.16 ±0.16 

MobilePPNP 33.72 ±2.19 34.44 ±1.17 41.26 ±5.97 72.25 ±3.29 77.49 ±2.21 76.01 ±4.56 81.26 ±1.01 81.11 ±0.91 82.21 ±1.12 84.04 ±0.18 89.34 ±0.71 

MobileAPPNP 34.50 ±1.36 52.06 ±9.66 51.84 ±12.32 78.18 ±1.28 79.98 ±1.02 81.85 ±0.30 83.16 ±0.61 85.97 ±0.13 86.13 ±0.13 86.86 ±0.17 91.94 ±0.06 

LGC-GCN 45.93 ±0.11 55.98 ±0.76 57.59 ±0.56 58.88 ±0.72 61.61 ±0.08 63.30 ±0.31 64.03 ±0.30 66.48 ±0.84 66.24 ±0.55 66.82 ±0.19 73.91 ±0.84 

LGC-PPNP 74.11 ±0.23 82.44 ±0.03 82.97 ±0.05 82.06 ±0.04 82.65 ±0.42 82.80 ±0.12 82.54 ±0.34 84.82 ±0.42 84.62 ±0.26 84.22 ±0.13 85.81 ±0.30 

LGC-APPNP 29.45 ±1.80 35.84 ±0.02 35.77 ±0.10 35.55 ±0.15 36.17 ±0.07 36.08 ±0.01 36.41 ±0.22 35.80 ±0.31 35.70 ±0.33 35.23 ±0.10 73.64 ±0.02 

Macro-F1 GCN [14] 27.83 ±3.38 23.49 ±1.40 28.23 ±4.54 27.50 ±2.29 27.32 ±1.11 31.84 ±1.45 33.25 ±1.74 31.81 ±0.88 35.43 ±4.40 36.69 ±2.88 43.81 ±0.13 

GCN 

† [14] 28.58 ±2.25 28.89 ±0.11 28.34 ±1.46 23.82 ±1.27 26.36 ±2.24 34.09 ±0.52 30.61 ±0.31 34.00 ±3.72 30.52 ±0.12 35.79 ±0.97 45.60 ±0.20 

PPNP [15] 20.31 ±2.66 22.51 ±1.65 21.69 ±2.28 22.76 ±3.85 18.85 ±0.91 21.42 ±2.60 17.58 ±1.29 22.18 ±5.33 20.29 ±3.09 23.28 ±3.56 43.37 ±0.27 

PPNP † [15] 20.49 ±0.48 21.02 ±1.59 20.67 ±1.95 18.20 ±0.38 18.13 ±0.58 18.14 ±0.51 15.49 ±1.87 15.39 ±1.56 20.67 ±5.50 19.82 ±6.76 44.98 ±0.28 

APPNP [15] 24.23 ±2.17 26.32 ±2.41 25.95 ±1.47 26.84 ±1.18 27.56 ±1.04 31.01 ±0.90 31.64 ±1.09 32.53 ±1.84 31.97 ±0.50 35.02 ±1.72 43.87 ±0.23 

APPNP † [15] 23.97 ±1.70 27.81 ±0.78 28.26 ±1.11 28.04 ±3.31 27.89 ±1.00 34.26 ±0.33 30.85 ±0.10 31.21 ±0.33 35.61 ±4.62 34.60 ±0.22 45.50 ±0.38 

GAT [10] 26.57 ±2.10 34.38 ±2.52 33.52 ±0.86 31.97 ±2.74 36.26 ±2.63 41.37 ±2.71 44.13 ±3.13 48.38 ±5.43 42.07 ±1.92 39.74 ±2.69 67.47 ±0.74 

LNet [24] 26.52 ±2.03 29.84 ±1.04 30.57 ±0.28 28.55 ±0.50 29.36 ±1.80 32.40 ±0.23 31.76 ±0.48 31.46 ±0.05 30.44 ±0.28 32.29 ±0.33 45.12 ±0.08 

AdaNet [24] 28.86 ±0.18 30.48 ±1.26 31.54 ±0.31 31.11 ±0.25 31.15 ±0.18 32.58 ±1.65 32.25 ±1.48 31.46 ±1.60 32.25 ±1.42 35.82 ±0.68 47.21 ±0.22 

SGC [25] 29.60 ±2.80 32.16 ±0.25 33.68 ±0.29 32.22 ±1.00 33.58 ±2.80 34.68 ±0.50 34.10 ±0.48 33.68 ±1.28 34.20 ±0.06 36.62 ±1.82 48.73 ±0.06 

MixHop [26] 26.52 ±3.08 33.21 ±1.80 34.20 ±1.10 34.60 ±1.41 34.07 ±0.40 35.46 ±1.45 36.25 ±0.28 35.42 ±0.20 36.26 ±0.07 38.25 ±1.52 49.46 ±0.80 

MobileGCN 25.92 ±4.46 39.45 ±0.63 41.47 ±0.27 41.62 ±0.61 41.94 ±0.37 40.51 ±0.70 40.65 ±0.22 39.92 ±0.23 40.39 ±0.29 42.22 ±0.78 47.97 ±0.59 

MobilePPNP 21.43 ±2.44 26.92 ±6.89 28.92 ±6.49 41.60 ±1.60 41.97 ±5.31 43.30 ±2.65 43.54 ±2.42 40.98 ±0.12 46.02 ±2.60 42.19 ±0.51 55.93 ±5.57 

MobileAPPNP 26.14 ±6.06 35.56 ±1.29 24.59 ±9.79 38.96 ±1.34 38.32 ±0.35 39.30 ±0.59 41.12 ±0.25 39.63 ±0.85 39.97 ±0.48 43.31 ±0.55 48.55 ±2.16 

