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Abstract

Throughout the cognitive-science literature, there is widespread agreement that
decision-making agents operating in the real world do so under limited information-
processing capabilities and without access to unbounded cognitive or computa-
tional resources. Prior work has drawn inspiration from this fact and leveraged
an information-theoretic model of such behaviors or policies as communication
channels operating under a bounded rate constraint. Meanwhile, a parallel line of
work also capitalizes on the same principles from rate-distortion theory to formalize
capacity-limited decision making through the notion of a learning target, which
facilitates Bayesian regret bounds for provably-efficient learning algorithms. In
this paper, we aim to elucidate this latter perspective by presenting a brief sur-
vey of these information-theoretic models of capacity-limited decision making in
biological and artificial agents.

1 Motivation

In a perfect world, decision makers of any shape or form would always be capable of producing
optimal behaviors. In reality, however, the inescapable constraints of an overwhelmingly-complex
environment force agents to seek out alternative behaviors that are sufficiently satisfying or, more
succinctly, satisficing. While satisficing is a longstanding, well-studied idea about how to understand
resource-limited cognition [Simon, 1955, 1956, Newell et al., 1958, Newell and Simon, 1972, Simon,
1982], it has been usually treated as contrary to rational analysis [Anderson, 1990]. In particular,
modern resource-rational analyses, both utility-theoretic [Griffiths et al., 2015, Lieder and Griffiths,
2020] and information-theoretic [Sims, 2003, 2016, Gershman, 2020], still aim to find an optimal
policy but to do so within resource constraints. An alternative view for the resource-rational learn-
ing of satisficing agents comes from recent theoretical work in bandit learning and reinforcement
learning [Arumugam and Van Roy, 2021a, 2022b]; this perspective focuses on learning to achieve a
deliberately-sub-optimal, satisficing policy that requires obtaining fewer bits of information from the
environment. Unlike other approaches to resource-rational analysis, this methodology is accompanied
by guarantees about provably-efficient learning through its use of epistemic uncertainty [Der Ki-
ureghian and Ditlevsen, 2009] to resolve the underlying exploration-exploitation trade-off.
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2 Rate-Distortion Theory

Here we offer a brief, high-level overview of rate-distortion theory [Shannon, 1959, Berger, 1971,
Cover and Thomas, 2012]. Due to space constraints, precise mathematical details are relegated to
Appendix A. A lossy compression problem consumes as input a fixed information source P(X ∈ ·)
and a distortion function d : X × Z → R≥0 which quantifies the loss of fidelity by using an
element z ∈ Z in lieu of x ∈ X . Then, for any D ∈ R≥0, the rate-distortion function quantifies the
fundamental limit of lossy compression as

R(D) = inf
Z∈Z

I(X;Z) ≜ inf
Z∈Z

E [DKL(P (X ∈ · | Z) || P(X ∈ ·))] such that E [d(X,Z)] ≤ D,

where the infimum is taken over all random variables Z (representing the output of a channel given
X as input) that incur bounded expected distortion, E [d(X,Z)] ≤ D. As an aside, we note that
one may equivalently define R(D) as an infimum over a constrained collection of either joint
distributions (as done in [Csiszár, 1974, Dembo and Kontoyiannis, 2002], for example) or conditional
distributions (such as in [Blahut, 1972, Kawabata and Dembo, 1994]), representing the channel or
lossy compression itself. Naturally, R(D) represents the minimum number of bits of information that
must be retained on average from X in order to achieve this bound on the expected loss of fidelity.
Moreover, R(D) is well-defined for arbitrary information source and channel output random variables
taking values on abstract spaces [Csiszár, 1974]. In certain contexts, it can be more suitable to employ
the inverse of R(D), the distortion-rate function: D(R) = inf

Z∈Z
E [d(X,Z)] such that I(X;Z) ≤ R.

For a given upper limit R ∈ R≥0 on the bits of information that can be transmitted, D(R) quantifies
the minimum achievable distortion of the resulting compression.

