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Abstract

Cardiomechanical signals, encompassing ballistocardiography (BCG) and the
bodyseismogram (BSG), represent a promising modality for unobtrusive and con-
tinuous assessment of cardiovascular health. The J-peak, a key fiducial point
within the cardiomechanical signal, serves as a robust surrogate for cardiac timing,
underpinning heart rate (HR) estimation and hemodynamic modeling. However,
precise J-peak localization is frequently confounded by annotation ambiguities,
inter-subject signal variability, and motion artifacts. We introduce Peak-R1, a
novel framework that leverages an instruction-tuned Large Language Model (LLM)
for robust J-peak detection. Central to our approach is a peak-extraction front end
that transforms raw BCG segments into compact peak sequences. This peak-centric
representation reduces noise and introduces a principled inductive bias, guiding
the LLM to focus on physiologically meaningful events and thereby improving
its reasoning over time-series data. Peak-R1 is trained via a two-stage strategy:
(1) supervised fine-tuning (SFT) to establish stable output formatting and baseline
signal interpretation, followed by (ii) reinforcement learning (RL) with Group
Relative Policy Optimization (GRPO). The RL stage employs a multi-objective
reward function to jointly optimize for output validity, HR consistency, absolute
localization accuracy, and detection completeness. The framework achieves an F1
score of 0.930 and HR mean absolute error (MAE) of 0.399 BPM on the Kansas
dataset, while maintaining robust performance (F1: 0.770, HR MAE: 7.002 BPM)
on the more challenging hospital-BSG dataset. Our ablation studies confirm the
necessity of the peak-extraction front end and reveal that RL tuning is critical for
improving detection accuracy.

1 Introduction

Cardiomechanical signals, including ballistocardiography (BCG) and body seismography (BSG),
enable unobtrusive cardiovascular monitoring by capturing mechanical responses to cardiac ejec-
tion [} 2, 13]]. The J-peak, a key fiducial point within these signals, serves as a reliable surrogate for
cardiac timing and forms the foundation for heart rate estimation and hemodynamic modeling [4} 5]
However, precise J-peak localization in real-world data remains challenging due to annotation
ambiguities, inter-subject variability, motion artifacts, and sensor heterogeneity [6} 7, 18].

Traditional signal processing methods, while computationally efficient, are fundamentally limited by
their reliance on hand-crafted features, constraining their robustness in noisy environments [9]]. Deep
learning approaches improve sensitivity but typically employ point-wise binary classification, which
suffers from severe class imbalance and lacks precise temporal localization [8]].
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Figure 1: The Peak-R1 framework processes raw BCG signals by first extracting peaks and repre-
senting them as timestamp:value pairs. These sequences are formatted into a prompt for a Large
Language Model (LLM), which includes domain knowledge and task instructions. The LLM is then
trained in two stages: first with supervised fine-tuning to ensure correctly formatted output, and
second with reinforcement learning to maximize the robustness of J-peak detection.

While instruction-tuned large language models (LLMs) have shown promise for structured biomedical
data [10} (11} [12], their application to high-sampling-rate physiological waveforms is hindered by
computationally prohibitive sequence lengths exceeding 1000 time-steps [13]. We hypothesize that
an appropriate intermediate representation can unlock LLM potential for robust J-peak detection.

We introduce Peak-R1, which reformulates cardiomechanical segments into compact peak sequences
and employs two-stage instruction tuning: supervised fine-tuning (SFT) for schema compliance,
followed by reinforcement learning with Group Relative Policy Optimization (GRPO) using multi-
objective rewards for format validity, heart-rate consistency, positional accuracy, and detection
completeness.

Our contributions are:

* We develop a novel way to represent cardiomechanical signal data that allows large language
models to effectively analyze physiological time series.

* We employ a two-stage training approach combining supervised learning and reinforcement
learning to optimize objectives that traditional methods cannot handle.