LGC-GCN 37.67 ±1.57 45.23 ±0.66 47.92 ±0.81 48.19 ±0.52 50.44 ±0.42 51.34 ±1.18 52.33 ±1.16 52.12 ±0.36 51.20 ±0.92 53.71 ±1.55 54.81 ±0.67 

LGC-PPNP 50.73 ±0.20 48.45 ±0.08 48.72 ±0.04 51.53 ±0.09 51.90 ±0.10 50.97 ±1.14 48.37 ±0.72 48.92 ±2.19 48.78 ±1.25 49.08 ±1.38 55.99 ±1.65 

LGC-APPNP 28.02 ±0.79 29.81 ±1.56 24.71 ±1.93 22.41 ±0.34 29.60 ±0.95 31.67 ±0.51 36.34 ±0.61 33.94 ±0.54 35.27 ±0.59 33.71 ±0.85 69.30 ±0.04 

MCC GCN [14] 20.82 ±0.65 14.28 ±0.36 17.26 ±1.16 18.10 ±1.89 18.36 ±1.69 21.81 ±0.87 23.63 ±0.38 23.63 ±0.55 26.36 ±3.52 26.86 ±0.27 41.55 ±0.29 

GCN 

† [14] 17.80 ±1.52 19.52 ±0.94 19.15 ±1.47 13.83 ±1.95 17.07 ±3.91 21.73 ±0.25 20.84 ±0.40 24.84 ±2.67 22.24 ±0.14 28.53 ±1.06 42.56 ±0.11 

PPNP [15] 13.95 ±1.94 15.61 ±1.73 12.66 ±0.50 12.18 ±4.97 11.98 ±3.03 13.51 ±5.10 5.57 ±3.49 9.95 ±7.26 15.06 ±1.73 10.31 ±6.98 37.25 ±0.20 

PPNP † [15] 16.62 ±1.11 20.40 ±1.65 20.00 ±0.79 17.69 ±1.29 11.93 ±1.63 11.91 ±3.49 4.52 ±3.93 4.73 ±1.15 10.36 ±5.46 8.78 ±5.09 43.20 ±0.45 

APPNP [15] 16.13 ±3.02 16.43 ±2.02 17.41 ±0.05 18.21 ±1.12 19.74 ±3.09 20.59 ±0.50 21.83 ±0.19 23.39 ±1.39 23.62 ±1.36 28.26 ±2.59 42.15 ±0.23 

APPNP † [15] 20.22 ±4.05 21.48 ±1.48 18.95 ±0.80 15.45 ±2.72 19.30 ±0.59 23.36 ±0.72 23.21 ±1.20 22.54 ±0.18 26.87 ±4.67 28.94 ±0.18 44.08 ±0.42 

GAT [10] 25.60 ±3.17 30.76 ±4.76 26.19 ±2.29 25.53 ±2.32 23.13 ±1.50 33.40 ±10.54 32.66 ±2.57 36.53 ±2.21 34.40 ±2.61 34.82 ±1.82 62.12 ±1.88 

LNet [24] 18.26 ±4.75 19.06 ±3.28 20.18 ±3.08 20.35 ±2.68 21.68 ±2.86 21.69 ±1.13 20.26 ±1.50 22.80 ±1.40 23.62 ±2.18 23.58 ±2.60 45.68 ±0.12 

AdaNet [24] 19.12 ±2.66 20.25 ±1.09 19.18 ±1.36 20.12 ±3.40 22.49 ±3.58 22.75 ±3.25 23.48 ±2.80 23.62 ±2.41 23.82 ±2.60 22.65 ±1.24 44.68 ±0.25 

SGC [25] 19.98 ±2.52 21.48 ±4.83 20.54 ±2.40 21.44 ±1.67 21.46 ±1.58 22.52 ±2.62 22.60 ±2.65 23.28 ±2.40 24.64 ±2.20 24.68 ±1.52 46.14 ±0.09 

MixHop [26] 20.64 ±2.62 22.28 ±1.49 22.63 ±2.62 23.25 ±1.75 23.48 ±1.35 22.18 ±1.64 23.28 ±2.40 24.58 ±2.18 24.85 ±1.28 24.57 ±1.18 48.25 ±0.13 

MobileGCN 18.08 ±4.91 34.93 ±0.25 37.44 ±0.33 37.76 ±0.69 39.61 ±0.23 38.16 ±0.70 38.66 ±0.15 37.71 ±0.15 38.20 ±0.27 39.92 ±1.14 44.21 ±0.54 

MobilePPNP 12.38 ±2.70 18.34 ±4.73 18.50 ±8.35 32.95 ±0.55 35.72 ±6.38 37.05 ±2.09 37.98 ±1.71 36.84 ±0.08 41.25 ±2.52 39.74 ±0.66 48.51 ±4.69 

MobileAPPNP 13.34 ±4.66 27.00 ±2.06 15.13 ±12.19 34.55 ±1.15 35.17 ±0.64 36.16 ±0.38 39.34 ±0.01 37.30 ±0.71 37.58 ±0.47 41.15 ±0.56 45.28 ±1.81 

LGC-GCN 24.51 ±0.23 33.50 ±0.78 36.11 ±0.18 35.16 ±0.69 38.42 ±0.33 40.04 ±1.18 40.95 ±1.13 40.71 ±0.42 40.74 ±0.60 43.89 ±0.39 43.17 ±0.53 

LGC-PPNP 35.93 ±0.14 38.82 ±0.25 39.53 ±0.04 41.73 ±0.50 41.79 ±0.63 41.06 ±0.36 39.99 ±0.24 39.94 ±0.15 40.12 ±0.14 41.19 ±0.56 45.25 ±2.10 

LGC-APPNP 14.06 ±1.41 17.33 ±0.36 11.22 ±0.10 9.90 ±1.10 14.39 ±0.58 18.19 ±1.03 20.35 ±0.88 20.00 ±1.21 20.27 ±0.24 20.26 ±0.75 66.14 ±0.05 
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Fig. 3. The p-value heatmap of the paired t-test with respect to Macro-F1 (1% features for all datasets). 

