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Abstract

Continual Learning (CL) methods usually learn from all the available data. However, this is not the case in human cognition which
efficiently focuses on key experiences while disregarding the redundant information. Similarly, not all data points in a dataset have
equal potential; some can be more informative than others. Especially in CL, such redundant or low-quality data can be detrimental
for learning efficiency and exacerbate catastrophic forgetting. Drawing inspiration from this, we explore the potential of learning
from important samples and present an empirical study for evaluating coreset selection techniques in the context of CL to stimulate
research in this unexplored area. We train various continual learners on progressively larger subsets of selected samples, analyzing
the learning-forgetting dynamics and uncovering the mechanisms that enhance the stability-plasticity trade-off. We present several
significant observations: Learning from selectively chosen samples (i) enhances incremental accuracy, (ii) improves knowledge
retention of previous tasks, and (iii) continually refines learned representations. This analysis contributes to a deeper understanding
of data-selective learning strategies in CL scenarios. The code is available at https://github.com/ElifCerenGokYildirim/
Coreset-CL.
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1. Introduction

Machine learning has achieved remarkable success in solv-
ing complex tasks, often relying on the assumption that data
is available in a static and complete form. While effective in
controlled scenarios, this approach falls short in dynamic en-
vironments where data and tasks evolve over time. Continual
Learning (CL) bridges this gap by enabling models to learn se-
quentially from streaming data, retaining previously acquired
knowledge while adapting to new tasks, a duality known as the
stability-plasticity balance. This balance is critical for mimick-
ing human-like learning, where accumulated knowledge is pre-
served (stability) yet flexibly updated with novel experiences
(plasticity). However, catastrophic forgetting [1] remains a
challenge in this dynamic setting wherein models tend to lose
acquired knowledge from previous tasks, upon learning new
ones.

Recent research has brought solutions through various
techniques, including regularization-based [2, 3, 4], replay-
based [5, 6, 7, 8], architecture-based [9, 10, 11, 12, 13] and
prompt-based [14, 15, 16] approaches. While these methods
improve performance, they share a common assumption: all
training samples are equally valuable and must be exhaustively
utilized. By default, this standardized practice prioritizes plas-
ticity (integrating new information) at the risk of destabiliz-
ing learned representations, as redundant or noisy samples may
overwrite critical prior knowledge. This ‘learn-it-all’ paradigm
diverges from human learning efficiency since, as humans, we
are initially exposed to vast amounts of information but intu-
itively filter and prioritize them, focusing on key experiences

(e.g. clear and novel examples) that enrich our understanding
while disregarding redundant details [17, 18, 19].

Drawing inspiration from this human cognitive ability, we
present an empirical study to evaluate the stability-plasticity dy-
namics of training with important samples across different CL
models (see Figure 1) in the most challenging scenario class-
incremental learning (CIL) where the learner must predict out-
comes for all encountered classes without task identifiers [20].
We believe that this comprehensive study presents the potential
benefits of data-centric strategies in CL scenarios and stimu-
lates future research in this direction. Our contributions can be
summarized as:

I. This paper presents the first explicit empirical analysis of
different coreset selection methods in combination with
various continual learners in the class-incremental learn-
ing setting.

II. We find that training on carefully selected subsets derived
from various coreset selection strategies substantially en-
hances incremental accuracy.

III. We demonstrate that the increase in performance among
continual learners trained with selected samples is pri-
marily driven by an improved stability-plasticity trade-off,
which is largely attributable to the enhanced retention of
prior knowledge.

IV. We advocate that continual learning can benefit from a
data-centric approach, despite the fact that most existing
research has predominantly focused on model-centric en-
hancements.
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2. Background

2.1. Continual Learning

Continual learning can be categorized into four main
groups [20] as regularization-, replay-, architecture-, and
prompt-based approaches. Regularization-based methods reg-
ularize the abrupt changes in the learned parameters to pre-
vent catastrophic forgetting [2, 3, 4]. Replay-based methods
either retain selected exemplars from prior tasks or generate a
subset of data points from previous tasks to alleviate forget-
ting [5, 6, 7, 8]. Architecture-based methods prevent forgetting
by increasing model size and allocating distinct sets of param-
eters to individual tasks, ensuring there is no overlap between
them [9, 10, 11, 12, 13]. Finally, prompt-based methods that
influence the self-attention process of large pre-trained models
have also received growing popularity [14, 15, 16].

2.2. Summary of CL Methods Selected for Analysis

We use 7 well-established CL models that encompass var-
ious approaches including architecture-based, replay-based,
regularization-based, and prompt-based. We deliberately chose
these methods to provide a comprehensive analysis since they
all represent different learning strategies. For more details,
please see our Appendix A.1.

DER-Architecture. Dynamically expandable representation [9]
creates a new feature extractor for each task and then aggregates
the features from all backbones on a single classifier. Each ex-
panded feature extractor or backbone uses an additional aux-
iliary loss to differentiate better between old and new classes.
Facing new tasks, it freezes the old backbone to maintain for-
mer knowledge.

FOSTER-Architecture. Feature boosting and compression [10]
frames the learning process as a feature-boosting problem and
aims to enhance the learning of new features. Then, it expands
the continual learner on a single classifier by integrating the
boosted features with a compression step to ensure that only
relevant features are retained.

MEMO-Architecture. Memory efficient expandable
model [11] expands the network in a more efficient way.
It assumes that the initial blocks of the backbone capture the
general patterns for any task and only expands the model in the
last or specialized blocks that are designed to be task-specific.

iCaRL-Replay. Incremental classifier and representation learn-
ing [21] is a replay-based method that stores samples from each
learned task. Upon the arrival of a new task, it uses stored ex-
emplars together with the new one to capture the distribution at
once. Therefore, it refines the features after each task with ad-
ditional distillation loss to overcome abrupt shifts in the feature
space.

ER-Replay. Experience replay [22] is a simple yet strong
method that employs reservoir sampling to store samples from
each task and randomly retrieves stored samples with the new
task to capture the distribution all at once.

LwF-Regularization. Learning without forgetting [3] is solely
a regularization-based method without relying on any replay
buffer. It utilizes a distillation loss to prevent sudden changes in
the feature space while learning new tasks.

CODA-Prompt. Continual decomposed attention-based
prompting [16] is a prompt-based method that leverages
pre-trained Vision Transformers (ViT) without relying on data
rehearsal. It introduces a set of prompt components that are
dynamically assembled based on input-conditioned weights,
generating task-specific prompts for the transformer’s attention
layers. These generated prompts selectively guide the model’s
attention to relevant features for each task, to enable better
stability-plasticity tradeoff.

2.3. Coreset Selection
Coreset selection approximates the distribution of the whole

dataset with a small subset. Several works offer a strong the-
oretical motivation and prove that such subsets can closely
mimic key properties of the full data by preserving diversity
and maintaining representative feature coverage [23, 24, 25]. It
is especially extensively examined in data-efficient supervised
batch learning [26, 27, 28, 29, 30, 31, 23, 32] and active learn-
ing [33, 34]. Recently, it has also been shown that coreset selec-
tion holds promise in continual learning to construct a memory
buffer from important samples [7, 8]. For example, an inspiring
study [35] improved the performance in online CL setup by in-
troducing a coreset selection method to select the most diverse
samples while approximating the mean of a given batch.

However, the interplay between the coreset selection meth-
ods and continual learning models remains largely unexplored.
Exploring this interaction could provide novel insight to create
more efficient and advanced continual learners.

2.4. Overview of Coreset Algorithms Selected for Analysis
We employ 4 distinct coreset selection methods as well as

a baseline using random selection. Once again, we carefully
chose these distinct methods to offer comprehensive empiri-
cal analysis. It is important to note that these coreset selec-
tion methods require a brief initial training or warm-up phase to
make informed and meaningful decisions when selecting core-
set samples. We provide more details in our Appendix A.2.

Random. This selection strategy involves randomly selecting a
subset of data points from the entire dataset without any specific
criteria or consideration of their importance or informativeness.

Herding. Herding [30] chooses data points by evaluating the
distance between the center of the original dataset and the cen-
ter of the coreset within the feature space. This algorithm pro-
gressively and greedily includes one sample at a time into the
coreset, aiming to minimize the distance between centers.

Uncertainty. Samples with lower confidence levels might have
a stronger influence than those with higher confidence levels,
thus having these samples in the coreset can be useful. Least
confidence, entropy, and margin are the common metrics used
to quantify sample uncertainty [31]. In this study, entropy is
used as a selection metric.

2



Figure 1: Illustration of our evaluation protocol: Existing continual learning methods (left) typically utilize all available samples indiscriminately during training.
In this study (right), we subject continual learners to a selection of the most important samples with different coreset selection methods and analyze affects on the
incremental performance.

Forgetting. Forgetting selects instances which were correctly
classified in one epoch and then subsequently misclassified in
the following epoch during training [26]. This method provides
valuable insight into the intrinsic characteristics of the training
data and removes challenging or forgettable instances.

GraphCut. GraphCut partitions the dataset into subsets based
on dissimilarity or information content, and data points from
these subsets are then selected to form the coreset [23]. It en-
sures that the coreset captures the diversity and essential infor-
mation of the original dataset while reducing redundancy.

3. Empirical Method

We conduct a comprehensive evaluation of existing CL meth-
ods, assessing their performance when trained on carefully se-
lected, informative samples, as opposed to the traditional ap-
proach of full dataset training. To clarify our approach, we first
present the necessary preliminaries and problem formulation in
Section 3.1. Following this, we define our objective and outline
the proposed training strategy in Section 3.2.