¢ We achieve best-in-class results on two datasets: Kansas (F1=0.930, HR error=0.399 BPM)
and Hospital-BSG (F1=0.779, HR error=7.002 BPM), with experiments confirming each
component’s importance.
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2 Methods

Representation and Training Template. To make BCG signals tractable for LLM processing,
we introduce a peak-extraction method that converts each raw segment into a compact, symbolic
sequence. The process involves band-pass filtering, segmentation, and robust per-segment normaliza-
tion, followed by a local-extrema search to identify all candidate positive and negative peaks. This
strategy of retaining both positive and negative extrema is critical for maintaining high morphological
fidelity while drastically reducing the input sequence length. The retained peaks are then serialized
into [Date:value] tokens in temporal order, where the [Date] is a synthetic calendar timestamp.
This proxy time encoding was chosen to leverage the observed proficiency of LLMs with calendrical
reasoning [13]]. The training template includes: (i) Instructions: including Time steps and variables,
domain knowledge, and task guidline. The time steps and variables are delimited by <TS_START>
and <TS_END> from other text (ii) Output: an explicit output schema, J: [Datel, Date2, ...]. It
is noticed that Ground-truth J-peaks are defined as the maximum BCG peak between consecutive
ECG R-peaks, consistent with standard definitions [14} 15} |5]. An example of the template is shown
in Appendix [H|

Supervised fine-tuning (SFT). We warm-start Qwen2.5-Instruct-3B [16]] as the base model, op-
timizing it to produce strictly valid outputs and learn a mapping from candidate peaks to J-peaks.
Given a prompt ¢ and target sequence y* encoding J: [. . .], we minimize token-level cross-entropy:

Lspr(0) = —E(gy) Y logma(y; | ¢,v%,)-

t

Reinforcement learning with GRPO. Starting from the SFT model, we optimize a multi-objective
reward aligned with task metrics:

R(qa O) = )\1 “Yformat + )\2 “YHR + >\3 “Ypos + )\4 Yent -

Yrormat aWards syntactically valid J: [. . .] outputs. ygr rewards agreement between predicted and
reference HR. ~p0s compute F1 score from one-to-one matching under a fixed tolerance 7 . ey
encourages correct beat counts with mild penalties for under/over-detection. We use Group Relative
Policy Optimization (GRPO): for each prompt, we sample a group of outputs, compute group-mean
rewards as a baseline to form sequence-level advantages, and optimize a clipped policy objective with
a KL penalty to the SFT policy to stabilize language fidelity. Sampling temperature/top-p, group size,
clipping, KL weight, and A\ weights are tuned on validation.

Matching and metrics. Predicted times are matched to the ground truth via a one-to-one, minimum-
cost bipartite assignment with costs C;; = |fi — t;]. Precision, recall, and F1 are then computed from
the counts of matched and unmatched events based on tolerance tau. We also report heart-rate mean
absolute error with the unit of BPM under a strict tolerance of 7 = 0.01 s.

3 Experiments and Results

Setup. We evaluate Peak-R1 on two datasets: the publicly available Kansas dataset for high-quality
signals and a proprietary Hospital-BSG dataset representing challenging real-world conditions. All
data are split 8:2 (training:testing) at the subject level to ensure generalization and prevent overfitting.
Input sequences comprise 1000 timesteps, corresponding to 10-second signal windows sampled at 100
Hz. We report precision, recall, F1-score, and heart-rate mean absolute error (MAE) in BPM. Peak-
R1 is benchmarked against classical methods (PINO [[17]], CHOI [18])) and deep learning baselines
including U-Net [[19], U-Net++ [15], CNN [20], LSTM [21], and Transformer [22] following [15].
We also evaluate the base qwen2.5-3B-instruct model [16]. All methods use identical preprocessing
and evaluation protocols. Ablation studies compare the full model (SFT+RL) against SFT-only
and peak-extraction-removed variants. The implementation details for the baselines are listed in

Appendix [G|

Main results. Table|I|demonstrates Peak-R1’s superior performance across both datasets. On the
Kansas dataset, Peak-R1 achieves state-of-the-art results with F1=0.930 and HR MAE=0.399 BPM,
significantly outperforming the best deep learning baseline U-Net++ (F1=0.885, HR MAE=6.300
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Table 1: Full results with precision, recall, F1, and HR MAE (BPM) under a fixed matching tolerance