Fig. 4. The p-value heatmap of the paired t-test with respect to MCC (1% features for all datasets). 
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Table 9 

Evaluation results of node classification on the ROAD dataset. 

Model Accuracy Macro-F1 MCC 

GCN [14] 54.35 ±1.56 38.82 ±0.48 31.15 ±1.24 

GCN 

† [14] 54.86 ±2.85 39.47 ±0.62 31.78 ±2.52 

PPNP [15] 59.76 ±0.58 41.34 ±1.83 33.56 ±3.40 

PPNP † [15] 61.42 ±1.05 41.48 ±0.69 32.28 ±2.46 

APPNP [15] 57.72 ±0.46 40.06 ±0.84 31.17 ±0.88 

APPNP † [15] 58.52 ±0.68 38.84 ±0.24 30.58 ±1.46 

GAT [10] 64.65 ±0.45 44.35 ±0.86 35.54 ±2.50 

LNet [24] 55.21 ±0.74 42.21 ±0.40 34.82 ±1.26 

AdaNet [24] 55.65 ±1.48 42.25 ±0.82 36.78 ±0.68 

SGC [25] 58.48 ±0.84 42.25 ±0.41 33.24 ±1.82 

MixHop [26] 62.75 ±0.84 41.58 ±0.28 31.40 ±3.05 

MobileGCN 70.42 ±0.45 51.20 ±0.24 38.48 ±2.56 

MobilePPNP 73.54 ±1.40 48.85 ±0.20 34.48 ±1.50 

MobileAPPNP 72.50 ±0.22 49.92 ±0.40 34.82 ±2.50 

LGC-GCN 72.69 ±0.40 50.04 ±0.22 36.41 ±0.14 

LGC-PPNP 75.43 ±0.50 52.28 ±1.24 38.89 ±0.86 

LGC-APPNP 71.48 ±1.45 56.45 ±0.60 40.03 ±0.14 
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ture space. The proposed lightweight DSGC updater can re- 

duce weights to offset over-fitting partly on these datasets 

and, simultaneously, it can aggregate features of neighbor- 

ing nodes. Therefore, DSGC updater with the aggregation of 

neighboring node features, has applicability in a wide range 

of dimensions of the node feature space. However, in the 

high-dimensional feature space, GAT [10] also has excellent 

performance on the CITESEER, CORA, and PUBMED, and its 

attention mechanism can learn more graph-structured infor- 

mation between nodes. Our updaters, combined with atten- 

tion mechanisms, will be a direction worthy in our future 

studies. 

(4) Table 4 - 9 also show the comparison between GCNs’ up- 

dater and LGC updater with the same number of weights. 

When the channels | C (1) | of GCN 

† [14] , PPNP † , and APPNP † 

[15] are all set to 1024, they have the same weights as LGC- 

GCNs, whose channels | C (1) | is 32. Although we add sev- 

eral weights of GCNs (GCN 

† , PPNP † , and APPNP † ) to prevent 

under-fitting, their metrics are still lower than that of our 

models. This experiment highlights the importance of LGC 

and DSGC updaters to learn graph-structured information in 

order to enhance metrics. 

To summarize our comparisons on research datasets, we as- 

ume that the updaters, LGC and DSGC, introduce the standard 

onvolution and its lightweight variant to aggregate the features of 

eighboring nodes in the encoding output step, which helps the 

essage passing step to propagate graph-structured information 

etween graph nodes. Our models hence provide the state-of-the- 

rt results in the low-dimensional feature space. 

.2. Feature selection 

Table 10 - 14 shows the influence of the feature selection on 

odels’ metrics. By employing the strategies of random selection, 

hi 2 test, analysis of variance, and mutual information, respec- 

ively, we select 1% features from all datasets except ROAD that 

as only one feature. Experimental results demonstrate that: 

(1) In the strategy of random selection, our LGC-PPNP per- 

formed on CITESEER, CORA, PUBMED, and Photo have the 

state-of-the-art results on all metrics. It indicates that our 

LGC updater collaborating with the PPNP aggregator is ro- 

bust when sampling node features randomly. 

(2) For the methods of Chi 2 test and analysis of variance, our six 

models provide respectively outstanding results of metrics 

on CITESEER, CORA, PUBMED, Wikipedia, and Photo. Along 

with the two feature selection methods, although the met- 
14 
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Table 11 

Evaluation results of feature selection on the CORA dataset (1%(14) features). 

Model Methods of feature selection for accuracy Methods of feature selection for Macro-F1 Methods of feature selection for MCC 

Random Chi 2 Variance Mutual Random Chi 2 Variance Mutual Random Chi 2 Variance Mutual 

GCN [14] 22.50 ±0.50 68.60 ±0.30 68.70 ±0.10 37.85 ±7.35 25.96 ±0.16 46.09 ±1.48 46.05 ±1.54 37.59 ±4.31 9.73 ±0.18 39.72 ±0.28 36.30 ±0.90 25.98 ±4.25 

GCN 

† [14] 23.65 ±1.75 68.45 ±0.35 69.40 ±0.50 34.45 ±12.95 26.61 ±0.51 48.13 ±0.86 47.76 ±0.47 34.88 ±7.21 11.93 ±0.97 38.36 ±0.40 36.17 ±0.38 22.08 ±11.03 

