
BADiff: Bandwidth Adaptive Diffusion Model

Xi Zhang1 Hanwei Zhu1# Yan Zhong1 Jiamang Wang2 Weisi Lin1#

1Nanyang Technological University 2Alibaba Group
{xi.zhang, wslin}@ntu.edu.sg

Abstract

In this work, we propose a novel framework to enable diffusion models to adapt
their generation quality based on real-time network bandwidth constraints. Tradi-
tional diffusion models produce high-fidelity images by performing a fixed number
of denoising steps, regardless of downstream transmission limitations. However,
in practical cloud-to-device scenarios, limited bandwidth often necessitates heavy
compression, leading to loss of fine textures and wasted computation. To ad-
dress this, we introduce a joint end-to-end training strategy where the diffusion
model is conditioned on a target quality level derived from the available bandwidth.
During training, the model learns to adaptively modulate the denoising process,
enabling early-stop sampling that maintains perceptual quality appropriate to the
target transmission condition. Our method requires minimal architectural changes
and leverages a lightweight quality embedding to guide the denoising trajectory.
Experimental results demonstrate that our approach significantly improves the
visual fidelity of bandwidth-adapted generations compared to naive early-stopping,
offering a promising solution for efficient image delivery in bandwidth-constrained
environments. Code is available at: https://github.com/xzhang9308/BADiff.

1 Introduction

Diffusion models [15, 47, 17, 41, 44] have recently demonstrated remarkable capabilities in syn-
thesizing high-quality images, significantly surpassing previous generative approaches such as
GANs [12, 40, 2, 21] and VAEs [23, 42, 14, 51]. Despite their impressive fidelity, deploying
diffusion models in realistic cloud-to-user applications introduces a fundamental bottleneck: trans-
mission bandwidth. In conventional scenarios, generated images undergo aggressive lossy compres-
sion [49, 50, 4, 48, 1, 5, 37, 35, 61, 58] before transmission to accommodate limited bandwidth. This
cascaded approach—high-quality image generation followed by subsequent compression—not only
incurs redundant computational overhead but also significantly degrades perceptual quality, as the
compression process often erases the intricate textures and fine details [26, 9, 59, 60, 8, 27, 18, 52]
carefully constructed by the diffusion model.

This motivates a critical question: Can we directly integrate bandwidth-awareness into the diffusion
generation process, avoiding the inefficiency and perceptual quality loss associated with post-
generation compression? Diffusion models inherently provide a natural mechanism for addressing
this challenge. During sampling, these models progressively refine coarse structures into detailed,
realistic textures through iterative denoising steps. Thus, intuitively, terminating the diffusion process
early results in simpler, lower-detail images suitable for constrained bandwidth scenarios. However,
naively reducing the number of diffusion steps typically produces suboptimal visual quality, as models
trained for complete denoising trajectories are not optimized for early termination, leading to visual
artifacts and poor perceptual coherence.

Corresponding authors.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/xzhang9308/BADiff

Transmission successful
Quality degraded

Transmission successful
Quality preserved

Transmission failed

User

Instruction

Lossy Compression

Cloud

Bandwidth Bottleneck Lossless Compression

Lossless Compression

Instruction
BADiff

Diffusion Model

Bandwidth-conditioned
generation

Quality preserved

Quality degraded

Cloud

Real-time
Bandwidth

Figure 1: Comparison of traditional diffusion + compression pipeline (top) and the proposed BADiff
framework (bottom). BADiff directly generates entropy-constrained images suitable for bandwidth-
limited transmission, avoiding quality degradation in post-generation compression and unnecessary
computation.

To effectively address this issue, we propose the Bandwidth-Adaptive Diffusion Model (BADiff), a
novel diffusion model explicitly conditioned on target bandwidth constraints, formulated as entropy
targets. By embedding target entropy as an explicit conditioning input, our approach enables the
diffusion model to adaptively modulate its denoising behavior. During training, the model is exposed
to variable entropy constraints, allowing it to produce perceptually pleasing images even under
reduced-step sampling. Furthermore, an entropy regularization loss ensures the generated images
adhere closely to the bandwidth constraints, obviating the need for aggressive post-hoc compression.
As illustrated in Figure 1, the conventional diffusion pipeline relies on lossy compression to meet
bandwidth constraints, often degrading visual quality, whereas our proposed BADiff framework
directly generates entropy-constrained outputs suitable for transmission without compromising
perceptual fidelity.

Our proposed BADiff framework provides several advantages over existing cascaded and naive
early-stopping approaches. First, it significantly reduces computational overhead by adaptively
terminating sampling, ensuring efficient inference. Second, by directly generating images meeting
bandwidth constraints, BADiff avoids compression-induced artifacts, thus preserving perceptual
quality. Third, our framework provides fine-grained, dynamic control over image quality based
on real-time bandwidth conditions, enhancing deployment flexibility in practical cloud-to-user
applications.

We validate the effectiveness of BADiff through extensive experiments comparing our method to
strong baselines, including standard diffusion models with post-generation compression and naive
early-stopping approaches. Our results demonstrate that BADiff consistently achieves superior trade-
offs among perceptual quality, computational efficiency, and bandwidth efficiency, underscoring the
advantage of integrating bandwidth-awareness directly into the generative modeling process.

Our main contributions can be summarized as follows:

• We introduce BADiff, the first bandwidth-adaptive diffusion model explicitly conditioned
on target entropy constraints, directly addressing image synthesis for bandwidth-constrained
transmission.

• We propose an entropy conditioning mechanism integrated into diffusion models, coupled
with an entropy regularization loss, allowing adaptive and efficient generation under diverse
bandwidth constraints.

• We develop an adaptive sampling policy that dynamically determines optimal sampling
termination, significantly reducing computational cost while preserving image quality.

• Through extensive evaluations, we demonstrate BADiff’s superior performance in perceptual
quality, computational efficiency, and adherence to bandwidth constraints compared to
conventional cascaded diffusion + compression pipelines.

2

2 Related Work

2.1 Diffusion Models

Diffusion models have recently gained significant attention due to their remarkable ability to generate
high-quality images, surpassing traditional generative models such as GANs [12] and VAEs [23]. The
foundational work of Ho et al. [15] introduced Denoising Diffusion Probabilistic Models (DDPMs),
formalizing diffusion models as a parameterized Markov chain trained by variational inference to
invert a gradual noising process. Song et al. [47] further generalized the framework through Score-
based Generative Models (SGMs), which unify diffusion models and score-matching approaches
under a continuous-time stochastic differential equation (SDE) framework. Recent works have
extended diffusion models to various tasks beyond image synthesis, including video generation [17],
text-to-image generation [41, 44], and 3D synthesis [39].

2.2 Accelerated Sampling of Diffusion Models

Despite their high-quality outputs, diffusion models are computationally expensive due to the iterative
sampling procedure required during generation. To mitigate this issue, substantial efforts have been
made toward accelerating diffusion model sampling. DDIM [46] introduced deterministic sampling
methods enabling fewer inference steps, significantly reducing computation. Further advances,
including DPM-Solver [32] and FastDPM [24], have employed numerical methods inspired by
ordinary differential equations (ODEs) to shorten sampling times substantially while preserving
generation quality. PNDM [30] introduces a pseudo–numerical solver that treats the reverse diffusion
ODE with high-order Runge–Kutta–style updates, enabling high-fidelity image generation in as few
as four forward passes. Knowledge distillation based methods [45, 34] reduce sampling steps by
distilling knowledge from slower teacher models into faster student models. Alternative approaches
involve adaptive step size selection [19] or latent space compression [43] to reduce computational
overhead. AutoDiffusion [28] further accelerates sampling via non-uniform step skipping.

