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Abstract

Cardiomechanical signals, encompassing ballistocardiography (BCG) and the1

bodyseismogram (BSG), represent a promising modality for unobtrusive and con-2

tinuous assessment of cardiovascular health. The J-peak, a key fiducial point3

within the cardiomechanical signal, serves as a robust surrogate for cardiac timing,4

underpinning heart rate (HR) estimation and hemodynamic modeling. However,5

precise J-peak localization is frequently confounded by annotation ambiguities,6

inter-subject signal variability, and motion artifacts. We introduce Peak-R1, a7

novel framework that leverages an instruction-tuned Large Language Model (LLM)8

for robust J-peak detection. Central to our approach is a peak-extraction front end9

that transforms raw BCG segments into compact peak sequences. This peak-centric10

representation reduces noise and introduces a principled inductive bias, guiding11

the LLM to focus on physiologically meaningful events and thereby improving12

its reasoning over time-series data. Peak-R1 is trained via a two-stage strategy:13

(i) supervised fine-tuning (SFT) to establish stable output formatting and baseline14

signal interpretation, followed by (ii) reinforcement learning (RL) with Group15

Relative Policy Optimization (GRPO). The RL stage employs a multi-objective16

reward function to jointly optimize for output validity, HR consistency, absolute17

localization accuracy, and detection completeness. The framework achieves an F118

score of 0.930 and HR mean absolute error (MAE) of 0.399 BPM on the Kansas19

dataset, while maintaining robust performance (F1: 0.770, HR MAE: 7.002 BPM)20

on the more challenging hospital-BSG dataset. Our ablation studies confirm the21

necessity of the peak-extraction front end and reveal that RL tuning is critical for22

improving detection accuracy.23

1 Introduction24

Cardiomechanical signals, including ballistocardiography (BCG) and body seismography (BSG),25

enable unobtrusive cardiovascular monitoring by capturing mechanical responses to cardiac ejec-26

tion [1, 2, 3]. The J-peak, a key fiducial point within these signals, serves as a reliable surrogate for27

cardiac timing and forms the foundation for heart rate estimation and hemodynamic modeling [4, 5].28

However, precise J-peak localization in real-world data remains challenging due to annotation29

ambiguities, inter-subject variability, motion artifacts, and sensor heterogeneity [6, 7, 8].30

Traditional signal processing methods, while computationally efficient, are fundamentally limited by31

their reliance on hand-crafted features, constraining their robustness in noisy environments [9]. Deep32

learning approaches improve sensitivity but typically employ point-wise binary classification, which33

suffers from severe class imbalance and lacks precise temporal localization [8].34
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Figure 1: The Peak-R1 framework processes raw BCG signals by first extracting peaks and repre-
senting them as timestamp:value pairs. These sequences are formatted into a prompt for a Large
Language Model (LLM), which includes domain knowledge and task instructions. The LLM is then
trained in two stages: first with supervised fine-tuning to ensure correctly formatted output, and
second with reinforcement learning to maximize the robustness of J-peak detection.

While instruction-tuned large language models (LLMs) have shown promise for structured biomedical35

data [10, 11, 12], their application to high-sampling-rate physiological waveforms is hindered by36

computationally prohibitive sequence lengths exceeding 1000 time-steps [13]. We hypothesize that37

an appropriate intermediate representation can unlock LLM potential for robust J-peak detection.38

We introduce Peak-R1, which reformulates cardiomechanical segments into compact peak sequences39

and employs two-stage instruction tuning: supervised fine-tuning (SFT) for schema compliance,40

followed by reinforcement learning with Group Relative Policy Optimization (GRPO) using multi-41

objective rewards for format validity, heart-rate consistency, positional accuracy, and detection42

completeness.43

Our contributions are:44

• We develop a novel way to represent cardiomechanical signal data that allows large language45

models to effectively analyze physiological time series.46

• We employ a two-stage training approach combining supervised learning and reinforcement47

learning to optimize objectives that traditional methods cannot handle.48

• We achieve best-in-class results on two datasets: Kansas (F1=0.930, HR error=0.399 BPM)49

and Hospital-BSG (F1=0.779, HR error=7.002 BPM), with experiments confirming each50

component’s importance.51
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2 Methods52