3.1. Preliminaries and Problem Formulation
Formally, we define the CL problem as a sequence of clas-

sification tasks T1:t = (T1,T2, ...,Tt). Each task Tt is drawn
from an unknown distribution and consists of input pairs (xi,t,
yi,t) ∈ Xt × Yt where xi,t represents the sample and yi,t indicates
the corresponding label. Note that these learning tasks are mu-
tually exclusive, meaning that the label sets do not overlap, i.e.,
Yt−1 ∩ Yt = ∅.

From the coreset selection perspective, the objective is to
identify a compact yet informative subset S t from a given task
Tt with a large number of input pairs (xi,t, yi,t). The selected
S t should preserve the essential information of the full task Tt.
Therefore, model trained with subset S t ⊂ Tt with a condition
of |S t | < |Tt | should have a similar performance compared to a
model trained with Tt.

3.2. Objective and Training Strategy

We structure the training process into two distinct phases: the
warm-up phase and the learning phase. This is necessary be-
cause coreset selection methods rely on analyzing the model’s
behavior and data representations to identify the most informa-
tive samples. Consequently, the CL model must undergo at least
partial training during the warm-up phase to enable accurate
sample selection. It is important to note that the duration of the
warm-up phase is typically much shorter than that of the learn-
ing phase. Upon completion of the warm-up phase, the learning
phase proceeds with the selected subset of samples.

Let fθ(·) denote the continual learning model with parameters
θ. Then, the training process can then be expressed as follows:

fθ∗ = arg min
θ
LCL( fθ, S t, (1 − α)e) ◦ arg min

θ
LCE( fθ,Tt, αe)

(1)
Here, the second term ( fθ,Tt, αe) represents training the

model fθ on the full training samples of task Tt with a defined
time budget of αe where hyperparameter α ∈ (0, 1) and deter-
mines the fraction of the total training budget allocated to the
warm-up phase, and e is the total number of epochs available for
training. Similarly, the first term ( fθ, S t, (1−α)e) represents the
training of the model fθ, for the remaining time budget (1−α)e,
on the coreset S t which is selected from Tt with a fraction of
s ∈ (0, 1) based on a coreset selection function ϕ(·), so that
|S t | = s · |Tt |. Note that LCE represents Cross-Entropy loss and
LCL represents the loss defined by continual learning methods
given in section 2.2.

To provide a more precise explanation, Algorithm 1 begins
with a warm-up phase (lines 2-7) where the model fθ observes
the training samples Tt of the current task for a duration of αe.
During this phase, the model trains each batch b to compute the
Cross-Entropy loss LCE( fθ, b). This initial exposure allows the
model to capture a broad understanding of the task’s character-
istics.
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Algorithm 1 CL Training with Coreset Samples

Require: Model fθ, Tasks T1:t with training sets Tt, learning
rate η, total epochs e, warm-up fraction α, coreset selection
function ϕ, coreset fraction s

1: for task t = 1 to Tt do
2: for epoch = 1 to ⌊αe⌋ do ▷Warm-up Phase
3: for each batch b in Tt do
4: Compute LCE( fθ, b)
5: Update fθ ← θ − η∇θLCE

6: end for
7: end for
8: Use ϕ( fθ,Tt) to select S t ⊂ Tt with a fraction of s
9: for epoch = 1 to ⌊(1 − α)e⌋ do ▷ Learning Phase

10: for each batch b in S t do
11: Compute LCL( fθ, b)
12: Update fθ ← θ − η∇θLCL

13: end for
14: end for
15: end for

Following the warm-up (line 8), the algorithm employs the
coreset selection function ϕ(·) which requires training samples
for a given task Tt and the model fθ to filter down to a coreset
S t ⊂ Tt, consisting of only a fraction s of the current task sam-
ples. The criterion for selection, depending on the coreset se-
lection function, can target samples with high informativeness,
uncertainty, or relevance, focusing on key data points.

In the learning phase (lines 9-14), which spans the remaining
(1 − α)e epochs, the model is trained on batches from S t, using
specific loss function of continual learners LCL( fθ, b). This re-
fines the goal of solidifying task-specific knowledge while min-
imizing interference from previous tasks to prevent forgetting.

4. Experimental Setting

Datasets. We use well-established continual learning datasets,
specifically Split-CIFAR10 [36], Split-CIFAR100 [36], and
Split-ImageNet-100 [37] in our experiments to evaluate and
posit our findings. Split-CIFAR10 has 5 disjoint tasks and
each task has 2 disjoint classes with 10000 samples for train-
ing and 2000 samples for testing. Split-CIFAR100 has 10 dis-
joint tasks and each task has 10 disjoint classes with 5000 sam-
ples for training and 1000 samples for testing. In addition, we
employ Split-ImageNet100, a subset of the large-scale Ima-
geNet dataset, with images at a higher resolution of 224x224
pixels. Similar to Split-CIFAR100, Split-ImageNet100 is di-
vided into 10 tasks, each consisting of 10 disjoint classes. The
increased number of classes, fewer images per class combined
with longer learning sessions, and higher resolution bring fur-
ther challenges and offer a more complex scenario.

Implementation Details. We use Deepcore [27] for coreset se-
lection methods and PYCIL [38] for the CL models. We use
both from scratch (ResNet18) and pre-trained (ResNet18 and
ViT) models with prior knowledge to provide a more compre-
hensive analysis, using standard CL metrics, which are dis-

cussed more in detail in the Appendix A.3. We set the to-
tal training budget e to 100 epochs where warmup fraction
α is set to 0.1 and the remaining is allocated for the learn-
ing phase. To ensure a comprehensive evaluation across vary-
ing data availability scenarios, we set coreset fraction s to
10%, 20%, 50%, 80% and 90% for each task ranging from lim-
ited samples to near-full data access. We use SGD optimizer
with a scheduled learning rate of 0.1 and momentum of 0.9. We
set a weight decay of 5 × 10−4 for the initial task and 2 × 10−4

for subsequent tasks. We set the batch size to 128. We employ a
fixed memory size: 50 per class for CIFAR10 and 20 per class
for CIFAR100 and ImageNet100. This configuration follows
the default setting in the PYCIL framework, which we adopt in
our implementation. Note that, we do not employ coreset se-
lection methods to construct the memory buffers, adhering in-
stead to the original implementations. This decision was made
to ensure a fair and controlled comparison, isolating the effect
of coreset selection during training without modifying the re-
hearsal strategies themselves. For ViT, we adjust the learning
rate to 1 × 10−3, reduce the batch size to 32, and train for 20
epochs. We run all experiments on A100 GPU across distinct
random seeds, where each seed governs not only parameter ini-
tialization but also task ordering to ensure that our findings are
robust by reflecting performance across diverse task sequences.

5. Results and Analysis
In Section 5.1, we conduct a comprehensive analysis across

diverse CL methods and different coreset algorithms with vary-
ing coreset sizes. In Section 5.2, we investigate why coreset se-
lection improves incremental accuracy, offering insight into the
stability-plasticity dynamics. In Section 5.3, we explore how
these dynamics are reflected in the model’s decision-making.
Finally, in Section 5.4, we further examine and discuss the
warm-up training, computational complexity as well as model
complexity, and their effects.

5.1. Impact of Coreset Selection on Incremental Performance
Our analysis reveals that coreset selection improves incre-

mental learning performance across different datasets and ar-
chitectures (Table 1, 2, A). To quantify the effectiveness of core-
set algorithms, we compare how often each selection method
outperforms full training across all CL methods and datasets
(Figure 2a). We observe that random sampling serves as a
strong baseline while structured coreset methods are essential
for maximizing incremental accuracy which is heavily influ-
enced by the size of the coreset: When the number of samples
per task is large enough (e.g., CIFAR10), the model can afford
to remove a greater portion of the data without significant loss
in incremental accuracy (Table 1). On the other hand, when
sample sizes are limited (e.g., CIFAR100 and ImageNet100),
removing a large portion of the data is more challenging, as the
model may struggle to obtain essential knowledge with fewer
examples (Table 2, B). Nevertheless, regardless of the dataset
size, more distinct and compact representations obtained via
coreset lead to increased performance due to better knowledge
retention. We further explore the impact of coreset size and its
effect on representational dynamics in Section 5.3.
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Figure 2: (a) Coreset methods frequently outperform full-sample training, (b) LwF trained on Split-CIFAR10 demonstrates less forgetting in random selection due
to fewer parameter changes and (c) Lower boosting strength improves coreset training performance over full-sample since boosting mechanism of FOSTER requires
more data samples.

