Under review as a conference paper at ICLR 2026

SK2DECOMPILE: LLM-BASED TWO-PHASE BINARY
DECOMPILATION FROM SKELETON TO SKIN

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have emerged as a promising approach for binary
decompilation. However, the existing LLM-based decompilers are still somewhat
limited in effectively presenting a program’s source-level structure with its origi-
nal identifiers. To mitigate this, we introduce SKZDecompile, a novel two-phase
approach to decompile from the skeleton (semantic structure) to the skin (identi-
fier) of programs. Specifically, we first apply a Structure Recovery model to trans-
late a program’s binary code to an Intermediate Representation (IR) as deriving the
program’s “skeleton”, i.e., preserving control flow and data structures while ob-
fuscating all identifiers with generic placeholders. We also apply reinforcement
learning to reward the model for producing program structures that adhere to the
syntactic and semantic rules expected by compilers. Second, we apply an Identi-
fier Naming model to produce meaningful identifiers which reflect actual program
semantics as deriving the program’s “skin”. We train the Identifier Naming model
with a separate reinforcement learning objective that rewards the semantic similar-
ity between its predictions and the reference code. Such a two-phase decompila-
tion process facilitates advancing the correctness and readability of decompilation
independently. Our evaluations indicate that SK” Decompile significantly outper-
forms the SOTA baselines, achieving 21.6% average re-executability rate gain
over GPT-5-mini on the HumanEval dataset and 29.4% average R2I improvement
over Idioms on the GitHub2025 benchmark.

1 INTRODUCTION

Decompilation refers to converting compiled binaries back to high-level source code and has been
widely adopted in software security tasks like malware analysis and vulnerability discovery (Brum-
ley et al.| 2013} Katz et al.l 2018; [Wu et al.| 2022} |Cao et al.l [2022; [Fu et al.) 2019). Ideally,
a decompiler ensures both functional correctness and code readability, which can hardly be real-
ized in practice at the same time. For instance, traditional tools like Ghidra (Ghidra, |2024) and
IDA (Hex-Rays| 2024)) excel at functional correctness but often produce obfuscated, hard-to-read
code, while recent Large Language Model (LLM)-based approaches (Hosseini & Dolan-Gavitt,
2022 Armengol-Estap’e et al.,|2023}; Jiang et al.,|2025} Tan et al.| |2024; lylfeng et al.|[2024}; Dramko
et al.l 2025) generate more readable output but frequently fail to preserve the original program’s
functionality (Tan et al., [2024} [2025)).

Many research efforts imply the root cause of this trade-off as the intractable complexity of simul-
taneously inferring control-flow structures, data layouts, and identifiers in a single phase (Lacomis
et al.l [2019; Xie et al., [2024; |Chen et al., 2022} |(Console et al., 2023} [Patrick-Evans et al., [2020;
David et al., |2020; [Li et al., 2025). To mitigate this, we introduce SKZDecompile, a novel LLM-
based decompilation technique that decomposes the binary decompilation task into two phases. In
particular, we first derive the program’s skeleton, i.e., its core structure, including control flow and
data structure (Aho et al., [2007). Then, we derive the program’s skin, i.e., the meaningful type,
variable, and function names reflecting the actual program semantics (Lacomis et al.| [2019). Such
a two-phase decompilation design allows for tackling the challenges of functionality and readabil-
ity independently for aggregating their respective effectiveness rather than realizing a trade-off in
between. In particular, we design a novel Intermediate Representation (IR) acting as the “skeleton”
of the program. This IR essentially refers to the original source code with all identifiers (variable,

Under review as a conference paper at ICLR 2026

function, and type names) replaced by generic placeholders (Lachaux et al., 2021} for preserving
structural and functional logic of a program, following the Information Bottleneck principle (Tishby
et al.| [2000; [Tishby & Zaslavsky, 2015)). The decompilation process is then split into two sequential
phases: Structure Recovery where an LLM translates the compiled binary code to our structural
IR and Identifier Naming where a second LLM enriches the IR by predicting meaningful names
reflecting actual program semantics for all placeholders. For Structure Recovery, we first train a
sequence-to-sequence model (Cummins et al., 2024} [Vaswani et al., 2017)) and further tune it with
reinforcement learning (RL) (Achiam et al., 2023), where the compiler checks the syntax and se-
mantics to provide the reward. A positive reward is generated only if the generated IR successfully
compiles, with additional rewards reflecting the correctness of placeholder recovery. For Identifier
Naming, we use a separate RL reward. To better capture human-centric readability, this model is not
rewarded for exact name match but for the semantic similarity between its output and the reference
code (Zhang et al.,|2025). In this way, SKzDecompile enhances functional correctness and semantic
readability simultaneously for LLM-based decompilation.

Our evaluations show that SK?Decompile significantly outperforms prior SOTA models on four
open-source benchmark suites. To our best knowledge, SK>Decompile is the first to approach the
average re-executability rate of ~70% on HumanEval (Chenl [2021]) and ~60% on MBPP (Austin
et al., 2021)). It also achieves 21.6% average re-executability rate gain over GPT-5-mini (OpenAl,
2025) on HumanEval and 29.4% average R2I (Eom et al.||2024) improvement over Idioms (Dramko
et al.l |2025) on the GitHub2025 benchmark (Tan et al., [2025)).

The code has been released in anonymous GitHub page Our main contributions are as follows.

* Two-phase Decompilation Framework. We propose the first decompilation framework con-
sisting of two phases: Structure Recovery for advancing the recovery of source-level program
structures and Identifier Naming for advancing the recovery of meaningful identifiers reflecting
actual program semantics. Each phase trains a model using reinforcement learning with specific
rewards respectively.

* Intermediate Representation (IR). We propose our IR as the obfuscated source code. This IR
satisfies the Information Bottleneck principle by maximizing the compression of the semantics
embodied in identifiers while preserving the semantics embodied in the structure of the program,
and it is practically simple to generate.

» Extensive Evaluations. We perform extensive evaluations on SK?Decompile and find that
it achieves the optimal performance compared with the studied baselines. For instance,
SK?Decompile achieves 21.6% average re-executability rate gain over GPT-5-mini on HumanEval
and 29.4% average R2I improvement over Idioms on the GitHub2025 benchmark.

2 BACKGROUND

2.1 RELATED WORK

Decompilation, i.e., the reconstruction of source code from binary executables, has long relied on
control/data-flow analysis and pattern matching (Brumley et al., 2013} |Katz et al.,|2018; [Wu et al.,
2022; [Fu et al} 2019). Typically, conventional decompilers like IDA Pro (Hex-Rays| [2024) tend to
recover a program’s basic logic, with their generated pseudocode close to low-level assembly code,
i.e., their outputs often lack readability and re-executability (Cao et al., 2024} |Liu & Wang, 2020).

Motivated by the success of Large Language Models (LLMs) in code-related tasks (Zeng et al.,
2022; [Wang et al.l 2024; Jiang et al., [2024; |Su et al., [2024; |Wang et al., 2025} [Szafraniec et al.,
2022)), recent research has focused on applying LLMs to refine the pseudocode generated by tradi-
tional decompilers (Hu et al.,[2024;[Wong et al.| | 2023)). Note that as pseudocode is deterministic with
the corresponding binary code, we use the terms interchangeably in this paper. Initial efforts, such
as LLM4Decompile (Tan et al., [2024), demonstrated that LLMs could effectively learn to translate
low-level pseudocode to high-level source code and inspire subsequent studies (ylfeng et al.| 2024;
Feng et al.,|2025)). Other research focuses on incorporating contextual information. For instance, Id-
ioms (Dramko et al.,2025)) enriches the input by incorporating information from adjacent functions
in the call graph and attempts to jointly recover user-defined type definitions with the decompiled

'"https://github.com/anonymous—-git-paper/sk2decompile

https://github.com/anonymous-git-paper/sk2decompile

Under review as a conference paper at ICLR 2026

code. Recently, D-LIFT (Zou et al., |2025) enhanced the training pipeline by incorporating rein-
forcement learning, guided by a novel reward function D-SCORE which provides a multi-faceted
assessment of code based on accuracy and readability. Despite these advancements, the functional
correctness of LLM-based techniques remains a significant challenge, with existing models failing
on approximately half of the tasks in the HumanEval-Decompile benchmark (Tan et al., 2024).

(a) Pseudo code (b) LLM4Decompile (c) Source code
uint64 t *sub_1CDCO(long long al) {.. struct _glist * void tableRemoveWhite(Table xtable) {
FUN_000@1cdcO(struct _glist *VAR_0){.. Tablelter iter;
vd = &2[3 * *(int *)(al + 4)]1; VAR_1 = VAR_0->gl_next; Entry xentry;
(= + —>gl_nitems; tablelterInit(&iter, table);
while (result != v4 && !xresult) while (VAR_1 < VAR_2)|{ while (tableIterNext(&iter, table, &entry))|{
result += 3; if (VAR_1->gl_name) |{ if (entry->key->obj.markers|== 0)
if (result == v4) return result; if (VAR_1->gl_name[1] == "\0) { tableIterRemove(&iter, table);}}
A VARZ3 = VAR_T;
i (T s) (—Semel FUN_0001cdeo (sVAR_3, VAR_@); void funcl(typel xvar1) { (d) Obfuscated IR
sub_1CD00(&v6, al); VAR_1 = VAR_3;} type2 var2;
else {VAR_1++;}} type3 xvar3;
[goto LABEL 73} else {VAR_1++;}} func2(&var2, varl);
return (VAR_1);} [while (func3(&var2, varl, &var3))] {

if (var3—>fieldl->field2.field3 == o)
func4(&var2, vari);rr

Figure 1: An example with its (a) pseudocode, (b) refinement by LLM4Decompile, (c) source code,
and (d) Obfuscated IR. marks the while loop in different forms, represents the data

access.

2.2 MOTIVATING EXAMPLE

As shown in Figure |1} while LLM4Decompile, a widely-studied LLM-based decompiler, correctly
interprets constructs like while (1) and goto LABEL_2 found in the IDA pseudocode and suc-
cessfully recovers them to a semantically equivalent and more readable while loop. However,
the decompiler struggles with recovering the program’s data type structure, and its ability to as-
sign meaningful identifier names reflecting actual program semantics remains limited. For instance,
domain-specific types such as Table and Ent ry are erroneously mapped to a generic struct named
_glist. This fundamental limitation in the decompiler’s understanding of the data organization
leads to the failure in generating meaningful identifiers. Consequently, variables and functions are
reduced to generic placeholders like VAR_1 and FUN_0001cdcO, making it even more difficult
to understand the original intent of the program. Such deficiencies motivate a two-phase decompi-
lation process for recovering both program structure and meaningful identifiers respectively rather
than realizing a trade-off in between, as illustrated in Section

3 SK2DECOMPILE

3.1 OVERVIEW

Figure [2| presents the framework of SK?Decompile (Skeleton-to-Skin Decompile) which includes
a two-phase decompilation process, i.e., Structure Recovery and Identifier Naming (Section [3.2)
which are realized upon the design of the Intermediate Representation (IR, Sections [3.3]and [3.4),
with their respective reward functions to advance the correctness and readability of the final decom-
piled code (Section [3.5).

3.2 TWwWO-PHASE DECOMPILATION PROCESS

We draw an analogy comparing the two-phase decompilation process of SK>Decompile to the struc-
ture of the human body. In particular, Structure Recovery refers to constructing the global code
structure, such as loops, conditionals, and data structures, as deriving the program’s “skeleton”.
Identifier Naming refers to inferring meaningful names for functions, types, fields, and variables to
further reflect actual program semantics.

We formalize SK?Decompile from a probabilistic perspective. In particular, the goal of decompila-
tion is to find the most probable source code (s) given a low-level representation, i.e., the pseudocode

Under review as a conference paper at ICLR 2026

(a) Data preparation

i
1
H int funcl(typel varl){ typedef int /*<<< orphan*/ typel; @
1
! char var2; psychec struct TYPE 2 !
type2 3. —— | int/*<<<orphan*/ fieldl;} ; Header 1
5 — - typedef TYPE 1__ type2;
int oo (usr u){ % MEmERY (- - -) int /*<<< orphan*/
EREF §: func2(var3.fieldl)} func2 (int /*<<< orphan*/) ;
1
: id tmp; o i
N b, [Eugunengman | o | 6t 46IFICin6sany :
sFunc . e | G| Ghapakuanny | QR | aerws peeud
v ’ 48 8D 3D 12 00 00 00 48 89 F§ 88 | =P seudo
| sravnunanne — ~
Bin E0 02 48 C1 E8 @3 48 01 D8 48 39 sub_44794(v2);} </>
1
(b) Structure recovery model
Pseudo IR Func. 1
Header

N PO () ../
</> el 1+7,if compile:i bl
SFT RL:{ 0,not compiled

Figure 2: Overview of the SK? Decompile framework. (a) Data preparation: We obfuscate identifiers
in each function to produce an Intermediate Representation (IR). Headers are inferred using psychec
to serve as ground truth for checking compilability during the RL stage of Structure Recovery (b).
We also compile the code and use IDA to generate initial pseudo code. SK?Decompile employs
a two-phase decompilation process comprising (b) Structure Recovery and (c) Identifier Naming,
where obfuscated source code serves as the IR connecting the two phases. Each model undergoes
Supervised Fine-Tuning (SFT) followed by Reinforcement Learning (RL) with phase-specific re-
wards.

(u) in our paper. Correspondingly, the decompilation goal can be modeled as maximizing the condi-
tional probability P(s|u). Our core hypothesis is that introducing an intermediate representation (i)
can simplify this task. Using the chain rule of probability, we can decompose the probability P(s|u)
as y . P(s|i,u) - P(iJu). This decomposition effectively splits the decompilation task into two more
manageable sub-tasks, which we illustrate with the example in Figure [T(d) and its corresponding
pseudocode and source code presented in Figure[I[a) and Figure[Tfc).