Representation and Training Template. To make BCG signals tractable for LLM processing,53

we introduce a peak-extraction method that converts each raw segment into a compact, symbolic54

sequence. The process involves band-pass filtering, segmentation, and robust per-segment normaliza-55

tion, followed by a local-extrema search to identify all candidate positive and negative peaks. This56

strategy of retaining both positive and negative extrema is critical for maintaining high morphological57

fidelity while drastically reducing the input sequence length. The retained peaks are then serialized58

into [Date:value] tokens in temporal order, where the [Date] is a synthetic calendar timestamp.59

This proxy time encoding was chosen to leverage the observed proficiency of LLMs with calendrical60

reasoning [13]. The training template includes: (i) Instructions: including Time steps and variables,61

domain knowledge, and task guidline. The time steps and variables are delimited by <TS_START>62

and <TS_END> from other text (ii) Output: an explicit output schema, J:[Date1, Date2, ...]. It63

is noticed that Ground-truth J-peaks are defined as the maximum BCG peak between consecutive64

ECG R-peaks, consistent with standard definitions [14, 15, 5]. An example of the template is shown65

in Appendix H.66

Supervised fine-tuning (SFT). We warm-start Qwen2.5-Instruct-3B [16] as the base model, op-67

timizing it to produce strictly valid outputs and learn a mapping from candidate peaks to J-peaks.68

Given a prompt q and target sequence y⋆ encoding J:[...], we minimize token-level cross-entropy:69

LSFT(θ) = −E(q,y⋆)

∑
t

log πθ(y
⋆
t | q, y⋆<t) .

Reinforcement learning with GRPO. Starting from the SFT model, we optimize a multi-objective70

reward aligned with task metrics:71

R(q, o) = λ1 γformat + λ2 γHR + λ3 γpos + λ4 γcnt.

γformat awards syntactically valid J:[...] outputs. γHR rewards agreement between predicted and72

reference HR. γpos compute F1 score from one-to-one matching under a fixed tolerance τ . γcnt73

encourages correct beat counts with mild penalties for under/over-detection. We use Group Relative74

Policy Optimization (GRPO): for each prompt, we sample a group of outputs, compute group-mean75

rewards as a baseline to form sequence-level advantages, and optimize a clipped policy objective with76

a KL penalty to the SFT policy to stabilize language fidelity. Sampling temperature/top-p, group size,77

clipping, KL weight, and λ weights are tuned on validation.78

Matching and metrics. Predicted times are matched to the ground truth via a one-to-one, minimum-79

cost bipartite assignment with costs Cij = |t̂i − tj |. Precision, recall, and F1 are then computed from80

the counts of matched and unmatched events based on tolerance tau. We also report heart-rate mean81

absolute error with the unit of BPM under a strict tolerance of τ = 0.01 s.82

3 Experiments and Results83

Setup. We evaluate Peak-R1 on two datasets: the publicly available Kansas dataset for high-quality84

signals and a proprietary Hospital-BSG dataset representing challenging real-world conditions. All85

data are split 8:2 (training:testing) at the subject level to ensure generalization and prevent overfitting.86

Input sequences comprise 1000 timesteps, corresponding to 10-second signal windows sampled at 10087

Hz. We report precision, recall, F1-score, and heart-rate mean absolute error (MAE) in BPM. Peak-88

R1 is benchmarked against classical methods (PINO [17], CHOI [18]) and deep learning baselines89

including U-Net [19], U-Net++ [15], CNN [20], LSTM [21], and Transformer [22] following [15].90