3 Problem Formulation

We formulate a sequential decision-making problem as an episodic, finite-horizon Markov Decision
Process (MDP) [Bellman, 1957, Puterman, 1994] defined by M = ⟨S,A,U , T , β,H⟩. Here S
denotes a set of states, A is a set of actions, U : S × A → [0, 1] is a deterministic reward or
utility function providing evaluative feedback signals, T : S ×A → ∆(S) is a transition function
prescribing distributions over next states, β ∈ ∆(S) is an initial state distribution, and H ∈ N is the
maximum length or horizon. Within each one of K ∈ N episodes, the agent acts for exactly H steps
beginning with an initial state s1 ∼ β. For each timestep h ∈ [H], the agent observes the current
state sh ∈ S, selects action ah ∼ πh(· | sh) ∈ A, enjoys a reward rh = U(sh, ah) ∈ [0, 1], and
transitions to the next state sh+1 ∼ T (· | sh, ah) ∈ S.

A stationary, stochastic policy for timestep h ∈ [H], πh : S → ∆(A), encodes behavior as a mapping
from states to distributions over actions. Letting {S → ∆(A)} denote the class of all stationary,
stochastic policies, a non-stationary policy π = (π1, . . . , πH) ∈ {S → ∆(A)}H is a collection of
exactly H stationary, stochastic policies whose overall performance in any MDP M at timestep
h ∈ [H] when starting at state s ∈ S and taking action a ∈ A is assessed by its associated action-value

function Qπ
M,h(s, a) = E

[
H∑

h′=h

U(sh′ , ah′)
∣∣ sh = s, ah = a

]
, where the expectation integrates over

randomness in the action selections and transition dynamics. Taking the corresponding value function
as V π

M,h(s) = Ea∼πh(·|s)

[
Qπ

M,h(s, a)
]
, we define the optimal policy π⋆ = (π⋆

1 , π
⋆
2 , . . . , π

⋆
H) as

achieving supremal value V ⋆
M,h(s) = sup

π∈{S→∆(A)}H

V π
M,h(s) for all s ∈ S, h ∈ [H]. We let

τk = (s
(k)
1 , a

(k)
1 , r

(k)
1 , . . . , s

(k)
H , a

(k)
H , r

(k)
H , s

(k)
H+1) be the random variable denoting the trajectory

experienced by the agent in the kth episode. Meanwhile, Hk = {τ1, τ2, . . . , τk−1} ∈ Hk is the
random variable representing the entire history of the agent’s interaction within the environment at
the start of the kth episode.

4 Capacity Limitation as a Policy Information Bottleneck

There is a long, rich literature exploring the natural limitations on time, knowledge, and cognitive
capacity faced by human (and animal) decision makers [Simon, 1956, Newell et al., 1958, Newell
and Simon, 1972, Simon, 1982, Gigerenzer and Goldstein, 1996, Vul et al., 2014, Griffiths et al.,
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2015, Gershman et al., 2015, Icard and Goodman, 2015, Lieder and Griffiths, 2020, Bhui et al., 2021,
Brown et al., 2022, Ho et al., 2022]. Crucially, our focus is on a recurring theme throughout this
literature of modeling these limitations on cognitive capabilities as being information-theoretic in
nature [Sims, 2003, Peng, 2005, Parush et al., 2011, Botvinick et al., 2015, Sims, 2016, 2018, Zenon
et al., 2019, Ho et al., 2020, Gershman and Lai, 2020, Gershman, 2020, Mikhael et al., 2021, Lai and
Gershman, 2021, Gershman, 2021, Jakob and Gershman, 2022, Bari and Gershman, 2022]. Broadly
speaking, these approaches all center around the perspective that a policy πh : S → ∆(A) should be
modeled as a communication channel that, like a human decision-maker with limited information
processing capability, is subject to a constraint on the maximal number of bits that may be sent across
it. Consequently, an agent aspiring to maximize returns must do so subject to this constraint on policy
complexity; conversely, an agent ought to transmit the minimum amount of information possible while
it endeavors to reach a desired level of performance [Polani, 2009, 2011, Tishby and Polani, 2011,
Rubin et al., 2012]. Paralleling the distortion-rate function D(R), the resulting policy-optimization
objective follows as sup