Table 1: Accuracy [%] across various coreset fractions and selections on Split-
CIFAR10 with from-scratch ResNet18. Underlined results outperform train-
ing with all samples (w/o coreset) and the best results are highlighted in bold.

w/o Coreset Fraction 10% 20% 50% 80% 90%

DER [9]

Random 51.79 ± 4.6 54.28 ± 3.8 55.68 ± 0.3 57.27 ± 2.9 55.61 ± 2.5
Herding 41.65 ± 2.2 52.35 ± 2.5 59.79 ± 1.8 63.96 ± 1.1 62.93 ± 1.2

56.91 ± 1.3 Uncertainty 56.02 ± 1.7 59.48 ± 1.7 57.97 ± 0.8 62.01 ± 3.1 59.36 ± 1.5
Forgetting 55.68 ± 2.1 60.97 ± 1.0 60.82 ± 0.3 63.46 ± 3.9 61.36 ± 0.4
GraphCut 62.06 ± 1.9 64.74 ± 0.5 63.03 ± 2.0 61.17 ± 1.9 62.95 ± 1.5

FOSTER [10]

Random 52.44 ± 5.4 52.34 ± 4.3 53.22 ± 2.8 53.93 ± 4.2 53.93 ± 3.0
Herding 32.00 ± 2.2 39.91 ± 8.3 46.91 ± 3.3 52.82 ± 2.6 51.34 ± 1.2

54.79 ± 2.9 Uncertainty 45.42 ± 3.6 49.18 ± 4.6 48.94 ± 3.2 50.95 ± 2.6 49.25 ± 2.2
Forgetting 45.44 ± 3.2 51.59 ± 4.0 49.37 ± 0.2 48.19 ± 2.6 49.10 ± 1.5
GraphCut 50.85 ± 3.1 52.54 ± 3.7 49.94 ± 0.3 49.43 ± 0.9 49.28 ± 1.0

MEMO [11]

Random 44.36 ± 4.2 45.41 ± 5.5 47.45 ± 6.4 48.93 ± 7.1 49.58 ± 7.2
Herding 39.32 ± 0.2 45.04 ± 0.4 47.90 ± 3.1 49.98 ± 6.1 49.34 ± 6.3

49.22 ± 5.5 Uncertainty 38.27 ± 6.9 41.10 ± 5.0 44.99 ± 6.4 47.75 ± 6.0 47.90 ± 5.4
Forgetting 35.04 ± 4.1 45.23 ± 5.4 47.74 ± 5.3 48.66 ± 5.5 47.78 ± 5.9
GraphCut 51.37 ± 3.6 52.54 ± 2.3 49.67 ± 4.0 49.97 ± 6.0 48.35 ± 5.7

iCaRL [21]

Random 47.70 ± 4.3 55.41 ± 5.4 54.56 ± 5.8 57.75 ± 7.5 57.29 ± 6.3
Herding 40.32 ± 5.0 42.99 ± 3.3 54.02 ± 4.5 58.60 ± 6.7 59.11 ± 6.3

59.54 ± 8.0 Uncertainty 50.77 ± 1.5 54.41 ± 6.2 56.78 ± 6.3 57.38 ± 6.6 57.82 ± 7.1
Forgetting 53.79 ± 4.9 57.86 ± 5.9 58.30 ± 5.9 58.90 ± 6.3 56.90 ± 7.7
GraphCut 61.70 ± 2.7 61.07 ± 4.2 60.88 ± 5.6 58.80 ± 7.0 57.68 ± 7.1

ER [22]

Random 51.02 ± 2.7 56.32 ± 6.2 57.79 ± 4.6 57.20 ± 6.0 57.77 ± 6.9
Herding 41.06 ± 7.5 47.97 ± 4.0 55.87 ± 4.9 58.93 ± 4.6 58.85 ± 4.9

58.51 ± 6.4 Uncertainty 52.70 ± 2.4 52.99 ± 1.1 56.35 ± 6.3 57.48 ± 6.4 58.09 ± 5.4
Forgetting 52.44 ± 3.4 55.05 ± 5.8 57.43 ± 5.7 57.00 ± 5.5 56.73 ± 6.2
GraphCut 63.03 ± 3.1 60.53 ± 2.6 60.34 ± 4.4 58.69 ± 5.6 57.61 ± 5.8

LwF [3]

Random 31.60 ± 0.8 41.46 ± 1.9 45.64 ± 1.5 51.21 ± 4.7 51.83 ± 2.1
Herding 15.27 ± 3.8 23.75 ± 3.0 20.72 ± 0.7 27.74 ± 5.2 30.86 ± 4.1

51.15 ± 4.3 Uncertainty 26.89 ± 5.0 24.21 ± 3.3 28.95 ± 5.1 29.58 ± 5.8 30.54 ± 4.2
Forgetting 27.10 ± 5.3 25.49 ± 4.0 27.66 ± 5.2 30.24 ± 5.5 30.57 ± 5.0
GraphCut 25.34 ± 3.1 26.22 ± 3.5 29.42 ± 5.2 30.54 ± 4.2 30.95 ± 5.4

Regardless of the model architecture, using coreset strategies
consistently outperforms training on the full dataset with some
nuances. Smaller convolutional neural networks, such as from-
scratch ResNet18 (Table 2) and pre-trained ResNet18 (Table 4),
require larger coresets to ensure an increase in performance,
while larger and more powerful transformer-based models like
pre-trained ViTs (Table A) can perform exceptionally well with
smaller coresets.

From the perspective of CL, all learners highly benefit from
the selected coresets, except FOSTER and LwF. The way FOS-
TER works requires to identify critical elements that were po-
tentially overlooked or misinterpreted by the original model
during the learning process. For instance, in the initial stages
of learning, certain features may have been deemed less signifi-
cant than others. However, as the model progresses and encoun-
ters new concepts, previously redundant features may become
crucial. FOSTER addresses these dynamics by employing a

Table 2: Accuracy [%] across various coreset fractions and selections on Split-
CIFAR100 with from-scratch ResNet18. Underlined results outperform train-
ing with all samples (w/o coreset) and the best results are highlighted in bold.

w/o Coreset Fraction 10% 20% 50% 80% 90%

DER [9]

Random 26.23 ± 0.6 36.35 ± 2.8 47.32 ± 2.6 53.11 ± 1.6 54.07 ± 0.1
Herding 17.99 ± 7.5 24.79 ± 6.0 41.11 ± 2.7 52.48 ± 0.4 53.92 ± 0.8

53.81 ± 1.0 Uncertainty 27.54 ± 4.6 38.29 ± 3.0 49.41 ± 1.2 55.71 ± 1.9 54.55 ± 0.4
Forgetting 30.32 ± 4.9 41.25 ± 1.8 49.20 ± 2.2 54.10 ± 0.3 53.68 ± 0.1
GraphCut 29.61 ± 5.7 39.71 ± 3.4 50.35 ± 1.0 53.08 ± 0.8 54.89 ± 0.7

FOSTER [10]

Random 23.21 ± 0.0 32.04 ± 1.3 48.95 ± 0.8 51.71 ± 1.9 53.34 ± 0.8
Herding 10.84 ± 0.8 18.38 ± 1.1 35.15 ± 2.7 51.51 ± 0.1 53.72 ± 0.9

56.19 ± 2.3 Uncertainty 16.97 ± 0.1 27.37 ± 0.9 44.29 ± 3.1 55.24 ± 0.1 55.10 ± 1.7
Forgetting 21.80 ± 0.4 32.42 ± 0.8 44.97 ± 2.9 54.59 ± 0.4 54.91 ± 1.0
GraphCut 22.16 ± 1.6 30.40 ± 1.1 45.91 ± 2.3 53.35 ± 1.9 55.24 ± 0.5

MEMO [11]

Random 20.79 ± 0.7 26.74 ± 0.1 29.62 ± 0.5 34.27 ± 0.2 34.58 ± 0.1
Herding 13.24 ± 2.0 18.76 ± 1.5 27.26 ± 1.8 33.64 ± 0.3 34.94 ± 0.1

34.23 ± 0.4 Uncertainty 16.07 ± 2.6 23.23 ± 2.9 30.14 ± 1.7 33.41 ± 0.9 34.10 ± 1.0
Forgetting 18.44 ± 1.9 23.37 ± 2.0 31.17 ± 0.3 33.10 ± 0.4 32.46 ± 2.2
GraphCut 23.21 ± 1.7 27.79 ± 0.6 32.49 ± 0.6 33.61 ± 0.2 34.22 ± 0.7

iCaRL [21]

Random 25.48 ± 0.2 29.87 ± 3.0 35.37 ± 2.0 37.02 ± 3.1 37.11 ± 3.0
Herding 13.02 ± 1.2 17.24 ± 1.5 27.91 ± 1.3 38.24 ± 1.3 37.55 ± 0.8

37.45 ± 1.7 Uncertainty 22.47 ± 1.9 28.05 ± 1.3 35.18 ± 3.3 40.25 ± 0.7 39.26 ± 2.5
Forgetting 25.00 ± 0.3 27.80 ± 1.1 33.27 ± 2.0 37.80 ± 1.0 37.44 ± 2.2
GraphCut 24.04 ± 0.7 30.45 ± 0.2 33.31 ± 0.3 35.76 ± 3.2 38.03 ± 0.8

ER [22]

Random 25.23 ± 0.3 31.58 ± 3.0 37.64 ± 1.4 39.25 ± 1.3 40.66 ± 2.0
Herding 19.13 ± 5.4 24.90 ± 6.3 34.92 ± 4.0 40.18 ± 2.1 41.19 ± 1.2

39.53 ± 1.6 Uncertainty 25.77 ± 4.6 31.63 ± 4.3 36.61 ± 1.5 41.14 ± 0.4 39.69 ± 1.4
Forgetting 29.53 ± 4.7 33.97 ± 3.8 36.96 ± 3.4 40.58 ± 0.7 39.92 ± 2.5
GraphCut 32.99 ± 8.7 38.22 ± 6.4 39.55 ± 3.5 39.61 ± 2.6 39.97 ± 0.6

LwF [3]

Random 11.39 ± 1.0 15.38 ± 1.3 20.26 ± 1.3 22.93 ± 2.1 23.91 ± 1.2
Herding 3.67 ± 1.3 6.22 ± 0.1 12.43 ± 2.0 17.09 ± 4.6 18.08 ± 4.5

22.82 ± 1.4 Uncertainty 9.55 ± 0.5 12.17 ± 1.8 15.54 ± 2.8 18.72 ± 5.0 18.00 ± 4.2
Forgetting 9.93 ± 1.3 12.75 ± 2.7 15.18 ± 2.9 17.99 ± 4.5 18.28 ± 4.4
GraphCut 8.17 ± 0.3 10.37 ± 1.4 15.56 ± 3.4 17.26 ± 4.1 18.00 ± 4.9

feature-boosting mechanism, which aims to highlight the evolv-
ing importance of features over time. However, this mechanism
necessitates more samples to capture the intricate relationships
between features effectively. Consequently, training with the
full dataset enables the model to comprehensively understand
the underlying patterns and correlations among the features.
Therefore, training FOSTER with coreset samples does not im-
prove the stability-plasticity balance, as the limited sample size
restricts the effectiveness of its feature-boosting mechanism.