7 in Kansas and ICU. Best per block in bold. “-” indicates no valid result.
Kansas Hospital-BSG
Method Prec. Rec. Fl1 HR MAE Prec. Rec. Fl1 HR MAE

Large Language Model Approaches

Peak-R1 (Full) 0918 0.948  0.930 0.399 0.750 0.816  0.779 7.002
Peak-R1 (SFT-only, ablation) 0914 0936 0922 0.379 0.693 0819 0.751 10.600
Peak-R1 (w/o peak extraction) 0.052 0.056 0.054 32913 0.650 0.779 0.709 20.430
qwen2.5-3B-instruct - -

Deep Learning Models

UNet++ [15] 0.841 0946  0.885 6.300 0.617 0853  0.711 23.000
UNet [19] 0.799 0910 0.841 9.300 0.613 0.859 0.711 24.100
CNN [20] 0.633 0863 0.719 18.100 0.529  0.761 0.621 26.400
LSTM [21] 0.778 0961  0.856 6.400 0.608  0.860  0.708 24.300
Transformer [22] 0.686 0907 0.772 13.000 0413  0.644  0.500 36.200
Traditional Algorithms

PINO [17] 0.252  0.280 0.264 4.300 0.672 0.686  0.676 8.602
CHOI [18] 0.813 0.882 0.841 5.800 0.655  0.651 0.650 7.522

BPM) and traditional method CHOI (F1=0.841, HR MAE=5.800 BPM). Peak-R1’s high recall (0.948)
and exceptionally low HR MAE indicate superior temporal accuracy. On the challenging Hospital-
BSG dataset, Peak-R1 maintains performance leadership with F1=0.779 and HR MAE=7.002 BPM,
demonstrating robustness to clinical noise and artifacts. Baseline methods show notable degradation:
U-Net++’s F1 drops to 0.711 (precision falls from 0.841 to 0.617), indicating increased false positives
in noisy conditions, while CHOI achieves F1=0.650 and HR MAE=7.522 BPM. Visualization
examples and a visual analysis are provided in Appendix [F}

Ablations. We evaluated an SFT-only variant that omits RL fine-tuning. On Kansas, it performed
comparably to the full model (F1=0.922, HR MAE=0.379 BPM), but significantly degraded on noisy
Hospital-BSG data (F1=0.751, HR MAE=10.600 BPM vs. full model’s F1=0.779, HR MAE=7.002
BPM). This highlights RL’s critical role in enhancing robustness for noisy signals. Removing
the peak extraction module caused catastrophic performance collapse: F1 dropped to 0.054 on
Kansas and 0.709 on Hospital-BSG. This demonstrates that peak-centric representation is founda-
tional—providing the structured input necessary for effective LLM-based J-peak detection. The base
qwen2.5-3B-instruct model failed to generate valid outputs when prompted directly, confirming
that domain-specific adaptations through both peak representation and fine-tuning are essential for
task success.

Limitations While Peak-R1 achieves superior accuracy, it comes at the cost of increased com-
putational complexity, a trade-off detailed in Appendix [D] The model’s inference throughput of
3.571 Samples per second is orders of magnitude lower than that of the baseline deep learning and
traditional algorithms. Despite this, the processing speed is well-suited for real-world deployment. A
10-second window of data can be processed in under 0.3 seconds, ensuring that analysis can proceed
in real-time without creating a bottleneck, as this is faster than the data acquisition itself.

4 Conclusion

We introduce Peak-R1, which combines a peak-centric input representation with two-stage instruction
tuning—supervised fine-tuning (SFT) followed by GRPO-based reinforcement learning—for J-peak
detection from cardiomechanical signals. Across the public Kansas dataset and a self-collected
Hospital-BSG dataset, Peak-R1 achieves state-of-the-art event-level accuracy and robust heart-rate
estimation, surpassing both traditional and deep-learning baselines under a unified evaluation protocol.
Ablation studies indicate that the peak-centric representation is essential and that the RL stage
improves absolute temporal localization and robustness to noisy signals beyond SFT alone, while
preserving strict schema validity of the outputs. The principal trade-off for this advanced performance
is computational cost. Although the current model is fast enough for real-time monitoring, a critical
direction for future research is to enhance its inference speed, making high-accuracy analysis more
accessible for resource-constrained applications.