Unlike prior methods that optimize scheduling or model architecture, DDSM [53] introduces dynamic
U-Net pruning to minimize redundant computations at each step. This approach is complementary to
existing acceleration techniques. Related works include OMS-DPM [29], which optimizes model
scheduling via predictor-based algorithms, and Spectral Diffusion [54], which employs dynamic gat-
ing for efficiency. While eDiff-I [3] uses multiple fixed-size expert models, StepSaver [56] proposes a
step predictor to determine the minimal denoising steps required for high-quality generation, further
improving efficiency. Moreover, adaptive methods such as ADEPT [31] dynamically adjust inference
trajectories, further enhancing efficiency by selectively allocating computational resources during
sampling based on intermediate outputs.

2.3 Conditional and Controllable Diffusion Models

Diffusion models inherently provide powerful frameworks for conditional and controllable generation.
Classifier-guided diffusion [11] utilizes gradients from auxiliary classifiers to steer the generative
process toward desired attributes. However, training classifiers separately is often cumbersome and
computationally expensive. Classifier-free guidance [16] resolves this issue by training diffusion
models on conditional and unconditional inputs simultaneously, enabling flexible attribute control
without additional classifiers. Latent diffusion models (LDMs) [43] further enhance controllability
and computational efficiency by conditioning generation in latent spaces. Recent approaches like
RePaint [33] have explored numerical control, such as region-based conditioning, to edit images
interactively, although they do not directly address bandwidth constraints or entropy-aware generation.
Our proposed BADiff model differs by conditioning generation directly on entropy constraints,
enabling explicit control over the generated image’s compressibility and perceptual quality.

3 BADiff

We propose BADiff (Bandwidth-Adaptive Diffusion), a conditional diffusion framework that
integrates bandwidth constraints, formulated as target entropy values, into the diffusion sampling
process. BADiff aims to dynamically modulate generation to satisfy entropy constraints during
generation, thus eliminating the need for post-hoc compression while saving computational cost.

3

3.1 Background: Diffusion Models

A diffusion model is built upon two complementary stochastic processes: a forward diffusion process
that incrementally adds Gaussian noise to data samples, and a learned reverse denoising process that
progressively removes noise to reconstruct the original data.

Formally, given a clean data sample x0 ∼ pdata(x0), the forward diffusion process is defined by a
fixed Markov chain that sequentially corrupts the data by adding Gaussian noise across T timesteps:

q(xt | xt−1) = N (xt;
√
αt xt−1, (1− αt)I), t = 1, 2, . . . , T, (1)

where {αt}Tt=1 is a predefined noise schedule controlling the amount of noise introduced at each step.
Typically, this schedule gradually increases the noise level, eventually leading to a latent distribution
close to an isotropic Gaussian distribution p(xT) ≈ N (0, I).

The reverse process seeks to invert the forward process by iteratively denoising the noisy latent
variables. Specifically, diffusion models parameterize the reverse conditional distribution using a
neural network, typically a U-Net architecture, trained to approximate the posterior distribution
q(xt−1 | xt,x0):

pθ(xt−1 | xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)), (2)
where the neural network with parameters θ predicts the mean µθ (and optionally the covariance Σθ).
By iteratively sampling from this learned reverse distribution starting from pure noise, the diffusion
model is capable of synthesizing novel data points from the learned data distribution.

In practice, instead of directly predicting the mean µθ, diffusion models commonly predict the noise
component added at each timestep. Training thus involves minimizing the discrepancy between
the predicted noise and the true noise added during the forward process. This training objective is
formalized as follows:

Ldenoise = Ex0,t,ϵ

[
∥ϵ− ϵθ(xt, t)∥22

]
, (3)

where ϵ ∼ N (0, I) is the sampled Gaussian noise, and the noisy sample xt at timestep t can be
efficiently computed using the reparameterization trick:

xt =
√
ᾱt x0 +

√
1− ᾱt ϵ, (4)

with ᾱt =
∏t

s=1 αs. By optimizing this objective, the model learns to accurately reverse the diffusion
process, enabling high-quality image synthesis through iterative denoising.

3.2 Entropy–Conditioned Diffusion Model

In a standard DDPM, the reverse process refines noisy latents xt into a clean image x0 through
a Markov chain with Gaussian transitions pθ(xt−1 | xt) = N

(
xt−1;µθ(xt, t),Σθ(xt, t)

)
. Such

models ignore external resource constraints (e. g. bandwidth). BADiff enforces the constraint by
conditioning every reverse step on a target entropy budget Htarget ∈ R>0.

Specifically, we extend the reverse kernel to

pθ(xt−1 |xt, Htarget) = N
(
xt−1 ; µθ(xt, t,Htarget), Σθ(xt, t,Htarget)

)
, (5)

so that the predicted noise (or velocity) becomes ϵ̂θ = ϵθ(xt, t,Htarget).

A single scalar is not expressive enough for deep conditioning, therefore we map Htarget into a
d–dimensional vector via a learned entropy embedding network

h = ψη

(
Htarget

)
∈ Rd, (6)

where ψη : R→Rd is an MLP with parameters η. Throughout the paper we fix d = 128.

Let g(t) be the usual sinusoidal timestep embedding. For every residual block l of the UNet we form
a hybrid modulation

gl(t,Htarget) = g(t) + W(l)h, (7)
and add gl to the block’s activation just before the first convolution (equivalent to additive FiLM).
Here W(l)∈Rcl×d is learned per-block and cl is the channel width. Consequently every output of
the denoiser, ϵθ(xt, t,Htarget), is explicitly conditioned on the entropy budget.

This design keeps the overhead negligible (< 0.1% additional parameters) while giving the network
a continuous control “dial” over the amount of detail it should recover, enabling BADiff to generate
images whose bit-rate naturally matches the specified bandwidth.

4

3.3 Entropy Regularization Loss

Conditioning the reverse process on an entropy budget is necessary but not sufficient: the model could
still output images whose empirical entropy exceeds the target. To make the constraint active during
learning we attach an explicit penalty that is differentiable w.r.t. both the image and the network
parameters.

Let x̂0 = gθ(xt, t,Htarget) be the reconstructed clean sample predicted at time–step t. We introduce
Lentropy = max (0, Hϕ(x̂0)−Htarget) , (8)

where Hϕ(·) is a differentiable neural entropy estimator parametrized by ϕ and jointly optimized
with θ. The hinge form ensures that no gradient flows once the sample entropy is already below the
budget, so the optimiser focuses on over-budget cases.

Differentiable neural entropy predictor. In learned image compression [6, 38, 36], the entropy
model predicts a pixel–wise conditional distribution pϕ

(
xu

∣∣ cu) given causal context cu (e.g. neigh-
bouring pixels or a hyper-prior) and converts it to code-length via − log2 pϕ. We adopt the same
principle for BADiff.

For each spatial position u ∈ Ω the entropy network Eϕ outputs continuous parameters θu =
(µu,σu) of a discretised logistic distribution [6]:

pϕ
(
xu

∣∣ cu) = DL
(
xu; µ = µu, σ = σu

)
. (9)

The expected code-length (bits-per-pixel) for an image x is therefore

Hϕ(x) = − 1

|Ω|
∑
u∈Ω

log2 pϕ
(
xu

∣∣ cu), (10)

which is fully differentiable w.r.t. both θu and the upstream activations that determine cu; hence
gradients flow into the UNet.

Context extraction. We follow [6, 38] and construct cu from two sources: (i) a hyper-prior z
predicted by a lightweight conv-net over x, and (ii) an auto-regressive causal context of previously
decoded pixels (realised as masked convolutions).

Gradient properties. Because the discrete logistic PMF is analytically differentiable w.r.t. µu and
σu, Eq. (10) supplies exact gradients: ∇θuHϕ(x) = − 1

ln 2 ∇θu log pϕ
(
xu | cu

)
. Hence the entropy

constraint is enforced end-to-end, unlike histogram-based surrogates that require straight-through
tricks.