To further investigate this phenomenon, we conduct an ab-
lation study on FOSTER, evaluating the model under varying
boosting fractions. We find that in the absence of boosting, the
coreset selection can help to achieve a better stability-plasticity
balance as illustrated in Figure 2c since the model is no longer
dependent on feature re-evaluation over large sample contexts.
The trend also shows that the performance of coreset training
deteriorates when boosting fraction increases.
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Figure 3: Accuracy [%] of each task after every learning session with Split-CIFAR10. This comparison includes the performance using all samples vs. the best
performing coreset selection, which may involve different coreset fractions. The underlying reason for the improved accuracy is attributed to reduced forgetting.

Table 3: Accuracy [%] on Split-CIFAR10 with a pre-trained ResNet18 shows
that training with coreset samples improves incremental performance.

w/o Coreset Fraction 10% 20% 50% 80% 90%

DER

Random 40.18 ± 5.28 53.93 ± 3.36 61.35 ± 2.37 66.66 ± 2.36 67.07 ± 2.51
Herding 57.35 ± 0.45 61.48 ± 1.32 65.84 ± 2.66 68.68 ± 3.74 71.36 ± 1.48

67.85 ± 3.30 Uncertainty 61.23 ± 0.14 63.38 ± 0.40 67.63 ± 1.37 70.75 ± 2.71 70.92 ± 2.08
Forgetting 61.00 ± 0.23 65.02 ± 0.66 67.86 ± 1.84 71.72 ± 2.08 69.67 ± 2.78
GraphCut 62.00 ± 2.03 64.87 ± 1.92 68.39 ± 0.98 71.72 ± 1.65 71.19 ± 2.77

FOSTER

Random 42.82 ± 7.84 46.24 ± 2.57 60.15 ± 2.88 57.89 ± 4.07 58.32 ± 5.71
Herding 48.72 ± 4.27 50.35 ± 2.35 54.76 ± 4.46 56.71 ± 2.53 57.06 ± 3.39

57.85 ± 3.09 Uncertainty 54.51 ± 1.48 58.51 ± 2.97 58.34 ± 3.54 56.85 ± 4.81 56.35 ± 3.38
Forgetting 52.26 ± 0.45 55.52 ± 5.48 57.61 ± 3.53 57.65 ± 2.90 55.98 ± 2.98
GraphCut 53.84 ± 3.70 59.27 ± 3.28 58.04 ± 3.86 57.57 ± 3.71 56.09 ± 2.59

MEMO

Random 37.49 ± 4.08 43.77 ± 10.63 48.74 ± 7.63 53.90 ± 2.21 59.34 ± 4.88
Herding 34.50 ± 7.48 44.94 ± 12.11 55.14 ± 7.53 62.84 ± 5.82 61.34 ± 5.19

55.65 ± 8.06 Uncertainty 43.02 ± 5.27 50.06 ± 6.13 54.55 ± 6.44 61.21 ± 5.79 62.00 ± 5.72
Forgetting 37.64 ± 4.28 49.77 ± 8.80 54.98 ± 6.70 62.84 ± 5.78 61.84 ± 6.93
GraphCut 47.23 ± 3.19 52.04 ± 8.08 55.96 ± 6.87 61.57 ± 5.18 61.37 ± 5.61

iCaRL

Random 38.85 ± 0.13 47.22 ± 7.77 48.32 ± 3.87 48.97 ± 3.02 52.03 ± 5.62
Herding 53.52 ± 2.71 55.21 ± 1.45 53.68 ± 6.33 55.42 ± 5.13 55.38 ± 4.59

53.37 ± 5.94 Uncertainty 53.72 ± 3.14 56.03 ± 1.67 53.81 ± 5.12 56.82 ± 6.18 54.73 ± 5.88
Forgetting 53.20 ± 0.90 56.00 ± 4.88 54.76 ± 5.06 55.62 ± 5.33 54.98 ± 6.39
GraphCut 57.99 ± 2.41 57.98 ± 3.45 57.03 ± 3.85 55.63 ± 4.50 57.79 ± 5.47

ER

Random 41.21 ± 2.43 43.55 ± 6.68 43.21 ± 5.02 44.16 ± 6.60 44.56 ± 6.71
Herding 38.28 ± 4.17 41.91 ± 3.25 47.91 ± 2.85 44.76 ± 7.06 43.17 ± 6.39

45.01 ± 5.56 Uncertainty 36.23 ± 3.22 40.28 ± 7.42 42.19 ± 6.85 44.01 ± 8.18 43.81 ± 5.51
Forgetting 34.70 ± 3.03 42.90 ± 5.67 44.66 ± 6.07 44.41 ± 6.35 43.95 ± 6.01
GraphCut 52.26 ± 3.93 50.82 ± 4.91 46.33 ± 5.23 44.35 ± 7.20 45.11 ± 7.77

LwF

Random 30.80 ± 1.42 41.67 ± 1.89 45.95 ± 3.11 51.04 ± 0.38 54.74 ± 0.44
Herding 17.65 ± 0.23 21.74 ± 3.19 26.41 ± 3.72 29.85 ± 6.65 31.53 ± 6.01

53.94 ± 0.79 Uncertainty 25.21 ± 5.02 26.38 ± 6.01 27.76 ± 6.16 30.68 ± 6.37 32.13 ± 6.92
Forgetting 23.68 ± 1.81 26.99 ± 5.19 27.60 ± 5.33 30.74 ± 5.98 30.82 ± 6.81
GraphCut 26.45 ± 5.28 25.23 ± 4.16 27.79 ± 5.35 31.05 ± 5.38 31.78 ± 5.26

Our analysis on LwF shows that when more advanced core-
set selection methods, such as Uncertainty and GraphCut, are
employed, it demonstrates superior adaptability to the current
task. However, this enhanced adaptability comes at a cost of
catastrophic forgetting. To unravel the root cause of this forget-
ting phenomenon, we examine the changes in model parame-
ters between consecutive tasks. We found that Uncertainty and
GraphCut induce abrupt changes in the parameters, whereas it
is comparatively smaller with randomly selected samples, as
shown in Figure 2b.

This is because, coreset selection strategies (e.g., Herding,
Uncertainty, and GraphCut) prioritize the most informative
samples specific to the current task. When the CL approach,
such as LwF, relies solely on regularization, this prioritization
can lead to overfitting the current task’s distribution. Such over-
fitting amplifies significant representation shifts, resulting in

Table 4: Accuracy [%] on Split-CIFAR100 with a pre-trained ResNet18
shows that training with coreset samples improves incremental performance.

w/o Coreset Fraction 10% 20% 50% 80% 90%

DER

Random 20.38 ± 3.27 30.82 ± 0.76 44.96 ± 0.28 53.41 ± 1.96 52.23 ± 0.84
Herding 16.33 ± 4.78 22.13 ± 8.92 47.52 ± 2.47 55.51 ± 0.89 56.74 ± 1.09

55.85 ± 0.38 Uncertainty 30.03 ± 0.62 40.53 ± 0.98 52.21 ± 0.78 56.94 ± 0.97 57.22 ± 0.59
Forgetting 30.08 ± 4.11 37.48 ± 5.50 51.88 ± 0.81 56.18 ± 1.53 56.16 ± 1.08
GraphCut 28.20 ± 1.64 38.79 ± 1.66 50.94 ± 1.59 55.76 ± 0.68 56.95 ± 1.77

FOSTER

Random 16.25 ± 0.27 19.71 ± 0.45 34.21 ± 3.55 50.80 ± 0.07 50.65 ± 1.36
Herding 12.51 ± 0.03 17.86 ± 1.39 37.88 ± 1.58 54.25 ± 2.37 55.40 ± 2.13

56.63 ± 1.11 Uncertainty 14.87 ± 1.03 23.91 ± 0.86 45.93 ± 1.50 55.21 ± 2.26 56.65 ± 2.27
Forgetting 18.44 ± 0.72 24.46 ± 1.84 44.04 ± 0.33 55.45 ± 2.08 56.30 ± 1.21
GraphCut 17.87 ± 2.30 22.10 ± 3.81 44.94 ± 0.94 55.51 ± 1.93 56.60 ± 2.16

MEMO

Random 17.21 ± 1.91 25.29 ± 0.42 38.54 ± 3.05 43.16 ± 2.88 46.32 ± 3.75
Herding 10.94 ± 0.72 20.13 ± 0.21 36.26 ± 0.94 44.29 ± 0.75 46.87 ± 0.24

46.70 ± 3.64 Uncertainty 17.85 ± 1.05 24.54 ± 0.15 37.92 ± 0.73 44.87 ± 0.30 46.10 ± 0.57
Forgetting 21.56 ± 0.52 28.20 ± 0.51 38.59 ± 1.06 44.49 ± 0.88 45.86 ± 0.58
GraphCut 27.60 ± 5.53 33.44 ± 4.45 40.38 ± 0.13 44.54 ± 0.29 45.60 ± 0.08

iCaRL

Random 20.09 ± 0.72 22.25 ± 0.93 30.08 ± 0.04 30.40 ± 1.16 33.60 ± 0.66
Herding 18.46 ± 0.72 24.80 ± 1.56 32.74 ± 2.12 34.70 ± 2.10 34.74 ± 2.08

32.90 ± 0.80 Uncertainty 22.70 ± 0.23 27.82 ± 0.88 32.68 ± 1.42 33.44 ± 1.26 34.04 ± 1.65
Forgetting 24.22 ± 0.69 30.00 ± 1.38 33.85 ± 2.05 34.16 ± 2.72 35.21 ± 2.10
GraphCut 28.88 ± 0.34 30.93 ± 2.39 35.40 ± 1.56 34.17 ± 0.96 34.02 ± 1.47