Structure Recovery. This phase corresponding to P(iju) focuses exclusively on translating the
syntax and control flow of the low-level pseudocode (Figure [[{a)) to a well-formed, high-level
IR (Figure Ekd)). For example, this task includes identifying that a while (1) combined with a
goto LABEL_2 in the pseudocode corresponds to a single, conditional while () loop structure
in the IR. This phase also transforms opaque pointer arithmetic, like « (uint8_t) (v5 + 1),
to a clean, nested structure access var3—->field2->field3.

Identifier Naming: This phase corresponding to P(sli,u) takes the recovered IR (Figure[I[d)) and
infers meaningful names for variables and functions to produce the final, human-readable source
code (Figure [I[¢)), e.g., transforming a generic call var3->field2->field3 to the one with
more meaningful, semantic names entry->key->obj.markers.

A key insight is that once the clean structured IR is recovered, the original, messy pseudocode
provides almost no additional information for the naming task. For instance, after recovering
the structure var3->field2->field3, the model no longer needs the pointer expression
*x (uint8_t =) (v5 + 1) to infer the correct variable names. This insight allows us to make
a Markov assumption (Evans & Rosenthal, 2004)), which simplifies the naming probability from
P(sli,u) to P(sl]i). This simplification yields our final probabilistic model:

P(slu) =~ > P(sli) - P(ifu) (1)

Under review as a conference paper at ICLR 2026

By decomposing the problem, we create a focused, two-phase process. First, we solve the complex
Structure Recovery challenge (P(iJu)), and then perform the Identifier Naming task on a clean,
abstract representation (P(s|i)). In this way, we reduce the overall complexity for more robust
learning and higher-quality decompilation.

3.3 INTERMEDIATE REPRESENTATION

The two-phase decompilation process necessitates an intermediate representation (IR) that serves
as a bridge between pseudocode and source code. However, designing the IR presents a funda-
mental challenge, i.e., it must be simple enough to be reliably recovered from pseudocode, yet rich
informative enough to enable accurate source code reconstruction.

This challenge naturally frames our problem as an Information Bottleneck (IB) optimization
task (Tishby et al.| 2000 [Tishby & Zaslavsky, 2015). In particular, for any information flow pseu-
docode — IR — source, the intermediate representation acts as a bottleneck that must balance two
competing factors, i.e., compression and relevance. More specifically, compression means that the
IR should discard irrelevant details from the pseudocode to make the Structure Recovery phase
tractable. Moreover, relevance refers to that the IR must preserve sufficient information to recon-
struct the source code in the Identifier Naming phase. Ideally, the IR should be maximally inferable
from the pseudocode and structurally close to the target source code. Accordingly, the Information
Bottleneck (IB) principle formalizes this trade-off through the objective:

Ffr(liln) Lig = I(uw;i) — BI(i;s), 2

where I(u;i) measures the mutual information between pseudocode and IR (to be minimized) and
I(i; s) measures the mutual information between IR and source code (to be maximized). Formula
guides our choice of IR. We thus propose using obfuscated source code (Lachaux et al., [2021)),
particularly the original source with all identifiers replaced by generic placeholders. Such a repre-
sentation emerges naturally from the IB objectives. In particular, for the compression objective, the
model should distill high-level structural abstractions from the noisy, low-level patterns of the input
pseudocode. This process inherently discards irrelevant input details, thus minimizing the mutual
information between the input and our IR. Meanwhile, for the relevance objective, the obfuscated
code is an ideal structural representation as it can be theoretically recoverable from compiled binary
code even when the semantics embodied in original identifiers is lost during compilation. Conse-
quently, this IR preserves the maximum possible relevant information about the source code, thereby
maximizing the mutual information between the IR and the source.

Note that the obfuscated code can be automatically generated from source code through identifier
obfuscation (Section [3.4), making it practical in real world.

3.4 IR GENERATION

Algorithm 1 illustrates the process of generating the obfuscated code (IR) from the source code.
Specifically, the pseudocode is first analyzed to extract all function and type names that should
remain unchanged in the obfuscated code, e.g., the standard type int and library function memcpy,
which are stored in the reserved list Fp (line 1). Specifically, the source code and pseudo are
parsed to extract a set of [Category, Name] tuples. These dictionaries are then compared across
the pseudocode and source code. Whenever a [Category, Name] pair matches exactly, the name is
perserved in the obfuscated IR. The source code is then parsed into an abstract syntax tree (AST)
to provide precise identifier positions (line 2). For each identifier category, we initialize renaming
maps and counters, as well as an empty replacement list (lines 3-5). We then invoke the recursive
procedure TRAVERSE on the root of the AST (lines 6-18). During traversal, each node is classified to
determine its identifier type and name (line 7). If the name does not appear in the reserved list Fip, a
new obfuscated name is generated and stored in the renaming map (lines 8—13). A replacement entry
containing the start and end offsets together with the new name is then appended to the replacement
list (line 14). The procedure continues recursively on all children of the current node (lines 16-18).
After traversal, the replacements are applied (lines 19-25) in OBFUSCATE where the list is sorted
in descending order of start position (line 20) so that later modifications do not shift earlier offsets,
and all substitutions are performed on the original code (lines 21-24). Finally, the obfuscated code,
namely, IR, is returned (line 26).

Under review as a conference paper at ICLR 2026

Algorithm 1 Generation of Intermediate Representation (IR)
Require: Source code C, corresponding pseudocode P
Ensure: Obfuscated source code (I R)

1: Analyze P to extract names that need to be preserved: Fp

2: Parse C'into an abstract syntax tree (AST): T

3: Initialize rename maps R|[-] <— () for func, type, field, var
4: Initialize counters cnit|-] < 1 for each identifier type

5: Initialize replacement list £ < ()

6: Traverse(node):

7: (id_type, name) <+ classify node

8: if name ¢ Fp then

9: if name ¢ R[id_type] then
10 new « id_type || entlid_type]
11: Rid_type][name] < new
12: entlid_type] « entlid_type] + 1
13: end if
14: Append replacement (start(node), end(node), R[id_type][name]) to L
15: endif

16: for each child c of node do

17: Traverse(c)

18: end for

19: Obfuscate(C, £):

20: Sort £ by start position in descending order
21: Let I R be a mutable copy of C'

22: for each (s, e, new) in £ do

23: Replace substring I R[s : e] with new
24: end for

25: return /R

26: return IR

3.5 ENHANCEMENT WITH REINFORCEMENT LEARNING

To recover the structured IR from pseudocode and the identifier names from the structured IR, we
adopt the sequence-to-sequence (S2S) paradigm, which is adopted in many neural machine trans-
lation models that aim to predict the output given the input sequence (Vaswani et al.l [2017). This
paradigm typically minimizes the cross-entropy (CE) loss for the predicted tokens: y;:Lcg(0) =
— Zfil log Py(y; | y<i,x), i.e., calculating the total loss by summing the negative log probabilities
of the model correctly predicting each token in a sequence, given all the preceding tokens.

Such CE loss refers to an aggregation of local, token-level prediction errors, serving as a baseline
to train an LLM-based decompiler. However, it lacks syntactic and semantic awareness, including
assigning equal penalties for unequal errors. For example, a misplaced semicolon, which breaks
compilation, might receive a similar penalty to choosing a semantically equivalent but different
variable name. Therefore, only adopting a supervised model for Structure Recovery might generate
syntactically plausible code that does not compile, limiting the effectiveness of SK?Decompile.

To further enhance Structure Recovery, after the S2S training, we perform reinforcement learning
(RL) to align the outputs with compiler’s preference and type constraints such that the generated
IR could better represent a compilable and functionally sound program. Specifically, we design the
reward made up of two components. First, for each generated IR, we provide the compiler with
the header of the ground-truth IR in order to verify its compilability and grant a reward only upon
success, for advancing functional correctness. Additionally, we reward the accurate recovery of
placeholder identifiers by computing the Jaccard similarity coefficient between the generated (Igep)
and ground-truth sets (I;r). The placeholder recovery reward encourages the model to accurately
reconstruct the program’s data layout. Formally:

3)

[Tgen N Iir| 0.0, if I R cannot be compiled
Tplaceholder = 77 7 Tstructure =

| Toen U IR | 1.0 + Tplaceholder, if IR can be compiled

Under review as a conference paper at ICLR 2026

Note that using compiler feedback as a reward is feasible and natural. One possible alternative is
to build the reward based on the executing unit tests. However, creating unit tests and replicating
execution environments for real-world programs is often prohibitively complex and costly.

Similarly, for Identifier Naming, the CE loss undesirably penalizes cases where identifiers differ
superficially but are semantically equivalent, while such differences are negligible from a human’s
perspective. To mitigate this, we also perform RL and formulate the corresponding reward as the
semantic similarity between the embedded generated code (ey,) and the reference source code
(eqc), measured by the cosine similarity:

€gen * Csrc
Tidentifier = Cos(egena esrc) = = 4
[[egenl| llesrel
By optimizing for this similarity metric, we encourage the model to generate names that are more
semantically aligned with the ground truth, in contrast to the CE loss, which strictly enforces an
exact lexical match.

4 EXPERIMENTS

Training Data. We collected our training corpus from the C programs of Exebench (Armengol-
Estap’e et al.l 2022) and Decompile-Bench (Tan et al.l [2025) datasets. We compiled the source
files into binaries for the x86 Linux platform using GCC and Clang (Clang} [2025)), applying opti-
mization levels -O0 through -O3. To ensure data quality, we normalized the code by removing all
comments and applying clang-format to the source code, while formatting the pseudocode to adhere
to the R2I standard (Eom et al., [2024). We further employed MinHash-LSH to identify and remove
near-duplicates (Broder}, 2000). Following previous reverse engineering practices (Lacomis et al.,
2019; (Chen et al.} 2022; Xie et al., [2024)), we stripped all binaries and used IDA Pro (Hex-Rays)
2024) to generate pseudocode (please refer to Appendix [A.T]for stripping examples). This process
yielded a comprehensive dataset of approximately 5 million samples, totaling around 2B tokens of
pseudocode, 1.5B tokens of IR, and 1.5B tokens of source code.

Evaluation Benchmarks and Metrics. For evaluation, we adopted a set of standard benchmarks
widely used in previous studies: HumanEval (Chen, 2021), ExeBench (Armengol-Estap’e et al.,
2022), MBPP (Austin et al., 2021), and Github2025 (Tan et al.| |2025). These benchmarks were
processed using the same compilation pipeline as our training data. To assess the quality of the gen-
erated decompiled code, we used three primary metrics, i.e., R2I (Eom et al., 2024), GPT-judge (Xu
et al., 2025} [L1u et al.| [2023), and re-executability rate (Armengol-Estap’e et al., 2023} |Tan et al.,
2024). In particular, R2I measures the relative readability of code structure. GPT-judge uses GPT-
5-mini (OpenAl, 2025) to evaluate the Identifier Naming effectiveness of the output, with 1 for poor
performance to 5 for excellent performance. For benchmarks that support execution (HumanEval
and MBPP), we also measure the re-executability rate (Armengol-Estap’e et al., 2023} [Tan et al.,
2024]), which checks if the decompiled code can be successfully re-compiled and passes the original
test cases. For tests on stripped binaries, we restore the original function name in the generated code.
Note that Exebench is excluded from the evaluation on re-executability rate because the stripping
process disrupts its required execution environment. Detailed definitions for each metric and the
prompt of GPT-judge are provided in Appendix [A.2]

Baselines. We compare against GPT-5-mini (OpenAl, 2025)), a state-of-the-art commercial model,
as well as two leading open-source decompilation models LLM4Decompile (Tan et al., 2024) and
Idioms (Dramko et al., 2025). Other LLM-based decompilers, such as Nova (Jiang et al., [2025)),
Ref-Decomp (Feng et al.l 2025)), and D-Lift (Zou et al.| | 2025), were not included in our comparison
because they do not provide details about their data preprocessing approaches or do not release their
models, hindering fair and reproducible evaluations.

Configurations. Both the Structure Recovery and Identifier Naming models were initialized from
the LLM4Decompile-6.7B checkpoint (Tan et al.| |2024). We performed supervised fine-tuning for
one epoch using the LLaMA-Factory library (Zheng et al., [2024) with a batch size of 128 and a
learning rate of 3e — 6. For the Reinforcement Learning (RL) phase, we leveraged the GRPO (Guo
et al., 2025) algorithm in the veRL library (Sheng et al., 2024) and trained on a random subset of

Under review as a conference paper at ICLR 2026

50,000 samples due to computational constraints. The RL reward for code compilability is verified
using Psyche-C (Melo,|2025) to generate headers, and the reward for semantic similarity is measured
using qwen-embedding-0.6B (Zhang et al.| |2025). All experiments were conducted on clusters of
NVIDIA H800-80GB GPUs. During inference, we used the vLLM (Kwon et al., 2023)) library for
accelerated generation and employed greedy decoding to minimize randomness.

4.1 MAIN RESULTS

Table 1: Re-executability results between the studied decompilers.

- HumanEval MBPP
Re-executability rates

00 0O1 02 03 AVG 00 o1 02 03 AVG
IDA 56.09 47.05 35.03 2566 4095 5375 4739 3509 2234 39.64
GPT-5-mini 67.07 60.78 49.63 49.56 56.75 55.70 49.33 44.13 39.74 47.23
LLM4Decompile 67.07 3725 3358 2832 4171 6156 4242 3690 3132 43.05
Idioms 70.73 2549 1241 10.62 29.81 5478 2158 11.60 8.06 24.01
Ref Decompile 85.37 5229 4453 4690 5727 68.65 5297 46.54 4048 52.16
SK?Decompile 86.59 70.59 6131 57.52 69.00 69.76 6233 54.83 51.58 59.63

Table 2: R2I results between the studied decompilers with the compilation optimization levels OO,
O3 and the averaged results on -0{0,1,2,3}.