PPNP [15] 16.90 ±3.30 73.90 ±0.40 72.55 ±0.35 36.50 ±5.00 22.10 ±4.82 47.37 ±1.82 47.26 ±2.77 32.08 ±5.11 6.84 ±6.08 39.58 ±0.43 35.86 ±0.27 24.02 ±4.35 

PPNP † [15] 17.50 ±3.80 74.45 ±0.15 73.60 ±0.20 47.75 ±19.55 18.35 ±0.81 47.44 ±0.81 46.80 ±0.97 38.14 ±7.68 1.76 ±0.71 39.81 ±0.13 36.02 ±0.20 25.53 ±10.85 

APPNP [15] 23.95 ±1.35 68.35 ±0.25 67.80 ±0.50 46.05 ±9.75 26.38 ±0.88 45.96 ±1.41 46.41 ±1.74 39.76 ±2.84 12.59 ±3.05 39.26 ±0.46 35.80 ±0.43 29.19 ±5.61 

APPNP † [15] 24.30 ±0.80 68.85 ±0.25 69.40 ±0.30 34.05 ±17.75 26.24 ±0.61 46.69 ±0.66 46.89 ±0.68 31.22 ±8.05 10.63 ±1.24 38.02 ±0.24 36.24 ±0.53 17.23 ±11.40 

GAT [10] 25.20 ±0.70 70.30 ±0.70 68.45 ±0.35 38.80 ±17.60 27.13 ±0.12 61.20 ±0.72 58.68 ±0.37 41.77 ±10.91 12.14 ±0.30 56.99 ±0.72 52.42 ±0.66 31.78 ±14.01 

LNet [24] 23.58 ±2.48 67.24 ±0.16 68.12 ±0.40 40.27 ±3.16 25.53 ±0.64 46.00 ±0.35 44.96 ±0.68 38.25 ±2.04 10.06 ±2.58 37.75 ±0.42 35.15 ±0.18 24.62 ±4.25 

AdaNet [24] 22.14 ±1.55 68.10 ±0.48 70.04 ±0.24 42.35 ±4.56 29.36 ±0.28 46.28 ±0.56 45.24 ±0.45 38.68 ±4.16 11.56 ±3.48 36.28 ±0.69 37.10 ±0.27 22.46 ±2.15 

SGC [25] 24.45 ±3.58 68.24 ±0.10 69.92 ±0.46 41.45 ±5.25 28.80 ±0.16 49.68 ±0.15 47.10 ±0.54 39.96 ±2.80 10.58 ±2.15 38.58 ±0.98 39.06 ±0.28 23.31 ±3.30 

MixHop [26] 25.68 ±2.20 66.54 ±1.28 70.52 ±0.40 41.16 ±2.10 28.05 ±0.42 49.76 ±0.68 46.28 ±0.18 40.24 ±2.08 13.25 ±3.24 39.16 ±0.14 40.21 ±0.30 24.46 ±3.68 

MobileGCN 28.25 ±0.45 72.80 ±0.40 73.75 ±0.25 51.90 ±13.50 30.82 ±0.36 44.09 ±1.05 44.66 ±1.28 41.21 ±5.87 17.87 ±0.53 38.59 ±1.02 36.39 ±0.64 30.63 ±9.31 

MobilePPNP 26.10 ±3.50 77.30 ±0.60 78.20 ±0.50 56.15 ±17.45 35.51 ±0.65 44.83 ±0.43 41.58 ±0.64 40.49 ±7.48 22.27 ±1.07 39.35 ±0.85 36.57 ±0.75 30.92 ±7.53 

MobileAPPNP 28.10 ±2.10 73.55 ±0.55 74.75 ±0.35 50.30 ±12.20 32.69 ±0.36 45.06 ±0.81 45.13 ±3.28 42.58 ±4.88 19.15 ±0.33 38.81 ±0.57 37.17 ±1.24 31.34 ±5.40 

LGC-GCN 35.55 ±0.35 72.30 ±0.20 74.35 ±0.15 45.30 ±11.20 33.45 ±0.13 46.14 ±1.27 45.68 ±0.47 39.79 ±4.79 20.61 ±0.23 41.06 ±1.19 39.10 ±0.34 29.20 ±6.75 

LGC-PPNP 62.25 ±0.75 76.95 ±0.35 78.15 ±0.25 68.90 ±3.70 41.62 ±0.23 46.61 ±0.52 45.57 ±1.63 45.31 ±1.34 35.05 ±0.26 41.52 ±0.43 39.14 ±0.36 38.53 ±3.35 

LGC-APPNP 35.40 ±3.00 59.70 ±0.40 57.10 ±0.30 51.00 ±7.50 35.83 ±1.99 49.25 ±0.17 50.35 ±0.28 44.24 ±3.20 25.23 ±1.75 39.13 ±0.08 37.58 ±0.19 39.31 ±4.74 

Table 12 

Evaluation results of feature selection on the PUBMED dataset (1%(5) features). 

Model Methods of feature selection for accuracy Methods of feature selection for Macro-F1 Methods of feature selection for MCC 

Random Chi 2 Variance Mutual Random Chi 2 Variance Mutual Random Chi 2 Variance Mutual 

GCN [14] 49.70 ±0.80 51.70 ±2.90 49.85 ±2.95 49.50 ±0.90 44.07 ±0.91 51.33 ±0.21 52.91 ±2.08 51.31 ±4.14 18.00 ±3.49 24.41 ±0.77 21.33 ±0.77 22.08 ±5.68 

GCN 

† [14] 50.10 ±0.30 55.10 ±0.08 64.50 ±1.00 52.50 ±2.10 46.75 ±1.32 55.95 ±0.05 62.14 ±0.11 62.79 ±4.66 17.45 ±0.74 34.57 ±0.22 43.17 ±0.16 39.27 ±5.05 