π∈{S→∆(A)}H

E [Qπ(S,A)] such that I(S;A) ≤ R. Depending on the precise

work, subtle variations on this optimization problem exist from choosing a fixed state distribution
for the random variable S [Polani, 2009, 2011], incorporating the state visitation distribution of
the policy being optimized [Still and Precup, 2012, Gershman, 2020, Lai and Gershman, 2021], or
assuming access to the generative model of the MDP and decomposing the objective across a finite
state space [Tishby and Polani, 2011, Rubin et al., 2012]. In all of these cases, the end empirical result
tends to converge by using variants of the classic Blahut-Arimoto algorithm [Blahut, 1972, Arimoto,
1972] to solve the Lagrangian associated with the constrained optimization [Boyd and Vandenberghe,
2004] and produce policies that exhibit higher entropy across states under an excessively limited rate
R, with a gradual convergence towards the greedy optimal policy as R increases.

The alignment between this optimization problem and that of the distortion-rate function is slightly
wrinkled by the non-stationarity of the distortion function (here, Qπ is used as an analogue to distor-
tion which changes as the policy or channel does) and, when using the policy visitation distribution
for S, the non-stationarity of the information source. Despite these slight, subtle mismatches with the
core rate-distortion problem, the natural synergy between cognitive and computational decision mak-
ing [Tenenbaum et al., 2011, Lake et al., 2017] has led to various reinforcement-learning approaches
that draw direct inspiration from this line of thinking [Klyubin et al., 2005, Ortega and Braun, 2011,
Still and Precup, 2012, Ortega and Braun, 2013, Shafieepoorfard et al., 2016, Tiomkin and Tishby,
2017, Lerch and Sims, 2018, 2019, Abel et al., 2019], most notably including parallel connections to
work on “control as inference” or KL-regularized reinforcement learning [Todorov, 2007, Toussaint,
2009, Kappen et al., 2012, Levine, 2018, Ziebart, 2010, Fox et al., 2016, Haarnoja et al., 2017,
2018, Galashov et al., 2019, Tirumala et al., 2019]. Nevertheless, despite their empirical successes,
such approaches lack principled mechanisms for addressing the exploration challenge [O’Donoghue
et al., 2020]. While exploration is quintessentially studied in the multi-armed bandit setting [Lai and
Robbins, 1985, Lattimore and Szepesvári, 2020], we focus our main discussion on reinforcement
learning and defer consideration of bandit learning to Appendix B.

Similar to human decision making [Gershman, 2018, Schulz and Gershman, 2019, Gershman, 2019],
provably-efficient reinforcement-learning algorithms have historically relied upon one of two possible
exploration strategies: optimism in the face of uncertainty [Kearns and Singh, 2002, Brafman and
Tennenholtz, 2002, Kakade, 2003, Auer et al., 2009, Bartlett and Tewari, 2009, Strehl et al., 2009,
Jaksch et al., 2010, Dann and Brunskill, 2015, Azar et al., 2017, Dann et al., 2017, Jin et al., 2018,
Zanette and Brunskill, 2019, Dong et al., 2022] or posterior sampling [Osband et al., 2013, Osband and
Van Roy, 2017, Agrawal and Jia, 2017, Lu and Van Roy, 2019, Lu et al., 2021]. While both paradigms
have laid down solid theoretical foundations, a line of work has demonstrated how posterior-sampling
methods can be more favorable both in theory and in practice [Osband et al., 2013, 2016a,b, Osband
and Van Roy, 2017, Osband et al., 2019, Dwaracherla et al., 2020]. In the next section, we outline
how these latter posterior-sampling algorithms still lack a consideration for agents acting under
limited capacity constraints and demonstrate an alternative utilization of rate-distortion theory to help
account for such limitations.

5 Learning Targets for Capacity-Limited Decision Making

As is standard in Bayesian reinforcement learning [Bellman and Kalaba, 1959, Duff, 2002,
Ghavamzadeh et al., 2015], neither the transition function nor the reward function are known to
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the agent and, consequently, both are treated as random variables. An agent’s initial uncertainty in
the (unknown) true MDP M⋆ = (U⋆, T ⋆) is reflected by a prior distribution P(M⋆ ∈ · | H1).
Since the regret is a random variable due to our uncertainty in M⋆, we integrate over this
randomness to arrive at the Bayesian regret over K episodes: BAYESREGRET(K,π(1:K)) =

E
[
REGRET(K,π(1), . . . , π(K),M⋆)

]
= E

[
K∑

k=1

(
V ⋆
M⋆,1(s1)− V π(k)

M⋆,1(s1)
)]

.