R2I HumanEval MBPP ExeBench GitHub2025
00 03 AVG 00 03 AVG 00 03 AVG 00 03 AVG
IDA 38.16 40.74 3945 41.06 3437 37.72 4838 51.39 49.89 3527 4324 39.26

GPT-5-mini 4997 37.03 4349 4405 31.15 37.60 31.69 2846 30.08 3293 27.13 30.03
LLM4Decompile 73.10 72.64 72.87 6623 7235 6929 60.12 57.85 5899 4498 5396 4947
Idioms 76.60 5395 6530 70.16 5574 6295 7337 5426 63.82 7143 51.84 61.63
SK’Decompile 76.62 77.72 7717 69.62 78.02 73.82 6875 7724 7299 69.78 7345 71.62

Table 3: GPT-judge results between the studied decompilers.

. HumanEval MBPP ExeBench GitHub2025
GPT-judge
00 03 AVG OO0 03 AVG 00 03 AVG OO0 03 AVG
IDA 3.08 267 288 3.05 257 281 220 191 205 237 219 228

GPT-5-mini 449 4.07 423 435 388 4.08 253 233 237 3.04 286 287
LLM4Decompile 3.88 329 342 381 322 341 247 212 222 252 256 262
Idioms 430 270 322 4.07 261 313 246 171 201 251 210 218
SK?’Decompile 451 4.05 424 431 395 412 248 247 242 3.05 3.02 3.06

Table[T|compares the re-executability rates of the studied decompilers on the HumanEval and MBPP
datasets across different optimization levels (00-O3). Notably, SK? Decompile achieves the highest
performance, surpassing the best-performing baseline GPT-5-mini by 21.6% and 26.3% averagely
on each dataset. Specifically, to the best of our knowledge, this is the first model that preserves the
functionality of binaries and reaches an average re-executability of ~70% and ~60% of HumanEval
and MBPP cases, underscoring the advantage of decomposing decompilation into two sub-tasks.

Tablepresents the R21 results of the studied decompilers. SK? Decompile consistently outperforms
all the baselines. The improvements are particularly significant in the recovery of program structures
from real-world binaries. Specifically, on the ExeBench and GitHub2025 datasets, SK2Decompile
achieves performance gains of 18.4% and 29.4% over the best-performing baseline Idioms.

The effectiveness of Identifier Naming, as evaluated by GPT-judge, is presented in Table [3] where
SK?Decompile produces high-quality names on both the HumanEval and MBPP datasets, achieving
scores of 4.24 and 4.12 out of 5, respectively. Furthermore, when applied to the real-world datasets,
SK?Decompile demonstrates an advantage over the existing techniques, outperforming GPT-5-mini
by 2.1% and 6.7%.

Under review as a conference paper at ICLR 2026

4.2 ABLATIONS

Table 4: Re-executability results between the SK?Decompile variants.

Re-executability rates HumanEval MBPP
00 0O1 02 03 AVG 00 0O1 02 03 AVG
pseudo-src 73.78 5425 4891 4248 5486 5837 4897 4277 3993 4751
pseudo-ir 78.66 6535 54.01 5221 6256 5529 4933 4322 41.02 47.25
pseudo-ir-rl 87.80 69.28 59.85 5841 68.84 6835 59.88 5225 47.62 57.06
pseudo-ir-src 78.66 66.01 5547 5486 6375 6095 55.03 4834 46.89 52.83
pseudo-ir-src-rl 86.59 70.59 61.31 57.52 69.00 69.76 62.45 54.83 51.58 59.63

In the ablation study, we designed a series of SK2Decompile variants to indicate the individual effects
of its major components, including the task decomposition and the crafted reward (RL) as follows.

* pseudo-src: This model represents a direct, end-to-end approach to decompile from pseudo to
source code. It is trained using SFT with the same training data used in SK>Decompile.

* pseudo-ir: This model is trained with SFT to convert pseudocode to IR for the evaluation on the
effectiveness of Structure Recovery.

* pseudo-ir-src: This model is trained with SFT to convert IR to source code. The output IR from
the Structure Recovery phase serves as its input for evaluating the effectiveness of Identifier Nam-
ing. Note that the training cost of a direct approach, pseudo-src and decomposed approach,
pseudo—-ir with pseudo—-ir-src, are similar to ensure fair comparison.

* pseudo-ir-rl: Based on pseudo-1ir, the model is further tuned with RL on compiler feedback.

» pseudo-ir-src-rl: This model is the complete version of SK?Decompile which integrates the de-
composed, two-phase framework enhanced with the RL for both phases.

Table |4] presents our ablation study results in terms of the re-executability rates. Noticing that
pseudo-src establishes a baseline performance with re-executability rates of 54.86% and 47.51%
on HumanEval and MBPP dataset, splitting the decompiliation process into Structure Recovery and
Identifier Naming (pseudo—1ir—-src) could increase corresponding scores to 63.75% and 52.83%
respectively. This validates that tackling decompilation as two simpler sub-tasks is indeed a more
effective strategy. Notably, even the Structure Recovery model alone (pseudo—1ir) surpasses the
pseudo-src baseline on HumanEval, highlighting that an independent phase on program struc-
ture recovery is a critical factor. Moreover, pseudo—ir-rl achieves dramatic performance gains
of 10.0% and 20.8% over the supervised-only model pseudo—-ir, indicating the benefit of crafted
rewards. At last, pseudo-ir-src-rl achieves the best performance, demonstrating that each com-
ponent of SK’Decompile is critical and combining them together is essential for optimizing the
performance. We observe similar trends for the R2I and GPT-judge results and present them in
Appendix due to the page limit.

4.3 CASE STUDY

Figure [3| presents a case study on a memory allocation function. A direct decompilation in
Figure [3(c) produces non-intuitive code that relies on an explicit type cast from a generic
void % opaque. Italso incorrectly identifies the free field as pt r. GPT-5-mini in Figure [3{(f)
fails to reconstruct the data structure, and represents data access with a low-level pointer offset
(char «x)arena + 8 instead. In contrast, the Structure Recovery phase of SK2Dec0mpile in
Figure [3[d) successfully recovers the essential control flow, conditions, and data structures. Building
on the clean recovered structure from Figure[3(d), the Identifier Naming phase in Figure[3|e) further
enhances readability by assigning meaningful names to identifiers, such as inferring available
and state as semantically appropriate names for the original free and alloc, leading to a struc-
turally accurate and semantically rich result.

Under review as a conference paper at ICLR 2026

(a) Pseudocode (b) Source code (c) pseudo-src
long long sub_149F@0(int al,long long a2){ char *dtoa_alloc(int i, Stack_alloc *alloc){ void *_malloc_aligned(int size,void *opaque){
signed int v3; long long v4; char *rv; struct malloc_opaque *opaque_ =
v3 = (al + 7) & 4294967288; int aligned_size = MY_ALIGN(i,SIZEOF_CHARP); (struct malloc_opaque *)opaque;
if ((unsigned long long) (v3 + x(uint64_t if (alloc—>free+aligned_size<=alloc->end){ size = (size + 7) & ~7;
*)(a2 + 8)) > x(uint64_t x)(a2 + 16)) rv = alloc->free; if (opaque_->ptr + size > opaque_->end)
return malloc(al); alloc->free += aligned_size; return malloc(size);
v4 = x(uint64_t *) (a2 + 8); } else void *ptr = opaque_->ptr;
*(uint64_t *) (a2 + 8) = v3 + v4; rv = malloc(i); opaque_->ptr += size;
return v4;} return rv;} return ptr;}
(d) Structure Recovery (pseudo-ir) (e) Identifier Naming (pseudo-ir-src) (f) GPT-5-mini
void *funcl(int varl, typel xvar2){ void *_alloc(int size, malloc_state xstate) { Vvoid *arena_alloc(int size, void xarena){
void xvar3; void *ret; long aligned = (long)(size + 7) & ~7ULL;
varl = (varl + 7) & ~7; size = (size + 7) & ~7; long cur = x(long *)((char x)arena + 8);
if (var2->fieldl+varl<=var2->field2){ if (state-»avail + size <= state->limit) { long end = x(long *)((char x)arena + 16);
var3 = var2->fieldl; ret = state->avail; if (aligned + cur > end)
var2->fieldl += varl; state->avail += size; return malloc(size);
return var3;} return ret;} *(long *)((char x)arena + 8) = cur+aligned;
return malloc(varl);} return malloc(size);} return (void *)cur;}

Figure 3: A case study on a memory allocation function with (a) pseudocode, (b) source code, (c) de-
compilation result from pseudo-src in Table[d] (d) Structure Recovery result from pseudo-ir
in Table [(e) Identifier Naming result from pseudo-ir-src in Table] and (f) decompilation
from GPT-5-mini.

5 CONCLUSION

In this work, we propose SK?Decompile which decomposes the binary decompilation task into two
phases. First, it recovers the program’s “skeleton”, i.e., its functional structure, using an Intermediate
Representation and compiler-guided Reinforcement Learning. Second, it recovers the program’s
“skin”, i.e., naming identifiers, with a separate reward on semantic similarity to improve readability.
Experimental results show that SK? Decompile is the first to achieve the average re-executability rate
of approximately 70% on HumanEval and 60% on MBPP datasets. It also achieves a 21.6% average
re-executability rate gain over GPT-5-mini on HumanEval and 29.4% average R2I improvement over
Idioms on the GitHub2025 benchmark. In conclusion, SK’ Decompile significantly outperforms the
existing techniques in producing functionally correct and human-readable decompilation code.

REPRODUCIBILITY STATEMENT

To ensure full reproducibility of our results, we have made all associated artifacts publicly available
in an anonymous GitHub repository. This repository contains the complete source code for our
model implementation, training scripts, and evaluation protocols. We also provide the processed
testing data, along with scripts for data preparation. For ease of use, pre-trained model weights
are also released. The README.md file in the repository offers a step-by-step guide to set up the
environment, and replicate the key results presented in this paper.

ETHICS

SK?Decompile was developed under strict ethical guidelines. It is intended for use in legitimate
scenarios, such as academic research, debugging, and recovering a company’s own lost source code,
where permission is granted or copyright does not apply. To support this, the model was trained
exclusively on open-source code from public benchmarks and permissively licensed repositories,
e.g., MIT, BSD, and Apache 2.0 (Lozhkov et al.,[2024)). Notably, commercial software remains well-
protected by obfuscation methods that make effective decompilation infeasible (Tan et al., 2024),
thus limiting the potential for misuse.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Control flow. In Compilers:
Principles, Techniques, and Tools, chapter 6, pp. 399-408. Addison-Wesley, 2 edition, 2007.

10

Under review as a conference paper at ICLR 2026

Jordi Armengol-Estap’e, Jackson Woodruff, Alexander Brauckmann, José Wesley de S. Magalhaes,
and Michael F. P. O’Boyle. Exebench: an ml-scale dataset of executable ¢ functions. Proceed-
ings of the 6th ACM SIGPLAN International Symposium on Machine Programming, 2022. URL
https://api.semanticscholar.org/CorpusID:249536081.

Jordi Armengol-Estap’e, Jackson Woodruff, Chris Cummins, and Michael F. P. O’Boyle. Slade:
A portable small language model decompiler for optimized assembly. 2024 IEEE/ACM In-
ternational Symposium on Code Generation and Optimization (CGO), pp. 67-80, 2023. URL
https://api.semanticscholar.org/CorpusID:258832373.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Andrei Z Broder. Identifying and filtering near-duplicate documents. In Annual symposium on
combinatorial pattern matching, pp. 1-10. Springer, 2000.

David Brumley, JongHyup Lee, Edward J. Schwartz, and Maverick Woo. Native x86 de-
compilation using semantics-preserving structural analysis and iterative control-flow struc-
turing. In Samuel T. King (ed.), Proceedings of the 22th USENIX Security Sym-
posium, Washington, DC, USA, August 14-16, 2013, pp. 353-368. USENIX Associa-
tion, 2013. URL https://www.usenix.org/conference/usenixsecurityl3/
technical-sessions/presentation/schwartz.

Ying Cao, Ruigang Liang, Kai Chen, and Peiwei Hu. Boosting neural networks to decompile op-
timized binaries. In Proceedings of the 38th Annual Computer Security Applications Confer-
ence, ACSAC *22, pp. 508-518, New York, NY, USA, 2022. Association for Computing Machin-
ery. ISBN 9781450397599. doi: 10.1145/3564625.3567998. URL https://doi.org/10.
1145/3564625.3567998.

Ying Cao, Runze Zhang, Ruigang Liang, and Kai Chen. Evaluating the effectiveness of decompilers.
In Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA 2024, pp. 491-502, New York, NY, USA, 2024. Association for Computing
Machinery. ISBN 9798400706127. doi: 10.1145/3650212.3652144. URL https://doi.
org/10.1145/3650212.3652144,

Mark Chen. Evaluating large language models trained on code. arXiv preprint arXiv:2107.03374,
2021.

Qibin Chen, Jeremy Lacomis, Edward J Schwartz, Claire Le Goues, Graham Neubig, and Bogdan
Vasilescu. Augmenting decompiler output with learned variable names and types. In 31st USENIX
Security Symposium (USENIX Security 22), pp. 4327-4343, 2022.

Clang. Clang, 2025. URL https://clang.llvm.org/. Accessed: 2025-09-10.

Francesca Console, Giuseppe D’Aquanno, Giuseppe Antonio Di Luna, and Leonardo Querzoni.
Binbench: a benchmark for x64 portable operating system interface binary function representa-
tions. PeerJ Computer Science, 9, 2023. URL https://api.semanticscholar.org/
CorpusID:259029804.

Chris Cummins, Volker Seeker, Dejan Grubisic, Baptiste Roziere, Jonas Gehring, Gabriel Synnaeve,
and Hugh Leather. Meta large language model compiler: Foundation models of compiler opti-
mization. arXiv preprint arXiv:2407.02524, 2024.