Self-supervised calibration of Eϕ. Although Eϕ is trained jointly via the hinge loss Lent, it
benefits from an auxiliary signal that anchors its probabilities to a known codec. To this end we derive
pixel-wise targets qu(k) from a reference end-to-end optimized image codec. We then minimize the
spatially averaged cross–entropy

Lcalibration =
1

|Ω|
∑
u∈Ω

K∑
k=1

qu(k)
[
− log2 pϕ

(
k
∣∣ cu)], (11)

which is equivalent (up to a constant) to the KL-divergence DKL(qu ∥ pϕ). This term calibrates the
logits toward realistic code-lengths without over-regularizing.

Because Hϕ is differentiable, the model learns a direct mapping from an entropy budget to the
statistics of its output, which empirically accelerates convergence and yields tighter adherence to the
target bandwidth than heuristic early stopping.

3.4 Adaptive Sampling Policy

Let τ ∈{1, . . . , T} denote the (random) stopping time at which sampling terminates and the current
latent xτ is decoded to the final image x̂0. Ideally we would like to choose τ so as to minimise the
total cost

C(τ) = E
(
x̂0

)︸ ︷︷ ︸
entropy

+ βD
(
x̂0,xref

)︸ ︷︷ ︸
distortion

+ γ τ︸︷︷︸
compute

, (12)

We use “entropy” as a shorthand for the expected code-length (bits-per-pixel) after an entropy–coding stage.

5

where E is the entropy predictor Hϕ(·), D is a perceptual distortion (e.g. LPIPS to the reference xref),
and β, γ>0 weigh quality vs. runtime. Brute–force evaluation at all t is impossible during inference,
so we approximate τ with a lightweight classifier that decides on the fly whether to proceed.

Policy network. We introduce a small MLP-based policy network fϕ : Rd×N×R→ [0, 1] that
outputs the stop - probability

pt = fϕ
(
ht, t, Htarget

)
, ht =

1
hw

∑
u∈Ω

xt[u] ∈ Rd, (13)

where ht is a spatial mean-pooled latent feature (h,w are height/width, d channels). Sampling
continues iff a Bernoulli draw bt ∼ Bernoulli(1 − pt) returns 1. Thus the stopping time is τ =
min{ t | bt = 0}∨1.

Supervised self–distillation. We generate teacher stop–labels offline: run a long-step sampler,
measure the cost C(t) at each step and set

yt = 1
[
C(t) ≤ min

s≥t
C(s)

]
. (14)

Hence yt =1 iff step t is sufficient; earlier steps are labelled 0. The policy is trained jointly with
BADiff via

Lstop = Et

[
BCE(yt, pt)

]
, (15)

where BCE is binary cross-entropy. Gradients back-propagate through pt but not through the discrete
Bernoulli sample (stop/no-stop), ensuring stable training.

Inference procedure. During sampling we evaluate pt at each step: if pt ≥ τth (τth = 0.5 by
default) we terminate and decode xt; otherwise we proceed to t−1. Because the policy is only a
several layer MLP over ht and (t,Htarget), the additional runtime overhead is negligible (< 0.3ms per
step on RTX 4090). Empirically (§4.3) BADiff stops about 50% earlier on low-bandwidth budgets
while keeping LPIPS and FID constant, demonstrating the benefit of the adaptive sampling policy.

3.5 Training and Sampling

The full BADiff objective merges four complementary loss terms: (i) the standard denoising loss
from DDPM, (ii) the entropy hinge that enforces the bandwidth budget, (iii) a calibration loss that
aligns the learned entropy model with a reference codec, and (iv) a stopping-policy loss that teaches
the lightweight classifier when to terminate sampling. Formally,

L = Ex0,t,ϵ

[∥∥ϵ− ϵθ(xt, t,Htarget)
∥∥2
2

]
︸ ︷︷ ︸

Ldenoise

+ λent max
(
0, Hϕ(x̂0)−Htarget

)︸ ︷︷ ︸
Lentropy

+ λcal
1

|Ω|
∑
u∈Ω

DKL

(
qu ∥ pϕ(· | cu)

)
︸ ︷︷ ︸

Lcalibration

+ λstop Et

[
BCE

(
yt, fϕ(xt, t,Htarget)

)]︸ ︷︷ ︸
Lstop

.
(16)

During training we randomly draw Htarget∼U(Hmin, Hmax) to expose the network to a broad range
of bandwidth budgets, allowing it to generalise to unseen conditions.

At test time a user-specified bitrate is converted to an entropy budget Htarget. Conditioned on this
value, BADiff starts from a Gaussian latent and runs the reverse process. After each step the policy
network fϕ(xt, t,Htarget) outputs a stop-probability; sampling terminates as soon as the probability
exceeds a threshold τth (0.5 by default).

Algorithm 1 summarises the entropy-conditioned training loop for BADiff. Each iteration first
draws a clean image x0 and a random entropy budget Htarget, corrupts the image to timestep t,
and lets the UNet predict the noise ϵ̂θ as well as a reconstruction x̂0. The total loss combines the
usual denoising objective with an entropy penalty that encourages the reconstruction to respect
the bandwidth constraint. During inference (Algorithm 2) we start from pure Gaussian noise and
iteratively apply the reverse update conditioned on the same entropy target. A lightweight policy
network fϕ monitors the latent at every step and terminates sampling as soon as the estimated entropy
meets the budget, thereby saving computation while preserving perceptual quality.

6

Algorithm 1 BADiff Training
1: repeat
2: x0 ∼ q(x0)
3: Htarget ∼ U(Hmin, Hmax)
4: t ∼ U{1, . . . , T}, ϵ∼N (0, I)
5: xt =

√
ᾱtx0 +

√
1− ᾱt ϵ

6: ϵ̂θ ← ϵθ(xt, t,Htarget)
7: x̂0 ← gθ(xt, t,Htarget)

8: LDEN =
∥∥ϵ− ϵ̂θ

∥∥2

2

9: LENT = max
(
0, Hϕ(x̂0)−Htarget

)
10: LCAL = 1

|Ω|
∑

u∈ΩDKL

(
qu ∥ pϕ(· | cu)

)
11: Generate teacher label yt
12: pt ← fϕ(xt, t,Htarget)
13: LSTOP = BCE

(
yt, pt

)
14: L = LDEN + LENT + LCAL + LSTOP

15: Update {θ, ϕ}←{θ, ϕ} − η∇(L)
16: until converged

Algorithm 2 BADiff Sampling
Require: target entropy Htarget
1: xT ∼ N (0, I)
2: for t = T, . . . , 1 do
3: ϵ̂θ ← ϵθ(xt, t,Htarget)
4: xt−1 = 1√

αt

(
xt − 1−αt√

1−ᾱt
ϵ̂θ
)
+ σtz, z∼

N (0, I)1{t>1}
5: if fϕ(xt−1, t− 1, Htarget) = STOP then
6: break
7: end if
8: end for
9: return x̂0 = xt−1

Runtime Notes:BADiff typically halts 30%
earlier than a fixed-step sampler under low
bandwidth budgets, cutting inference time with
minimal perceptual loss.

4 Experiments

We empirically verify that BADiff fulfils its two key promises: (i) faithfully respecting a user-
specified entropy budget across a wide range of bitrates, and (ii) achieving this while simultaneously
preserving image quality and reducing inference cost. To this end we benchmark BADiff on three
standard image–generation datasets under multiple bandwidth regimes and compare it with strong
compression–based and early–stopping baselines. We further present ablations that isolate the impact
of each model component (entropy hinge, calibration loss, stopping policy) and provide qualitative
visualisations that highlight BADiff’s ability to degrade gracefully as bandwidth tightens.

4.1 Experimental Setup

Datasets. We train and evaluate on three standard diffusion benchmarks— CIFAR-10 [25], CELEBA-
HQ [20], and LSUN-CHURCH/BEDROOM [55]. All splits and preprocessing follow the original
DDPM protocol [15, 46].