PPNP [15] 57.70 ±0.70 48.10 ±1.30 47.55 ±3.95 39.70 ±0.90 51.48 ±0.75 47.68 ±1.04 52.21 ±2.85 33.74 ±10.67 27.01 ±0.56 18.47 ±2.71 21.35 ±4.46 7.57 ±3.24 

PPNP † [15] 60.75 ±0.65 68.50 ±0.10 70.80 ±0.10 54.20 ±3.50 54.49 ±0.35 64.96 ±0.20 68.05 ±0.33 54.40 ±14.02 29.18 ±0.66 48.67 ±0.36 52.78 ±0.41 31.40 ±14.75 

APPNP [15] 49.45 ±0.55 52.55 ±3.55 52.45 ±3.15 50.40 ±2.30 47.34 ±2.79 52.09 ±1.00 53.12 ±1.96 56.15 ±4.15 18.42 ±1.89 25.01 ±0.31 24.28 ±3.74 28.56 ±6.22 

APPNP † [15] 49.70 ±0.50 55.25 ±0.15 66.50 ±0.40 67.15 ±1.65 47.11 ±1.82 59.71 ±0.26 64.58 ±0.50 67.35 ±2.06 21.71 ±5.90 38.56 ±0.46 47.60 ±0.85 48.01 ±2.99 

GAT [10] 46.55 ±3.45 52.15 ±1.85 40.40 ±14.70 39.45 ±7.15 42.77 ±5.89 51.68 ±3.87 37.28 ±12.73 40.82 ±4.50 17.70 ±0.46 26.59 ±4.86 14.33 ±14.33 12.18 ±9.06 

LNet [24] 48.26 ±0.28 65.52 ±0.26 67.76 ±0.21 50.01 ±0.41 49.16 ±2.18 51.08 ±0.45 58.34 ±1.24 57.20 ±3.14 22.08 ±2.48 30.06 ±2.15 38.52 ±2.50 28.62 ±4.72 

AdaNet [24] 48.86 ±1.05 66.24 ±0.38 68.25 ±0.13 52.26 ±3.28 49.88 ±1.67 51.42 ±0.16 56.24 ±3.06 57.15 ±2.45 23.25 ±1.48 32.06 ±4.05 39.14 ±2.60 30.17 ±3.48 

SGC [25] 46.52 ±2.58 65.48 ±0.64 67.25 ±0.26 52.68 ±2.19 48.80 ±2.53 50.18 ±0.46 57.12 ±2.51 56.45 ±3.00 24.45 ±2.06 33.14 ±2.58 38.45 ±1.69 31.41 ±5.40 

MixHop [26] 50.26 ±0.09 67.25 ±0.15 68.12 ±0.28 51.36 ±4.25 50.06 ±2.17 53.36 ±0.12 58.28 ±1.52 59.42 ±2.80 26.45 ±2.18 35.02 ±1.45 40.08 ±2.16 32.28 ±1.42 

MobileGCN 59.30 ±1.70 63.60 ±1.30 70.20 ±0.10 58.35 ±4.45 51.22 ±1.38 63.23 ±0.71 68.59 ±0.10 63.41 ±1.58 32.88 ±0.79 44.99 ±1.15 52.17 ±0.37 41.10 ±4.20 

MobilePPNP 62.90 ±0.40 70.35 ±0.05 71.45 ±0.25 60.80 ±7.10 53.37 ±1.22 67.03 ±0.45 68.65 ±1.20 64.70 ±1.84 36.13 ±3.79 51.89 ±0.63 53.06 ±1.57 41.66 ±1.88 

MobileAPPNP 52.75 ±0.85 64.60 ±0.50 70.05 ±0.25 53.80 ±8.00 49.25 ±0.21 62.95 ±1.05 66.52 ±0.47 58.42 ±8.23 19.46 ±1.33 45.38 ±1.33 49.90 ±0.71 34.22 ±9.66 

LGC-GCN 59.00 ±0.30 67.15 ±0.15 69.20 ±0.20 60.85 ±4.35 52.94 ±0.87 65.55 ±0.25 68.29 ±0.52 64.39 ±0.91 29.03 ±1.97 49.39 ±0.42 52.80 ±0.69 43.34 ±2.25 

LGC-PPNP 62.05 ±0.05 71.05 ±0.15 73.15 ±0.15 70.90 ±6.10 57.92 ±0.17 66.06 ±0.25 66.66 ±0.09 69.06 ±2.12 34.00 ±0.10 49.24 ±0.46 50.47 ±0.10 51.19 ±5.66 

LGC-APPNP 46.70 ±2.40 40.05 ±1.35 38.20 ±3.80 45.50 ±2.80 44.12 ±1.74 44.38 ±2.36 42.93 ±5.61 41.64 ±4.77 15.06 ±2.75 10.39 ±1.25 8.50 ±5.04 17.25 ±4.35 
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Table 13 

Evaluation results of feature selection on the Wikipedia dataset (1%(50) features). 

Model Methods of feature selection for accuracy Methods of feature selection for Macro-F1 Methods of feature selection for MCC 

Random Chi 2 Variance Mutual Random Chi 2 Variance Mutual Random Chi 2 Variance Mutual 

GCN [14] 7.75 ±3.74 30.57 ±0.15 22.99 ±1.86 26.38 ±2.19 12.27 ±1.24 15.25 ±0.30 14.61 ±0.83 13.80 ±1.10 10.29 ±1.46 17.86 ±0.57 14.69 ±0.49 14.77 ±1.69 

GCN 

† [14] 28.83 ±2.25 33.32 ±0.51 24.46 ±1.89 30.15 ±3.68 19.88 ±1.31 15.56 ±0.32 18.39 ±0.48 16.42 ±2.79 12.90 ±2.16 19.10 ±0.26 17.33 ±1.12 18.65 ±2.45 

