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Abstract

Recent progress in vision-language modeling for 3D medical imaging has been
fueled by large-scale computed tomography (CT) corpora with paired free-text
reports, stronger architectures, and powerful pretrained models. This has enabled
applications such as automated report generation and text-conditioned 3D image
synthesis. Yet, current approaches struggle with high-resolution, long-sequence
volumes: contrastive pretraining often yields vision encoders that are misaligned
with clinical language, and slice-wise tokenization blurs fine anatomy, reducing
diagnostic performance on downstream tasks. We introduce BTB3D (Better Tokens
for Better 3D), a causal convolutional encoder-decoder that unifies 2D and 3D train-
ing and inference while producing compact, frequency-aware volumetric tokens. A
three-stage training curriculum enables (i) local reconstruction, (ii) overlapping-
window tiling, and (iii) long-context decoder refinement, during which the model
learns from short slice excerpts yet generalizes to scans exceeding 300 slices with-
out additional memory overhead. BTB3D sets a new state-of-the-art on two key
tasks: it improves BLEU scores and increases clinical F1 by 40% over CT2Rep,
CT-CHAT, and Merlin for report generation; and it reduces FID by 75% and halves
FVD compared to GenerateCT and MedSyn for text-to-CT synthesis, producing
anatomically consistent 512× 512× 241 volumes. These results confirm that pre-
cise three-dimensional tokenization, rather than larger language backbones alone, is
essential for scalable vision-language modeling in 3D medical imaging. The code-
base is available at: https://github.com/ibrahimethemhamamci/BTB3D

1 Introduction

Three-dimensional (3D) medical images, such as CT, provide a rich volumetric view of anatomy,
offering significantly more detail than 2D radiographs [1]. This makes them well-suited for vision-
language models (VLMs), which can automate radiology report generation and enable text-guided
volume synthesis for data augmentation, education, and planning [2]. Recent progress in 3D VLMs,
driven by public datasets with paired reports (especially in chest CT) and advances in vision encoders
and large language models (LLMs), has opened new clinical possibilities [3, 4, 5, 6, 7]. However, these
systems still face major challenges: 3D volumes often consist of hundreds of slices, introducing long-
sequence modeling challenges [8]. Moreover, the limited availability of paired 3D data prevents robust
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training [9]. As a result, 3D VLMs struggle to capture fine-grained clinical details and maintain spatial
coherence when tasked with generating detailed reports or high-fidelity 3D volumes [10, 11, 12].

Why do 3D VLMs lag behind their 2D counterparts in report generation? A typical pipeline combines
a pretrained 3D vision encoder with an LLM for report generation [3]. While LLMs have improved
significantly through large-scale pretraining, the vision side remains a bottleneck [11]. Most state-
of-the-art methods rely on vision encoders pretrained with contrastive objectives [13, 14]. However,
this approach faces two critical limitations in the 3D medical context. First, contrastive learning
assumes that only paired image-text samples are semantically aligned, while unpaired samples are
unrelated [15]. In radiology, this assumption often does not hold: multiple reports can describe the
same conditions differently due to variations in language, clinical focus, or radiologist style [16].
Penalizing such unmatched pairs may therefore degrade the model’s understanding of medical
semantics. Second, CLIP-style training requires large batch sizes for stability [17]. High-resolution
3D volumes are memory-intensive, often forcing trade-offs in batch size or model depth, resulting
in underpowered vision encoders [14]. Prior work has noted that key findings (e.g., small nodules
or subtle textures) may be lost when compressing an entire 3D scan into a single vector using weak
models trained contrastively [3]. Another major challenge is the lack of interoperability between 2D
and 3D representations [3]. Most 2D medical VLMs cannot directly process volumetric input and
instead require projecting 3D scans into 2D slices [18, 19]. This modality gap limits the transferability
of pretrained 2D models to 3D, particularly important given the scarcity of 3D image-text datasets.

A similar bottleneck affects text-conditional 3D medical image generation. Prior methods rely on
encoder-decoder networks pretrained in a self-supervised manner to reconstruct volumes [12]. How-
ever, training an encoder-decoder capable of reconstructing long, high-resolution CT sequences
remains an open challenge. Thus, existing methods adopt cascaded generation frameworks, resulting
in spatial discontinuities and reduced realism, or rely on lightweight encoder-decoder architectures
that fail to capture nuanced context [20]. Consequently, current models struggle to generate anatomi-
cally consistent, high-quality 3D volumes from text. Hence, we need encoder-decoder networks for
3D VLMs that (1) scale to long volumetric sequences without losing critical details, (2) bridge the
2D/3D divide through unified representations, and (3) decode high-resolution 3D volumes from these
representations. Improved encoders would enable more effective alignment between CT scans and
textual descriptions for report generation, while better decoders enhance text-to-image generation.