133

134
135

136
137
138

139
140
141
142

143
144
145
146

147
148
149

150
151
152
153

154
155

156
157
158

159
160
161

162
163
164

165

167

168
169

170
171
172

173
174
175
176

177
178
179

References

[1] Jeremy W Gordon. Certain molar movements of the human body produced by the circulation of
the blood. Journal of anatomy and physiology, 11(Pt 3):533, 1877.

[2] Chang-Sei Kim, Stephanie L Ober, M Sean McMurtry, Barry A Finegan, Omer T Inan, Ra-
makrishna Mukkamala, and Jin-Oh Hahn. Ballistocardiogram: Mechanism and potential for
unobtrusive cardiovascular health monitoring. Scientific reports, 6(1):31297, 2016.

[3] Yingjian Song, Bingnan Li, Dan Luo, Glenna S Brewster Glasgow, Bradley G Phillips, Yuan
Ke, and Wenzhan Song. Real-time continuous blood pressure estimation with contact-free
bedseismogram. In ICC 2024-IEEE International Conference on Communications, pages
214-219. IEEE, 2024.

[4] Yandao Huang, Lin Chen, Chenggao Li, Junyao Peng, Qingyong Hu, Yu Sun, Hao Ren, Weimin
Lyu, Wen Jin, Junzhang Tian, et al. Ai-driven system for non-contact continuous nocturnal
blood pressure monitoring using fiber optic ballistocardiography. Communications Engineering,
3(1):183, 2024.

[5] Jae Hyuk Shin and Kwang Suk Park. Hrv analysis and blood pressure monitoring on weighing
scale using beg. In 2012 Annual International Conference of the IEEE Engineering in Medicine
and Biology Society, pages 3789-3792. IEEE, 2012.

[6] Samuel M Proll, Stefan Hofbauer, Christian Kolbitsch, Rainer Schubert, and Karl D Fritscher.
Ejection wave segmentation for contact-free heart rate estimation from ballistocardiographic
signals. In 2019 41st Annual International Conference of the IEEE Engineering in Medicine
and Biology Society (EMBC), pages 3571-3576. IEEE, 2019.

[7] A. Suliman, C. Carlson, C. J. Ade, S. Warren, and D. E. Thompson. Performance comparison
for ballistocardiogram peak detection methods. IEEE Access, 7:53945-53955, 2019.

[8] Christoph Schranz, Christina Halmich, Sebastian Mayr, and Dominik PJ Heib. Surrogate
modelling of heartbeat events for improved j-peak detection in bcg using deep learning. Frontiers
in Network Physiology, 4:1425871, 2024.

[9] Samuel M Proell, Elias Tappeiner, Stefan Hofbauer, Christian Kolbitsch, Rainer Schubert, and
Karl D Fritscher. Heart rate estimation from ballistocardiographic signals using deep learning.
Physiological Measurement, 42(7):075005, 2021.

[10] Jonathan W Kim, Ahmed Alaa, and Danilo Bernardo. Eeg-gpt: exploring capabilities of large
language models for eeg classification and interpretation. arXiv preprint arXiv:2401.18006,
2024.

[11] Longfei Liu, Guosheng Cui, Cheng Wan, Dan Wu, and Ye Li. Ecg-llm: Leveraging large
language models for low-quality ecg signal restoration. In 2024 IEEE International Conference
on Bioinformatics and Biomedicine (BIBM), pages 3537-3542. IEEE, 2024.

[12] Yubao Zhao, Jiaju Kang, Tian Zhang, Puyu Han, and Tong Chen. Ecg-chat: A large ecg-
language model for cardiac disease diagnosis. arXiv preprint arXiv:2408.08849, 2024.