ER

Random 16.6 ± 3.59 22.35 ± 0.04 26.09 ± 0.34 25.42 ± 0.10 24.91 ± 0.16
Herding 15.2 ± 0.8 19.9 ± 0.32 25.16 ± 0.97 25.94 ± 1.52 25.30 ± 0.83

24.58 ± 0.46 Uncertainty 14.4 ± 0.46 17.56 ± 0.62 22.78 ± 0.24 24.04 ± 0.14 25.58 ± 0.61
Forgetting 19.01 ± 0.63 21.72 ± 0.14 25.57 ± 0.69 25.69 ± 0.89 26.26 ± 1.55
GraphCut 27.01 ± 0.34 28.99 ± 1.63 27.52 ± 0.57 26.03 ± 1.43 25.43 ± 0.86

LwF

Random 10.39 ± 0.36 12.63 ± 1.40 20.69 ± 0.70 22.78 ± 0.38 25.01 ± 0.46
Herding 4.15 ± 0.11 5.44 ± 0.10 9.47 ± 0.84 13.11 ± 1.53 13.77 ± 0.96

24.31 ± 0.57 Uncertainty 7.42 ± 0.01 9.15 ± 0.22 11.00 ± 0.58 13.29 ± 1.18 14.46 ± 0.99
Forgetting 7.26 ± 0.24 8.22 ± 0.17 10.89 ± 0.86 13.06 ± 1.14 14.04 ± 0.94
GraphCut 6.59 ± 0.32 7.23 ± 0.32 11.13 ± 0.67 13.21 ± 1.21 13.65 ± 1.13

abrupt parameter updates that results in catastrophic forgetting
of previously learned tasks. In contrast, random selection im-
plicitly incorporates as a form of regularizer with a greater di-
versity and variability in the sample distribution across tasks,
which helps to mitigate overfitting and results in more stable
parameter updates. This suggests that the traditional regular-
ization methods may not be as effective as replay-based ap-
proaches when considering coreset utilization.

5.2. Plasticity-Stability Balance and Task Retention

Coreset training influences the balance between learning new
information (plasticity) and retaining previous knowledge (sta-
bility). Our per-task accuracy analysis with confusion matrices
reveals that models trained on coreset samples generally exhibit
stronger knowledge retention, even though they may sometimes
sacrifice performance on the current task (Figure 3).
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Figure 4: DER’s representation of all classes on Split-CIFAR10 with varying coresets selected with GraphCut, compared to the full samples. When it is trained with
20%coreset samples, it exhibits better ability to have distinct representations.

Sample selection before training is also crucial in enhanc-
ing the data quality utilized during the replay or memory con-
struction phase in continual learning. By filtering out poten-
tially irrelevant or redundant data points beforehand, it en-
sures that only informative and representative samples would
be candidates for memory construction. This contributes to
enhanced retention of learned knowledge from previous tasks
over time by focusing on key patterns. Consequently, all CL
approaches except FOSTER demonstrate noticeable improve-
ment in knowledge retention when trained on coreset samples.

Additionally, we observe that pre-trained models tend to en-
hance stability without compromising plasticity. This indicates
that they are particularly effective for incremental learning sce-
narios when utilized on strategically selected coreset samples
(Table 3, 4, A). Further details, including per-task accuracy af-
ter each learning session on pre-trained models are provided
in Appendix A.4. Overall, these observations indicate that the
enhanced incremental performance with coreset selection is pri-
marily attributed to knowledge retention.

5.3. Coreset Training and Representation Dynamics

To further understand the impact of coreset selection on
knowledge retention for continual learning, we analyze how
coreset training influences the model’s representation space.
Specifically, we visualize the learned feature distributions us-
ing t-SNE plots for models trained with 20% and 80% coreset
fractions, as well as full-sample training (Figure 4). Our goal is
to examine whether coreset training leads to more distinct class
boundaries, potentially contributing to improved knowledge re-
tention. Our findings on Split-CIFAR10 scenario indicate that
when using a smaller coreset (e.g., 20%), the model demon-
strates a clearer separation between class representations, main-
taining well-defined decision boundaries. This suggests that
training on a compact yet informative subset of the data enables
the model to develop more distinct class-wise feature spaces,
which could be beneficial for incremental learning. This obser-
vation is supported by a higher average inter-class distance of
11.68 in the t-SNE-embedded space, indicating more distinct
clusters. As the coreset fraction increases to 80%, we observe

that class representations begin to overlap, reducing their sepa-
rability, with the corresponding inter-class distance dropping to
10.71. This trend continues in the full training setting, where
the inter-class distance further decreases to 10.67, and certain
classes from the initial task (class 0) and the last task (class 8)
exhibit significant overlap, potentially leading to increased for-
getting of initial tasks. This observation supports the idea that
redundant and uninformative training data may introduce the
risk of increasing misclassification.

However, it is important to acknowledge that these trends are
not universally observed across all datasets and experimental
settings. For instance, in Split-CIFAR100, where each class al-
ready has a relatively small number of samples (500 per class),
20% coreset fraction may be too restrictive, leading to a loss of
critical information. In such scenarios, we find that larger core-
sets (e.g., 80% or 90%) can actually outperform full dataset
training, as they strike a better balance between data sufficiency
and noise reduction. Overall, our results emphasize that coreset
plays a crucial role in shaping the model’s feature representa-
tions and, consequently, its stability-plasticity tradeoff.

5.4. Further Analysis and Discussion

In this section, we provide complementary empirical analy-
ses to better understand different aspects of our approach. We
begin with an ablation study examining the effect of varying
the number of warm-up epochs on model performance. Next,
we analyze the computational complexity of different coreset
selection methods, offering a comparative discussion of their
time efficiency vs. accuracy. Finally, we explore the interac-
tion between different backbone and coreset sizes through an
additional discussion.

5.4.1. Ablation study for the warm-up training
We present an analysis to support our choice of allocating

10% of the training budget to the warm-up phase in our two-
stage learning framework. This warm-up phase precedes the
main continual learning stage and is needed to perform coreset
selection. The remaining 90% of the budget is dedicated to the
continual learning phase.
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Figure 5: Training time vs. accuracy trade-offs across continual learning methods using their best-performing coreset selection strategies.

Table 5: Ablation of different warm-up fractions.

Warm-up epoch fraction 0.01 0.05 0.1 0.15 0.2
Herding 50.73 51.96 52.16 51.35 51.98
Uncertainty 51.87 53.98 54.34 54.05 54.02
Forgetting 52.98 53.50 54.40 54.26 54.03
GraphCut 51.91 52.96 53.16 53.68 53.04

Experiments were carried out on the DER method with a
coreset fraction of 80%, testing four selection strategies of herd-
ing, uncertainty, forgetting, and graphcut. As shown in Table 5,
setting the warm-up fraction to 0.1 leads to strong performance
across all strategies. Although minor improvements are ob-
served beyond fraction 0.1 in some cases, the overall perfor-
mance gains are limited. These results empirically support our
decision to set the warm-up fraction to α = 0.1, striking a bal-
ance between computational efficiency and selection quality.

5.4.2. Computational Complexity
To comprehensively evaluate the trade-off between compu-

tational efficiency and predictive performance, we conducted
an in-depth analysis of training time versus accuracy for each
CL algorithm, pairing it with its best-performing coreset selec-
tion method. For example, DER is paired with GraphCut, as
this combination yielded the best overall performance among
all coreset selection techniques evaluated for DER. This design
choice aims to reflect a realistic deployment scenario, where
practitioners would adopt the most effective coreset strategy
available for a given CL approach.

The results are presented in Figure 5 provides side-by-side
comparisons for Split-CIFAR-10 and Split-CIFAR-100. Our
analysis reveals that coreset-based training leads to reduced
training times compared to full-data training, in many cases.
One notable exception is the DER–GraphCut combination,
which incurs a higher training cost than full-data training. This
is due to the inherent complexity of architecture expansion
mechanism in DER and the computational overhead of the
GraphCut algorithm, involving graph construction and parti-
tioning. In more complex or large-scale CL settings, such
graph-based methods may become computationally burden-
some. Nonetheless, this pairing still demonstrates a significant
improvement in incremental accuracy, illustrating a beneficial
trade-off in terms of performance gains.

Table 6: Comparison of different backbones trained from scratch on Split-
CIFAR10 with different fraction sizes of Uncertainty with DER method.

w/o Coreset 0.1 0.2 0.5 0.8 0.9

ResNet18 56.91 ± 1.3 56.02 ± 1.7 59.48 ± 1.7 57.97 ± 0.8 62.01 ± 3.1 59.36 ± 1.5

ResNet50 57.20 ± 0.0 51.1 ± 3.8 55.17 ± 2.8 57.82 ± 3.0 61.37 ± 4.0 60.47 ± 2.9

ResNet101 58.36 ± 2.8 51.25 ± 0.1 55.73 ± 0.7 59.51 ± 2.0 63.28 ± 3.2 64.72 ± 2.1

5.4.3. Model Complexity
To investigate how model capacity interacts with coreset

size in continual learning, we train ResNet18, ResNet50, and
ResNet101 from scratch using uncertainty-based coreset selec-
tion in combination with DER. Across all architectures, mod-
els trained with selected coresets outperform those trained on
the full dataset, demonstrating the effectiveness of coreset-
based training under different backbone settings (Table 6). The
smaller ResNet18 consistently performs better than its deeper
counterparts at lower coreset fractions (e.g., 0.1 and 0.2) when
trained from scratch. As the coreset size increases, larger back-
bones such as ResNet50 and ResNet101 begin to exhibit clear
performance advantages. In mid- to high-range fractions (e.g.,
0.5 and above), these models not only outperform ResNet18
but also surpass their own performance when trained on the full
dataset.