To address these challenges, we introduce BTB3D (Better Tokens for Better 3D), a novel encoder-
decoder framework that advances VLMs in 3D medical imaging through improved tokenization,
reconstruction, and training strategies. Our core contribution is a causal convolutional encoder-
decoder that learns a compact sequence of volumetric tokens for each CT. We adopt a quantized latent
space for efficient 3D tokenization and reconstruction [21]. Causal 3D convolutions enable the model
to process scans slice by slice (analogous to a temporal sequence), allowing scalability to arbitrarily
long scans and compatibility with pretrained 2D features, serving as a bridge between 2D and 3D
modalities. For downstream tasks, the proposed architecture can be combined with modules such
as a transformer decoder for report generation or a diffusion model for volume synthesis. Crucially,
we introduce a novel three-stage training strategy that progressively adapts the encoder-decoder to
longer input contexts, enabling robust training even under compute-limited conditions.

2 Related works

Radiology report generation from 3D medical images. The recent availability of 3D medical
datasets paired with corresponding reports (such as CT-RATE) has enabled significant progress
in this domain [3]. The first framework for radiology report generation from 3D scans, CT2Rep,
did not leverage any pretrained vision or language models [10]. Due to limited training data and
the need to generate long, meaningful reports, CT2Rep employed a relational memory module to
retrieve relevant past reports for coherent generation, inspired by prior work [22]. Subsequent models,
such as CT-CHAT and Merlin, improved upon this by incorporating pretrained components [3, 11].
These approaches followed a contrastive strategy to align image and text features during vision
encoder pretraining [15]. A more recent model, fVLM, pretrained its 3D vision encoder, using a
more clinically relevant contrastive learning approach [14]. However, we do not include fVLM in our
comparisons, as neither its report generation codebase nor model weights have been available.
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Figure 1: (a) Stage 1: A 9-slice subvolume is compressed via a wavelet transform, then encoded
causally using two stride-2 temporal convolutions. The encoder processes the input strictly causally
by prepending zero-padded slices. Tokens are decoded back to the wavelet domain by a symmetric
causal decoder. (b) Stage 2: To scale to long CT volumes, we introduce overlapping temporal tiling
(retaining only the second token from each window) to ensure consistent representation. Stage 3
follows the same scheme but trains only the decoder to refine long-range anatomical reconstruction.

Text-conditional 3D medical image generation. The first framework for text-conditioned 3D
volume generation, GenerateCT, introduced a cascaded pipeline [12]. Due to computational limita-
tions, it trained a 3D encoder-decoder network on low-resolution CT scans, followed by 2D diffusion
steps for upsampling [23]. While this cascaded approach enabled high-resolution and long-sequence
generation, the volumes suffered from poor interslice consistency. MedSyn addressed this limitation
with a 3D architecture designed to improve spatial coherence; however, its lightweight design reduced
image fidelity [20]. Other 3D CT scan generation methods, such as MAISI, exist, but we do not
include them in our comparisons, as they are not designed for text-conditional generation [24].

3 Methodology

Due to the computational challenges, our goal is to pretrain on short sequences while enabling scala-
bility to full volumes. Contrastive learning is inappropriate because paired reports typically describe
the entire scan, and training on cropped or partial slices introduces semantic misalignment [13]. Also,
they are difficult to adapt for 3D image synthesis [25]. Thus, we propose a reconstruction-based
pretraining, generalizing effectively to longer sequences. Prior work has shown that convolutional
networks outperform transformer-based ones in video reconstruction [26]. Thus, we adopt a 3D
CNN-based backbone [27]. Given the limited 3D medical datasets, we design our model to support
both 2D and 3D, enabling unified training across modalities, which motivates our causal network [28].

However, training a convolutional model on short sequences introduces two key challenges: (1) When
performing inference in a single pass over the full CT, reconstruction quality tends to degrade toward
the latter slices; or (2) When performing inference in short chunks, inconsistencies arise at window
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boundaries. To address them, we introduce a three-stage training strategy that progressively scales
while preserving temporal consistency. The resulting model can reconstruct long sequences with high
fidelity and generalizes well across downstream tasks. Below, we detail the architecture and training.

3.1 Model architecture

BTB3D is a 3D convolutional encoder-decoder network with a discrete latent codebook [29]. We
design it for CT scans using causal convolutional mechanisms along the temporal (axial) dimension
and wavelet-based compression for efficient and scalable input representation, shown in Figure 1a.