[13] Elizabeth Fons, Rachneet Kaur, Soham Palande, Zhen Zeng, Tucker Balch, Manuela Veloso,
and Svitlana Vyetrenko. Evaluating large language models on time series feature understanding:
A comprehensive taxonomy and benchmark. arXiv preprint arXiv:2404.16563, 2024.

[14] Yongfeng Huang, Tianchen Jin, Chenxi Sun, Xueyang Li, Shuchen Yang, and Zhiming Zhang.
Efficient j peak detection from ballistocardiogram using lightweight convolutional neural
network. In 2021 43rd Annual International Conference of the IEEE Engineering in Medicine
& Biology Society (EMBC), pages 269-272. IEEE, 2021.

[15] Tengda Zhou, Shaoyang Men, Jingxian Liang, Baoxian Yu, Han Zhang, and Xiaomu Luo. 1d
u-net++: an effective method for ballistocardiogram j-peak detection. Journal of Mechanics in
Medicine and Biology, 21(10):2140058, 2021.



180
181
182

183
184
185

186
187
188

189
190
191

192
193
194

195
196

197
198
199

200
201
202

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jia-
jun Zhang, Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. arXiv preprint
arXiv:2409.12186, 2024.

Esteban J Pino, Javier AP Chavez, and Pablo Aqueveque. Noninvasive ambulatory measurement
system of cardiac activity. In 2015 37th annual international conference of the IEEE engineering
in medicine and biology society (EMBC), pages 7622-7625. IEEE, 2015.

Byung Hun Choi, Gih Sung Chung, Jin-Seong Lee, Do-Un Jeong, and Kwang Suk Park. Slow-
wave sleep estimation on a load-cell-installed bed: a non-constrained method. Physiological
measurement, 30(11):1163, 2009.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. In International Conference on Medical image computing and
computer-assisted intervention, pages 234-241. Springer, 2015.

Serkan Kiranyaz, Turker Ince, and Moncef Gabbouj. Real-time patient-specific ecg classification
by 1-d convolutional neural networks. IEEE transactions on biomedical engineering, 63(3):664—
675, 2015.

Yong Yu, Xiaosheng Si, Changhua Hu, and Jianxun Zhang. A review of recurrent neural
networks: Lstm cells and network architectures. Neural computation, 31(7):1235-1270, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

Charles Carlson, Vanessa-Rose Turpin, Ahmad Suliman, Carl Ade, Steve Warren, and David E
Thompson. Bed-based ballistocardiography: Dataset and ability to track cardiovascular parame-
ters. Sensors, 21(1):156, 2020.



204
205
206
207

209

210
211
212

213
214

215

216
217

218
219
220

221
222

Per-segment HR_J vs HR_R Per-sample HR_J vs HR_R
Pearson r=0.991, p=0.0e+00; Spearman r=0.990, p=0.0e+00 Pearson r=0.987, p=0.0e+00; Spearman r=0.972, p=0.0e+00

1004

=
@
S

90 1

,_.
=
S

,_.
~
1S

80

,_.
=
3

704

@
8

HR from J-J (bpm)
HR from J-) (bpm)

=
3

60

40

501

50 60 70 80 90 20 40 60 80 100 120 140 160
HR from R-R (bpm) HR from R-R (bpm)

Figure 2: Correlation between J-J and R-R intervals in Kansas (left) and ICU (right).

A J peak definition

In this study, we define ground-truth J-peaks as the maximum BCG amplitude within each R-R
interval of the reference ECG. This definition is supported by prior literature and further validated
empirically: we quantify the association between successive J-J intervals and the corresponding R—R
intervals and observe a strong correlation (Fig.[2). This result indicates that J-peak—derived intervals
faithfully track the reference heart rate.

B Reward functions

We use four per-sample rewards that promote (i) schema compliance, (ii) heart-rate consistency, (iii)
precise peak localization, and (iv) peak-count completeness. Below, s denotes the model output
string.

Format compliance. Admissible outputs are those that match the required schema J: [--- ]
(Eq. (1)); the binary reward is given in Eq. ().

]—'J:{sGE*:smatChesJ:[~']}. e))

‘ (5) . 1, s € ]:J7
“Vformat ~ 10, otherwise.