6. Conclusion

Existing CL approaches predominantly use all available data
during training yet not all samples carry equal informational
value and not need to go under the training process. In this
study, we explore the underutilized potential of selective learn-
ing from key samples, demonstrating that model performance
is strongly influenced by both the quality and quantity of data.
Our empirical analysis yields three key findings that challenge
and extend current CL methodologies. We show that learning
from coreset samples enhances incremental performance. We
attribute this improvement to better stability-plasticity balance
across tasks, achieved by reducing redundancy and focusing
on high-value information. Further, we observe that models
trained with coresets maintain clearer class distinctions by the
end of all sessions. This distinct class separability directly con-
tributes to improved knowledge retention, as models can better
differentiate between old and new tasks. Among the methods
we evaluated, GraphCut frequently yielded strong performance
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across diverse scenarios and setups. Furthermore, our analy-
sis highlights that DER, iCaRL, and ER methods benefit sig-
nificantly from coreset training by achieving better stability-
plasticity tradeoffs. Overall, our findings with the provided
analysis underscore the potential of data-centric CL. Future
studies would aim to achieve optimal stability with enhanced
plasticity with CL-tailored coreset strategies. Such advance-
ments could further enhance CL performance, enabling models
to adapt more effectively to evolving tasks while maintaining
robust knowledge retention.
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Appendix A. Appendix

In this appendix, we first give more detailed explanations
of the continual learning methods and coreset selection meth-
ods used in our experiments. This includes a comprehensive
overview of the baseline methods and their key characteris-
tics. Next, we provide more details about our implementation
for the backbones we used and the metrics that we evaluated.
Then, we share the accuracy of each task after every learning
session for the Split-CIFAR100 dataset trained with ResNet18,
similar to Figure 3. Finally, we provide more results with pre-
trained ResNet18 and pre-trained ViT on Split-CIFAR10 and
Split-CIFAR100.

Appendix A.1. Continual Learning Approaches

In our evaluation, we selected a diverse set of continual
learning methods to ensure a comprehensive analysis, includ-
ing regularization-based, replay-based, architecture-based, and
prompt-based approaches. In total, we evaluated seven different
methods.

Appendix A.1.1. Regularization-based Methods
Regularization-based methods utilize a single backbone,

meaning they rely on one fixed architecture without altering its
structure. These methods operate without accessing any mem-
ory data, working solely with the data from the current task.
This constraint makes them particularly challenging compared
to other approaches. To mitigate catastrophic forgetting, these
methods regularize weight updates during the learning of each
new task. By carefully controlling the extent of weight changes,
they ensure that the model retains knowledge from previous
tasks.

LwF is one of the most well-known and well-established reg-
ularization approaches in continual learning. It tackles catas-
trophic forgetting by leveraging knowledge distillation to trans-
fer knowledge from a previously trained model (the teacher)
to the current model (the student) as new tasks are introduced.
When training on a new task, LwF preserves the knowledge
of earlier tasks by ensuring the current model reproduces the
predictions of the teacher model for the classes associated with
prior tasks. Specifically, the teacher model is frozen after com-
pleting a task and generates soft labels for the new training
data, which represent the probability distribution over previ-
ously learned classes. Formally, the learning process is guided
by two losses: cross-entropy loss LCE given in Eq A.1 where
yi is the true label and pi is the predicted probability for the i-
th input, and the distillation loss LKL given in Eq A.2 where
qteacher(xi) is the probability distribution from the teacher model
and qstudent(xi) is the probability distribution from the current
model for the same input.

LCE = −

N∑
i=1

yi log(pi) (A.1)

LKL =

N∑
i=1

KL (qteacher(xi) ∥ qstudent(xi)) (A.2)

Cross-entropy loss ensures that the model performs well on
the current task and the distillation loss helps the model retain
knowledge from previously learned tasks. It measures the dif-
ference between the predicted probability distributions of the
current model and the teacher model for previously seen ex-
amples. This is typically calculated using the Kullback-Leibler
(KL) divergence.

Finally, the CL loss LCL for LwF is the combination of the
cross-entropy lossLCE and the distillation lossLKL with a scal-
ing factor of λ that controls the importance of the distillation
loss:

LLwF
CL = LCE + λLKL (A.3)

Appendix A.1.2. Replay-based Methods
Replay-based methods, on the other hand, employ an addi-

tional memory buffer to store a subset of past task data. While
learning new tasks, these methods simultaneously utilize the
memory buffer samples M together with current task samples
N, allowing the model to retain a degree of knowledge about
previous tasks. This mechanism provides a practical way to al-
leviate forgetting.

ER is a key replay-based method in continual learning. It
maintains a memory buffer containing data from previous tasks
and combines this replayed data with the new task data. The
model then computes the cross-entropy loss, given in Eq. A.1,
to evaluate how well the model’s predictions align with the true
labels for both the current task and the replayed task samples.

LER
CL = −

N+M∑
i=1

yi log(pi) (A.4)

iCaRL differs from the ER method by introducing a specific
memory selection strategy, known as herding, and incorporat-
ing a distillation loss into its training objective. While ER re-
lies solely on cross-entropy loss for current and replayed data,
iCaRL combines cross-entropy loss Eq. A.1 with a distillation
loss Eq. A.2 to strengthen its knowledge retention mechanism,
similar to LwF.

LiCaRL
CL = −

N+M∑
i=1

yi log(pi) + λLKL (A.5)

Appendix A.1.3. Architecture-based Methods
Architecture-based methods take a different approach by dy-

namically modifying the model’s backbone. When encoun-
tering a new task, these methods either create a completely
new architecture (a new model) or initialize additional compo-
nents. The newly added parts are then trained specifically on
the new task data, enabling the model to adapt structurally to
task-specific requirements and reinforce knowledge retention.

DER initializes a new backbone for each task and aggregates
features from both old (frozen) and new backbones using an
expanded fully connected layer. This enables the model to spe-
cialize for new tasks while preserving knowledge from earlier
tasks. A key component of DER is the auxiliary loss Laux in
Eq. A.6 which promotes learning diverse and discriminative
features for each task. Therefore, it uses temporary auxiliary
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classes yaux and classifier by treating all old classes as one cat-
egory and the new classes as another. Therefore, the complete
loss function for DER can be expressed as in Eq. A.7

Laux = −

N+M∑
i=1

yaux
i log(paux

i ) (A.6)

LDER
CL = −

N+M∑
i=1

yi log(pi) + Laux (A.7)

MEMO operates on the assumption that shallow network
layers capture general patterns, while deeper layers specialize
in task-specific concepts. To accommodate new tasks, MEMO
initializes fresh deep layers or blocks for each task while pre-
serving the shallow layers unchanged. Consequently, the model
expands only the deep layers for new tasks. MEMO employs
the same loss function as the DER method, enhanced by the
inclusion of an additional lambda hyperparameter that controls
the auxiliary loss:

LMEMO
CL = −

N+M∑
i=1

yi log(pi) − λLaux (A.8)

FOSTER combines feature boosting and feature compres-
sion in two stages to alleviate forgetting. In the boosting stage,
FOSTER adds a new feature extractor to the model when a new
task arrives. The new feature extractor learns residual features,
which capture the differences (residuals) between the target out-
puts and the predictions from the frozen old model. These resid-
ual features are then concatenated with the frozen old features,
creating a combined representation.

In the boosting stage FOSTER benefits from 2 different clas-
sifiers. The first one maintains the balance between old and new
classes by aligning the logits (Eq.A.9), and the second one ex-
plicitly improves the representation of old classes by using only
the new feature extractor’s output over all classes (Eq. A.10).
Finally, similar to LwF and iCaRL, knowledge distillation is
applied during this stage to align the outputs of the new model
with the frozen old model to further preserve the knowledge
from previous tasks. Then the total loss for FOSTER can be
expressed as in Eq. A.11.

LLA = −

N+M∑
i=1

yi log(paligned
i ) (A.9)

LFE = −

N+M∑
i=1

yi log(penhanced
i ) (A.10)

LFOSTER
CL = LLA + LFE + λLKL (A.11)

Following the boosting stage, where a new feature extractor
is added to handle residual features for new tasks, the compres-
sion process starts to address the problem of parameter growth
caused by the dynamic expansion of the model. In this final
stage, the dual-branch architecture (frozen old model + new
feature extractor) is compressed into a single compact back-
bone.

Appendix A.1.4. Prompt-based Methods
Prompt-based methods represent a recently developed ap-

proach in the field of continual learning. Drawing inspiration
from prompt-tuning techniques in natural language processing,
these methods use task-specific prompts to guide the model’s
behavior. Unlike traditional approaches that modify weights or
architectures, prompt-based methods largely retain the shared
backbone architecture and instead focus on learning small, task-
specific prompts.

CODA-Prompt learns prompt components that are dynam-
ically combined with input conditioned weights to create task-
specific prompts. When a new task is introduced, a distinct
prompt is initialized to capture task-specific information. This
prompt interacts with the shared backbone model to activate
the relevant representations for the current task. By localiz-
ing task-specific adaptations within the prompts, the model can
effectively generalize across tasks while minimizing interfer-
ence. This leads to the model’s ability to retain previously ac-
quired knowledge, as the large pre-trained backbone remains
unchanged, while still efficiently learning new tasks. Formally,
to achieve this, CODA-Prompt uses the prompt loss in Eq. A.12
that aims to maximize the alignment between the prompts and
the task-specific features while minimizing redundancy or un-
informative contributions. In this formulation, Pi represents the
prompt embedding for block i, and Qi denotes the correspond-
ing input feature embedding for block i. The term ∥ · ∥22 is the
squared L2-norm, which measures the difference between the
prompt and input embeddings. N is the number of transformer
blocks with prompts. This enforces that the prompt embeddings
Pi are closely aligned with the input embeddings Qi.