3D Haar wavelet compression. Given a volumetric CT scan x ∈ RD×H×W , we apply a 3D
Haar wavelet transform W (·) to obtain a multi-channel representation W (x) ∈ RD

2 ×H
2 ×W

2 ×8,
following prior work in video generation that showed wavelet decompositions improve reconstruction
quality [30, 31, 32]. This transformation reduces resolution by a factor of two along each axis while
retaining essential frequency information. Each non-overlapping 2 × 2 × 2 voxel block yields 8
subband coefficients: one low-frequency and seven high-frequency components. These frequency-
aware channels encode both coarse and fine anatomical features, improving representation learning.
Although the channel dimension increases from 1 to 8, the size of volumes is reduced by a factor of 8,
yielding substantial compression for the input. This reduces memory and computation costs, enabling
deeper or wider networks and making the model scalable to long, high-resolution CT volumes. For
2D slices (D = 1), the Haar transform along the z-axis produces a low- and high-frequency pair,
with the latter often near-zero due to the absence of temporal variation. Nonetheless, the same 3D
transform applies to both 2D and 3D inputs, ensuring architectural consistency across training modes.

Encoder with causal 3D convolutions. The encoder E takes a wavelet-transformed CT sequence
W (x) ∈ RD×H×W×C and outputs a latent representation y ∈ RD′×H′×W ′×d. It consists of residual
blocks with factorized 3D convolutions that decouple spatial and temporal processing. Each block
applies a 1×k×k spatial convolution (sagittal-coronal) followed by a k×1×1 temporal convolution
(axial), with causal padding of (k−1) zero slices in the past and none in the future. This ensures that
the encoder at index t only attends to slices ≤ t, enabling strictly causal encoding. As a result, the
first token is computed from the first slice alone, and future leakage is prevented in all subsequent
tokens. This causal design supports unified 2D (e.g., single-slice) and 3D (volume-level) training
while preserving axial consistency, beneficial for downstream autoregressive tasks [33, 34, 35].

Figure 1a illustrates the model architecture and causal axial compression. Downsampling is performed
using strided convolutions interleaved with residual blocks. In the 8×8×8 configuration, two stride-2
convolutions along each axis yield a 4× reduction spatially and temporally. Combined with the initial
2× wavelet downsampling [31], this results in an effective 8× compression. The 16×16×8 variant
adds an extra spatial stride-2 layer, achieving 16× spatial and 8× temporal compression. Each variant
presents a trade-off: the 83 setting preserves more spatial detail for tasks like segmentation or volume
synthesis, while the 162×8 variant offers higher compression for memory-constrained settings or
tasks focused on global semantics, such as classification or radiology report generation.

Lookup-free quantization and decoder. The encoder output y = E(W (x)) ∈ RD′×H′×W ′×d is
transformed into a discrete latent representation using lookup-free quantization [31]. The number of
quantization codes is K = 2d, and each feature vector at a spatial position is binarized independently
across dimensions by computing the sign of each element, resulting in binary vectors b ∈ {−1, 1}d.
These vectors are then packed into integers, forming the token map z ∈ {0, . . . ,K − 1}D′×H′×W ′

.
This approach removes the need for a codebook or embedding lookup during training and inference,
significantly improving speed and memory efficiency, critical for large 3D volumes. To prevent code
collapse (e.g., overuse of a limited set of tokens), we include an entropy regularization term Lentropy
that encourages uniform usage of all K codes. Prior work in discrete representation learning [36, 26]
has shown this regularization improves both reconstruction and token diversity. The decoder G,
which mirrors the encoder’s structure as shown in Figure 1a, employs transposed convolutions and
residual upsampling blocks to reconstruct the wavelet-domain volume W̃ (x). Like the encoder, the
decoder is also causal: each slice is reconstructed using only previously decoded slices, preserving
autoregressivity [37]. The decoder accepts either the packed integer tokens or their binary expansions.
The final volume x̂ is obtained by applying W−1, the inverse 3D Haar wavelet transform, to W̃ (x).
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Training objectives. The model is trained to reconstruct high-resolution 3D CT sequences using a
combination of three objectives: reconstruction loss, adversarial loss, and quantization loss.

The reconstruction loss Lrec encourages the decoder to accurately recover the input volume:

Lrec = Ex [∥x− x̂∥1] =
1

N

N∑
i=1

|xi − x̂i| , (1)

where x̂ is the reconstructed volume and N is the number of voxels. We use the ℓ1 norm, which
promotes sharper reconstructions and preserves fine anatomical detail better than ℓ2 [38].

The adversarial loss Ladv improves perceptual realism by encouraging indistinguishability:

Ladv = Ex [− logD(x̂)] = − 1

N

N∑
i=1

logD(x̂i), (2)

where D is a 3D discriminator trained to distinguish real from generated CT volumes. We apply this
supervision directly in the CT domain rather than the wavelet domain, stabilizing training [39, 36].