Yaniv David, Uri Alon, and Eran Yahav. Neural reverse engineering of stripped binaries using
augmented control flow graphs. Proc. ACM Program. Lang., 4(OOPSLA), November 2020. doi:
10.1145/3428293. URL https://doi.org/10.1145/3428293|

Luke Dramko, Claire Le Goues, and Edward J Schwartz. Idioms: Neural decompilation with joint
code and type prediction. arXiv e-prints, pp. arXiv—2502, 2025.

Haeun Eom, Dohee Kim, Sori Lim, Hyungjoon Koo, and Sungjae Hwang. R2i: A relative readability
metric for decompiled code. Proc. ACM Softw. Eng., 1(FSE), July 2024. doi: 10.1145/3643744.
URLhttps://doi.org/10.1145/3643744.

11

https://api.semanticscholar.org/CorpusID:249536081
https://api.semanticscholar.org/CorpusID:258832373
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/schwartz
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/schwartz
https://doi.org/10.1145/3564625.3567998
https://doi.org/10.1145/3564625.3567998
https://doi.org/10.1145/3650212.3652144
https://doi.org/10.1145/3650212.3652144
https://clang.llvm.org/
https://api.semanticscholar.org/CorpusID:259029804
https://api.semanticscholar.org/CorpusID:259029804
https://doi.org/10.1145/3428293
https://doi.org/10.1145/3643744

Under review as a conference paper at ICLR 2026

Michael J Evans and Jeffrey S Rosenthal. Probability and statistics: The science of uncertainty.
Macmillan, 2004.

Yunlong Feng, Bohan Li, Xiaoming Shi, Qingfu Zhu, and Wanxiang Che. Ref decompile: Relabel-
ing and function call enhanced decompile. arXiv preprint arXiv:2502.12221, 2025.

Cheng Fu, Huili Chen, Haolan Liu, Xinyun Chen, Yuandong Tian, Farinaz Koushanfar,
and Jishen Zhao. Coda: An end-to-end neural program decompiler. In H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/
fi11le/093b60£fd0557804c8balcbfl1453da22f-Paper.pdfl

Zeyu Gao, Yuxin Cui, Hao Wang, Siliang Qin, Yuanda Wang, Zhang Bolun, and Chao Zhang.
DecompileBench: A comprehensive benchmark for evaluating decompilers in real-world sce-
narios. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar
(eds.), Findings of the Association for Computational Linguistics: ACL 2025, pp. 23250-23267,
Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-256-
5. doi: 10.18653/v1/2025.findings-acl.1194. URL https://aclanthology.org/2025.
findings-acl.1194/.

Ghidra. Ghidra software reverse engineering framework, 2024. URL https://github.com/
NationalSecurityAgency/ghidra.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Hex-Rays. Ida pro: a cross-platform multi-processor disassembler and debugger, 2024. URL
https://hex-rays.com/ida—-pro/.

Iman Hosseini and Brendan Dolan-Gavitt. Beyond the c: Retargetable decompilation using neural
machine translation. arXiv preprint arXiv:2212.08950, 2022.

Peiwei Hu, Ruigang Liang, and Kai Chen. Degpt: Optimizing decompiler output with llm. In
Proceedings 2024 Network and Distributed System Security Symposium (2024). https://api. se-
manticscholar. org/CorpusID, volume 267622140, 2024.

Ling Jiang, Junwen An, Huihui Huang, Qiyi Tang, Sen Nie, Shi Wu, and Yuqun Zhang. Binaryai:
Binary software composition analysis via intelligent binary source code matching. In Proceedings
of the IEEE/ACM 46th International Conference on Software Engineering, ICSE *24, New York,
NY, USA, 2024. Association for Computing Machinery. ISBN 9798400702174. doi: 10.1145/
3597503.3639100. URL https://doi.org/10.1145/3597503.3639100.

Nan Jiang, Chengxiao Wang, Kevin Liu, Xiangzhe Xu, Lin Tan, Xiangyu Zhang, and Petr Babkin.
Nova: Generative language models for assembly code with hierarchical attention and contrastive
learning. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=4ytRL3HJra.

Pascal Junod, Julien Rinaldini, Johan Wehrli, and Julie Michielin. Obfuscator-LLVM — software
protection for the masses. In Brecht Wyseur (ed.), Proceedings of the IEEE/ACM 1st International
Workshop on Software Protection, SPRO’15, Firenze, Italy, May 19th, 2015, pp. 3-9. IEEE, 2015.
doi: 10.1109/SPR0O.2015.10.

Deborah S. Katz, Jason Ruchti, and Eric M. Schulte. Using recurrent neural networks for decom-
pilation. In Rocco Oliveto, Massimiliano Di Penta, and David C. Shepherd (eds.), 25th Inter-
national Conference on Software Analysis, Evolution and Reengineering, SANER 2018, Cam-
pobasso, Italy, March 20-23, 2018, pp. 346-356. IEEE Computer Society, 2018. doi: 10.1109/
SANER.2018.8330222. URL https://doi.org/10.1109/SANER.2018.8330222.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

12

https://proceedings.neurips.cc/paper_files/paper/2019/file/093b60fd0557804c8ba0cbf1453da22f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/093b60fd0557804c8ba0cbf1453da22f-Paper.pdf
https://aclanthology.org/2025.findings-acl.1194/
https://aclanthology.org/2025.findings-acl.1194/
https://github.com/NationalSecurityAgency/ghidra
https://github.com/NationalSecurityAgency/ghidra
https://hex-rays.com/ida-pro/
https://doi.org/10.1145/3597503.3639100
https://openreview.net/forum?id=4ytRL3HJrq
https://doi.org/10.1109/SANER.2018.8330222

Under review as a conference paper at ICLR 2026

Marie-Anne Lachaux, Baptiste Roziere, Marc Szafraniec, and Guillaume Lample. Dobf: A de-
obfuscation pre-training objective for programming languages. Advances in Neural Information
Processing Systems, 34:14967-14979, 2021.

Jeremy Lacomis, Pengcheng Yin, Edward J. Schwartz, Miltiadis Allamanis, Claire Le Goues,
Graham Neubig, and Bogdan Vasilescu. Dire: A neural approach to decompiled identifier
naming. 2019 34th IEEE/ACM International Conference on Automated Software Engineering
(ASE), pp. 628-639, 2019. URL https://api.semanticscholar.org/CorpusID:
202676778\

Gangyang Li, Xiuwei Shang, Shaoyin Cheng, Junqi Zhang, Li Hu, Xu Zhu, Weiming Zhang, and
Nenghai Yu. Beyond the edge of function: Unraveling the patterns of type recovery in binary
code. arXiv preprint arXiv:2503.07243, 2025.

Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long, Pengjun Xie, and Meishan Zhang. Towards
general text embeddings with multi-stage contrastive learning. arXiv preprint arXiv:2308.03281,
2023.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, Ruochen Xu, and Chenguang Zhu. G-eval: NLG
evaluation using gpt-4 with better human alignment. In Houda Bouamor, Juan Pino, and Ka-
lika Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, pp. 2511-2522, Singapore, December 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.emnlp-main.153. URL https://aclanthology.org/2023.
emnlp-main.153/.

Zhibo Liu and Shuai Wang. How far we have come: testing decompilation correctness of c
decompilers. In Proceedings of the 29th ACM SIGSOFT International Symposium on Soft-
ware Testing and Analysis, ISSTA 2020, pp. 475-487, New York, NY, USA, 2020. Associa-
tion for Computing Machinery. ISBN 9781450380089. doi: 10.1145/3395363.3397370. URL
https://doi.org/10.1145/3395363.3397370.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane
Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. Starcoder 2 and the stack v2: The
next generation. arXiv preprint arXiv:2402.19173, 2024.

Leandro T. C. Melo. A compiler frontend for the ¢ programming language, 2025. URL https:
//github.com/ltcmelo/psychecl Accessed: 2025-09-10.

OpenAl. Gpt-5. Large language model (multimodal) available via OpenAl API, 2025. URL
https://openai.com. Accessed: 2025-09-25.

James Patrick-Evans, Lorenzo Cavallaro, and Johannes Kinder. Probabilistic naming of func-
tions in stripped binaries. In Proceedings of the 36th Annual Computer Security Applications
Conference, ACSAC 20, pp. 373-385, New York, NY, USA, 2020. Association for Com-
puting Machinery. ISBN 9781450388580. doi: 10.1145/3427228.3427265. URL https:
//doi.org/10.1145/3427228.3427265.

pycparser. Complete ¢99 parser in pure python, 2025. URL https://github.com/eliben/
pycparser. Accessed: 2025-09-10.

Shac Ron, Todd Austin, and Tayfun Kayhan. Bringup-bench. https://github.com/
toddmaustin/bringup—bench, 2025. Accessed: 2025-11-22.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024.

Zian Su, Xiangzhe Xu, Ziyang Huang, Kaiyuan Zhang, and Xiangyu Zhang. Source code foun-
dation models are transferable binary analysis knowledge bases. In A. Globerson, L. Mackey,
D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neural
Information Processing Systems, volume 37, pp. 112624-112655. Curran Associates, Inc.,
2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/
file/cc83e97320000f4e08cb9e293bl2cf7e-Paper-Conference.pdf.

13

https://api.semanticscholar.org/CorpusID:202676778
https://api.semanticscholar.org/CorpusID:202676778
https://aclanthology.org/2023.emnlp-main.153/
https://aclanthology.org/2023.emnlp-main.153/
https://doi.org/10.1145/3395363.3397370
https://github.com/ltcmelo/psychec
https://github.com/ltcmelo/psychec
https://openai.com
https://doi.org/10.1145/3427228.3427265
https://doi.org/10.1145/3427228.3427265
https://github.com/eliben/pycparser
https://github.com/eliben/pycparser
https://github.com/toddmaustin/bringup-bench
https://github.com/toddmaustin/bringup-bench
https://proceedings.neurips.cc/paper_files/paper/2024/file/cc83e97320000f4e08cb9e293b12cf7e-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/cc83e97320000f4e08cb9e293b12cf7e-Paper-Conference.pdf

Under review as a conference paper at ICLR 2026

Marc Szafraniec, Baptiste Roziere, Hugh Leather, Francois Charton, Patrick Labatut, and Gabriel
Synnaeve. Code translation with compiler representations. arXiv preprint arXiv:2207.03578,
2022.

Hanzhuo Tan, Qi Luo, Jing Li, and Yuqun Zhang. Llm4decompile: Decompiling binary code with
large language models. In Conference on Empirical Methods in Natural Language Processing,
2024. URL https://api.semanticscholar.org/CorpusID:268297213.

Hanzhuo Tan, Xiaolong Tian, Hanrui Qi, Jiaming Liu, Zuchen Gao, Siyi Wang, Qi Luo, Jing Li,
and Yuqun Zhang. Decompile-bench: Million-scale binary-source function pairs for real-world
binary decompilation. arXiv preprint arXiv:2505.12668, 2025.

Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck principle. In
2015 ieee information theory workshop (itw), pp. 1-5. leee, 2015.

Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck method. arXiv
preprint physics/0004057, 2000.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
5998-6008, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053clcd4a845aa-Abstract.htmll

Hao Wang, Zeyu Gao, Chao Zhang, Zihan Sha, Mingyang Sun, Yuchen Zhou, Wenyu Zhu, Wenju
Sun, Han Qiu, and Xi Xiao. Clap: Learning transferable binary code representations with natural
language supervision. In Proceedings of the 33rd ACM SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA 2024, pp. 503-515, New York, NY, USA, 2024. Associ-
ation for Computing Machinery. ISBN 9798400706127. doi: 10.1145/3650212.3652145. URL
https://doi.org/10.1145/3650212.3652145.

Yongpan Wang, Xin Xu, Xiaojie Zhu, Xiaodong Gu, and Beijun Shen. Salt4decompile: In-
ferring source-level abstract logic tree for llm-based binary decompilation. arXiv preprint
arXiv:2509.14646, 2025.

Wai Kin Wong, Huaijin Wang, Zongjie Li, Zhibo Liu, Shuai Wang, Qiyi Tang, Sen Nie, and Shi
Wu. Refining decompiled ¢ code with large language models. arXiv preprint arXiv:2310.06530,
2023.

Ruoyu Wu, Taegyu Kim, Dave (Jing) Tian, Antonio Bianchi, and Dongyan Xu. DnD: A Cross-
Architecture deep neural network decompiler. In 31st USENIX Security Symposium (USENIX
Security 22), pp. 2135-2152, Boston, MA, August 2022. USENIX Association. ISBN 978-1-
939133-31-1. URL https://www.usenix.org/conference/usenixsecurity22/
presentation/wu-ruovyu.

Danning Xie, Zhuo Zhang, Nan Jiang, Xiangzhe Xu, Lin Tan, and Xiangyu Zhang. Resym: Harness-
ing llms to recover variable and data structure symbols from stripped binaries. In Conference on
Computer and Communications Security, 2024. URL https://api.semanticscholar.
org/CorpusID:2715401409.

Jiaqi Xiong, Guoqgiang Chen, Kejiang Chen, Han Gao, Shaoyin Cheng, and Weiming Zhang.
Hext5: Unified pre-training for stripped binary code information inference. In Proceedings of
the 38th IEEE/ACM International Conference on Automated Software Engineering, ASE 23, pp.
774-786. IEEE Press, 2024. ISBN 9798350329964. doi: 10.1109/ASE56229.2023.00099. URL
https://doi.org/10.1109/ASE56229.2023.000909.

Xiangzhe Xu, Zhuo Zhang, Zian Su, Ziyang Huang, Shiwei Feng, Yapeng Ye, Nan Jiang, Danning
Xie, Siyuan Cheng, Lin Tan, et al. Unleashing the power of generative model in recovering
variable names from stripped binary. In Proceedings of the Network and Distributed System
Security Symposium (NDSS), 2025.