In the following, we will denote the entropy and conditional entropy conditioned upon a specific
realization of an agent’s history Hk, for some episode k ∈ [K], as Hk(X) ≜ H(X | Hk = Hk) and
Hk(X | Y ) ≜ Hk(X | Y,Hk = Hk), for two arbitrary random variables X and Y . This notation will
also apply analogously to mutual information: Ik(X;Y ) ≜ I(X;Y | Hk = Hk) = Hk(X)−Hk(X |
Y ) = Hk(Y ) − Hk(Y | X). The dependence on the realization of a random history Hk makes
Ik(X;Y ) a random variable and the usual conditional mutual information arises by integrating over
this randomness: E [Ik(X;Y )] = I(X;Y | Hk). Additionally, we will also adopt a similar notation
to express a conditional expectation given the random history Hk: Ek [X] ≜ E [X|Hk] .

A natural starting point for addressing the exploration challenge in a principled manner is via
Thompson sampling [Thompson, 1933, Russo et al., 2018]. The Posterior Sampling for Reinforcement
Learning (PSRL) [Strens, 2000, Osband et al., 2013, Osband and Van Roy, 2014, Abbasi-Yadkori
and Szepesvari, 2014, Agrawal and Jia, 2017, Osband and Van Roy, 2017, Lu and Van Roy, 2019]
algorithm does this by, in each episode k ∈ [K], sampling a candidate MDP Mk ∼ P(M⋆ ∈ · | Hk)
and executing its optimal policy in the environment π(k) = π⋆

Mk
; notably, such posterior sampling

guarantees the hallmark probability-matching principle of Thompson sampling: P(Mk = M |
Hk) = P(M⋆ = M | Hk), ∀M ∈ M, k ∈ [K]. The resulting trajectory τk leads to a new history
Hk+1 = Hk ∪ τk and an updated posterior over the true MDP P(M⋆ ∈ · | Hk+1).

We recognize that, for complex environments, pursuit of the exact MDP M⋆ may be an entirely infea-
sible goal. A MDP representing control of a real-world, physical system, for example, suggests that
learning the associated transition function requires the agent internalize laws of physics and motion
with near-perfect accuracy. More formally, identifying M⋆ demands the agent obtain exactly H1(M⋆)
bits of information from the environment which, under an uninformative prior, may either be pro-
hibitively large by far exceeding the agent’s capacity constraints or be simply impractical under time
and resource constraints [Lu et al., 2021]. Consequently, an agent must embrace a satisficing solution
and Arumugam and Van Roy [2022a,b] employ the following rate-distortion function to identify a suit-
able lossy compression of the underlying MDP M̃ ∈ M whose information an agent may prioritize as
an alternative learning target to M⋆: Rk(D) = inf

M̃∈M
Ik(M⋆;M̃) such that Ek[d(M⋆,M̃)] ≤ D.

Here, the rate-distortion function is indexed by each episode k ∈ [K] as the agent takes P(M⋆ ∈ · |
Hk) for the information source to be compressed, allowing for incremental refinement of the learning
target as knowledge of the environment accumulates and is transmitted to the “next” agent [Tomasello
et al., 1993, Tomasello, 1999]. By definition, the M̃ that achieves this rate-distortion limit will demand
that the agent acquire fewer bits of information than what is needed to identify M⋆. Since, the
rate-distortion function is a non-negative; convex; and non-increasing function in its argument [Cover
and Thomas, 2012], the preceding claim is guaranteed for all k ∈ [K] and any D > 0: Rk(D) ≤
Rk(0) ≤ Ik(M⋆;M⋆) = Hk(M⋆).