@

Heart-rate consistency. A smooth reward penalizes relative HR error (Eq. @)); Hpyreq and Hypye are
BPM computed from predicted and reference J-peaks.

k |Hpred - Htrue|
Htrue
0, otherwise,

w exp(f >, if both HRs are available,

YHR = withw = 0.15, k= 2. (3)

Positional accuracy. Let n, and ny be the counts of predicted and ground-truth peaks, and let m
be the size of a maximum one-to-one matching under a temporal tolerance 7 = 0.01 s. The positional
reward is the F1 score in Eq. ().

2m

Ypos = np + Ng
0, otherwise.

, npt+ng >0, @

Count completeness. We define summary quantities in Eq. (3)), a completeness score in Eq. (6),
and the weighted reward in Eq. (7).
min(ny, ng) Ny — Ng

ng = #GT peaks, n, = #predicted peaks, p = ————=, ¢ = ——. (J)
Ng Tig
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C Group Relative Policy Optimization (GRPO)

Group Relative Policy Optimization (GRPO) is a PPO-style policy optimization method for RLHF
that compares multiple responses generated for the same prompt and uses group-relative advantages
(e.g., z-scored rewards within the group). This reduces reliance on calibrated absolute rewards, aligns
with comparison-based reward models, and retains PPO’s stability via clipping with an explicit KL
regularizer to a reference policy.

o]

G
1 1 , I )
jGRPO(a) =K a~P(Q) 5 Z m Z HllIl(T‘ivt Ai,ta Cllp(’f’i7t, 1-— g, 1+ 5) Ai,t)
i=1 "t =1

G
{Oi}izlwﬂ—Qold (Iq)

- BDKL(WO(' | @) [ 7rvet (- | q))]

®)

79(0it | 4,01 <t)
Tho1a (Oi,t | qaoi,<t)

©))

it =

70(0it | q,0i,<¢)

T0o1a (0it | 4501 <t)
G responses), ¢ is the clipping parameter, and /5 weights the KL regularization. Key knobs are the
group size G, clip €, and KL weight .

where r; ; = s fli,t are group-relative advantages (e.g., standardized within the

D Computational Complexity Analysis

The superior accuracy of Peak-R1 requires significantly more computation than baseline methods, a
critical trade-off detailed in Table 2] Computational throughout is measured in samples per second
(SPS). The model’s training is intensive, with throughputs of 0.397 SPS (SFT) and 0.24 SPS (RL),
reflecting the overhead of its 3-billion-parameter architecture compared to the much smaller deep
learning models.

For inference, Peak-R1 processes 3.571 SPS. Although this is orders of magnitude slower than deep
learning models (up to 52k SPS) and traditional algorithms (over 1M SPS), this speed is well-suited
for practical application. Processing a 10-second signal window requires less than 0.3 seconds,
substantially faster than the data acquisition time itself. This confirms that Peak-R1’s inference
speed is tolerable and enables real-time, window-by-window analysis without causing a processing
bottleneck.



Table 2: Computational complexity and throughput analysis for all evaluated models. Throughput
is measured in samples per second (SPS). For traditional algorithms, which do not have a training
phase, throughput reflects their combined processing speed.

Model/Algorithm Parameters Training Throughput (SPS) Inference Throughput (SPS)

Large Language Model

Peak-R1 (our model) ~3 Billion SFT: 0.397, RL: 0.24 3.571
Deep Learning Models

UNetPlusPlus1D 1,790,465 3,414.5 12,379.8
UNet1D 382,849 7,009.5 33,527.0
LSTMID 133,761 4,595.3 12,372.4
CNNID 329,057 18,036.8 52,129.6
Transformer1D 8,705 2,664.1 10,676.1
Traditional Algorithms

PINO N/A N/A 1,719,949.2
CHOI N/A N/A 4,316,707.8
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E Summary of KSU and Hospital-BSG dataset

Kansas dataset is an open-source BCG dataset with 40 subjects and synchronized BCG, ECG, PPG,
and ABP signals, sampled at 1000 Hz. heart rate range from 48 to 95 BPM, but with limited BP
variability and few patients with cardiovascular disease. This stable dataset provides a baseline for
evaluating feature extraction and calibration under lower variability conditions.