14

https://api.semanticscholar.org/CorpusID:268297213
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.1145/3650212.3652145
https://www.usenix.org/conference/usenixsecurity22/presentation/wu-ruoyu
https://www.usenix.org/conference/usenixsecurity22/presentation/wu-ruoyu
https://api.semanticscholar.org/CorpusID:271540149
https://api.semanticscholar.org/CorpusID:271540149
https://doi.org/10.1109/ASE56229.2023.00099

Under review as a conference paper at ICLR 2026

S. Bharadwaj Yadavalli and Aaron Smith. Raising binaries to llvm ir with mctoll (wip paper).
In Proceedings of the 20th ACM SIGPLAN/SIGBED International Conference on Languages,
Compilers, and Tools for Embedded Systems, LCTES 2019, pp. 213-218, New York, NY, USA,
2019. Association for Computing Machinery. ISBN 9781450367240. doi: 10.1145/3316482.
3326354. URL https://doi.org/10.1145/3316482.3326354.

ylfeng, Yang Xu, Dechuan Teng, Honglin Mu, Xiao Xu, Libo Qin, Wanxiang Che, and Qingfu
Zhu. Self-constructed context decompilation with fined-grained alignment enhancement. In
Conference on Empirical Methods in Natural Language Processing, 2024. URL |https:
//api.semanticscholar.org/CorpusID:270710853.

Zhengran Zeng, Hanzhuo Tan, Haotian Zhang, Jing Li, Yuqun Zhang, and Lingming Zhang. An
extensive study on pre-trained models for program understanding and generation. In Proceedings
of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis, ISSTA
2022, pp. 39-51, New York, NY, USA, 2022. Association for Computing Machinery. ISBN
9781450393799. doi: 10.1145/3533767.3534390. URL https://doi.org/10.1145/
3533767.3534390.

Yanzhao Zhang, Mingxin Li, Dingkun Long, Xin Zhang, Huan Lin, Baosong Yang, Pengjun Xie,
An Yang, Dayiheng Liu, Junyang Lin, Fei Huang, and Jingren Zhou. Qwen3 embedding: Advanc-
ing text embedding and reranking through foundation models. arXiv preprint arXiv:2506.05176,
2025.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yonggiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. arXiv
preprint arXiv:2403.13372, 2024.

Mugqi Zou, Hongyu Cai, Hongwei Wu, Zion Leonahenahe Basque, Arslan Khan, Berkay Celik,

Antonio Bianchi, Dongyan Xu, et al. D-lift: Improving 1lm-based decompiler backend via code
quality-driven fine-tuning. arXiv preprint arXiv:2506.10125, 2025.

A APPENDIX

A.1 STRIP
(a) Non-stripped Pseudocode (b) Stripped Pseudocode
long long deadlock(long long al, long long a2, unsigned int a3, int a4) {.. long long sub_FFB8O@(1long long al, long long a2, unsigned int a3, int a4) {..
v5 = deadlock_search(&v6, a2, a3); v5 = SUb_100390(&v6, a2, a3);
if (v5 = -2) { if (v5 = -2) {
HRCrementicyclelstats (32LL, v10 == sk(uint64_t *x)(v13 + 80)); SUBI100630 (32LL, v10 == **(uint64_t *x)(v13 + 80));
v5 = 0;} v5 = 0;}
if (v5 == -1 && v11) change_victim(v12, &v6); if (v5 == -1 && v11) SuUbZ100670(v12, &v6);
if (v9) { if (v9) {
if (!lv1l && !v5 && !x(uint32_t x)(v9 + 232)) v5 = -3; if (!v1l && !v5 && !x(uint32_t x)(v9 + 232)) v5 = -3;
FCLURTOEK (vo) ; SUBZFFADD (v9); ¥
if (v5 == -1 && v8 != v13) { if (v5 == -1 && v8 != v13) {
*(uint8_t *)(v8 + 96) = 1; *(uint8_t *)(v8 + 96) = 1;
Entine mysqlcond_broadcast 3 (+(uint64_t x)(v8 + 40) + 168LL); SUb_100170 (+(uint64_t *)(v8 + 40) + 168LL);
rc_unlock (x(uint64_t *)(v8 + 40)); Sub_FFAD@ (+(uint64_t *)(v8 + 40));

return 0;} return 0;}
return v5;} return v5;}

Figure 4: An example with its (a) not striped pseudocode, (b) striped pseudocode

Stripping is the process of removing non-essential information from binary executable files and
object files (Patrick-Evans et al.| 2020; David et al., 2020; [Xiong et al) 2024} |Cao et al. [2022).
This information, primarily intended for debugging and analysis, is not required for the program’s
actual execution. The data typically removed includes Symbol Tables and Debugging Information.
Specifically, symbol tables contain the names and addresses of functions, global variables, and other
objects within the program. Debugging information refers to the extra data generated by the compiler
(e.g., with the -g flag in GCC) that maps the compiled machine code back to the original source code
lines, variable names, and data structures.

Stripping binaries is a common and standard practice |Lacomis et al.|(2019); (Chen et al.| (2022);
Xie et al.| (2024); [Xu et al.| (2025)), particularly for software deployed to production environments,
as it ensures size reduction and enhances security. The removal of symbols and debugging infor-
mation can significantly decrease the size of an executable file. A stripped binary is considerably

15

https://doi.org/10.1145/3316482.3326354
https://api.semanticscholar.org/CorpusID:270710853
https://api.semanticscholar.org/CorpusID:270710853
https://doi.org/10.1145/3533767.3534390
https://doi.org/10.1145/3533767.3534390

Under review as a conference paper at ICLR 2026

more difficult for reverse engineers. Without meaningful function and variable names, an attacker
or competitor must invest significantly more time and effort to understand the program’s internal
workings, business logic, or potential vulnerabilities.

The pseudocode snippets in Figure [] offer an illustration of stripping on a program. In par-
ticular, the non-stripped pseudocode in Figure [da) is significantly more readable to a human
analyst. It features descriptive function names such as deadlock, deadlock_search,
increment_cycle_stats, change_victim, and rc_unlock. These names provide im-
mediate insight into the potential purpose of the code, suggesting it is part of a system designed
to detect and handle deadlocks in a database context, possibly related to MySQL as indicated by
inline_mysqgl_cond_broadcast_3. On the other hand, the stripped pseudocode in Fig-
ure [|b) is obfuscated. The meaningful function names have been replaced with generic, tool-
generated placeholders like sub_FFB80, sub_100390, sub_100630, and sub_FFADO. These
names are derived from the memory addresses of the functions and offer no clues about their func-
tionality. An analyst examining this code would face a much steeper challenge in deciphering the
program’s logic and intent.

You are an expert reverse engineering analyst tasked with evaluating LLM decompiler performance.
You will receive source code and its decompiled version, then assess the readability of the
decompiler's output.

For each criterion, provide:

1. An integer score from 1 (very poor) to 5 (excellent)

2. A concise 1-2 sentence rationale

*kInput Format:sk

1. Original Function [SRC]

2. Decompiled Function [DSRC]

*xkScoring guidance:sx

**1 — Very Poorsx

1.1 Function, variable, and field names are meaningless (e.g., “funcl', ‘varl', “field_4").

1.2 Names do not reflect their semantic roles (e.g., a counter named “ptr2’).

1.3 Types are missing or collapsed into raw pointers/integers, with no sign of higher-level
structures.

1.4 Access patterns are opaque (e.g., complex pointer arithmetic instead of ‘arr[i]® or
‘obj.field').

**2 — Poorkk

2.1 Some identifiers exist, but remain generic and uninformative.

2.2 Type information 1is partially present, but arrays, structs, or objects are poorly
reconstructed.

2.3 Code is slightly more readable than raw disassembly, yet the correspondence to source-level
abstractions is weak.

*%3 — Fairkk

3.1 Function and variable names are somewhat descriptive, though often inconsistent or too
generic.

3.2 Basic type recovery exists: arrays, pointers, and simple structs are recognizable.

3.3 Field and array access are partly reconstructed, but may still fall back to pointer
arithmetic in places.

3.4 Readability is acceptable, but requires effort to interpret correctly.

*k4 — Goodxxk

4.1 Names are meaningful, semantically relevant, and generally consistent with their roles.

4.2 Structs, arrays, and object types are restored in a way close to natural source code.

4.3 Field and array access is mostly clean and human-readable ("obj.field', ‘arr[il’).

4.4 Overall readability is high, though not fully equivalent to carefully written source code.
*k5 — Excellentsx

5.1 Function, variable, and type names are clear, natural, and semantically accurate.

5.2 Type recovery is faithful, with well-structured classes, structs, and arrays that match
typical source-level abstractions.

5.3 Field access and indexing are intuitive and entirely free of unnecessary pointer arithmetic.
5.4 The recovered code feels almost indistinguishable from human-written source, with excellent
overall readability.
*kQutput Format:sx
Provide only a valid JSON object with exactly these two fields:

json

"Code Readability Assessment": {
"score": <int>,
"rationale": '"<string>"
}
}
Output only the JSON object without additional commentary.

Figure 5: GPT-judge prompt for a qualitative assessment of Identifier Naming effectiveness.

16

Under review as a conference paper at ICLR 2026

A.2 METRICS

The Relative Readability Index (R2I) (Eom et al., |2024) is a quantitative metric for evaluating and
comparing the readability of decompiled C code, producing a normalized score between 0 and 1.
It functions by constructing an Abstract Syntax Tree (AST) for each output, extracting predefined
features, and calculating a weighted score.However, the original R2I implementation introduces a
significant bias. It discards an entire data sample if any single decompiler’s output fails to be parsed
by the pycparser (pycparser, [2025) library. This is problematic because pycparser often
fails on code containing user-defined types and functions, skewing the evaluation towards simpler
programs. To create a more robust and unbiased metric, we modified the process. First, we use
pschec (Melo, 2025) to generate headers, improving the likelihood of successful parsing. More
importantly, if a specific output still fails to parse, we assign it a score of 0 instead of discarding
the entire sample. This allows us to evaluate the other parsable outputs for that program, ensuring a
more comprehensive and fair assessment.

Re-executability is a widely adopted metric in decompilation that evaluates the functional equiva-
lence between an original source function and its decompiled output (Tan et al., 2024; |/Armengol-
Estap’e et al.| 2023} ylfeng et al.| 2024} Jiang et al., 2025} [Feng et al.l [2025)). Ideally, this means the
decompiled function should produce the same output as the original function for every conceivable
input. However, since testing every input is impossible, we use a practical approach. We run a set
of predefined unit tests on both the original code and the decompiled code. If the outputs match
for every single test case, we consider the decompilation successful and “re-executable”. This same
concept is often called I/O accuracy or pass rate (Armengol-Estap’e et al., 2023} |Jiang et al.| [2025).

We leverage GPT-judge to assess the Identifier Naming effectiveness for the decompilers. GPT-
judge has become increasingly adopted for evaluating LLM-based decompilers (Tan et al., 2024;
2025}|Gao et al., 2025)). In particular, we use GPT-5-mini (OpenAll 2025) as an automated evaluator,
which is prompted to perform a comparative analysis of the decompiled output and the original
source code, specifically focusing on the quality of the recovered identifiers. It provides a rating on
a 5-point scale, with 1 for poor performance to 5 for excellent performance. The exact prompt used
in our evaluation is detailed in Figure 5}

A.3 ADDTIONAL RESULTS

Table 5: R2I results between the SK>Decompile variants. Note that since R2I evaluates decompiled
code in a relative context quantitatively (Eom et al., 2024)), its values can vary significantly for the
same decompiler when compared with different baselines.

HumanEval MBPP ExeBench GitHub2025
00 03 AVG 00 03 AVG 00 03 AVG 00 03 AVG

pseudo-src 54.62 5777 5647 5653 54.43 5583 59.11 4934 55.15 5441 5171 53.17
pseudo-ir 51.85 6025 5639 5481 5573 5526 5586 53.96 55.18 5831 5530 56.46
pseudo-ir-rl 5551 60.76 57.53 5449 5839 5736 59.68 60.82 6092 5924 5695 57.15
psuedo-ir-src ~ 53.58 59.52 57.10 55.22 56.30 55.80 56.04 55.50 55.73 59.36 56.06 57.33
psuedo-ir-src-rl - 56.41 59.01 5749 54.68 59.28 57.75 59.50 60.59 61.06 59.70 57.56 57.73

R21

Table 6: GPT-judge results between the SK” Decompile variants
HumanEval MBPP ExeBench GitHub2025
00 O3 AVG O0 O3 AVG OO0 O3 AVG O0 03 AVG

pseudo-src 445 380 405 423 389 403 266 230 237 3.08 289 3.00
pseudo-ir 2.88 269 274 278 264 272 196 173 1775 242 223 234
pseudo-ir-rl 293 269 279 280 267 273 197 173 177 243 232 235
pseudo-ir-src 448 399 416 426 394 409 247 245 238 3.02 296 3.03
pseudo-ir-src-rl 4.51 4.05 424 431 395 412 248 247 242 305 3.02 3.06

GPT-judge

We present ablation results for structural readability (R2I) and identifier quality (GPT-judge) in
Table [5] and Table [0} respectively. The R2I scores in Table [5] exhibit a consistent trend with our

17

Under review as a conference paper at ICLR 2026

re-executability findings (Table [)), further indicating that both task decomposition and specialized
rewards improve structural recovery. Table [6] presents a similar trend for Identifier Naming. As
expected, the Structure Recovery models score poorly on this metric since they are explicitly de-
signed not to restore original names. Overall, the results altogether validate the effectiveness of our
decomposed approach.

A.4 THE USE OF LARGE LANGUAGE MODELS

During the preparation of this manuscript, we utilized a Large Language Model (LLM) only for
assistance with writing. The LLM’s role was strictly limited to proofreading, correcting grammatical
errors, and improving the clarity and readability of the text. The core research ideas, methodologies,
and conclusions presented in this paper were conceived and developed entirely by the authors.