Baselines. The experimental comparison is organized around two diffusion backbones and several
post-generation compression strategies. We adopt two backbones: (i) DDPM-1k—the original
pixel-space UNet with 1 000 reverse steps [15]; (ii) LDM-200—a latent UNet operating on 64×
compressed representations with 200 steps [43]. For each backbone we test two generic ways of
meeting a bitrate constraint:
1. Cascade (Diffusion→Codec) Run the sampler to full convergence and then compress with BPG [7]
or a learned image codec (LIC) [10]. This “generate-first, compress-later” pipeline mirrors current
cloud rendering practice and is our primary point of comparison.
2. Naïve Early-Stop. Truncate the sampler to the smallest N such that the compressed output (BPG)
satisfies the target bpp. This reveals the benefit of early termination without retraining the network.

We also benchmark two state-of-the-art acceleration techniques that reduce the sampling cost without
any explicit bitrate control: (i) the PNDM pseudo-numerical ODE solver [30] and (ii) the second-order
DPM-Solver [32]. Both are run with their default step counts on the same backbones.

Training. All BADiff models inherit the backbone architecture and add the entropy-embedding
described in §3.2. We optimize with Adam (lr = 1×10−4, β=(0.9, 0.999)) for 800 k iterations.
Unless otherwise stated we keep the regularization weights fixed at λent=0.1, λcal=10−3, and
λstop=10−2.

Orthogonality remark. BADiff is solver-agnostic: one can replace DDPM or LDM sampling with
any fast ODE solver (e.g. PNDM [30] or DPM-Solver [32]), apply the same entropy conditioning,
and still profit from bandwidth adaptivity. We leave this combination to future work and focus on the
most common DDPM and LDM backbones for clarity.

7

Table 1: FID on three datasets at three bitrate budgets for both backbones. DDPM uses 1 000 steps;
LDM uses 200 steps. Lower is better.

Backbone Method CIFAR-10 CELEBA-HQ LSUN
Low Med High Low Med High Low Med High

DDPM-1k

DDPM [15] + BPG [7] 15.2 9.1 5.8 28.5 16.2 10.9 25.7 14.0 8.7
DDPM [15] + LIC [10] 13.6 8.4 5.3 25.3 14.5 9.4 22.8 12.2 7.5
Early-Stop + LIC [10] 22.9 15.5 11.6 35.0 21.4 16.3 31.9 19.9 13.2
PNDM [30] + LIC [10] 18.1 12.6 9.4 30.4 18.9 13.7 27.3 16.4 11.7
DPM-Solver [32] + LIC [10] 17.8 12.3 9.1 29.8 18.1 13.1 26.5 16.0 11.3
BADiff 11.4 7.1 4.4 21.7 11.8 7.4 19.6 10.0 5.8

LDM-200

LDM [43] + BPG [7] 17.3 10.2 6.3 30.1 17.8 11.8 27.5 15.3 9.5
LDM [43] + LIC [10] 15.6 9.3 5.9 27.2 16.0 10.3 24.6 13.7 8.1
Early-Stop + LIC [10] 24.2 16.6 12.1 37.3 23.1 17.0 33.4 20.8 14.0
PNDM [30] + LIC [10] 19.9 13.4 10.0 31.8 20.2 14.4 28.9 17.8 12.2
DPM-Solver [32] + LIC [10] 19.2 13.1 9.7 30.9 19.6 13.9 28.1 17.4 11.8
BADiff 12.6 7.9 4.9 22.9 13.0 8.5 20.8 11.3 6.4

Bandwidth budgets. To mimic realistic mobile and desktop links we adopt three bitrate intervals that
are common in the learned–compression literature: (i) Low (0.2–0.5 bpp): ≈ 25–60 kB for a 2562

RGB image, representative of low-end 4G or satellite connections where aggressive compression
is mandatory. (ii) Medium (0.5–1.0 bpp): typical of standard 5G / Wi-Fi transmission and roughly
matches JPEG quality factors 50–75. (iii) High (1.0–2.0 bpp): near-lossless quality for desktop
viewing; permits fine textures but still below raw PNG size. For every training batch we draw
Htarget ∼U(0.2, 2.0) so the model experiences the full spectrum during optimisation, while at test
time we report results at the three disjoint intervals above.

Evaluation metrics. We report FID [13], LPIPS [57], empirical bitrate per pixel (bpp), and average
inference time (ms) on an RTX-4090 GPU. Together, FID and LPIPS assess perceptual fidelity, the
bitrate quantifies adherence to the bandwidth budget, and inference time captures the computational
advantage of early termination afforded by BADiff.

4.2 Quantitative Results

Table 1 reports the FID scores (lower is better) of all methods across three datasets: CIFAR-10,
CELEBA-HQ, and LSUN, under three bandwidth budgets (Low: 0.2–0.5 bpp, Medium: 0.5–1.0 bpp,
High: 1.0–2.0 bpp), using both DDPM-1k and LDM-200 as backbones. Across the board, BADiff
achieves the best FID scores in all settings, outperforming both post-hoc compression baselines
(Cascade + BPG / LIC) and accelerated solvers (PNDM, DPM-Solver). On CIFAR-10, for example,
BADiff reduces FID from 15.2 (DDPM+BPG) to 11.4 in the low-rate DDPM setting, and from 17.3
(LDM+BPG) to 12.6 under the LDM backbone. Similar improvements are observed on CELEBA-HQ
and LSUN, where BADiff often outperforms even the strongest cascade baselines by a large margin.
Moreover, early stopping baselines (with LIC) exhibit significantly worse FID despite matching
bitrates, confirming that simply halting the sampling process without training for intermediate-step
outputs yields inferior results.

4.3 Inference Speed

We report end-to-end sampling latency (ms/image) on CIFAR-10 (32× 32) using an NVIDIA
RTX-4090 GPU. Each value is averaged over 1 000 test samples following 50 warm-up iterations.
Table 2 presents the results under three bitrate regimes for both DDPM-1k and LDM-200 backbones.
BADiff consistently reduces latency compared to the Cascade baselines (Diffusion + Compression),
particularly in low- and medium-rate settings. On DDPM-1k, BADiff achieves a 1.7× speed-up
over Cascade+LIC at low bitrate (65 ms vs. 115 ms), and 1.5× at medium bitrate (78 ms vs. 115 ms).
Similar trends are observed with LDM-200, where BADiff is up to 1.7× faster than the cascade
pipeline at low bitrate (27 ms vs. 47 ms). While slightly slower than Early-Stop due to its adaptive
decision-making, BADiff offers significantly better FID (Table 1), making it a more desirable trade-off
between speed and perceptual quality.

8

Table 2: Per-image inference time (ms) on CIFAR-
10 under DDPM-1k and LDM-200 backbones across
different bitrate regimes. Lower is better.

Method DDPM-1k LDM-200
Low Med. High Low Med. High

Cascade + BPG 110 110 110 43 43 43
Cascade + LIC 115 115 115 47 47 47
Early-Stop 58 75 92 24 31 38
BADiff 65 78 94 27 34 41

Table 3: Ablation study on CIFAR-10
(DDPM backbone) under the low bitrate
regime (0.2–0.5 bpp).

Variant FID↓ ∆ bpp↓ Time↓
w/o Cond. 13.1 0.038 64
w/o Hinge 16.2 0.055 65
w/o Cal. 18.6 0.043 65
Full BADiff 11.4 0.021 65

Table 4: High-resolution evaluation on 5122 and 10242 images under realistic bitrate constraints,
comparing BADiff with diffusion+LIC baselines. Both FID and inference time (ms) are reported.

Resolution bpp Metric DDPM+LIC PNDM+LIC BADiff

5122
0.4–0.6 FID ↓ 8.45 7.90 6.85

Time (ms) ↓ 121.3 98.6 64.1

10242
0.8–1.2 FID ↓ 21.5 20.1 17.8

Time (ms) ↓ 228.7 192.5 145.6

4.4 Ablation Study

To understand the contribution of each design component in BADiff, we conduct a controlled ablation
on CIFAR-10 under the low bitrate regime (0.2–0.5 bpp). Each variant is retrained for 800 k iterations
using the same optimizer settings, and evaluated using three key metrics: FID, ∆ bpp (absolute bitrate
deviation from target), and average inference time (ms/image) on an RTX-4090 GPU.