We also evaluate the base qwen2.5-3B-instruct model [16]. All methods use identical preprocessing91

and evaluation protocols. Ablation studies compare the full model (SFT+RL) against SFT-only92

and peak-extraction-removed variants. The implementation details for the baselines are listed in93

Appendix G.94

Main results. Table 1 demonstrates Peak-R1’s superior performance across both datasets. On the95

Kansas dataset, Peak-R1 achieves state-of-the-art results with F1=0.930 and HR MAE=0.399 BPM,96

significantly outperforming the best deep learning baseline U-Net++ (F1=0.885, HR MAE=6.30097
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Table 1: Full results with precision, recall, F1, and HR MAE (BPM) under a fixed matching tolerance
τ in Kansas and ICU. Best per block in bold. “-” indicates no valid result.

Kansas Hospital-BSG

Method Prec. Rec. F1 HR MAE Prec. Rec. F1 HR MAE

Large Language Model Approaches
Peak-R1 (Full) 0.918 0.948 0.930 0.399 0.750 0.816 0.779 7.002
Peak-R1 (SFT-only, ablation) 0.914 0.936 0.922 0.379 0.693 0.819 0.751 10.600
Peak-R1 (w/o peak extraction) 0.052 0.056 0.054 32.913 0.650 0.779 0.709 20.430
qwen2.5-3B-instruct - - - - - - - -

Deep Learning Models
UNet++ [15] 0.841 0.946 0.885 6.300 0.617 0.853 0.711 23.000
UNet [19] 0.799 0.910 0.841 9.300 0.613 0.859 0.711 24.100
CNN [20] 0.633 0.863 0.719 18.100 0.529 0.761 0.621 26.400
LSTM [21] 0.778 0.961 0.856 6.400 0.608 0.860 0.708 24.300
Transformer [22] 0.686 0.907 0.772 13.000 0.413 0.644 0.500 36.200

Traditional Algorithms
PINO [17] 0.252 0.280 0.264 4.300 0.672 0.686 0.676 8.602
CHOI [18] 0.813 0.882 0.841 5.800 0.655 0.651 0.650 7.522

BPM) and traditional method CHOI (F1=0.841, HR MAE=5.800 BPM). Peak-R1’s high recall (0.948)98

and exceptionally low HR MAE indicate superior temporal accuracy. On the challenging Hospital-99

BSG dataset, Peak-R1 maintains performance leadership with F1=0.779 and HR MAE=7.002 BPM,100

demonstrating robustness to clinical noise and artifacts. Baseline methods show notable degradation:101

U-Net++’s F1 drops to 0.711 (precision falls from 0.841 to 0.617), indicating increased false positives102

in noisy conditions, while CHOI achieves F1=0.650 and HR MAE=7.522 BPM. Visualization103

examples and a visual analysis are provided in Appendix F.104

Ablations. We evaluated an SFT-only variant that omits RL fine-tuning. On Kansas, it performed105

comparably to the full model (F1=0.922, HR MAE=0.379 BPM), but significantly degraded on noisy106

Hospital-BSG data (F1=0.751, HR MAE=10.600 BPM vs. full model’s F1=0.779, HR MAE=7.002107

BPM). This highlights RL’s critical role in enhancing robustness for noisy signals. Removing108

the peak extraction module caused catastrophic performance collapse: F1 dropped to 0.054 on109

Kansas and 0.709 on Hospital-BSG. This demonstrates that peak-centric representation is founda-110

tional—providing the structured input necessary for effective LLM-based J-peak detection. The base111

qwen2.5-3B-instruct model failed to generate valid outputs when prompted directly, confirming112

that domain-specific adaptations through both peak representation and fine-tuning are essential for113

task success.114

Limitations While Peak-R1 achieves superior accuracy, it comes at the cost of increased com-115

putational complexity, a trade-off detailed in Appendix D. The model’s inference throughput of116

3.571 Samples per second is orders of magnitude lower than that of the baseline deep learning and117

traditional algorithms. Despite this, the processing speed is well-suited for real-world deployment. A118