Arumugam and Van Roy [2022b] study two distinct choices of distortion function to assess the loss
of fidelity incurred by learning a compressed MDP over the original; the first of these provides an
information-theoretic account of recent successes in deep model-based reinforcement learning [Silver
et al., 2017, Farahmand et al., 2017, Oh et al., 2017, Asadi et al., 2018, Farahmand, 2018, D’Oro et al.,
2020, Abachi et al., 2020, Cui et al., 2020, Ayoub et al., 2020, Schrittwieser et al., 2020, Nair et al.,
2020, Nikishin et al., 2022, Voelcker et al., 2022] through the value-equivalence principle [Grimm
et al., 2020, 2021], where agents deliberately forego learning the true model of the environment in
exchange for some approximate surrogate, which discards irrelevant environment features and only
models dynamics of the world critical to agent performance. In the interest of space, we focus on the
second distortion function which has a simpler form:

dQ⋆(M,M̂) = sup
h∈[H]

||Q⋆
M,h −Q⋆

M̂,h
||2∞ = sup

h∈[H]

sup
(s,a)∈S×A

|Q⋆
M,h(s, a)−Q⋆

M̂,h
(s, a)|2.
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Crucially, Arumugam and Van Roy [2022b] establish an information-theoretic Bayesian regret bound
for a posterior-sampling algorithm that performs probability matching with respect to M̃ instead

of M⋆: BAYESREGRET(K,π(1:K)) ≤
√

ΓKRQ⋆

1 (D) + 2K(H + 1)
√
D. Such an algorithm, by

virtue of probability matching, explicitly links an agent’s exploration strategy not only to its epistemic
uncertainty but also to that M̃ which it aspires to learn [Cook et al., 2011]. The bound communicates
that an agent with limited capacity must tolerate a higher distortion threshold D and pursue the
resulting compressed MDP that bears less fidelity to the original MDP; in exchange, the resulting
number of bits needed from the environment to identify such a simplified model of the world is given
as RQ⋆

1 (D) and guaranteed to be less than the entropy of M⋆1. Additionally, one can express a
near-identical result through the associated distortion-rate function that explicitly takes an agent’s
capacity of only being able to acquire R ∈ R≥0 bits into account: BAYESREGRET(K,π(1:K)) ≤
√
ΓKR+ 2K(H + 1)

√
DQ⋆

1 (R).

6 Conclusion

A number of recent proposals have approached resource-rationality by combining tools from rate-
distortion theory with those of sequential decision-making. Here, we have reviewed a parallel line
of work that uses related ideas but within the framework of satisficing and Bayesian reinforcement
learning. The distinctive feature of this approach is that it precisely characterizes how capacity-
limited learners optimally balance model complexity and value distortion in a manner that gives rise
to learning targets which reflect rational satisficing–that is, intelligently choosing how sub-optimal to
be based on information acquired during learning. A key challenge for future work will be to translate
insights about provably-efficient learning algorithms from this literature into plausible models of
human decision-making. More broadly, by modulating the exploration of a satisficing agent to
identify a fundamentally different learning target than that of an unconstrained agent, these analyses
can provide a framework for understanding how information-theoretic considerations not only shape
the products of learning (such as perception, memory, and decisions), but also the process of learning
itself.
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A Information Theory

Here we introduce various concepts in probability theory and information theory used throughout
this paper. We encourage readers to consult [Cover and Thomas, 2012, Gray, 2011, Polyanskiy
and Wu, 2019, Duchi, 2021] for more background. For readers unfamiliar with measure-theoretic
probability, we simply note that while one should feel free to use more familiar definitions of the
subsequent information-theoretic quantities [Cover and Thomas, 2012], the more general formulation
of this section allows us to be agnostic as to whether the associated random variables are discrete,
continuous, or even some mixture thereof. Consequently, the results described in this work hold
regardless of whether the state-action space is discrete or continuous; naturally, however, such details
do have consequences for practical instantiations of these ideas.

All random variables are defined on a probability space (Ω,F ,P). For any natural number N ∈ N,
we denote the index set as [N ] ≜ {1, 2, . . . , N}. For any arbitrary set X , ∆(X ) denotes the set of all
probability distributions with support on X . For any two arbitrary sets X and Y , we denote the class
of all functions mapping from X to Y as {X → Y} ≜ {f | f : X → Y}.