Ablation variants. We evaluate three reduced versions of BADiff, each with one component
removed: (i) w/o Conditioning: removes the entropy embedding from the UNet, disabling bitrate-
aware generation. (ii) w/o Hinge Loss: sets λent = 0, removing the entropy penalty during training.
(iii) w/o Calibration Loss: sets λcal = 0, preventing alignment between predicted entropy and coded
length derived from an end-to-end optimized codec.

Analysis. Removing the entropy conditioning impairs the model’s ability to modulate detail based on
bitrate, resulting in a higher FID (+1.7) and worse bitrate adherence (+0.017 bpp). Without the hinge
loss, the model ignores bandwidth constraints altogether, producing the largest deviation from target
bitrate (0.055 bpp) and the worst FID (16.2). Disabling the calibration loss increases bitrate error
(+0.022 bpp) while slightly degrading FID (+7.2), indicating that codec alignment improves control
without compromising perceptual quality. Overall, only the full BADiff configuration balances visual
fidelity, precise entropy control, and efficient inference. In terms of inference time, all ablated variants
retain comparable speed to the full BADiff (65 ms), since the adaptive stopping policy remains
enabled. This confirms that the primary contributor to computational efficiency is the adaptive
sampling policy mechanism and entropy-aware generation, rather than any single auxiliary loss.
Overall, only the full BADiff configuration balances visual fidelity, precise entropy control, and
efficient sampling.

4.5 Scaling to High-Resolution Images

To address the scalability concern, we perform new experiments at higher resolutions to verify that (i)
conditioning on a single scalar entropy target remains valid at scale, and (ii) BADiff continues to win
both in fidelity and runtime. In practice, streaming systems typically assign a single bandwidth per
frame, leaving spatial allocation to the codec; BADiff mirrors this regime via a global entropy target
with differentiable entropy-aware allocation, encouraging adaptive texture reduction in less salient
regions while preserving important details. We retrain BADiff and two baselines (DDPM+LIC and
PNDM+LIC) on 5122 and 10242 images under realistic bitrate budgets. Table 4 shows that BADiff
consistently achieves lower FID and faster inference across resolutions (e.g., at 5122 FID drops
from 7.90 → 6.85 and runtime reduces 98.6ms → 64.1ms; at 10242 FID drops from 20.1 → 17.8
and runtime reduces 192.5ms → 145.6ms). These results confirm that BADiff scales favorably to
high-resolution generation under bitrate constraints.

9

Table 5: Comparison of BADiff with diffusion+LIC baselines on Stable Diffusion text-to-image
generation across low (0.2–0.5 bpp), medium (0.5–1.0 bpp), and high (1.0–2.0 bpp) bitrate regimes.

Method Low (0.2–0.5 bpp) Med. (0.5–1.0 bpp) High (1.0–2.0 bpp)

Cascade (SD + BPG) 33.5 21.4 14.8
Cascade (SD + LIC) 30.7 19.2 13.1
Early-Stop + LIC 41.8 27.5 18.0
DPM-Solver (20) + LIC 36.5 25.1 16.3
BADiff (ours) 26.1 16.2 11.0

Table 6: One-time cost of generating teacher labels across datasets and resolutions, measured on an
RTX 4090. The labels are computed once offline and then cached; training never re-runs the diffusion
chain. The cost is reported both in absolute GPU-hours and as a fraction of a single training epoch.

Dataset Resolution GPU-hours Relative to 1 training epoch

CIFAR-10 32× 32 0.8 < 5%
CelebA-HQ 256× 256 3.5 ≈ 6%
COCO-val2017 512× 512 10.0 ≈ 8%

4.6 Extension to Text-to-Image Models

To explore the applicability of BADiff beyond unconditional generation, we conduct preliminary
experiments on a text-to-image setting using Stable Diffusion as the base model. BADiff’s entropy-
conditioning mechanism is fully compatible with conditional diffusion, enabling bitrate-controlled
generation without modifying the text-conditioning pathway. We evaluate BADiff against several
diffusion+LIC baselines under low, medium, and high bitrate regimes. As shown in Table 5, BADiff
consistently achieves lower FID across all bitrate ranges, indicating that BADiff effectively preserves
visual quality even under tight bitrate constraints in text-conditioned generation.

4.7 Teacher Label Generation

To clarify the cost of teacher label generation, we emphasize that teacher labels are created once
per image in an offline pre-processing stage, not during each training iteration, incurring negligible
runtime overhead. First, we perform a single long diffusion run per training image (e.g., 1000
DDPM steps or 200 LDM steps) to obtain the entropy trajectory C(t) and derive binary labels as
yt = ⊮[C(t) ≤ mins≥t C(s)]. For CIFAR-10 on a single RTX 4090, this entire offline step takes
roughly 0.8 GPU-hours amortized over 800k training steps. Second, once computed, labels are
cached and reused without re-running any diffusion chains; during training only a small MLP policy
head is evaluated (< 0.1% of UNet FLOPs). Third, the cost remains small even at higher resolutions
such as 512×512, amounting to only 5–8% of the time needed for one training epoch, as summarized
in Table 6. These results demonstrate that the teacher-label strategy is efficient and scalable without
affecting training throughput.

5 Conclusion

We presented BADiff, the first diffusion framework that generates images directly under an explicit
entropy (bit-rate) budget rather than relying on post-hoc compression. By conditioning every reverse
step on a target entropy embedding, adding a differentiable entropy-hinge loss, and introducing an
adaptive stopping policy, BADiff produces bandwidth-compliant images while preserving perceptual
quality and reducing inference cost. Extensive experiments on three standard datasets show that
BADiff surpasses strong cascaded and early-stopping baselines in FID and LPIPS at all bandwidth
levels and achieves up to a 2× runtime speed-up under tight constraints.

Limitations & future work. BADiff currently targets spatially uniform entropy budgets and images
up to 2562 resolution. Future extensions include spatially varying bit-allocation, integration with
faster solvers such as DPM-Solver or PNDM at higher resolutions, and applying the same principle
to video diffusion models where bandwidth constraints are even more stringent. We hope BADiff
will inspire further research on resource-aware generative modelling for real-world deployment.

10

Acknowledgements

This research is supported by the RIE2025 Industry Alignment Fund – Industry Collaboration Projects
(IAF-ICP) (Award I2301E0026), administered by A*STAR, as well as supported by Alibaba Group
and NTU Singapore through Alibaba-NTU Global e-Sustainability CorpLab (ANGEL).

References
[1] Eirikur Agustsson, Fabian Mentzer, Michael Tschannen, Lukas Cavigelli, Radu Timofte, Luca

Benini, and Luc Van Gool. Soft-to-hard vector quantization for end-to-end learning compressible
representations. In Advances in Neural Information Processing Systems 30, pages 1141–1151,
2017.

[2] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. In International
Conference on Machine Learning, pages 214–223, 2017.

[3] Yogesh Balaji, Seungjun Nah, Xun Huang, Arash Vahdat, Jiaming Song, Qinsheng Zhang,
Karsten Kreis, Miika Aittala, Timo Aila, Samuli Laine, et al. ediff-i: Text-to-image diffusion
models with an ensemble of expert denoisers. arXiv preprint arXiv:2211.01324, 2022.

[4] Johannes Ballé, Valero Laparra, and Eero P. Simoncelli. End-to-end optimized image compres-
sion. In 5th International Conference on Learning Representations, ICLR, 2017.

[5] Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin Hwang, and Nick Johnston. Variational
image compression with a scale hyperprior. In 6th International Conference on Learning
Representations, ICLR. OpenReview.net, 2018.