10-second window of data can be processed in under 0.3 seconds, ensuring that analysis can proceed119

in real-time without creating a bottleneck, as this is faster than the data acquisition itself.120

4 Conclusion121

We introduce Peak-R1, which combines a peak-centric input representation with two-stage instruction122

tuning—supervised fine-tuning (SFT) followed by GRPO-based reinforcement learning—for J-peak123

detection from cardiomechanical signals. Across the public Kansas dataset and a self-collected124

Hospital-BSG dataset, Peak-R1 achieves state-of-the-art event-level accuracy and robust heart-rate125

estimation, surpassing both traditional and deep-learning baselines under a unified evaluation protocol.126

Ablation studies indicate that the peak-centric representation is essential and that the RL stage127

improves absolute temporal localization and robustness to noisy signals beyond SFT alone, while128

preserving strict schema validity of the outputs. The principal trade-off for this advanced performance129

is computational cost. Although the current model is fast enough for real-time monitoring, a critical130

direction for future research is to enhance its inference speed, making high-accuracy analysis more131

accessible for resource-constrained applications.132
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Figure 2: Correlation between J–J and R–R intervals in Kansas (left) and ICU (right).

A J peak definition203

In this study, we define ground-truth J-peaks as the maximum BCG amplitude within each R–R204

interval of the reference ECG. This definition is supported by prior literature and further validated205

empirically: we quantify the association between successive J–J intervals and the corresponding R–R206

intervals and observe a strong correlation (Fig. 2). This result indicates that J-peak–derived intervals207

faithfully track the reference heart rate.208

B Reward functions209

We use four per-sample rewards that promote (i) schema compliance, (ii) heart-rate consistency, (iii)210

precise peak localization, and (iv) peak-count completeness. Below, s denotes the model output211

string.212

Format compliance. Admissible outputs are those that match the required schema J: [ · · · ]213

(Eq. (1)); the binary reward is given in Eq. (2).214

FJ =
{
s ∈ Σ∗ : s matches J: [ · · · ]

}
. (1)

215

γformat(s) =

{
1, s ∈ FJ ,

0, otherwise.
(2)

Heart-rate consistency. A smooth reward penalizes relative HR error (Eq. (3)); Hpred and Htrue are216

BPM computed from predicted and reference J-peaks.217

γHR =

w exp
(
−k

|Hpred −Htrue|
Htrue

)
, if both HRs are available,

0, otherwise,
with w = 0.15, k = 2. (3)

Positional accuracy. Let np and ng be the counts of predicted and ground-truth peaks, and let m218

be the size of a maximum one-to-one matching under a temporal tolerance τ = 0.01 s. The positional219

reward is the F1 score in Eq. (4).220

γpos =


2m

np + ng
, np + ng > 0,

0, otherwise.
(4)

Count completeness. We define summary quantities in Eq. (5), a completeness score in Eq. (6),221

and the weighted reward in Eq. (7).222

ng = #GT peaks, np = #predicted peaks, ρ =
min(np, ng)

ng
, ϵ =

np − ng

ng
. (5)
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223

Scomp(np, ng) =


0, ng = 0 or np = 0,

1, np = ng (≥ 1),

0.8 ρ, 0 < np < ng,

max
(
0, ρ (1− 0.5 ϵ)

)
, np > ng.

(6)

224
γcnt = wc Scomp(np, ng), wc = 0.15. (7)

C Group Relative Policy Optimization (GRPO)225

Group Relative Policy Optimization (GRPO) is a PPO-style policy optimization method for RLHF226

that compares multiple responses generated for the same prompt and uses group-relative advantages227

(e.g., z-scored rewards within the group). This reduces reliance on calibrated absolute rewards, aligns228

with comparison-based reward models, and retains PPO’s stability via clipping with an explicit KL229

regularizer to a reference policy.230

JGRPO(θ) = E q∼P (Q)

{oi}G
i=1∼πθold

(·|q)

[
1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

min
(
ri,t Âi,t, clip(ri,t, 1− ε, 1 + ε) Âi,t

)
− βDKL

(
πθ(· | q) ∥πref(· | q)

)]
.