A.5 CONSTRAINTS ON RE-EXECUTABILITY TESTING

ExeBench’s unit tests require information (exact symbol/type names) that is intentionally removed
during compilation and stripping. As a result, even a behaviorally correct decompilation cannot be
compiled and executed against the ExeBench tests.

To illustrate this, we present the first two test cases from ExeBench as example.

Case 0: Dependency on Global Variables
Source Code: Pseudocode:
void SCC_Reset(void) { long long sub_4CE3() {
(Wires[Wire_VIA1_iA7_SCCwaitrq]) = 1; *(uint32_t *)(qword_481D0 + 4 * qword_481C8) = 1;
SCC.SCC _Interrupt_Type = 0; qword 481B8 =0LL;
(Wires[Wire_SCClnterruptRequest]) = 0; *(uint32_t *)(qword_481D0 + 4 * qword_481C0) = 0;
SCC.PointerBits = 0; qword_481B0 =0LL;
SCC.MIE = 0; qword 481A8 =0LL;
SCC.InterruptVector = 0; qword_481A0=0LL;
SCC_InitChannel(1); sub_4CC6(1LL);
SCC_InitChannel(0); sub 4CC6(0LL);
SCC_ResetChannel(1); sub_ 4CA9(1LL);
SCC_ResetChannel(0);} return sub_4CA9(OLL);},
Case 1: Dependency on User-Defined Types
Source Code: Pseudocode:
void Stateldle(Ltc4151State next, Ltc4151 *device) uint32 t *sub 4CA9(int al, uint32_t *a2) {uint32_t *result;
{device->state = next; } result = a2; *a2 = al; return result;

Figure 6: Typical examples of ExeBench.

Globals lost (Case 0): The original source code relies on two external global variables, Wires and
SCC, and their specific field names (e.g., PointerBits). As the pseudocode shows, this symbolic
information is lost, replaced by direct memory addresses (e.g., qword_481D0). To re-compile and
pass the test, a decompiler would need to identically recover the exact structure and names of Wires
and SCC, which is not feasible from the stripped binary.

User-defined types erased (Case 1): Similarly, the source code requires two specific user-defined
types: Ltc4151State and Ltc4151. These type names are completely lost during compilation
and stripping. The ExeBench test suite is designed to compile against the original source headers.
Any decompiled output that does not recover these exact (and arbitrary) type names will fail to
compile, making the re-executability test impossible to pass.

In summary, ExeBench’s re-execution task heavily relies on high-level symbolic information like
user-defined type names or variable names, which are deterministically lost during compilation and

stripping.

18

Under review as a conference paper at ICLR 2026

We concluded that any success on this benchmark would likely be due to the LLM “remembering”
the original source code from its training data (i.e., data leakage) rather than performing genuine
decompilation. This would render the evaluation results untrustworthy for our purposes.

A.6 EVALUATION ON BRINGUPBENCH

We have extended our experiments to include the BringUpBench (Ron et al) 2025). We com-
piled, decompiled, and executed the projects across optimization levels O0—O3. In total, there’re 90
projects with 505 fucntions. We compared SK? Decompile against the industry-standard rule-based
decompiler, IDA Pro.

Table 7: Compilation and re-execution rates on BringUpBench

Method Re-compilability rates Re-executability rates
00 O1 02 03 AVG 00 O1 02 03 AVG
IDA 284 232 233 194 236 254 216 214 183 21.7

SK’Decompile 443 445 421 383 423 343 291 249 197 270

Quantitative results on BringUpBench compare SK?Decompile against the industry-standard de-
compiler, IDA. Specifically, our method achieves a compilation rate of 42.3%, compared to 23.6%
for IDA. Furthermore, regarding functional recovery, SK? Decompile demonstrates a re-executability
rate of 27.0%, whereas IDA achieves 21.7%.

These results confirm that our approach maintains a reasonable success rate and superior functional
correctness even on complex, real-world binaries where rule-based systems struggle.

Implementation and Reproducibility To ensure transparency, we have open-sourced the repro-
duction scripts in the Supplementary Material. Our evaluation pipeline consists of five steps:

1.Compilation: Compile all C projects in BringUpBench into binaries using flags O0-O3.
2.Baseline Extraction: Leverage IDA Pro to analyze binaries and extract corresponding pseudocode.

3.Ground Truth Mapping: Parse the source code. We pair binary functions with source functions
based on file paths and symbol names.

4.Decompilation: Decompile each binary function using SK?Decompile and substitute the result
back into the source tree.

5.Validation: Compile the substituted source code and run the project’s test suite to verify functional
correctness.

A.7 IMPACT OF FEEDBACK LOOPS

Previous research has shown that a feedback loop can improve re-executability (Hu et al.| 2024
Wong et al.| [2023)). To assess this, we ran an automated compile — run — diagnose — edit loop
using a state-of-the-art commercial Al coding tool, Codex on HumanEval dataset. For each decom-
piled function, we provided the Codex with the decompiled C code from SK?>Decompile and N unit
tests, with N = [0, 1, 5]:

N = 0 (no tests): Approximates the common real-world case where a test is unavailable. The model
relies only on compiler/runtime messages and its own edits.

N =1 (single test): Supplies a minimal behavioral hint.
N =5 (hintful tests): Supplying a richer set of tests provided clear behavioral specifications.

Note it’s not meaningfull to provide all the test cases to Codex, the tool can synthesize code that
passes all cases without preserving the original implementation. Crucially, this feedback loop is a

19

Under review as a conference paper at ICLR 2026

Table 8: HumanEval Re-executability results with refinement using Codex.

PI ; -
Re-executability rates SK*Decompile LLM4Decompile

00 O1 02 03 AVG 00 O1 02 03 AVG

Base 86.59 7059 62.04 5841 6941 67.07 3725 3358 2832 41.56

+Codex 90.24 80.39 75.18 7257 79.60 7195 49.02 49.64 46.02 54.16

+Codex w 1 test 9329 83.66 81.75 77.88 84.15 7744 51.63 5693 53.10 59.78
+Codex w 5 test 95.73 87.58 87.59 83.19 8852 8232 58.82 6277 5929 65.80

post-processing step that benefits from a better initial decompilation. We conducted a comparative
study applying the same feedback loop to the output from our baseline, LLM4Decompile.

The refinement loop consistently achieved a higher final executability rate when starting from the
SK?Decompile output. Compared to using LLM4Decompile, the pass-rate was 46.97% higher with
N=0 test cases and 34.52% higher with N=5 test cases.

This demonstrates that a more accurate base decompiler, like SK? Decompile provides a significantly
better starting point and raises the “upper bound” of what even a sophisticated feedback loop can
achieve. Therefore, while refinement is powerful, improving the core decompiler remains funda-
mental.

Note that the refinement loop is computationally expensive (30 s per item; 30 hours for a full run; 6
Million API tokens usage).

A.8 QUALITATIVE ASSESSMENT

Our inspection confirms that SK?Decompile remains highly robust across standard decompilation
scenarios. However, by analyzing the edge cases, we identified three categories of challenges that
stem from the intrinsic nature of the task. We highlight these as key frontiers for the community:

Contextual Boundaries: Challenges arising from dependencies outside the single-function scope
(e.g., resolving global variables), which require context beyond the current input window.

Pattern Rarity: Difficulty handling non-idiomatic patterns that statistically deviate from standard
data distributions.

Arithmetic Precision: Difficulties with precise numerical operations, a known limitation of current
LLM architectures rather than the decompilation approach itself.

Contextual Boundaries. First, SK’ Decompile is not designed to handle elements like global vari-
ables, which are not defined within the function’s immediate binary code.

For instance, as noted in Figure @ SK?Decompile currently struggles with elements like global
variables that are not defined within the function’s immediate binary code.

The original source code relies on two external global variables, Wires and SCC, and their specific
field names (e.g., PointerBits). As the pseudocode shows, this symbolic information is lost,
replaced by direct memory addresses (e.g., gword_481D0). To re-compile and pass the test, a
decompiler must to identically recover the exact structure and names of Wires and SCC, which is
not feasible from the stripped binary.

The clear research direction is to move towards binary-level decompilation, which would incorpo-
rate this wider context (e.g., information from function calls or data sections like .rodata). However,
this approach introduces a significant new challenge: computation cost. This contextual informa-
tion drastically lengthens the input. Based on our GitHub2025 dataset (compiled from real-world
projects post-2025), eachfunction calls an average of 6.3 other functions. Simply concatenating this
data would lead to a quadratic computation cost for the attention mechanism, which is extremely
expensive for both training and inference. Therefore, we believe a critical future challenge is to
research methods that can effectively balance this trade-off between computation cost and perfor-
mance, enabling the model to leverage wider binary-level context efficiently.

Note that in such condition, the idea of decomposition proposed in this work is more significant.
Binary-level decomposition will include significant more types and functions that cross-referred to

20

Under review as a conference paper at ICLR 2026

each other, obfuscated the code for a cleaner object will significantly reduce the complexity. And the
idea of using compiler feedback as reward proposed in this work will continue to benift the training
of a more effective model.

Pattern Rarity. A second critical challenge is that SK>Decompile can be misled by abnormal or
non-idiomatic patterns in the input pseudocode. The model inherits and replicates errors from the
decompiler (e.g., IDA) instead of correcting them.

Source Code Pseudocode
int funcO(int n) { long long sub_1169(int al) {
int J100]; int *v1; int v3; uint32_t v4[101];
fl0]=0; f]1]1=0; f]2] =2; {[3] = 0; unsigned long long v5;
for (inti=4;1<=n;i+t) { v5=__ readfsqword(40u);
fli] =A[i - 1]+ f[i - 2] + fli - 3] + f]i - 41} || v3 =0;
return f[n];} v4[0] = 0;
v4[1]=2;
SK2Decompile v4[2] = 0;
int funcO(int n) { if (al > 3) {
int count[100]; vl =&v3;
count[0] = 0; count[1] = 2; count[2] = 0; do {
for (inti=3;i<n; i++) { vI[4]="*vl +vI[1] + vI[3] + vI[2];
count[i] = count[i - 1] + count[i - 2] + vl
count[i - 3] + count[i - 4];} } while (v1 1= &v4[al - 4]);}
return count[n - 1];} return (unsigned int)v4[al - 1];}

Figure 7: Qualitative assessment on pattern rarity.

We observed this in a case where the source code initialized the first four elements of an array:
£[01=0; £[11=0; £f[2]=2; £[3]1=0;.IDA initializes only three elements of v4 and intro-
duces a temporary v3 that is adjacent to v4. The loop then updates via vl = &v3, so v1[4]
aliases into v4. This non-idiomatic pattern obscures the intended four-element seed and shifts in-
dices. Our model, SK?Decompile, was misled by this abnormal input. As shown in its output, it
initializing only three elements (count [0], count[1], count[2]) and failing to semanti-
cally reconstruct the correct program logic.

This reveals a significant research challenge, the next frontier is not just scaling models, but inte-
grating deeper semantic analysis. Models should learn to critically inspect and correct data flow
and logic flow, not just translate patterns. How to efficiently integrate formal program analysis (like
data/control-flow) with neural models is a very challenging but necessary next step for the commu-
nity.

Arithmetic Precision. A third critical challenge lies in reversing compiler optimizations related
to numerical operations.

Source code Pseudocode SK2Decompile
int funcO(int n) { long long sub_12F0(intal) { int funcO(int n) {
int count = 0; unsigned int v1; unsigned int v2; int count = 0;
for (inti=0;1<n; i++) unsigned int v3; vl =0;v2 =0; for (inti=1;i<n;it+t) {
if(i%11==0]1% 13=0) { if (al > 0) { if(1%20==0]i%21=0)
intq=1i; while (al !=++vl) { int temp = i;
while (q > 0) { while (-1171354717 * vl <=390451572 while (temp !=0) {
if (q % 10 ="7) count +=1; | -991146299 * v1 <=330382099) { if (temp % 10 =7) {
q=q/10;}} v3=vl;do { count++;}
return count;} v2+=v3 % 10==7;v3 /= 10u; temp /= 10;}} }
} while (v3); return count;}
if (al ==++vl) return v2;} }}
return v2;}

Figure 8: Qualitative assessment on arithmetic precision.

21

Under review as a conference paper at ICLR 2026

As detailed in the example below, the source code implements a simple modulo op-
eration: 1 % 11 == i % 13 == 0. However, the compiler optimizes this oper-
ation into a sequence of multiplications and comparisons using “magic numbers” (e.g.,
-1171354717 * vl <= 390451572 -991146299 % vl <= 330382099) to avoid
expensive division instructions at runtime. While SK? Decompile successfully identifies the semantic
intent—correctly predicting that a modulo operation is taking place—it fails to recover the correct
operands. Instead of 11 and 13, it hallucinates 20 and 21.

This failure illustrates that while the model understands control flow patterns, it cannot reliably
perform the reverse-mathematics required to decode compiler optimizations. Because LLMs are
inherently weak at precise computation, this identifies a key direction for future work: integrating
external tools (like SMT solvers) into the generation loop to handle numerical recovery, rather than
expecting the LLM to “solve” the math internally.

A.9 BASELINE AVAILABILITY AND REPRODUCIBILITY

Nova: While the model weights are available, the generation logic relies heavily on specific
<label-N> tags. The code to generate these labels is not provided, rendering the preprocessing
pipeline unreproducible. Furthermore, Nova’s reported performance (34.36 re-executability rate on
HumanEval) is already significantly lower than our baseline, LLM4Decompile (41.71), suggesting
that even a perfect reproduction would not alter our conclusions.

DLift: We attempted to access the code referenced in the latest paper version , but the GitHub link
provided remains a placeholder.