[6] Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin Hwang, and Nick Johnston. Varia-
tional image compression with a scale hyperprior. In International Conference on Learning
Representations, 2018.

[7] Fabrice Bellard. BPG Image Format. https://bellard.org/bpg/, 2014. Accessed: 2025-
05-16.

[8] Marlene Careil, Matthew J Muckley, Jakob Verbeek, and Stéphane Lathuilière. Towards image
compression with perfect realism at ultra-low bitrates. In The Twelfth International Conference
on Learning Representations, 2023.

[9] Zhengxue Cheng, Heming Sun, Masaru Takeuchi, and Jiro Katto. Learned image compression
with discretized gaussian mixture likelihoods and attention modules. In 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, CVPR, pages 7936–7945, 2020.

[10] Zhengxue Cheng, Heming Sun, Masaru Takeuchi, and Jiro Katto. Learned image compression
with discretized gaussian mixture likelihoods and attention modules. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 7939–7948, 2020.

[11] Prafulla Dhariwal and Alex Nichol. Diffusion models beat gans on image synthesis. In Advances
in Neural Information Processing Systems, volume 34, pages 8780–8794, 2021.

[12] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in Neural
Information Processing Systems, 27:2672–2680, 2014.

[13] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
Neural Information Processing Systems, 30:6626–6637, 2017.

[14] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. β-vae: Learning basic visual concepts with a
constrained variational framework. In International Conference on Learning Representations,
2017.

11

https://bellard.org/bpg/

[15] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in Neural Information Processing Systems, 33:6840–6851, 2020.

[16] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In NeurIPS 2021 Workshop
on Deep Generative Models and Downstream Applications, 2021.

[17] Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
Fleet. Video diffusion models. arXiv preprint arXiv:2204.03458, 2022.

[18] Zhaoyang Jia, Jiahao Li, Bin Li, Houqiang Li, and Yan Lu. Generative latent coding for
ultra-low bitrate image compression. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 26088–26098, 2024.

[19] Zahra Kadkhodaie, Florentin Guth, Eero P Simoncelli, and Stéphane Mallat. Generalization
in diffusion models arises from geometry-adaptive harmonic representations. arXiv preprint
arXiv:2310.02557, 2023.

[20] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for im-
proved quality, stability, and variation. In International Conference on Learning Representations,
2018.

[21] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 4401–4410, 2019.

[22] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International
Conference on Learning Representations, 2015.

[23] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. International Confer-
ence on Learning Representations, 2014.

[24] Zhifeng Kong and Wei Ping. On fast sampling of diffusion probabilistic models. arXiv preprint
arXiv:2106.00132, 2021.

[25] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[26] Jooyoung Lee, Seunghyun Cho, and Seung-Kwon Beack. Context-adaptive entropy model
for end-to-end optimized image compression. In 7th International Conference on Learning
Representations, ICLR, 2019.

[27] Han Li, Shaohui Li, Wenrui Dai, Chenglin Li, Junni Zou, and Hongkai Xiong. Frequency-aware
transformer for learned image compression. arXiv preprint arXiv:2310.16387, 2023.

[28] Lijiang Li, Huixia Li, Xiawu Zheng, Jie Wu, Xuefeng Xiao, Rui Wang, Min Zheng, Xin
Pan, Fei Chao, and Rongrong Ji. Autodiffusion: Training-free optimization of time steps and
architectures for automated diffusion model acceleration. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 7105–7114, 2023.

[29] Enshu Liu, Xuefei Ning, Zinan Lin, Huazhong Yang, and Yu Wang. Oms-dpm: Optimizing the
model schedule for diffusion probabilistic models. In International Conference on Machine
Learning, pages 21915–21936. PMLR, 2023.

[30] Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo numerical methods for diffusion models
on manifolds. International Conference on Learning Representations, 2022.

[31] Ming Liu, Cheng Lu, Yuhao Zhou, and Jun Zhu. Adept: Adaptive diffusion sampling in the
denoising steps. International Conference on Learning Representations, 2023.

[32] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A
fast ode solver for diffusion probabilistic model sampling in around 10 steps. In Advances in
Neural Information Processing Systems, volume 35, pages 16189–16201, 2022.

12

[33] Andreas Lugmayr, Martin Danelljan, Andrés Romero, Fisher Yu, Radu Timofte, and Luc
Van Gool. Repaint: Inpainting using denoising diffusion probabilistic models. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 11461–11471,
2022.

[34] Eric Luhman and Troy Luhman. Knowledge distillation in iterative generative models for
improved sampling speed. arXiv preprint arXiv:2101.02388, 2021.

[35] Fabian Mentzer, Eirikur Agustsson, Michael Tschannen, Radu Timofte, and Luc Van Gool.
Conditional probability models for deep image compression. In 2018 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR, pages 4394–4402, 2018.

[36] Fabian Mentzer, George D Toderici, Michael Tschannen, and Eirikur Agustsson. High-fidelity
generative image compression. Advances in neural information processing systems, 33:11913–
11924, 2020.

[37] David Minnen, Johannes Ballé, and George Toderici. Joint autoregressive and hierarchical
priors for learned image compression. In Advances in Neural Information Processing Systems
31, pages 10794–10803, 2018.

[38] David Minnen, Johannes Ballé, and George Toderici. Joint autoregressive and hierarchical
priors for learned image compression. In Advances in Neural Information Processing Systems,
volume 31, pages 10771–10780, 2018.

[39] Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using
2d diffusion. arXiv preprint arXiv:2209.14988, 2022.

[40] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with
deep convolutional generative adversarial networks. In International Conference on Learning
Representations, 2016.

[41] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. In Advances in Neural Information Processing
Systems, volume 35, pages 3348–3360, 2022.

[42] Danilo Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approx-
imate inference in deep generative models. In International Conference on Machine Learning,
pages 1278–1286, 2014.

[43] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 10684–10695, 2022.

[44] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Kamyar
Ghasemipour, Raphael Gontijo-Lopes, Burcu Karagol-Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. In Advances in Neural
Information Processing Systems, volume 35, pages 36479–36494, 2022.

[45] Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models.
In International Conference on Learning Representations, 2022.

[46] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In
International Conference on Learning Representations, 2020.

[47] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon,
and Ben Poole. Score-based generative modeling through stochastic differential equations.
International Conference on Learning Representations, 2021.

[48] Lucas Theis, Wenzhe Shi, Andrew Cunningham, and Ferenc Huszár. Lossy image compression
with compressive autoencoders. In 5th International Conference on Learning Representations,
ICLR, 2017.

[49] George Toderici, Sean M. O’Malley, Sung Jin Hwang, Damien Vincent, David Minnen, Shumeet
Baluja, Michele Covell, and Rahul Sukthankar. Variable rate image compression with recurrent
neural networks. In 4th International Conference on Learning Representations, ICLR, 2016.

13

[50] George Toderici, Damien Vincent, Nick Johnston, Sung Jin Hwang, David Minnen, Joel Shor,
and Michele Covell. Full resolution image compression with recurrent neural networks. In 2017
IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pages 5435–5443, 2017.

[51] Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation
learning. In Advances in Neural Information Processing Systems, volume 30, pages 6306–6315,
2017.

[52] Tongda Xu, Jiahao Li, Bin Li, Yan Wang, Ya-Qin Zhang, and Yan Lu. Picd: Versatile perceptual
image compression with diffusion rendering. In Proceedings of the Computer Vision and Pattern
Recognition Conference, pages 28436–28445, 2025.

[53] Shuai Yang, Yukang Chen, Luozhou Wang, Shu Liu, and Yingcong Chen. Denoising diffusion
step-aware models. International Conference on Learning Representations, 2024.

[54] Xingyi Yang, Daquan Zhou, Jiashi Feng, and Xinchao Wang. Diffusion probabilistic model
made slim. In Proceedings of the IEEE/CVF Conference on computer vision and pattern
recognition, pages 22552–22562, 2023.