(8)

231

ri,t :=
πθ(oi,t | q, oi,<t)

πθold(oi,t | q, oi,<t)
. (9)

where ri,t =
πθ(oi,t | q, oi,<t)

πθold(oi,t | q, oi,<t)
, Âi,t are group-relative advantages (e.g., standardized within the232

G responses), ε is the clipping parameter, and β weights the KL regularization. Key knobs are the233

group size G, clip ε, and KL weight β.234

D Computational Complexity Analysis235

The superior accuracy of Peak-R1 requires significantly more computation than baseline methods, a236

critical trade-off detailed in Table 2. Computational throughout is measured in samples per second237

(SPS). The model’s training is intensive, with throughputs of 0.397 SPS (SFT) and 0.24 SPS (RL),238

reflecting the overhead of its 3-billion-parameter architecture compared to the much smaller deep239

learning models.240

For inference, Peak-R1 processes 3.571 SPS. Although this is orders of magnitude slower than deep241

learning models (up to 52k SPS) and traditional algorithms (over 1M SPS), this speed is well-suited242

for practical application. Processing a 10-second signal window requires less than 0.3 seconds,243

substantially faster than the data acquisition time itself. This confirms that Peak-R1’s inference244

speed is tolerable and enables real-time, window-by-window analysis without causing a processing245

bottleneck.246
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Table 2: Computational complexity and throughput analysis for all evaluated models. Throughput
is measured in samples per second (SPS). For traditional algorithms, which do not have a training
phase, throughput reflects their combined processing speed.

Model/Algorithm Parameters Training Throughput (SPS) Inference Throughput (SPS)
Large Language Model
Peak-R1 (our model) ~3 Billion SFT: 0.397, RL: 0.24 3.571

Deep Learning Models
UNetPlusPlus1D 1,790,465 3,414.5 12,379.8
UNet1D 382,849 7,009.5 33,527.0
LSTM1D 133,761 4,595.3 12,372.4
CNN1D 329,057 18,036.8 52,129.6
Transformer1D 8,705 2,664.1 10,676.1

Traditional Algorithms
PINO N/A N/A 1,719,949.2
CHOI N/A N/A 4,316,707.8
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E Summary of KSU and Hospital-BSG dataset247

Kansas dataset is an open-source BCG dataset with 40 subjects and synchronized BCG, ECG, PPG,248

and ABP signals, sampled at 1000 Hz. heart rate range from 48 to 95 BPM, but with limited BP249

variability and few patients with cardiovascular disease. This stable dataset provides a baseline for250

evaluating feature extraction and calibration under lower variability conditions.251

Hospital-BSG dataset collected 1120 hours of BSG, ABP, HR, ECG, PPG, and RR data from 52 ICU252

patients (ages 6–86, 35 males) using our SeismoDot system (100 Hz). Heart rate span 46-262 BPM,253

reflecting the high BP variability typical in critical care. All data collection was IRB-approved. The254

inclusion of a broad range of HR values and signal quality in the ICU cohort is essential for assessing255

model robustness and generalizability to real-world, high-variability clinical settings.256

The summary of KSU and Hospital-BSG dataset is shown in Table 3.