Lprompt =
1
N

N∑
i=1

∥Pi − Qi∥
2
2 (A.12)

Finally, CODA-Prompt combines the standard cross-entropy
loss for classification with the prompt loss summed over all
transformer blocks to learn the task-specific prompts on top of
pre-trained ViTs:

LCODA
CL = −

N∑
i=1

yi log(pi) + Lprompt (A.13)

Appendix A.2. Coreset Selection Approaches

Coreset selection refers to the process of selecting a small,
representative subset of data points from a given larger original
dataset D = {(xi, yi)}Ni=1 where xi are the input features and yi,
such that the selected subset can approximate the performance
of the full dataset for a given machine learning task.

Random selection is a straightforward approach to dataset
reduction where a fixed number or proportion of data points is
chosen uniformly at random from the original dataset. While
this technique does not account for the importance or represen-
tativeness of individual samples, it serves as a strong and com-
putationally efficient baseline. This method works by choosing
I samples uniformly at random without replacement from the
original dataset and the selected coreset C can be written as:
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C = {(xi, yi) | i ∈ I} (A.14)

Herding is a deterministic method for selecting a represen-
tative subset of data points, known as a coreset. It focuses on
capturing the overall structure of the dataset by ensuring that the
selected samples approximate the mean feature representation
of the full dataset.

The method computes the mean of the features m =
1
N

∑N
i=1 ϕ(xi) where ϕ(xi) maps each data point to a feature

space, such as one generated by a neural network. The goal
is to iteratively build a coreset C that closely approximates this
mean.

The algorithm starts with an empty coreset and a residual
vector r = m, which keeps track of the difference between the
dataset mean and the cumulative contributions of the selected
samples. At each step, the next sample to include in the coreset
is chosen by finding the data point xi whose feature vector ϕ(xi)
has the largest alignment with the residual vector r. This can be
expressed as:

i∗ = arg max
i

r⊤ϕ(xi). (A.15)

Once xi∗ is selected, it is added to the coreset, and the residual
vector is updated by subtracting ϕ(xi∗ ). This process is repeated
until the desired number of samples is selected, resulting in the
coreset C. By iteratively reducing the residual, herding ensures
that the selected coreset is highly representative of the original
dataset. This makes it a valuable approach for tasks requiring a
compact yet informative subset of data.

Uncertainty coreset selection is a method that prioritizes
data points where the model exhibits the highest uncertainty
in its predictions. The rationale is that these uncertain samples
carry the most informative value, as they highlight areas where
the model is less confident and likely to benefit from further
training.

For a model f (x) that outputs a probability distribution over
classes, the uncertainty of a sample xi can be quantified using
measures such as entropy. The entropy for a prediction is com-
puted as H(xi) = −

∑
c∈C pc(xi) log pc(xi) where pc(xi) is the

predicted probability for class c, and C is the set of all possible
classes. The uncertainty selection process involves computing
H(xi) for all samples in the dataset and ranking them by their
uncertainty scores. The top k samples with the highest entropy
are chosen to form the coreset:

C = {(xi, yi) | xi ranks among the top k in H(xi)}. (A.16)

By selecting the most uncertain samples, this method focuses
on the regions of the data space where the model requires ad-
ditional learning, ensuring an informative and compact coreset,
particularly effective when resources for training are limited.

Forgetting coreset selection identifies data points that the
model struggles to consistently classify correctly during train-
ing. These are known as ”forgotten examples” because their
predictions frequently change from correct to incorrect. By fo-
cusing on such challenging samples, this method selects a sub-
set of data that is highly informative for improving the model’s
robustness.

During training, the model keeps track of whether it correctly
predicts each sample at every training step. Let’s denote the
prediction correctness for a sample xi at a given step as a binary
value; 1 if the prediction is correct and 0 if the prediction is
incorrect.

A forgetting event occurs when the model’s prediction for a
sample changes from correct to incorrect as training progresses.
The forgetting score for a sample is simply the total number of
forgetting events it experiences during training. For example, if
the prediction for xi flips from correct to incorrect three times,
its forgetting score would be 3. Samples with higher forgetting
scores are more challenging for the model to learn and retain.
To form the coreset, the method ranks all samples by their for-
getting scores and selects the top k samples with the highest
scores:

C = {(xi, yi) | xi ranks among the top k in high forgetting score}
(A.17)

This approach ensures the coreset contains the most chal-
lenging and informative examples, which can help the model
learn and retain knowledge more effectively.

GraphCut coreset selection models the dataset as a graph to
identify a subset of representative data points by leveraging the
relationships among samples. In this approach, each data points
xi is represented as a node vi ∈ V , and each edge ei j ∈ E be-
tween nodes vi and v j represent weighted by a similarity metric
s(xi, x j) in a graph G = (V, E). A similarity metric s(xi, x j) with
a scaling factor σ can be defined as:

s(xi, x j) = exp
(
−
|xi − x j|

2

2σ2

)
, (A.18)

The goal is to form a coreset C by selecting a subset of nodes
such that the cut value of the partition is minimized while pre-
serving representativeness. The cut value measures the total
similarity between the coreset and the remaining dataset, or is
defined formally as the sum of the weights of the edges crossing
between the selected subset C and the remaining nodes V \C as
in Eq. A.19. A lower cut value ensures that the selected coreset
is less redundant and has minimal overlap with the rest of the
dataset. Therefore, the final coreset C can be obtained by using
Eq. A.20 where k is the desired size of the coreset.

Cut(C,V \C) =
∑

i∈C, j∈V\C

s(xi, x j). (A.19)

C = arg min
|C|≤k

Cut(C,V \C), (A.20)

Appendix A.3. Implementation Details
Backbones. To offer a more comprehensive evaluation, we test
both from scratch and pre-trained models across two archi-
tectures: ResNet18 [39] and Vision Transformer (ViT) [40].
In ResNet18 trained from scratch, we observe how well it
can learn task-specific features directly from the dataset. In
contrast, the pre-trained models pre-trained-ResNet18 and
pre-trained-ViT are initialized with ImageNet weights, giving
them prior knowledge of visual patterns and structures, which
helps them start with a robust foundation for CL.
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Metrics. We utilize average accuracy (ACC) which measures
the final accuracy averaged over all tasks and can be formu-
lated as ACC = 1

T
∑T

i=1 AT,i where AT,i represents the testing
accuracy of task T after learning task i. To observe learning-
forgetting dynamics more in detail, we utilize heatmaps that
show the accuracy of each task after every learning session in-
stead of sharing a single numerical value.

Appendix A.4. More Results and Analysis on Stability-
Plasticity

We have discussed in the main paper that the increase in in-
cremental performance is due to achieving a better stability-
plasticity trade-off. In Section 5.2 our analysis on Split-
CIFAR10 demonstrates that models trained with coreset sam-
ples tend to have better knowledge retention(stability) for pre-
vious tasks. Here we provide additional results on Split-
CIFAR100 in Figure B.

Notably, the results show a pattern of improved accuracy
when coresets are used, which aligns with observations made
in the Split-CIFAR10 experiments. This accuracy boost can
primarily be attributed to reduced forgetting, as training on a
selected subset allows the model to retain important task infor-
mation with less interference from previous tasks. Minimizing
redundancy and focusing on coreset samples, provides a more
targeted training approach and enhances overall model perfor-
mance in class-incremental scenarios.

We provide further analysis for CIFAR-10 with a pre-trained
ResNet18 (Figure A.a) and CIFAR-100 with a pre-trained ViT
in Figure A.b) and observe improvements in stability without
degrading plasticity. This suggests that pre-trained models,
when fine-tuned on carefully selected coreset samples, are par-
ticularly well-suited for incremental learning.

Table A: Accuracy [%] of CL models across various coreset fractions and se-
lections on Split-CIFAR100 with pre-trained ViT. Underlined results outper-
form training with all samples and the best results are highlighted in bold.

w/o Coreset Fraction 10% 20% 50% 80% 90%

DER

Random 61.51 ± 0.36 61.88 ± 1.00 64.39 ± 0.78 63.12 ± 0.02 64.10 ± 1.22
Herding 68.25 ± 1.44 69.26 ± 1.15 70.07 ± 0.15 68.58 ± 1.03 68.88 ± 1.92

60.83 ± 1.93 Uncertainty 74.44 ± 0.37 71.30 ± 0.42 69.68 ± 0.16 68.92 ± 0.37 70.28 ± 0.18
Forgetting 70.70 ± 2.70 73.10 ± 0.55 69.92 ± 1.23 68.15 ± 0.63 68.05 ± 0.09
GraphCut 72.58 ± 0.27 72.29 ± 0.03 69.70 ± 1.58 68.88 ± 1.47 68.37 ± 2.21

FOSTER

Random 72.51 ± 2.67 81.41 ± 0.67 84.97 ± 0.56 85.91 ± 0.28 86.35 ± 0.42
Herding 68.84 ± 0.01 78.87 ± 0.34 83.68 ± 0.23 85.41 ± 0.34 85.58 ± 0.27

86.74 ± 0.30 Uncertainty 77.10 ± 0.59 82.68 ± 0.26 85.17 ± 0.23 86.03 ± 0.12 85.83 ± 0.19
Forgetting 77.00 ± 1.53 82.61 ± 0.30 84.90 ± 0.39 85.74 ± 0.33 86.03 ± 0.24
GraphCut 74.64 ± 0.79 79.72 ± 0.42 84.14 ± 0.08 85.09 ± 0.13 85.68 ± 0.41