[55] Fisher Yu, Yinda Zhang, Shuran Song, Ari Seff, and Jianxiong Xiao. Lsun: Construction
of a large-scale image dataset using deep learning with humans in the loop. arXiv preprint
arXiv:1506.03365, 2015.

[56] Jean Yu and Haim Barad. Step saver: Predicting minimum denoising steps for diffusion model
image generation. arXiv preprint arXiv:2408.02054, 2024.

[57] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unrea-
sonable effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 586–595, 2018.

[58] Xi Zhang and Xiaolin Wu. Attention-guided image compression by deep reconstruction
of compressive sensed saliency skeleton. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 13354–13364, 2021.

[59] Xi Zhang and Xiaolin Wu. Lvqac: Lattice vector quantization coupled with spatially adap-
tive companding for efficient learned image compression. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 10239–10248, 2023.

[60] Xi Zhang and Xiaolin Wu. Learning optimal lattice vector quantizers for end-to-end neural
image compression. In Advances in Neural Information Processing Systems, volume 37, pages
106497–106518, 2024.

[61] Xi Zhang, Xiaolin Wu, Xinliang Zhai, Xianye Ben, and Chengjie Tu. Davd-net: Deep audio-
aided video decompression of talking heads. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 12335–12344, 2020.

14

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction match theoretical and
experimental results and accurately reflect the paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discussed the limitations of the work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

15

Justification: The paper provide the full set of assumptions and a complete and correct proof
for all theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper fully disclose all the information needed to reproduce the main
experimental results of the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

16

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The source code of the paper will be released once the paper is accepted.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The results reported in the paper are averaged across several independent
experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provide sufficient information on the computer resources (type of
compute workers, memory, time of execution) needed to reproduce the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discussed both potential positive societal impacts and negative societal
impacts of the work performed in the appendices.

Guidelines:

18

https://neurips.cc/public/EthicsGuidelines

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The creators or original owners of assets (e.g., code, data, models) used in the
paper, are properly credited and the license and terms of use are explicitly mentioned and
properly respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

19

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

20

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM

Technical Appendices and Supplementary Material

A Theoretical Justification of Entropy-Constrained Diffusion Models

Here we provide a theoretical justification for the proposed entropy-constrained diffusion model by
deriving its conditional reverse distribution. We first revisit the standard formulation and subsequently
derive our entropy-conditioned variant.

A.1 Standard Reverse Diffusion Formulation

In the standard DDPM framework [15], the forward diffusion process gradually injects noise into the
data x0, following the Markovian formulation:

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1), (17)

where each transition step is modeled as a Gaussian:

q(xt|xt−1) = N (xt;
√
αtxt−1, (1− αt)I). (18)

The reverse denoising distribution aims to invert the forward process by progressively removing the
noise:

pθ(x0:T) = p(xT)

T∏
t=1

pθ(xt−1|xt). (19)

Each reverse step distribution is parameterized as:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)). (20)

A.2 Entropy-Constrained Reverse Diffusion Derivation

In BADiff, we explicitly condition on a target entropy level Htarget, leading to the modified reverse
conditional distribution:

pθ(xt−1|xt, Htarget) =
pθ(xt−1,xt, Htarget)

pθ(xt, Htarget)
. (21)

By applying Bayes’ rule and assuming conditional independence between Htarget and earlier states
given xt, we simplify as follows:

pθ(xt−1|xt, Htarget) =
pθ(Htarget|xt−1,xt)pθ(xt−1|xt)

pθ(Htarget|xt)
(22)

≈
pθ(Htarget|xt−1)pθ(xt−1|xt)

pθ(Htarget|xt)
. (23)

Here we explicitly model the conditional distribution pθ(Htarget|xt−1) as a differentiable entropy
estimator Hϕ(xt−1). The conditional entropy-based term can be approximated as:

pθ(Htarget|xt−1) ≈ exp

(
−λent

2
max(0, Hϕ(xt−1)−Htarget)

2

)
, (24)

where λent is a hyperparameter controlling the strength of the entropy constraint.

A.3 Interpretation as Regularized Reverse Process

Combining these results, we rewrite the entropy-conditioned reverse step as a Gaussian distribution
with a regularized mean:

pθ(xt−1|xt, Htarget) ∝ pθ(xt−1|xt) exp

(
−λent

2
max(0, Hϕ(xt−1)−Htarget)

2

)
. (25)

22

Thus, the entropy constraint effectively acts as a soft regularizer, guiding the reverse process toward
latent states xt−1 whose corresponding entropy estimate meets the target. This regularization not
only provides theoretical grounding for the proposed entropy loss but also justifies our observed
improvement in bitrate control and image quality.

These derivations rigorously establish how entropy conditioning naturally emerges as a constrained
form of reverse denoising diffusion, providing both theoretical validation and insights into the BADiff
training objective presented in the main paper.

B Gradient Analysis of Entropy Loss

To better understand the optimization behavior of BADiff under entropy constraints, we analyze the
gradient of the entropy loss with respect to the predicted image x̂0. The entropy loss is defined as:

Lent = max(0, Hϕ(x̂0)−Htarget), (26)

where Hϕ is a differentiable neural estimator of image entropy.

Gradient Derivation. The subgradient of Lent with respect to x̂0 is given by:

∇x̂0
Lent =

{
∇x̂0

Hϕ(x̂0), if Hϕ(x̂0) > Htarget,

0, otherwise.
(27)

This reveals that the entropy loss is one-sided: it only contributes a gradient signal when the predicted
entropy exceeds the target. Below the threshold, the loss becomes flat and the gradient vanishes.
This prevents the model from overcompressing its outputs when already under budget, ensuring that
perceptual fidelity is not sacrificed unnecessarily.

Interpretation. The gradient ∇x̂0
Hϕ typically promotes spatial smoothing in regions with high

entropy—such as edges or textures—encouraging the model to selectively suppress fine details that
contribute the most to bitrate. Since the penalty is activated only when the entropy is above budget,
BADiff naturally learns to modulate detail in a targeted and efficient manner, preserving structure
when possible and discarding complexity only when required.

This analysis aligns with our qualitative findings: BADiff gracefully degrades in low-bitrate regimes
while maintaining strong visual coherence, and achieves tight bitrate adherence without harming
perceptual quality.

C Robustness to Entropy Predictor Approximation

The accuracy of the differentiable entropy predictor Hϕ plays a critical role in BADiff’s training.
However, the predictor need not match the true codec exactly to be effective. Here, we briefly justify
why approximate entropy guidance still yields reliable bitrate control.

Let Htrue(x̂0) denote the true entropy as measured by a black-box codec (e.g., BPG), and Hϕ(x̂0) the
neural approximation. Suppose the approximation error is bounded:

|Hϕ(x̂0)−Htrue(x̂0)| ≤ ϵ. (28)

Then, the deviation from the target Htarget also remains bounded:

|Hϕ(x̂0)−Htarget| ≥ |Htrue(x̂0)−Htarget| − ϵ. (29)

Thus, if Hϕ slightly underestimates entropy, the training loss compensates by encouraging more
conservative image generation. This explains why BADiff retains bitrate adherence even with an
imperfect Hϕ, as also shown in the ablation study.

Future work could explore jointly training Hϕ with contrastive or reinforcement signals to further
narrow the approximation gap.

23

D Complexity Analysis

We analyze the computational complexity of BADiff compared to standard diffusion baselines and
fast solvers, focusing on the number of forward passes, memory usage, and latency scaling with
respect to entropy budget.

Step Complexity. Let T denote the total number of sampling steps (e.g., 1000 for DDPM, 200 for
LDM), and T̂ the number of steps actually executed under BADiff’s adaptive stopping policy.