Ref-Decompile: We conducted a deep dive to reproduce this work. We successfully adapted
their preprocessing for single-file contexts (HumanEval and MBPP). However, extending this to
ExeBench and GitHub2025 proved infeasible. Ref-Decompile’s preprocessing strictly assumes
single C-file compilation via gcc (Ref-Dec/train/compiler.py:112-123), whereas ExeBench and
GitHub2025 require complex build environments (mixed C/C++/Assembly and CMake linking).

In terms of re-executability on HumanEval and MBPP, Ref-Decompile performs comparably
to SK?Decompile only on unoptimized code. However, in realistic settings (O3 optimiza-
tion), SK>Decompile significantly outperforms Ref-Decompile, achieving relative improvements
of 22.64% and 27.42%, respectively. Additionally, SK?Decompile consistently surpasses Ref-
Decompile on readability metrics, as evaluated by both R2I and GPT-judge.

Table 9: Re-executability rates on HumanEval and MBPP.
HumanEval MBPP

00 0Ol 02 03 Avg 00 01 02 03 Avg

SK?Decompile 86.59 70.59 61.31 57.52 69.00 69.76 62.33 54.83 51.58 59.63
Ref-Decompile 8537 5229 44.53 4690 5727 68.65 5297 46,54 4048 52.16

Method

Table 10: Round-trip interpretability (R2I) results on HumanEval and MBPP.
HumanEval MBPP

00 03 Avg 00 03 Avg

SK’Decompile 6325 61.76 62.14 59.16 62.52 61.23
Ref-Decompile 56.28 5820 57.97 59.43 60.03 59.91

Method

A.10 COMPARISON WITH CLASSIC DECOMPILER
we have integrated IDA Pro (Hex-Rays) into our evaluation to contextualize our model’s perfor-

mance. As detailed in the revised experimental results, SK>Decompile demonstrates distinct advan-
tages over the conventional baseline. The results are included in Table |1} Table 2| and Table

22

Under review as a conference paper at ICLR 2026

Table 11: GPT-judge ratings on HumanEval and MBPP.
HumanEval MBPP

00 03 Avg 00 03 Avg

SK’Decompile 4.51 4.05 4.24 431 395 4.12
Ref-Decompile 4.23 3.64 392 3.84 343 3.66

Method

Re-executability: SK?Decompile produces functionally executable code significantly more often
than IDA, showing improvements of 68.49 and 50.42 on HumenEval and MBPP datasets respec-
tively. While IDA generates pseudo-code optimized primarily for static analysis—often containing
syntax errors or undefined patterns that require manual patching to compile—our method bridges
this gap by generating syntactically complete code that allows for immediate re-execution and dy-
namic verification.

We wish to clarify the fundamental distinction between binary Lifting (the goal of tools like mc-
toll (Yadavalli & Smith,|2019)) and Decompilation (the goal of SKZDecompile).

Ilvm-mctoll aims to translate binary code into LLVM IR. This is an intermediate representation
optimized for compiler analysis and re-optimization, representing "Hardware Truth” (low-level op-
erations).

In contrast, SK?Decompile aims to recover maintainable C source code. This requires recovering
high-level abstractions and control flow structures (“Logical Truth”) optimized for human readabil-

1ty.

Comparing SK>Decompile directly to mctoll is arguably an “apples-to-oranges” comparison because
their output formats serve different abstraction layers. To illustrate why LLVM IR (even when lifted
correctly) is distinct from decompiled source, we provide a concrete examples below.

LLVM-MCToll 1lifting (total 173 lines)
define dso_local 132 @funcO(i64 %argl, i32 %arg2, double %arg3,
double %arg4) {
entry:
$stktop_4 = alloca 18, 132 40, align 1
...21 lines...
br label %bb.1

bb.1: ; preds =
%entry, $bb.9

$memload = load 132, ptr $RBP_N.28, align 1

...14 lines...

icmp eq il %SF, %OF

br 11 %$CmpSFOF_JGE, label %bb.10, label %bb.2

bb.2: ; preds = %bb.l1l
$memloadl = load 132, ptr %$RBP_N.28, align 1
...13 lines...
br label %bb.3

bb.3: ; preds = %bb.2,
$bb.7

$memload8 = load 132, ptr %stktop_4, align 1

...14 lines...

br 11 %$CmpSFOF_JGE48, label %bb.8, label %bb.4

bb.4: ; preds = %bb.3
$memloadl5 = load 164, ptr SRBP_N.16, align 1
...37 lines...
br il %CFAndZF_JBE, label %bb.6, label %bb.5

23

Under review as a conference paper at ICLR 2026

bb.5: ; preds = %bb.4
store i32 1, ptr %RBP_N.4, align 1
br label %bb.11

bb.6: ; preds = %bb.4
br label %bb.7

bb.7: ; preds = %bb.6
$memload3l = load i32, ptr %stktop_4, align 1
...13 lines...

br label %bb.3

bb.8: ; preds = %$bb.3
br label %bb.9

bb.9: ; preds = %bb.8
$memload39 = load 132, ptr $RBP_N.28, align 1
...13 lines...
br label %bb.1

bb.10: ; preds = %bb.1l
store i32 0, ptr $RBP_N.4, align 1
br label %bb.11

bb.11: ; preds =
$bb.10, %bb.5

$memload47 = load i32, ptr %RBP_N.4, align 1

ret i32 %S$memload4d?

}

SK2Decompile
int funcO(float =*array, int n, float eps) {
int i, J;

for (i = 0; 1 < n; i++) {
for (jJ =1 + 1; j < n; Jj++) {
if (fabs(array[i] - arrayl[j]) < eps) {

return 1;}1}}
return 0;}

Array Indexing (Explicit Arithmetic vs. Abstraction) Source: array [i]

Lifter (mctoll): It explicitly reconstructs the byte-offset calculation. In the IR, this appears as:

$memref-idxreg = mul i64 4, %RCX ; Index x 4 bytes

$memref-basereg = add i64 %S$memloadlb5, %$memref-idxreg;Base+Offset
%28 = inttoptr i64 %memref-basereg to ptr ; Cast to pointer

SK?Damnwﬂe:Rcagnﬁesmepmmnlbase + (i » sizeof (type)) and collapses it back
into array[i].

The For-Loop Structure (Flags vs. Logic)—
Source: for (1 = 0; 1 < size; 1i++)

Lifter (mctoll): The CPU uses comparisons and jumps, not loops. mctoll preserves the “flag” in-
herent to the x86 CMP instruction (calculating differences and setting Zero/Sign flags). These flags
creates massive noise in the IR.

%9 = sub 132 %$memload, %8 ; The subtraction (i - n)
$ZF = icmp eq i32 %9, O ; Zero Flag

24

Under review as a conference paper at ICLR 2026

%$SEF = icmp ne 132 %$highbit, 0 ; Sign Flag
$CmpSFOF_JGE = icmp eq il $%$SF, %OF ; Jump if Greater or Equal

SK?Decompile: Performs Control Flow Graph (CFG) recovery to identify the cycle, collapsing the
subtraction and conditional branches back into a for loop structure.

Because mctoll stops at LLVM IR—preserving stack manipulations and flag simulation—it does not
compete on readability or source recovery. The appropriate rule-based state-of-the-art benchmarks
are industrial decompilers IDA Pro. It also lifts to an internal IR (Microcode) but then perform the
necessary structural analysis to emit high-level pseudocode.

Therefore, we utilized IDA Pro as the rigorous rule-based baseline for our evaluation.

Structural Readability (R2I): We observe a substantial margin in structural recovery. IDA achieves
an R2I score of approximately 40, which is nearly half the 70 achieved by SK?Decompile. This low
baseline score emphasizes that conventional decompilers, while semantically accurate, often fail to
reconstruct the high-level control flow logic or data structure necessary for human readability.

Naming Quality (GPT-judge): SK’Decompile surpasses IDA by over 30% in identifier nam-
ing quality. unlike conventional tools that rely on generic, register-based nomenclature (e.g., v1,
sub_404, arg2), our model leverages semantic context to infer descriptive variable and function
names. This results in output that aligns closely with the original developer’s intent, significantly
reducing the cognitive load for analysts.

A.11 IDENTIFIER NAMING AND SK?Decompile

[TRADITIONAL APPROACH: "Decorating a Messy Pile"]
variable/type naming only

“Skull”
/A "Rib" "Tibia" "Femur"
| | () (I —
_/ \ / l—1

/ N\
| /\ __/

RESULT: Recover the names, but the pile is still a pile.
Logic remains broken and hard to read.

[Phase 1: SKELETON RECOVERY — REBUILD THE STRUCTURE] [Phase 2: SEMANTIC SKIN — CONTEXT-AWARE NAMING]
Ignore names initially; restore joints and load-bearing relations. With the skeleton fixed, names become constrained.
(Head) ~A A
[_1] (@@)\
I (_)) function: parseCow() N_
(Neck)===| |====================(Spine / Control-Flow) 1 API/entity labels - / \
Il | I | || "Moo", ReadBuffer, HashMap / /
(R1) (R2) (R3) (R4) « ribs = Data structure I ;
Il | I |
[Hip]-—-/ \--—-[Shoulder] I ll ll I \
I [A \
Il I an AA A an ~—
(Leg) (Leg)
9 9 step total index count tail
RESULT: Valid high-level structure (CFG, loops, if/else) stands on its RESULT: Fully decompiled, readable code:
own. Variables still generic (v1, v2, v3), but the "animal" now stands. correct logic + informative names.

Figure 9: Difference between pure Identifier Naming and SK>Decompile.

Previous Identifier Naming works (Xie et al. 2024} |Lacomis et al., 2019} |Chen et al) [2022)
takes existing, potentially unstructured or “messy” pseudocode and attempts to predict variable
names—effectively “decorating” the components without assembling them. As illustrated in the
following plot, this is equivalent to painting a cow surface without checking the form beneath.

In contrast, our approach treats decompilation as a two-stage generation problem: 1.Structural Re-
covery (The Skeleton): Reconstructing the control flow and logic from the “messy components” of
low-level code. 2.Semantic Recovery (The Skin): Inferring meaningful variable names and types.
As illustrated in the following plot, we first rebuild the skeleton, then recovers the skin.

25

Under review as a conference paper at ICLR 2026

The primary innovation of our implementation is the prioritization of Structure Recovery. Unlike
the cited paper, which assumes the structure exists and focuses only on the “skin”, we build the
anatomy from the ground up. The cited paper attempts to paint a cow pattern on a disorganized pile;
in contrast, we build the skeleton first to ensure the skin sits on a correct anatomical structure.

A.12 ROBUSTNESS AGAINST ARCHITECTURES AND LANGUAGES

We demonstrate that SK?Decompile is highly robust to architecture changes and discuss its applica-
bility to other programming languages like Go and C++.

Robustness Across Architectures and Operating Systems Our method generalizes to different
architectures without requiring fine-tuning. To validate this, we evaluated SK’>Decompile on two
additional platforms: MacOS-arm64-Clang and Windows-x64-MSVC.

As shown in table, the performance remains consistent with our original Linux-x64-GCC results.
For MSVC, optimization flag /Od corresponds to -O0, and /Ox is roughly equivalent to -O3.

Table 12: Re-executability of SK? Decompile when decompiling binaries from different platforms

- HumanEval MBPP
Re-executability rates
00 01 02 03 AVG 00 01 02 03 AVG
Linux 86.59 70.59 6131 57.52 69.00 69.76 6233 5483 5158 59.63
Windows 70.80 70.34 58.01 5140 6263 7260 6749 5523 4933 61.16
MacOS 83.97 5098 4745 4464 56776 73.05 5586 4848 4690 56.07

These results demonstrate that SK?Decompile effectively captures program semantics regardless of
the underlying instruction set architecture (ISA) or OS-specific conventions.

Generalization to Other Languages Our model demonstrates the capability to recover structure
and naming information from binaries compiled from other languages, such as Go and C++, without
requiring additional fine-tuning.

Case A: Go (Golang) Although SK?Decompile was trained exclusively on C, it successfully recov-
ers the logical structure of Go binaries.

GO source code Pseudocode
func funcO(n int) int { void main_funcO(int n, int _r0) {
count :=0 int v2; long long v3;
fori:=0;i<n;it++ { int v4;long long v5;
ifi%l11==01%13==0 { int v6;
q:=i v2=0LL;v3=0LL;
forq>0 { while (n>v2) {
if q%10==7 { v4 =n;v5=v3;
count += 1} if (v2 ==11 *((long long)((unsigned __int128)
q=q/10}}} (v2 *(__int128)6707906935894382406LL) >>64) >>2) ||
return count} v2 ==13 *((long long)((unsigned __int128)
(v2 *(__int128)5675921253449092805LL) >>64) >>2)) {
SK2Decompile V6 = v2:
void funcO(int n) { while (\;2 >0) {
int temp = 0; if (v2 -10 *((long long)(v2 + ((unsigned _ int128)
long count=0; (v2 *(__int128)(long long)14757395258967641293LL) >>64)) >>3) ==7)
for (inti=0;i<n;it++) { +HvS;
if(i % 11==01i%13==0) { v2 = (long long)(v2 +((unsigned _ int128)
temp =1, (v2 *(__int128)(long long)14757395258967641293LL) >>64)) >>3;}
while (temp > 0) { V2 = v6:}
if (temp % 10 ==7) { e
count++;} n= VA;
temp /=10;}}}} V3 =v5;))

Figure 10: Applying SK?Decompile to decompile Go binaries.

While the logic and variable names generated by SK?Decompile are largely accurate, the model
lacks awareness of Go-specific syntax. In the provided example, the underlying tool (IDA) incor-
rectly identifies a Go function as having a void return type. Consequently, while our model correctly
reconstructs the algorithmic logic (looping and modulo operations), it omits the explicit return state-

26

Under review as a conference paper at ICLR 2026

ment. This indicates that our model’s logic extraction is robust, but the output is bounded by a lack
of exposure to Go grammar.