PPNP [15] 7.13 ±4.85 25.45 ±2.69 15.39 ±4.07 17.81 ±5.00 8.25 ±3.21 13.56 ±1.36 12.28 ±1.09 13.40 ±1.69 5.10 ±4.01 15.22 ±0.62 10.87 ±2.33 11.80 ±2.76 

PPNP † [15] 7.10 ±3.62 26.86 ±0.33 16.14 ±1.41 20.93 ±3.62 13.42 ±1.79 13.35 ±0.13 11.78 ±2.28 15.24 ±1.59 13.92 ±4.21 16.16 ±0.73 12.50 ±3.58 15.46 ±6.01 

APPNP [15] 18.44 ±0.66 30.33 ±0.39 23.56 ±1.65 25.21 ±4.91 14.30 ±0.78 14.97 ±0.10 13.97 ±0.14 15.39 ±0.82 15.78 ±3.06 18.54 ±0.28 13.88 ±0.12 18.22 ±3.55 

APPNP † [15] 29.94 ±2.87 33.80 ±0.87 26.32 ±1.71 26.89 ±6.29 18.47 ±0.92 15.36 ±0.09 16.10 ±0.98 16.96 ±1.67 20.33 ±0.73 19.11 ±0.27 15.47 ±1.49 19.46 ±1.94 

GAT [10] 24.16 ±3.80 30.81 ±1.11 26.89 ±4.01 27.10 ±2.07 17.60 ±1.25 18.41 ±0.33 17.23 ±1.51 15.85 ±1.88 19.01 ±0.60 23.03 ±0.66 17.27 ±1.91 17.33 ±1.45 

LNet [24] 20.87 ±2.15 31.28 ±0.58 26.46 ±1.27 25.10 ±3.41 15.98 ±1.53 19.85 ±0.24 18.96 ±0.40 18.54 ±1.40 16.68 ±0.45 21.16 ±0.47 17.78 ±1.48 18.82 ±2.50 

AdaNet [24] 21.62 ±3.45 32.18 ±0.34 26.15 ±2.58 26.45 ±3.54 15.42 ±1.28 20.04 ±0.84 20.15 ±0.47 16.54 ±2.45 17.75 ±0.41 22.25 ±0.41 18.85 ±2.48 18.46 ±2.10 

SGC [25] 18.45 ±2.58 30.18 ±0.45 24.86 ±1.46 25.63 ±3.50 16.54 ±0.82 19.57 ±0.47 19.40 ±0.47 18.62 ±1.06 15.45 ±1.24 18.56 ±0.24 19.42 ±1.42 19.25 ±2.85 

MixHop [26] 22.25 ±2.86 33.48 ±0.18 27.72 ±1.50 26.66 ±3.30 16.48 ±2.10 20.05 ±0.18 20.25 ±0.16 19.90 ±1.46 16.48 ±1.40 19.85 ±1.58 21.12 ±2.58 18.68 ±1.68 

MobileGCN 13.05 ±3.53 54.73 ±0.72 53.98 ±0.45 57.13 ±1.14 11.50 ±1.72 16.48 ±0.63 16.17 ±0.13 16.13 ±0.33 9.35 ±2.90 22.23 ±0.40 22.53 ±0.15 22.19 ±0.77 

MobilePPNP 18.05 ±1.35 52.31 ±0.51 44.13 ±1.08 32.51 ±16.11 10.17 ±0.78 16.46 ±0.29 15.08 ±0.40 15.14 ±3.03 9.26 ±4.13 21.17 ±0.64 19.92 ±0.63 15.07 ±5.08 

MobileAPPNP 17.49 ±4.19 56.26 ±0.75 54.07 ±1.44 43.74 ±14.46 11.57 ±0.69 17.06 ±0.34 16.27 ±0.18 16.35 ±0.80 9.89 ±3.68 22.49 ±0.35 22.57 ±0.18 20.87 ±2.33 

LGC-GCN 24.37 ±0.36 42.63 ±0.54 35.78 ±0.33 41.02 ±2.69 12.51 ±0.35 18.44 ±0.39 16.29 ±0.44 17.26 ±0.60 18.29 ±0.07 22.74 ±0.76 20.42 ±0.26 22.23 ±0.69 

LGC-PPNP 12.93 ±0.30 56.05 ±0.54 35.87 ±0.36 41.11 ±1.77 11.28 ±0.55 17.65 ±0.43 16.06 ±0.14 16.99 ±0.51 15.55 ±0.35 19.58 ±0.38 19.58 ±0.29 19.11 ±0.29 

LGC-APPNP 38.41 ±0.87 35.00 ±3.26 32.16 ±3.95 41.89 ±3.56 20.76 ±0.59 24.52 ±0.56 23.87 ±1.24 23.55 ±1.62 21.85 ±0.54 29.72 ±1.70 27.51 ±1.67 30.57 ±2.63 

Table 14 

Evaluation results of feature selection on the Photo dataset (1%(7) features). 