Table 3: Summary of Datasets Used in the Study
Characteristic Kansas Dataset [23] Hospital-BSG Dataset
Source Kansas State University Yixing People’s Hospital
Number of Subjects 40 52
Gender Distribution 17 males, 23 females 35 males, 17 females
Age Range (years) 18–65 6–86
Sensors EMFi sensors and load cells BetDot
Sampling Rate 1000 Hz 100 Hz
Signals BCG, ECG, PPG, ABP BSG, ABP, RR, HR, ECG, PPG
Heart Rate Range(BPM) 48–95 46–262
Systolic Pressure Range (mmHg) 58.7–187.0 38–310
Diastolic Pressure Range (mmHg) 44.5–101.0 20–293
Systolic Pressure Dynamics (mmHg) 11–46 53–259
Diastolic Pressure Dynamics (mmHg) 5–27 19–264
Data Duration >4.5 hours 1120 hours
Special Notes 4 subjects with cardiovascular Hospital ICU patients

conditions

257

F Visualization258

We visualize two representative segments of the ballistocardiogram (BCG) to assess the performance259

of different models and algorithms: an easy sample and a hard sample (Figure 3 and Figure 4). On the260

easy sample, most models perform well; however, deep-learning models exhibit slight temporal shifts261

in peak locations, likely due to the absence of explicit output constraints. On the hard sample, these262

shifts become more pronounced. While such temporal misalignment has limited impact on heart-rate263

(HR) estimation—primarily driven by inter-beat intervals—it substantially affects blood-pressure264

(BP) estimation, which depends on accurately measuring the amplitude difference between the J and265

K peaks.266

For Peak-R1, most potential J peaks are captured, but their count is occasionally overestimated, which267

can inflate HR estimates. Nevertheless, because the predicted amplitudes tend to be consistent, the268

impact on BP estimation can be comparatively limited, even for difficult peaks. In contrast, the PINO269

and Choi baselines exhibit larger inconsistencies in distorted regions, leading to notable errors in both270

HR and BP estimates.271
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((a)) BCG (ground truth) ((b)) Peak-R1 (predictions)

((c)) LSTM (predictions) ((d)) CNN (predictions)

((e)) Transformer (prediction) ((f)) U-Net++ (predictions)

((g)) Choi et al. (predictions) ((h)) PINO (predictions)

Figure 3: Comparison of ground truth and model outputs for the easy sample (ID 1000). Top row:
BCG ground truth and Peak-R1 predictions. Subsequent rows: outputs from deep-learning models
(LSTM, CNN, Transformer, U-Net) and baseline methods (Choi, PINO).
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((a)) BCG (ground truth) ((b)) Peak-R1 (predictions)

((c)) LSTM (predictions) ((d)) CNN (predictions)

((e)) Transformer (predictions) ((f)) U-Net++ (predictions)

((g)) Choi et al. (predictions) ((h)) PINO (predictions)

Figure 4: Comparison of ground truth and model outputs for the hard sample (ID 4100). Top row:
BCG ground truth and Peak-R1 predictions. Subsequent rows: outputs from deep-learning models
(LSTM, CNN, Transformer, U-Net) and baseline methods (Choi, PINO).
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G Implementation Details272

G.1 Model Architectures273

We evaluated five distinct deep learning architectures for the task of J-peak detection. The UNet-based274

models utilize a repeating ‘ConvBlock‘, which consists of two sequential 1D convolutional layers,275

each followed by a ReLU activation function. The key architectural details for each model are276

summarized in Table 4.277

G.2 Training Procedure278

All models were trained using a standardized procedure to ensure consistency and reproducibility279

across experiments. The training hyperparameters and settings are detailed in Table 5.280
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Table 4: Detailed Summary of Deep Learning Model Architectures.
Model Architectural Details
CNN1D A sequential 1D convolutional network structured as follows:

• Conv1: 32 filters, kernel size 32, ReLU activation.
• MaxPool1D: kernel size 2.
• Conv2: 64 filters, kernel size 32, ReLU activation.
• MaxPool1D: kernel size 2.
• Conv3: 128 filters, kernel size 32, ReLU activation.
• Upsampling: Two sequential upsampling layers (scale factor 2) to

restore original length.
• Output: Final 1x1 convolution to 1 channel, followed by a Sigmoid

activation.

LSTM1D A recurrent architecture designed to capture temporal dependencies:
• BiLSTM: A two-layer bidirectional LSTM with 64 hidden units in

each direction (total 128).
• Output: A fully connected layer maps the LSTM output to a single

channel, followed by a Sigmoid activation.