Case B: C++ Similarly, SK’Decompile effectively recovers the logical structure of C++ bi-
naries. C++ relies heavily on monomorphization (templates) and zero-cost abstractions (e.g.,
std: :vector or Rust Iterators). While efficient at runtime, these abstractions produce ver-
bose, low-level assembly code involving complex pointer arithmetic and distinct iterator types (e.g.,
__gnu_cxx::__normal_iterator) during decompilation.

As shown in the C++ example, our model successfully filters through this “noise” to recover the
high-level logic. However, because the model was never trained on C++ source code, it cannot
reconstruct high-level standard library conventions (such as std: : st ring), instead treating them
as raw structures.

Limitation on Language-Specific Features It is expected that decompilation performance will
degrade or fail when the target binary heavily utilizes language-specific features that have no direct
C equivalent. For instance, massive use of C++ template metaprogramming or complex Go runtime
interactions cannot be handled effectively, as the model’s training data is limited to C. Languages
like C++ and Go introduce orthogonal challenges—specifically, heavy reliance on polymorphism,
templates, and complex runtime environments (e.g., Garbage Collection). Addressing these fea-
tures require designing language-specific pre-processing steps and paring binary-source functions,
which we consider a distinct research problem that may deserve a new research paper. Therefore,
following the approach of recent LLM-based decompilers (Slade, Nova, LLM4Decompile, Idioms,
Ref-Decompile), this work focuses on C.

C++ source code Pseudocode SK2Decompile
int funcO(int n) { __int64 __ fastcall funcO(int al){ int funcO(int n) {
int count = 0; unsigned int v2; int count = 0;
for (int i = 05 i < n; ++i) { inti; _int64 v4; _int64 v5; BYTE *v6; BYTE v7[40]; unsigned _int64 v8; for (inti = 05 i <n; i++) {
if(i%11==0i%13==0) { v8=__ readfsqword(0x28u);v2 = 0; if(i%11==0]1%13==0) {
std::string s = std::to_string(i); for (i=0;i<al;++){ string to_string(i);
for (charc : s) { (1% 1) [1 % 13)){ iterator it = str.begin();
if (c=="7) { std::to_string((std::__cxx11 *)v7, i); iterator end = str.end();
++count:)} v6 = Vv7; v4 = std::string::begin(v7); v5 = std::string::end(v6); for (; it I=end; it++) {

return count;} while ((unsigned __int8)__gnu_cxx::operator!=<char *std::string>(&v4, &v5)){ if (*it=="7") {
if (*(_BYTE *)__gnu_cxx::_ normal_iterator<char * std::string>::operator*(&v4) == 55) count++;}} 1}
++v2; _ gnu_cxx:_ normal_iterator<char *,std::string>::operator++(&v4);} return count; }
std::string::~string(v7):} }
return v2;}

Figure 11: Decompilation output from IDA for the C++ binary.

A.13 OBFUSCATION AND OPTIMIZATION
We conducted additional experiments focusing on two dimensions: adversarial obfuscation using
Obfuscator-LLVM and aggressive compilation flags beyond standard -O3.

Compiler Obfuscation. We utilized Obfuscator-LLVM (Junod et al., 2015)) to apply three distinct
obfuscation techniques: Instruction Substitution (SUB), Bogus Control Flow (BCF), and Control
Flow Flattening (FLA). The results are summarized below:

Table 13: Re-executability results under obfuscation.

- HumanEval MBPP
Re-executability rates
00 0O1 02 03 AVG 00 o1 02 03 AVG
Base 86.59 70.59 61.31 57.52 69.00 69.76 6233 5483 51.58 59.63
BCF 366 1373 1022 9.73 933 10.89 16.73 1340 13.37 13.60
FLA 14.02 588 438 531 740 20.14 1079 889 7.14 11.74
SUB 77.44 5229 43.07 46.02 5470 60.02 56.85 47.89 4579 52.64

As observed, the model exhibits varying degrees of resilience. While Instruction Substitution has a
moderate impact (retaining over 50% re-executability rate on both dataset), structural obfuscations
significantly degrade performance. Specifically, Control Flow Flattening (FLA) caused the most
severe performance drop (89.27% on HumanEval and 80.31% on MBPP). The observation is similar

27

Under review as a conference paper at ICLR 2026

to what reported in LLM4Decompile, where it achieves around 5% re-executability rate on under
FLA.

We view de-obfuscation and general-purpose decompilation as related but distinct research areas.
SK?Decompile is designed to recovering readable, high-quality source code from binaries produced
by standard compiler pipelines. Techniques used for obfuscation (e.g., control flow flattening) are
adversarial in nature and intentionally break the patterns that general decompilers rely on. While our
model demonstrates robustness against high-level optimizations, dedicated de-obfuscation is out of
the scope of this work. However, we believe SK? Decompile could serve as a downstream module in
a de-obfuscation pipeline once the adversarial layers are normalized.

Optimization beyond O3. To test robustness against aggressive optimizations, we evaluated four
specific configurations generally considered ’beyond -O3”:

-Ofast: Enables aggressive optimizations that may disregard strict standards.
-Os: Optimizes for code size.

-O3 -march=native: Optimizes for the host CPU architecture.

-O3 -funroll-loops: Unrolls loops to trade size for speed.

The results are presented in the table below:

Table 14: Re-executability under different optimization.

Optimization O3 Ofast Os O3 native O3 loops
HumanEval 57.52% 57.52% 58.40% 53.98% 46.90%
MBPP 51.58% 51.02% 52.12% 45.80% 46.45%

Overall, SK?Decompile demonstrates strong robustness across a diverse set of compiler optimization
strategies. Performance remains relatively stable under -Ofast and -Os, suggesting that the model can
handle both aggressive speed-centric optimizations and size-focused transformations. Architecture-
specific tuning (-march=native) and loop-unrolling introduce only moderate degradation. The results
indicate that SK?Decompile generalizes well to real-world compiled binaries, where optimization
settings can vary widely.

A.14 REWARD MODEL

We quantified the contribution of each component in our ablation study (Table 4).

1.Impact of Cleaner IR: Moving from the direct pseudo-src approach to the two-phase pseudo-ir-src
(cleaner IR target) improves the re-executability rate from 54.86 to 63.75 on HumanEval (+16.20%)
and from 47.51 to 52.83 on MBPP (+11.19%).

2.Impact of RL: Applying Reinforcement Learning to this cleaner target (pseudo-ir-src-rl) yields
further improvements, reaching 69.00 on HumanEval (+8.23% over the IR model) and 59.63 on
MBPP (+12.87% over the IR model).

In summary, while the cleaner IR target provides the initial performance gain, RL contributes a
significant secondary boost.

It is also important to note why we applied RL specifically to the IR-based model rather than the
source-base model. Applying compiler-based RL directly to the pseudo-src model poses a signifi-
cant challenge. Successful re-compilation (the reward signal) requires exact matches for function,
type, and field names (e.g., Lt c4151State). Since this information is lost during standard com-
pilation, expecting a model to generate these exact user-defined names without data leakage is an
ill-posed problem.

Our approach mitigates this by targeting an IR with normalized identifiers (e.g., typel, type2).
By decoupling structural correctness from symbol recovery, we ensure the generated code is self-

28

Under review as a conference paper at ICLR 2026

contained and compilable. This allows the RL agent to optimize for logic and syntax to earn rewards,
without being penalized for missing original variable names that no longer exist.

A.15 REINFORCEMENT LEARNING IMPLEMTATION DETAILS

Leakage analysis. The compilability-based reward is used only in the Structure Recovery phase and
only on obfuscated IR. For reward evaluation, the compiler is given a minimal, obfuscated header
whose identifiers are opaque placeholders (e.g., typel, funcl). The model never sees this header; the
header is used solely by the compiler to resolve declaration during the reward check. Consequently,
the step does not leak any original semantic or ground-truth type information to the model.

No-header ablation. Our model is trained on real-world code and accordingly generates place-
holder symbols (e.g., typel, funcl). If no header is provided to declare these placeholders, can-
didates systematically fail to compile (unresolved symbols), the reward collapses to zero, and RL
receives no learning signal, making the training signal uninformative. The obfuscated header is
therefore necessary to obtain a meaningful reward without revealing structure/type information.

Train Reward Trajectory (smoothed over 3 steps) Validation Reward (sparse checkpoints; centered window=3)

Structure Recovery
s Compiler+Placeholder

Structure Recovery
Compiler+Placeholder

— Validation reward (centered rolling mean, window=3)
—— Train reward (critic/score/mean, smoothed over 3 steps) . © Validation samples (raw)

] 50 100 150 200 250 50 100 150 200 250
Training step Training step

Train Reward Trajectory (smoothed over 3 steps) Validation Reward (sparse checkpoints; centered window=3)

0.66| — Train reward (critic/score/mean, smoothed over 3 steps)

Identifier Naming

Identifier Naming
Embedding Similarity | ,,, Embedding Similarity

—— Validation reward (centered rolling mean, window=3)
060| © e Validation samples (raw)

0 50 100 150 200 250 0 50 100 150 200 250
Training step Training step

Figure 12: Training and validation reward for Structure Recovery and Identifier Naming

Convergence Structure Recovery: The training reward converges to 0.9 (out of a maximum score
of 2.0, representing Compilability + Placeholder Recovery). The validation reward tracks closely,
indicating stable convergence.

Identifier Naming: The training reward converges to 0.64 (max 1.0 based on embedding similarity),
with validation reward reaching 0.66.

Training required approximately 16 hours on 8 H800 GPU with a batch size of 256 and a max
sequence length of 4096.

Reward Hacking: We explicitly designed the placeholder recovery reward (the intersection of
I_gen and I_ir) to reduce reward hacking. In preliminary tests using only compiler feedback
(compilable vs. not), we observed reward hacking: the model maximized rewards by generating
trivial or degenerate code (e.g., void funcl () { return 0; }) simply to satisfy the com-
piler. By introducing the placeholder recovery reward, we successfully penalized this behavior and
forced the model to generate semantically meaningful code.

A.16 IDENTIFIER NAMING REWARD

29

Under review as a conference paper at ICLR 2026

To evaluate the sensitivity of our results to the embedding choice, we conducted additional exper-
iments comparing our baseline (Qwen3-Embedding-0.6B) against GTE-Large (L1 et al., 2023) (a
widely used model of similar size) and Qwen3-Embedding-8B (a significantly larger model).

Regarding Metric Correlation: We invited human rators and use the GPT-based evaluation proto-
col established in the paper rather than Identifier-level F1 or Exact Match. We argue that exact token
matching is not suitable for this task for two reasons:

Semantic Equivalence: A variable named count should not be penalized against counter, yet
F1/Exact Match would treat them as incorrect.

Alignment Issues: There is often no one-to-one correspondence between generated variables and
ground truth source code, rendering token-wise comparisons unreliable.

GPT-judge results: As shown in the table below, the naming quality remains relatively stable
across different embedding models on all four datasets. While Qwen3-Embedding-8B yields a slight
improvement (approximately 0.07 points on average), the results are quite close to each other and
demonstrate that our method is robust and not overly sensitive to the specific embedding model used.

Table 15: GPT-judge ratings of Identifier Naming model trained on different embedding models
HumanEval MBPP ExeBench GitHub
00 O3 Avg OO0 O3 Avg OO0 O3 Avg OO0 O3 Avg

Qwen-0.6B 451 4.05 424 431 395 412 248 247 242 305 3.02 3.06
GTE-Large 4.48 4.12 421 424 399 416 245 232 234 301 3.05 3.03
Qwen-8B 4.63 419 435 434 4.09 426 257 237 244 321 302 3.09

Model

Human Rating: To evaluate the impact of embedding choice on human perception, we recruited
three graduate students with experience in reverse engineering to rate decompiled results. Adopting
the same criteria as the GPT-judge (Figure 5), evaluators were presented with the ground truth source
code alongside two decompiled outputs. They performed a pairwise comparison to determine which
result was superior (Win, Tie, or Lose). The final classification for each sample was determined by
the majority vote of the three evaluators.We compared rewards calculated using Qwen3-embedding-
8B, Qwen3-embedding-0.6B, and GTE-Large across 100 random samples from GitHub2025. The
evaluation criteria remained consistent with the GPT-judge results in the above table.

As shown in the following figure, while Qwen-embedding-8B achieved a higher win rate, the perfor-
mance of GTE-Large and Qwen-embedding-0.6B was comparable. Notably, the majority of com-
parisons resulted in a "Tie’ (71.66%), indicating that evaluators often could not distinguish between
the quality of the outputs. This high tie rate suggests that the training process is not overly sensitive
to the specific choice of embedding model.

30

Under review as a conference paper at ICLR 2026

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638 . Win e Tie Loss
1639
1640

1641
Qwen-8B 9.0
1642 vs. Qwen-0.6B

1643

1644

1645

1646 us. GTE Lorge

1647

1648

1649

1650 Qwen-0.68
vs. GTE-Large

1651

1652

1653

1654 % Win Rate

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

Figure 13: Human Rating on GitHub2025.

31

	Introduction
	Background
	Related Work
	Motivating Example

	SK2Decompile
	Overview
	Two-phase decompilation process
	Intermediate Representation
	IR Generation
	Enhancement with Reinforcement Learning

	Experiments
	Main Results
	Ablations
	Case Study

	Conclusion
	Appendix
	Strip
	Metrics
	Addtional Results
	The Use of Large Language Models
	Constraints on Re-executability Testing
	Evaluation on BringUpBench
	Impact of Feedback Loops
	Qualitative Assessment
	Baseline Availability and Reproducibility
	Comparison with Classic Decompiler
	Identifier Naming and SK2Decompile
	Robustness against Architectures and Languages
	Obfuscation and Optimization
	Reward Model
	Reinforcement Learning Implemtation Details
	Identifier Naming Reward