Model Methods of feature selection for accuracy Methods of feature selection for Macro-F1 Methods of feature selection for MCC 

Random Chi 2 Variance Mutual Random Chi 2 Variance Mutual Random Chi 2 Variance Mutual 

GCN [14] 40.88 ±5.73 20.14 ±6.52 31.43 ±8.07 27.05 ±7.84 25.29 ±0.53 27.15 ±0.14 37.38 ±0.39 26.33 ±4.93 20.10 ±4.24 16.41 ±2.26 31.43 ±0.55 14.01 ±4.31 

GCN 

† [14] 44.97 ±1.59 14.21 ±0.59 28.20 ±3.62 29.17 ±4.61 27.26 ±1.35 27.29 ±0.51 37.78 ±0.28 23.72 ±1.63 27.17 ±4.00 14.61 ±0.26 32.86 ±0.11 12.81 ±7.31 

PPNP [15] 40.64 ±0.86 25.45 ±11.64 16.25 ±1.45 23.94 ±5.49 21.95 ±3.59 31.80 ±0.25 20.41 ±3.20 31.89 ±6.62 17.81 ±3.17 20.81 ±0.59 5.13 ±3.71 13.81 ±7.43 

PPNP † [15] 40.28 ±4.87 17.36 ±3.55 22.82 ±8.39 33.09 ±10.12 20.19 ±0.64 32.44 ±0.01 23.87 ±1.80 33.47 ±6.20 14.99 ±1.79 22.42 ±0.04 13.15 ±5.74 17.22 ±3.84 

APPNP [15] 43.80 ±2.07 19.24 ±2.68 25.95 ±1.84 30.14 ±4.59 27.55 ±3.81 27.84 ±1.00 37.39 ±0.09 26.57 ±6.96 23.38 ±3.11 17.09 ±0.98 32.53 ±0.08 19.27 ±3.09 

APPNP † [15] 40.76 ±6.62 16.00 ±1.64 27.30 ±3.02 28.76 ±1.14 26.99 ±0.56 28.22 ±0.17 37.53 ±0.04 28.74 ±6.86 24.00 ±0.97 16.41 ±0.45 32.87 ±0.13 18.77 ±7.42 

GAT [10] 42.74 ±3.41 24.11 ±8.26 24.54 ±0.03 23.75 ±7.46 31.33 ±1.92 20.37 ±1.26 37.94 ±0.13 31.03 ±8.16 25.84 ±5.24 8.97 ±2.93 32.49 ±0.19 19.84 ±4.56 

LNet [24] 42.56 ±5.26 26.65 ±5.68 28.45 ±2.58 25.46 ±3.48 26.24 ±1.50 21.48 ±1.40 33.45 ±0.21 24.54 ±4.50 23.15 ±1.33 15.45 ±0.15 30.45 ±0.14 17.49 ±3.08 

AdaNet [24] 43.56 ±2.18 27.15 ±4.52 29.42 ±1.48 26.48 ±3.45 25.15 ±2.40 20.18 ±1.50 32.12 ±1.46 26.14 ±3.28 22.15 ±2.48 16.58 ±0.75 31.05 ±0.45 18.82 ±2.48 

SGC [25] 45.52 ±2.48 28.89 ±4.78 30.05 ±1.85 27.54 ±2.86 30.08 ±1.48 21.48 ±1.47 32.54 ±0.48 25.58 ±4.50 26.14 ±2.48 18.84 ±0.14 30.08 ±0.25 19.45 ±3.68 

MixHop [26] 44.15 ±3.14 27.74 ±1.47 29.48 ±2.57 27.74 ±1.45 30.04 ±2.84 24.36 ±0.47 34.84 ±0.17 28.81 ±4.61 27.75 ±1.04 20.06 ±1.64 31.12 ±0.04 21.18 ±4.20 

MobileGCN 28.76 ±1.09 72.16 ±0.30 67.03 ±0.67 74.44 ±3.26 22.79 ±1.29 36.96 ±0.10 42.03 ±0.09 40.18 ±0.64 13.61 ±5.78 34.06 ±0.19 37.49 ±0.27 32.83 ±1.57 

MobilePPNP 32.90 ±3.34 67.17 ±0.26 72.89 ±0.22 78.48 ±0.80 18.54 ±5.12 40.76 ±2.14 40.69 ±0.89 41.12 ±3.65 16.16 ±3.77 28.42 ±1.73 33.96 ±0.94 31.36 ±1.57 

MobileAPPNP 41.12 ±3.75 72.93 ±0.73 69.71 ±0.32 78.84 ±6.44 24.16 ±1.92 37.98 ±0.27 40.81 ±0.61 38.32 ±0.58 19.37 ±3.33 32.57 ±0.20 33.75 ±0.85 32.54 ±1.16 

LGC-GCN 39.10 ±0.29 51.74 ±0.14 52.83 ±0.11 60.81 ±4.77 32.60 ±0.17 40.35 ±0.25 42.62 ±0.20 43.78 ±1.27 22.67 ±0.23 29.35 ±0.20 33.29 ±0.18 34.01 ±0.58 

LGC-PPNP 70.96 ±2.04 81.76 ±0.52 79.25 ±0.04 83.97 ±1.07 43.88 ±0.53 42.13 ±0.28 43.14 ±0.24 42.56 ±1.57 32.98 ±0.17 31.57 ±0.65 36.07 ±0.10 34.92 ±1.43 

LGC-APPNP 30.49 ±0.52 20.19 ±3.18 30.23 ±5.66 29.56 ±17.62 26.85 ±1.32 18.93 ±3.81 28.69 ±1.62 34.25 ±8.84 15.60 ±1.07 10.91 ±5.00 22.86 ±2.54 18.56 ±5.82 

1
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Fig. 5. Our models’ accuracy with different affinity values. 

Fig. 6. The teleport probability α of PPNP, APPNP, and our models controls the proportion of learning graph-structured information to enhance the models’ accuracy. 
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ric results of benchmark models have been improved im- 

mensely, the results of MobilePPNP and LGC-PPNP are still 

prominent. Moreover, LGC-PPNP and LGC-APPNP dominate 

the accuracy of Macro-F1 and MCC on the method of mu- 

tual information. Therefore, the experiments further prove 

that our models are robust. 

(3) However, GAT performed on CORA has outstanding results 

of Macro-F1 and MCC, and on CITESEER, it has a state-of- 

the-art result on MCC by using the method of the analysis 

of variance. Therefore, our models are not outstanding on all 

datasets and need to be verified on more datasets in future 

work. 