We define the mutual information between any two random variables X,Y through the Kullback-
Leibler (KL) divergence:

I(X;Y ) = DKL(P((X,Y ) ∈ ·) || P(X ∈ ·)×P(Y ∈ ·)) DKL(P || Q) =

{∫
log

(
dP
dQ

)
dP P ≪ Q

+∞ P ̸≪ Q
,

where P and Q are both probability measures on the same measurable space and dP
dQ denotes the

Radon-Nikodym derivative of P with respect to Q. An analogous definition of conditional mutual
information holds through the expected KL-divergence for any three random variables X,Y, Z:

I(X;Y | Z) = E [DKL(P((X,Y ) ∈ · | Z) || P(X ∈ · | Z)× P(Y ∈ · | Z))] .

With these definitions in hand, we may define the entropy and conditional entropy for any two random
variables X,Y as

H(X) = I(X;X) H(Y | X) = H(Y )− I(X;Y ).

This yields the following identities for mutual information and conditional mutual information for
any three arbitrary random variables X , Y , and Z:

I(X;Y ) = H(X)−H(X | Y ) = H(Y )−H(Y |X), I(X;Y |Z) = H(X|Z)−H(X | Y,Z) = H(Y |Z)−H(Y |X,Z).

Through the chain rule of the KL-divergence and the fact that DKL(P || P ) = 0 for any probability
measure P , we obtain another equivalent definition of mutual information,

I(X;Y ) = E [DKL(P(Y ∈ · | X) || P(Y ∈ ·))] .

B Multi-Armed Bandits

A special case of the finite-horizon episodic MDP formulated earlier is the multi-armed bandit (MAB)
problem [Lai and Robbins, 1985, Bubeck et al., 2012, Lattimore and Szepesvári, 2020] which consists
of exactly one state |S| = 1 and a horizon H = 1; for simplicity, we will further assume a finite
number of arms |A| < ∞ and follow the standard convention of denoting the total number of time
periods as T = K ∈ N. Compactly, the MAB is now characterized by an environment E = ⟨A,U⟩
where U : A → [0, 1] returns the mean reward associated with the input action. While A is considered
a known quantity, it is the agent’s uncertainty in the underlying rewards of the environment E that
drive its uncertainty in the optimal action A⋆ = max

a∈A
U(a). At each time period t ∈ [T ], the agent’s

initial/refined uncertainties in E are given by the prior/posterior distribution P(E ∈ · | Ht) and it aims

to minimize the Bayesian regret: BAYESREGRET(T, π(1:T )) = E
[

T∑
t=1

(U(A⋆)− U(At))

]
.

A standard algorithm for solving MABs is Thompson sampling [Thompson, 1933, Russo et al.,
2018] where, at each time period, the agent draws a single posterior sample from its current be-
liefs over the environment θ ∼ P(E ∈ · | Ht) and then acts optimally with respect to this sam-
ple min

π∈∆(A)
E [U(A⋆)− U(At) | E = θ]. Such an action selection strategy embodies the hallmark
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probability-matching principle of Thompson sampling where, for all t ∈ [T ] and a ∈ A, actions
are chosen according to their probability of being optimal: P(At = a | Ht) = P(A⋆ = a |
Ht). Moreover, this algorithm yields provably-efficient exploration via an information-theoretic
Bayesian regret bound [Russo and Van Roy, 2016] in terms of the agent’s prior entropy over

A⋆: BAYESREGRET(T, π(1:T )) ≤
√

1
2 |A|H1(A⋆)T . Since the optimal action A⋆ is a determin-

istic function of the environment E , H1(A
⋆ | E) = 0 and so the total amount of information an

agent must acquire from the environment E over the course of learning to identify A⋆ is given by
I1(E ;A⋆) = H1(A

⋆)−H1(A
⋆ | E) = H1(A

⋆). Consequently, the regret bound affirms that an agent
who begins with a strong, well-specified prior over A⋆ at the start of learning incurs far less regret
than an agent operating under a less informative prior.