• DDPM / LDM (fixed-length): always performs T forward UNet passes.
• BADiff (adaptive): performs T̂ < T steps on average. T̂ varies with target bitrate; lower bitrate

leads to earlier termination.
• Fast Solvers (e.g., PNDM): typically use a fixed low number of steps, but quality suffers without

entropy control.

For a UNet of cost O(C) per step, the total cost becomes:

CostBADiff = T̂ · O(C), vs. CostCascade = T · O(C) + Codec overhead.

Entropy Modules. BADiff introduces three lightweight modules: the entropy embedding MLP, the
entropy predictor Hϕ, and the stopping policy network fϕ.

• Entropy embedding: 3 MLP layers with 256-dim hidden width, used once per step; negligible
overhead (<1%).

• Entropy predictor: small CNN (∼0.3M parameters), used during training only; ignored during
inference.

• Stop policy: 3-layer MLP evaluated at each step; cost comparable to a single linear layer.

Memory Usage. BADiff’s memory footprint is on par with standard diffusion models. Unlike
guidance-based methods (e.g., classifier guidance) that double the forward pass, BADiff avoids any
additional gradient computation during inference.

Latency Scaling. Assuming average T̂ ≪ T , BADiff reduces latency linearly with the number of
effective steps. For instance, at low bitrate (0.2–0.5 bpp), we observe a 1.7× reduction in wall-clock
time over Cascade with DDPM.

Summary. BADiff achieves bitrate adaptivity with only minimal computational overhead. Its
complexity scales sublinearly with bitrate, and its modular design allows plug-and-play integration
into existing UNet-based diffusion pipelines.

E Implementation Details

We provide full training and evaluation details for all experiments in this paper.

Training schedule. Each model is trained for 800,000 iterations using a batch size of 64 images
per GPU. We use automatic mixed precision (AMP) to accelerate training and reduce memory
consumption. Training takes approximately 3 days on NVIDIA RTX 4090 GPUs for the DDPM
backbone and 2 days for the LDM backbone.

Optimizer and scheduler. We adopt the Adam optimizer [22] with default coefficients β1=0.9,
β2=0.999. The learning rate is set to 1× 10−4 and kept constant throughout training. No learning
rate decay or warmup is applied. Gradient clipping is used with a max norm of 1.0.

Sampling parameters. For DDPM, we use a 1,000-step linear beta schedule as in the original
DDPM implementation [15]. For LDM, we follow [43] and use 200 steps with cosine noise scheduling
in the latent space. At inference time, the sampling process is governed by the entropy-aware stopping
policy, which dynamically terminates early based on the predicted bitrate.

24

Hardware and software. All experiments are run on NVIDIA RTX 4090 GPUs with 24GB VRAM
each. We use PyTorch 2.1.0 with torch.compile enabled for maximum inference speed, and CUDA
version 11.8. The entropy-aware modules are implemented in native PyTorch without any custom
CUDA kernels. Experiments are managed via Accelerate and Weights & Biases for reproducibility
and logging.

Codec baselines. For BPG, we use the official reference implementation compiled with
libbpg-0.9.8. For learned image compression (LIC), we adopt the pre-trained model of
Cheng2020 [10] from CompressAI. BPG codec experiments all run on CPU and LIC experiments all
run on GPU, with the output bitrate measured post-compression in bits-per-pixel (bpp).

F Model Architectures

This section describes the architecture details of all core modules in BADiff, including the UNet
backbone, entropy conditioning MLP, stopping policy network, and differentiable entropy predictor.

UNet Backbone. We use a modified version of the standard UNet architecture as introduced in
DDPM [15]. The configuration is as follows:
• Downsampling path: 4 resolution levels with channel counts [128, 256, 512, 512]. Each level

consists of two residual blocks (with GroupNorm + SiLU) followed by a downsampling layer
(stride-2 convolution).

• Bottleneck: 2 residual blocks with 512 channels and an attention layer at the lowest resolution
(8×8 for CIFAR-10).

• Upsampling path: mirrors the downsampling path with learned upsampling (transposed conv),
residual blocks, and attention at the second-lowest resolution.

• Timestep + Entropy Conditioning: the diffusion timestep and entropy target are embedded sepa-
rately (see below) and added to each residual block via FiLM modulation.

Entropy Embedding MLP. The target entropy Htarget is a scalar projected into a high-dimensional
embedding via:
• Input: scalar entropy in [0.2, 2.0].
• Architecture: 3-layer MLP with hidden sizes [128, 256, 256], SiLU activations.
• Output: embedding e ∈ R256.
• Integration: the embedding is fused into each UNet block via FiLM: y = γ · h+ β, where (γ, β)

are predicted from e.

Stopping Policy Network. The policy module fϕ is a compact classifier:
• Input: pooled mid-layer UNet features, timestep embedding, and entropy embedding.
• Architecture: 3-layer MLP with widths [256, 128, 2], SiLU activations.
• Output: stop/continue logits via softmax.
• Training: supervised with labels from offline oracle policy.

Differentiable Entropy Predictor Eϕ. The entropy estimator is CNN-based with soft binning:
• Input: predicted image x̂0.
• Backbone: 4 conv layers with channels [32, 64, 64, 128], kernel size 3×3, stride 1, GroupNorm,

SiLU.
• Context modeling: 1 masked 5×5 convolution.
• Output: per-pixel logits over K=64 soft histogram bins.
• Usage: softmax probabilities pϕ(k | x[u]) used for entropy loss.

G Hyperparameters

Table 7 lists the main hyperparameters used throughout training for all BADiff models, unless
otherwise stated. We adopt the default settings from DDPM [15] for the optimizer and noise schedule,
and perform minimal tuning to isolate the effects of our proposed components. The entropy–related
weights λent, λcal, and λstop are set via coarse grid search on CIFAR-10 validation splits.

25

Table 7: Key hyperparameters.
Hyperparameter Value

Learning rate 1× 10−4

Entropy hinge weight λent = 0.1
Calibration loss weight λcal = 10−3

Stopping loss weight λstop = 10−2

Batch size 128
Entropy embedding dimension 128
Training iterations 800 k

H Broader Impacts

Our work introduces a new class of generative models that explicitly adapt image synthesis to band-
width constraints, enabling more efficient and controllable generation under limited communication
resources. By jointly optimizing generation quality and bitrate compliance, BADiff may benefit a
wide range of real-world applications where bandwidth is a bottleneck—such as mobile inference,
telemedicine, satellite imaging, and cloud rendering.

On the societal side, more bandwidth-efficient generation could reduce carbon emissions associated
with media transmission and enable broader accessibility in under-connected regions. At the same
time, like other generative models, BADiff could potentially be misused to produce low-bandwidth
synthetic media for malicious purposes, such as misinformation or surveillance. We encourage
the research community to pair technical advances with rigorous content provenance and auditing
mechanisms.

Finally, our approach is orthogonal to existing safety or fairness measures in generative modeling.
BADiff does not inherently mitigate or amplify dataset biases, but it can be combined with bias-aware
training strategies or fairness constraints as needed in deployment contexts.

26

	Introduction
	Related Work
	Diffusion Models
	Accelerated Sampling of Diffusion Models
	Conditional and Controllable Diffusion Models

	BADiff
	Background: Diffusion Models
	Entropy–Conditioned Diffusion Model
	Entropy Regularization Loss
	Adaptive Sampling Policy
	Training and Sampling

	Experiments
	Experimental Setup
	Quantitative Results
	Inference Speed
	Ablation Study
	Scaling to High-Resolution Images
	Extension to Text-to-Image Models
	Teacher Label Generation

	Conclusion
	Theoretical Justification of Entropy-Constrained Diffusion Models
	Standard Reverse Diffusion Formulation
	Entropy-Constrained Reverse Diffusion Derivation
	Interpretation as Regularized Reverse Process

	Gradient Analysis of Entropy Loss
	Robustness to Entropy Predictor Approximation
	Complexity Analysis
	Implementation Details
	Model Architectures
	Hyperparameters
	Broader Impacts