.3. Floating-point of operations (FLOPs) and weights 

Table 15 summarizes the FLOPs and weights of MobileGCNs and 

GC-GCNs, where FLOPs can be used to measure one model’s com- 

lexity, and weights describe this model’s memory cost. According 

o the values of FLOPs, we conclude that the complexity of LGC- 

CN is the highest because its GCN aggregator needs to calculate 

he cost of the graph normalized Laplacian matrix at each layer 

hile the heavyweight LGC updater is used in it. On the contrary, 

he complexity of MobilePPNP is the lowest since the matrix of its 

PNP aggregator is calculated once in the last layer, and it also uses 

ightweight DSGC as its updater, synchronously. Furthermore, the 
17 
xperiment indicates that DSGC in MobileGCNs, as a lightweight 

pdater, occupies less dramatically memory than the heavyweight 

GC updater in LGC-GCNs on all datasets. 

.4. Affinity values 

Fig. 5 summarizes the effect of various affinity values on the 

ccuracy of our models performed on all datasets with sampling 

% features. We can see that the accuracy of all our models does 

ot significantly differ from diverse affinity values. This experiment 

ay be explained by the fact that node features in each aggre- 

ated node’s neighborhood are homogeneous when diverse affin- 

ty values are adopted to arrange the order of connections in this 

eighborhood. Another possible explanation for this is that as long 

s each neighborhood maintains the same connection order, irre- 

pective of the affinity value used to determine this connection, all 

ur models’ accuracy is insignificantly different. Therefore, further 

ntensive research is required to investigate why our models with 

he various connection orders yield a similar result. 

.5. Teleport probability α

As an essential hyper-parameter of PPNP and APPNP [15] , tele- 

ort probability α controls the proportion of learning graph- 

tructured information via using the personalized PageRank algo- 
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Table 15 

The statistics of FLOPs ( M indicates a million) and weights. 

Model CITESEER CORA PUBMED Wikipedia Photo ROAD 

FLOPs weights FLOPs weights FLOPs weights FLOPs weights FLOPs weights FLOPs weights 

MobileGCN 2975 M 2400 1626 M 1696 78569 M 1280 1725 M 3232 12084 M 1504 1856 M 2506 

MobilePPNP 429 M 2400 321 M 1696 7038 M 1280 695 M 3232 2837 M 1504 526 M 2506 

MobileAPPNP 828 M 2400 629 M 1696 14037 M 1280 1355 M 3232 5647 M 1504 968 M 2506 

LGC-GCN 3826 M 44,032 1965 M 21,504 79509 M 8192 2712 M 70,656 12767 M 15,360 2468 M 26,530 

LGC-PPNP 1281 M 44,032 660 M 21,504 7977 M 8192 1683 M 70,656 3520 M 15,360 852 M 26,530 

LGC-APPNP 1679 M 44,032 968 M 21,504 14976 M 8192 2343 M 70,656 6330 M 15,360 1645 M 26,530 
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[  
ithm [17] . Fig. 6 demonstrates that: the accuracy of MobilePPNP, 

obileAPPNP, LGC-PPNP, and LGC-APPNP decreases gradually on 

he low-dimensional datasets (1% features) with rising α. We ob- 

erve that our models learn more graph-structured information to 

nhance their accuracy by decreasing α in the PPR aggregators. In- 

ersely, when increasing α, low-dimensional features have to pro- 

ide incomplete node representations to learn inadequate node- 

eatured information while ignoring the importance of graph- 

tructured information. In future works, this probability α should 

e adjusted for the dataset under investigation because the neigh- 

orhood structures of different graphs vary [15] . 

. Conclusions and future works 

In this paper, we introduced LGC-GCNs constructions (i.e., LGC- 

CN, LGC-PPNP, and LGC-APPNP) based on the LGC updater; and 

he lightweight versions of LGC-GCNs (MobileGCN, MobilePPNP, 

nd MobileAPPNP) created by using the DSGC updater. Both LGC 

nd DSGC updaters encode node hidden states during the encod- 

ng output step to capture node-featured information, and they 

an also cooperate with aggregators in the message propagation 

tep to gather the features of neighboring nodes to learn graph- 

tructured information. Consequently, our models can improve the 

odel metrics in low-dimensional node feature space, highlighting 

hree advantages: 

(1) Our LGC and DSGC, designed in a modular way, can integrate 

with any of the other aggregators. In this article, we have 

combined our updaters with GCN [14] , PPNP, and APPNP 

[15] aggregators to enhance the three metrics effectively in 

the low-dimensional feature space. 

(2) LGC updater can be extended and improved by taking ad- 

vantage of the up-to-date achievement of the standard con- 

volution, since its infrastructure roots in the framework of 

the standard convolution. 

(3) Proposed two updaters can not only assist any aggregators 

to learn graph-structured information but also encode node 

hidden representations to extract node-featured information 

in the encoding output step, which observably powers the 

ability to obtain graph-structured information when graphs 

represented by the low-dimensional feature space. 

For future work, there are two improvement directions for the 

efects of our updaters: 

(1) To solve the information loss in our incomplete neigh- 

borhood, it is worth utilizing the ASGCN’s transformation 

[30] from arbitrary-sized graphs into fixed-sized aligned grid 

structures. 

(2) To perform our updaters on the graph classification task, 

we will try to introduce graph embedding [35] and kernel 

[36] into the framework of our updaters in the next work. 

Furthermore, in order to further exploit our models’ potential 

apacity, we try to combine our updaters with more aggregators 

uch as GAT [10] and Tree-LSTM [11] to improve metrics on more 
18 
atasets. Moreover, more achievements in standard convolution 

an be embedded into our models to deal with a variety of tasks 

ike the graph, node, or link classification. 
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