Transformer1D An attention-based model for sequence-to-sequence probability map-
ping:
• Input Projection: A linear layer projects the input channel to a

model dimension (dmodel) of 32.
• Positional Encoding: Standard sine-cosine positional encoding is

added.
• Encoder: A single Transformer encoder layer with 4 attention heads,

a feedforward dimension of 64, and GELU activation.
• Output: A final linear layer maps the encoder output to 1 channel,

followed by a Sigmoid activation.

UNet1D A 1D U-Net with a 3-level symmetric encoder-decoder structure (base
filters = 16):
• Encoder: Three ‘ConvBlock‘ layers that progressively halve the

sequence length and double the channel count (16 → 32 → 64).
• Decoder: Three blocks that progressively double the sequence

length and halve the channel count. Each block consists of an up-
convolution, a skip connection concatenating the output with the
corresponding encoder feature map, and a ‘ConvBlock‘.

• Output: A 1x1 convolution to 1 channel, followed by a Sigmoid
activation.

UNetPlusPlus1D An advanced U-Net with nested and dense skip connections (base
filters = 16):
• Encoder: A 4-level encoder path (X0,0 to X3,0) with channel counts

(16 → 32 → 64 → 128).
• Nested Skip Pathways: Intermediate ‘ConvBlock‘ layers are con-

nected in a dense, nested pattern. Each node receives concatenated
inputs from the previous node in the same level and the up-sampled
output from the node in the level below it.

• Output: The final output is generated from the highest-level node
(X0,3), which aggregates features from all semantic levels, followed
by a 1x1 convolution and a Sigmoid activation.
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Table 5: Standardized Training Parameters for all Deep Learning Models.
Parameter Value / Setting
Data Split 80% Training, 20% Validation

Optimizer Adam

Initial Learning Rate 0.001

Weight Decay 1e-5

Loss Function Focal Loss (γ = 2, α=dynamic inverse frequency)

LR Scheduler ReduceLROnPlateau (Patience=3, Factor=0.5)

Gradient Clipping Max norm = 1.0

Batch Size 32

Epochs Up to 150 (terminated by early stopping)
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H Prompt-Based Analysis Example281

The following code block shows a complete prompt-and-response example, demonstrating how the282

instruction and input data are used to generate the correct, structured output of identified J-peak283

timestamps.284

Listing 1: Example of a structured prompt for J-peak detection.
285

{286

"instruction": "You are a specialized assistant for biomedical287

signal analysis , specifically trained in BCG J peak detection288

from ICU 3D HR signals. Analyze the following ICU 3D HR signal289

peaks using ECG -guided J peak detection methodology. Peak290

detection guidance: J peaks are detected as maximum values in291

BCG signals occurring between consecutive R peaks. Detect J292

peak in the following BCG signal peaks. Output format:293

Structured format with J peak positions in brackets.",294

"input": "ICU 3D HR signal sampled at 100 Hz with duration of295

10.00 seconds. Detected peaks in signal: <TS_START >\\ nDate:296

2020 -01 -01 00:00:13 , Value: 2.059006\\ nDate: 2020 -01 -01297

00:00:23 , Value: -1.752526\\n... (remaining peak data) ...\\298

nDate: 2020 -01 -01 00:16:32 , Value: -1.243836\\n<TS_END >",299

"output": "J: [2020 -01 -01 00:02:45 ,2020 -01 -01 00:03:14 ,2020 -01 -01300

00:04:17 ,2020 -01 -01 00:05:33 ,2020 -01 -01 00:07:24 ,2020 -01 -01301

00:08:14 ,2020 -01 -01 00:09:27 ,2020 -01 -01 00:10:41 ,2020 -01 -01302

00:12:02 ,2020 -01 -01 00:13:23 ,2020 -01 -01 00:14:39]"303

}304305
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