MEMO

Random 14.84 ± 0.20 17.87 ± 0.90 23.74 ± 5.85 27.24 ± 5.37 30.07 ± 7.65
Herding 27.79 ± 1.15 24.68 ± 1.79 28.22 ± 2.03 31.02 ± 0.66 30.07 ± 0.45

36.12 ± 0.16 Uncertainty 29.21 ± 1.47 29.34 ± 1.07 32.13 ± 0.76 31.88 ± 2.99 30.95 ± 0.10
Forgetting 35.14 ± 1.79 31.72 ± 0.71 29.29 ± 1.46 31.47 ± 2.11 31.00 ± 2.94
GraphCut 33.74 ± 1.66 32.46 ± 2.07 33.45 ± 3.05 30.67 ± 3.23 28.38 ± 2.63

iCaRL

Random 71.24 ± 1.50 71.79 ± 2.62 70.62 ± 1.56 68.30 ± 1.72 68.79 ± 2.38
Herding 68.34 ± 0.21 69.85 ± 0.25 71.11 ± 0.48 70.72 ± 0.41 69.09 ± 0.59

66.03 ± 0.61 Uncertainty 74.88 ± 0.41 74.11 ± 0.14 70.61 ± 0.13 70.99 ± 0.34 69.20 ± 0.45
Forgetting 73.21 ± 0.58 73.51 ± 0.40 71.91 ± 0.76 70.74 ± 0.23 70.61 ± 1.03
GraphCut 72.74 ± 4.08 73.68 ± 1.78 71.72 ± 0.52 73.05 ± 2.42 73.59 ± 2.28

ER

Random 69.52 ± 2.83 73.54 ± 1.81 73.59 ± 0.10 73.36 ± 0.16 72.39 ± 0.52
Herding 67.47 ± 1.53 70.57 ± 0.20 71.43 ± 1.43 72.65 ± 0.60 72.24 ± 0.16

67.95 ± 0.86 Uncertainty 73.97 ± 0.25 72.71 ± 1.94 71.68 ± 0.38 72.68 ± 0.84 70.31 ± 0.37
Forgetting 71.32 ± 0.73 71.31 ± 0.24 71.50 ± 1.06 72.00 ± 0.45 72.09 ± 0.27
GraphCut 76.59 ± 0.35 76.39 ± 1.68 74.87 ± 0.46 70.09 ± 0.25 70.69 ± 0.66

LwF

Random 52.76 ± 2.27 60.26 ± 2.62 64.73 ± 1.56 65.71 ± 0.70 65.35 ± 0.85
Herding 22.99 ± 0.13 24.44 ± 0.13 27.57 ± 0.49 29.46 ± 0.67 31.10 ± 0.40

66.63 ± 1.41 Uncertainty 25.17 ± 0.60 26.27 ± 0.31 28.78 ± 0.26 30.19 ± 0.64 30.31 ± 0.04
Forgetting 24.99 ± 0.29 26.50 ± 0.18 27.63 ± 0.74 31.22 ± 0.77 30.52 ± 0.44
GraphCut 23.32 ± 1.24 25.84 ± 0.98 29.53 ±1.47 29.66 ± 0.45 31.82 ± 0.75

CODA-Prompt

Random 78.99 ± 1.42 81.62 ± 1.89 84.01 ± 0.11 84.64 ± 0.38 85.45 ± 0.44
Herding 73.21 ± 1.23 74.31 ± 1.19 83.21 ± 0.72 85.51 ± 0.65 85.73 ± 0.01

85.37 ± 0.79 Uncertainty 78.48 ± 1.02 82.32 ± 1.01 85.20 ± 0.16 85.64 ± 0.37 85.57 ± 0.92
Forgetting 78.30 ± 1.81 82.48 ± 1.19 84.73 ± 0.33 85.73 ± 0.98 86.33 ± 0.81
GraphCut 80.55 ± 1.28 83.33 ± 1.16 84.31 ± 0.35 85.26 ± 0.38 86.34 ± 0.26

Table B: Accuracy [%] of CIL models across various coreset fractions and se-
lections on Split-ImageNet100. Learning from coreset samples enhances the
performance.

w/o Coreset Fraction 10% 20% 50% 80% 90%

DER [9]

Random 19.89 ± 2.3 32.70 ± 1.5 42.45 ± 0.6 52.61 ± 1.8 53.12 ± 1.0
Herding 18.30 ± 1.2 29.83 ± 0.6 44.77 ± 0.8 53.59 ± 0.3 55.52 ± 0.1

55.03 ± 1.2 Uncertainty 27.08 ± 0.5 36.92 ± 0.9 49.84 ± 0.4 55.10 ± 0.2 56.46 ± 0.6
Forgetting 32.69 ± 2.1 40.21 ± 1.3 50.27 ± 0.9 55.15 ± 0.7 55.60 ± 0.8
GraphCut 32.91 ± 0.7 38.90 ± 0.4 50.12 ± 0.8 54.71 ± 0.3 55.81 ± 0.1

FOSTER [10]

Random 17.59 ± 1.3 22.68 ± 0.8 34.20 ± 3.8 46.90 ± 4.1 48.64 ± 4.2
Herding 8.67 ± 0.1 13.42 ± 0.2 30.63 ± 1.7 45.85 ± 1.0 48.89 ± 0.1

52.06 ± 0.4 Uncertainty 8.14 ± 0.1 15.91 ± 0.5 35.40 ± 0.5 46.39 ± 0.5 48.37 ± 0.5
Forgetting 11.62 ± 0.5 18.71 ± 0.4 35.26 ± 0.3 46.95 ± 0.9 49.45 ± 0.4
GraphCut 16.74 ± 0.5 22.99 ± 0.1 37.42 ± 0.4 47.22 ± 0.4 49.95 ± 0.9

MEMO [11]

Random 18.79 ± 0.1 27.29 ± 0.2 40.02 ± 1.7 44.48 ± 0.2 47.80 ± 1.9
Herding 18.15 ± 1.1 26.08 ± 0.4 37.71 ± 3.1 46.76 ± 2.3 47.94 ± 1.1

46.36 ± 1.0 Uncertainty 20.22 ± 0.8 26.94 ± 2.2 39.39 ± 1.1 45.90 ± 0.4 48.54 ± 0.2
Forgetting 24.40 ± 1.5 33.16 ± 1.0 41.86 ± 0.5 45.57 ± 0.5 47.19 ± 0.9
GraphCut 29.76 ± 1.8 35.73 ± 1.1 42.80 ± 1.9 45.98 ± 2.8 48.50 ± 1.3

iCaRL [21]

Random 21.93 ± 0.7 27.29 ± 0.5 30.21 ± 3.7 29.12 ± 1.9 30.30 ± 1.6
Herding 20.80 ± 1.8 24.29 ± 2.3 30.92 ± 0.2 33.23 ± 0.9 34.04 ± 0.2

33.05 ± 1.8 Uncertainty 22.52 ± 0.3 22.37 ± 0.9 32.67 ± 1.6 33.03 ± 0.1 34.76 ± 0.9
Forgetting 26.38 ± 0.1 28.35 ± 0.8 31.85 ± 0.7 33.80 ± 0.6 34.77 ± 2.7
GraphCut 33.04 ± 0.6 35.10 ± 0.6 34.87 ± 1.1 35.19 ± 0.2 34.29 ± 0.3

ER [22]

Random 20.19 ± 0.1 25.84 ± 2.7 30.47 ± 2.0 29.14 ± 1.0 30.81 ± 0.6
Herding 20.21 ± 0.1 24.56 ± 0.8 29.81 ± 1.1 31.92 ± 0.4 33.68 ± 0.7

34.23 ± 4.2 Uncertainty 20.82 ± 0.6 23.08 ± 0.6 29.23 ± 0.5 29.35 ± 1.1 30.74 ± 1.4
Forgetting 24.85 ± 0.6 28.32 ± 1.4 29.03 ± 0.2 32.85 ± 0.4 31.74 ± 2.1
GraphCut 30.13 ± 1.0 30.52 ± 0.2 34.83 ± 0.6 32.05 ± 1.5 32.16 ± 0.5

LwF [3]

Random 9.25 ± 0.1 11.22 ± 0.7 15.88 ± 0.8 16.27 ± 1.1 16.52 ± 0.5
Herding 5.70 ± 0.5 7.65 ± 1.1 10.70 ± 0.1 11.33 ± 0.2 11.64 ± 0.2

16.46 ± 1.8 Uncertainty 7.84 ± 0.1 8.07 ± 0.1 11.27 ± 0.2 11.41 ± 0.1 11.51 ± 0.3
Forgetting 7.38 ± 0.2 10.01 ± 0.1 11.60 ± 0.2 12.15 ± 0.1 12.57 ± 0.3
GraphCut 7.41 ± 0.2 9.29 ± 0.8 10.77 ± 0.5 12.06 ± 0.2 12.88 ± 0.1
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(a) DER with Herding on Split-CIFAR10
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58 52 77 70 76 69 97 0 0 0
51 56 73 63 64 45 73 97 0 0
55 50 67 69 54 62 69 66 97 0
37 54 62 59 54 50 54 69 74 94

Coreset Size (100%), Acc: 60.83%

(b) DER with Uncertainty on Split-CIFAR100

Figure A: Accuracy [%] of each task after every learning session on the DER
method with pre-trained ResNet18 on Split-CIFAR10 and pre-trained ViT on
Split-CIFAR100. The results indicate that incremental performance improves
due to better stability without compromising plasticity.
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(a) DER
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(b) FOSTER
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(c) MEMO
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(d) iCaRL
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(e) ER
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(f) LwF

Figure B: Accuracy [%] of each task after every learning session on different class-incremental learning methods with Split-CIFAR100. Its results align with Split-
CIFAR10 and again incremental performance improves due to better knowledge retention.
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