Critically, however, decision-making agents operating under constraints on time and resources may
not be capable of acquiring all H1(A

⋆) bits of information needed for optimal decisions. This reality
coupled with the observation that A⋆ = f(E) is merely a (deterministic) statistic f(·) of the unknown
environment E motivates the consideration of a learning target χ ∈ A [Lu et al., 2021] that, at the
most abstract level, is merely some other statistic of the environment. Of course, A⋆ is a statistic
of E that has a certain desirable property: no other action can achieve mean reward higher than A⋆.
What characteristic(s) does one want encapsulated in a learning target χ? Intuitively, a good learning
target should likely strike some kind of balance between two desiderata: (1) be easier to learn than
A⋆ by having I1(E ;χ) ≤ I1(E ;A⋆) = H1(A

⋆) and (2) have bounded performance shortfall or regret
relative to A⋆, E [U(A⋆)− U(χ)].
To this end, Russo et al. [2017], Russo and Van Roy [2018b, 2022] consider a learning target,
parameterized by ε > 0, as Aε = Uniform({a ∈ A | U(A⋆)− U(a) ≤ ε}) and introduce satisficing
Thompson sampling (STS) where probability matching occurs with respect to Aε: P(At = a | Ht) =
P(Aε = a | Ht), ∀t ∈ [T ], a ∈ A. While it is intuitive that using an ε-optimal action Aε in this
manner strikes some kind of trade-off between the two desiderata above, it’s not clear that this is
by any means the best trade-off. Furthermore, while A⋆ and Aε are chosen and held fixed for the
duration of learning, one could imagine adapting a learning target χt incrementally as knowledge of
the underlying environment accumulates through P(E ∈ · | Ht).

Arumugam and Van Roy [2021a] leverage the tools of rate-distortion theory to define such a learning
target Ãt that an agent should strive for in each time period t ∈ [T ] according to the rate-distortion
function:

Rt(D) = inf
Ã∈A

It(E ; Ã) such that Et

[
d(Ã, E)

]
≤ D.

Assuming that E takes values in a set Θ, the distortion function dt : A×Θ → R≥0 is defined as the
expected squared regret of the candidate action:

dt(a, θ) = Et

[
(U(A⋆)− U(a))2 | E = θ

]
, ∀a ∈ A, θ ∈ Θ.

Clearly, achieving bounded distortion for any D ∈ R≥0 addresses the second criterion for learning
targets. Since, for all t ∈ [T ] and any D > 0, the rate-distortion function Rt(D) is a non-negative;
convex; and non-increasing function in its argument [Cover and Thomas, 2012], it follows that we also
ensure the first criterion of a learning target for any D > 0: Rt(D) ≤ Rt(0) ≤ It(E ;A⋆) = Ht(A

⋆).
Arumugam and Van Roy [2021a,b] employ the classic Blahut-Arimoto algorithm [Blahut, 1972,
Arimoto, 1972] for computing these target actions Ãt in each time period and demonstrate a spectrum
of regret curves corresponding to various satisficing and optimal policies. Conveniently and unlike
with A⋆ or Aε, the onus does not fall upon the agent designer to specify the exact form of the
learning target in each time period and, instead, they need only select an appropriate distortion
function and threshold for the Blahut-Arimoto algorithm to produce a Ãt that strikes the optimal
trade-off between ease of learnability and near optimality. Arumugam and Van Roy [2021a] prove
the following information-theoretic Bayesian regret bound for their Blahut-Arimoto Satisficing
Thompson Sampling (BLASTS) algorithm:

BAYESREGRET(T, π(1:T )) ≤
√

2|A|R1(D)T + 2T
√
D,

alongside computational experiments demonstrating a wide spectrum of possible target actions that
can be realized. Naturally, a setting of D = 0 recovers the information-theoretic regret bound of
Russo and Van Roy [2016] up to a constant factor. With rewards assumed to be in the unit interval
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[0, 1], a setting of D = 1 permits any action to achieve the rate-distortion limit, requiring 0 bits of
information overall and rendering the regret bound vacuous. For intermediate settings of D, however,
the bound critically provides the information-theoretically optimal balance in selecting a learning
target that requires the minimum amount of information to deliver a minimum tolerable amount of
sub-optimality.
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