Hospital-BSG dataset collected 1120 hours of BSG, ABP, HR, ECG, PPG, and RR data from 52 ICU
patients (ages 6—86, 35 males) using our SeismoDot system (100 Hz). Heart rate span 46-262 BPM,
reflecting the high BP variability typical in critical care. All data collection was IRB-approved. The
inclusion of a broad range of HR values and signal quality in the ICU cohort is essential for assessing
model robustness and generalizability to real-world, high-variability clinical settings.

The summary of KSU and Hospital-BSG dataset is shown in Table 3]

Table 3: Summary of Datasets Used in the Study

Characteristic Kansas Dataset [23] Hospital-BSG Dataset

Source Kansas State University Yixing People’s Hospital

Number of Subjects 40 52

Gender Distribution 17 males, 23 females 35 males, 17 females

Age Range (years) 18-65 6-86

Sensors EMFi sensors and load cells BetDot

Sampling Rate 1000 Hz 100 Hz

Signals BCG, ECG, PPG, ABP BSG, ABP, RR, HR, ECG, PPG

Heart Rate Range(BPM) 48-95 46-262

Systolic Pressure Range (mmHg) 58.7-187.0 38-310

Diastolic Pressure Range (mmHg) 44.5-101.0 20-293

Systolic Pressure Dynamics (mmHg) 11-46 53-259

Diastolic Pressure Dynamics (mmHg) 5-27 19-264

Data Duration >4.5 hours 1120 hours

Special Notes 4 subjects with cardiovascular Hospital ICU patients
conditions

F Visualization

We visualize two representative segments of the ballistocardiogram (BCG) to assess the performance
of different models and algorithms: an easy sample and a hard sample (Figure [3|and Figure[d). On the
easy sample, most models perform well; however, deep-learning models exhibit slight temporal shifts
in peak locations, likely due to the absence of explicit output constraints. On the hard sample, these
shifts become more pronounced. While such temporal misalignment has limited impact on heart-rate
(HR) estimation—primarily driven by inter-beat intervals—it substantially affects blood-pressure
(BP) estimation, which depends on accurately measuring the amplitude difference between the J and
K peaks.

For Peak-R1, most potential J peaks are captured, but their count is occasionally overestimated, which
can inflate HR estimates. Nevertheless, because the predicted amplitudes tend to be consistent, the
impact on BP estimation can be comparatively limited, even for difficult peaks. In contrast, the PINO
and Choi baselines exhibit larger inconsistencies in distorted regions, leading to notable errors in both
HR and BP estimates.
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Figure 3: Comparison of ground truth and model outputs for the easy sample (ID 1000). Top row:
BCG ground truth and Peak-R1 predictions. Subsequent rows: outputs from deep-learning models
(LSTM, CNN, Transformer, U-Net) and baseline methods (Choi, PINO).
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Figure 4: Comparison of ground truth and model outputs for the hard sample (ID 4100). Top row:
BCG ground truth and Peak-R1 predictions. Subsequent rows: outputs from deep-learning models
(LSTM, CNN, Transformer, U-Net) and baseline methods (Choi, PINO).
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G Implementation Details

G.1 Model Architectures

We evaluated five distinct deep learning architectures for the task of J-peak detection. The UNet-based
models utilize a repeating ‘ConvBlock*, which consists of two sequential 1D convolutional layers,
each followed by a ReLU activation function. The key architectural details for each model are
summarized in Table 4

G.2 Training Procedure

All models were trained using a standardized procedure to ensure consistency and reproducibility
across experiments. The training hyperparameters and settings are detailed in Table 5]
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Table 4: Detailed Summary of Deep Learning Model Architectures.

Model Architectural Details
CNN1D A sequential 1D convolutional network structured as follows:

e Convl: 32 filters, kernel size 32, ReLLU activation.

* MaxPoollD: kernel size 2.

¢ Conv2: 64 filters, kernel size 32, ReLLU activation.

* MaxPoollD: kernel size 2.

* Conv3: 128 filters, kernel size 32, ReLLU activation.

* Upsampling: Two sequential upsampling layers (scale factor 2) to
restore original length.

* Output: Final 1x1 convolution to 1 channel, followed by a Sigmoid
activation.

LSTM1D A recurrent architecture designed to capture temporal dependencies:

* BiLSTM: A two-layer bidirectional LSTM with 64 hidden units in
each direction (total 128).

* Output: A fully connected layer maps the LSTM output to a single
channel, followed by a Sigmoid activation.

Transformer1D  An attention-based model for sequence-to-sequence probability map-
ping:

* Input Projection: A linear layer projects the input channel to a
model dimension (d,,0q4e;) of 32.

* Positional Encoding: Standard sine-cosine positional encoding is
added.

* Encoder: A single Transformer encoder layer with 4 attention heads,
a feedforward dimension of 64, and GELU activation.

* QOutput: A final linear layer maps the encoder output to 1 channel,
followed by a Sigmoid activation.

UNet1D A 1D U-Net with a 3-level symmetric encoder-decoder structure (base

filters = 16):

* Encoder: Three ‘ConvBlock® layers that progressively halve the
sequence length and double the channel count (16 — 32 — 64).

* Decoder: Three blocks that progressively double the sequence
length and halve the channel count. Each block consists of an up-
convolution, a skip connection concatenating the output with the
corresponding encoder feature map, and a ‘ConvBlock".

* Output: A 1x1 convolution to 1 channel, followed by a Sigmoid
activation.

UNetPlusPlus1D An advanced U-Net with nested and dense skip connections (base

filters = 16):

 Encoder: A 4-level encoder path (X% to X3-0) with channel counts
(16 — 32 — 64 — 128).

* Nested Skip Pathways: Intermediate ‘ConvBlock* layers are con-
nected in a dense, nested pattern. Each node receives concatenated
inputs from the previous node in the same level and the up-sampled
output from the node in the level below it.

* Output: The final output is generated from the highest-level node
(X93), which aggregates features from all semantic levels, followed
by a 1x1 convolution and a Sigmoid activation.
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Table 5: Standardized Training Parameters for all Deep Learning Models.

Parameter Value / Setting

Data Split 80% Training, 20% Validation

Optimizer Adam

Initial Learning Rate  0.001

Weight Decay le-5

Loss Function Focal Loss (7 = 2, a=dynamic inverse frequency)
LR Scheduler ReducelLROnPlateau (Patience=3, Factor=0.5)
Gradient Clipping Max norm = 1.0

Batch Size 32

Epochs Up to 150 (terminated by early stopping)
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H Prompt-Based Analysis Example

The following code block shows a complete prompt-and-response example, demonstrating how the
instruction and input data are used to generate the correct, structured output of identified J-peak
timestamps.

Listing 1: Example of a structured prompt for J-peak detection.

"instruction": "You are a specialized assistant for biomedical
signal analysis, specifically trained in BCG J peak detection
from ICU 3D HR signals. Analyze the following ICU 3D HR signal

peaks using ECG-guided J peak detection methodology. Peak
detection guidance: J peaks are detected as maximum values in
BCG signals occurring between consecutive R peaks. Detect J
peak in the following BCG signal peaks. Output format:
Structured format with J peak positions in brackets.",

"input": "ICU 3D HR signal sampled at 100 Hz with duration of
10.00 seconds. Detected peaks in signal: <TS_START>\\nDate:
2020-01-01 00:00:13, Value: 2.059006\\nDate: 2020-01-01
00:00:23, Value: -1.752526\\n... (remaining peak data) ...\\
nDate: 2020-01-01 00:16:32, Value: -1.243836\\n<TS_END>",

"output": "J: [2020-01-01 00:02:45,2020-01-01 00:03:14,2020-01-01
00:04:17,2020-01-01 00:05:33,2020-01-01 00:07:24,2020-01-01
00:08:14,2020-01-01 00:09:27,2020-01-01 00:10:41,2020-01-01
00:12:02,2020-01-01 00:13:23,2020-01-01 00:14:39]"
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