The quantization loss Lvq enforces commitment to discrete representations:

Lvq = E
[
∥sg[y]− e∥22 + β ∥y − sg[e]∥22

]
, (3)

where e is the discrete embedding (from a codebook or binary quantization), and sg[·] denotes the
stop-gradient operator [40]. The overall training objective is a weighted sum:

L = Lrec + λadvLadv + Lvq, (4)
where λadv controls the influence of adversarial supervision. We omit perceptual losses (e.g., VGG-
based features) due to the mismatch between natural RGB images and grayscale medical ones [41, 42].
Prior work has shown that these losses can degrade performance in medical image reconstruction [43].

3.2 Three-stage training

Stage 1: Short-volume pretraining. We first train the model on single 2D slices or short 9-slice
subvolumes. The entire model (encoder, quantizer, and decoder) is optimized end-to-end:

min
E,G

L(x1:9, x̂1:9), where x̂1:9 = W−1(G(Q(E(W (x1:9))))). (5)

This phase helps the model learn local spatial and spatio-temporal structures.

Stage 2: Overlapping temporal tiling. We continue training both the encoder and decoder using
overlapping short subsequences instead of full-volume encoding. To scale to long volumes while
preserving temporal consistency, we adopt an overlapping window strategy. Specifically:

1. Encode x1:9 ⇒ z11 , z
1
2 . Keep both tokens.

2. Encode x9:17 ⇒ z21 , z
2
2 . Discard z21 (covers only slice 9); keep z22 (covers x9–x17).

3. Encode x17:25 ⇒ z31 , z
3
2 . Discard z31 ; keep z32 . Repeat this pattern until the end of the CT.

In each 9-slice window, we discard the first token and retain the second, which encodes information
from all 9 slices (except the first window in which we take both tokens). This overlapping strategy
promotes temporal consistency. Letting zti denote the i-th token from the t-th window, we have:

1st window: [z11 , z
1
2 ] = E(W (x1:9)) (6)

2nd window: [z21 , z
2
2 ] = E(W (x9:17)) ⇒ keep only z22 (7)
. . .

T -th window: [zT1 , z
T
2 ] = E(W (x(D−8):D)) ⇒ keep only zT2 (8)

where T = ⌊(D− 1)/8⌋, and D is the sequence length of the partial CT volume that fits into memory
in this second stage training. As shown in Figure 1b, the final latent sequence is:

[z11 , z
1
2 , z

2
2 , z

3
2 , z

4
2 , z

5
2 , . . . , z

T
2 ]. (9)

This allows for efficient training on longer sequences than Stage 1, thanks to its lower memory
footprint compared to one-shot encoding. The decoder processes all tokens in a single forward pass.
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Stage 3: Long-sequence decoder fine-tuning. This stage mimics Stage 2, but we freeze the
encoder E and the codebook, and fine-tune only the decoder G. The training objective is:

min
θG

Ex1:D
[L (x1:D, x̂1:D)] subject to E and codebook frozen, (10)

where θG are the parameters of the decoder G. This step enhances the decoder’s capacity to model
long-range anatomical dependencies by training it to reconstruct CT without modifying the encoder.

Inference. BTB3D supports two inference strategies for reconstructing full-length 3D CT volumes:
one-shot and tiled inference, offering flexibility based on memory constraints and desired consistency.
In one-shot inference, the entire volume x is encoded and decoded in a single pass:

x̂ = W−1(G(E(W (x)))). (11)

This is efficient when memory allows full-volume processing but it may degrade on long sequences.
In tiled inference, we follow the overlapping tokenization scheme from Stage 2 to ensure spatial
coherence over long sequences. The input volume x is split into overlapping 9-slice windows, and:

[zt1, z
t
2] = E(W (xst:st+8)), x̂ = W−1(G([z11 , z

1
2 , z

2
2 , z

3
2 , . . . , z

T
2 ])). (12)

This strategy mirrors the training and ensures consistent reconstructions with lower memory use. We
adopt tiled inference for all downstream experiments due to its robustness and improved consistency.

4 Experiments

We evaluate the effectiveness of our model and three-stage training through reconstruction and two
downstream tasks (report generation and text-to-CT synthesis). Our experiments address three key
questions: (1) Does the three-stage training improve reconstruction over naive end-to-end training?
(2) Can our tokenization enhance vision-language tasks like report generation? (3) How does BTB3D
compare to state-of-the-art models in synthesizing high-resolution CT from clinical prompts?

4.1 Three-stage training performance Table 1: Reconstruction metrics after each stage of the
three-stage training. We report full-volume reconstruc-
tion performance at each stage for two models with
compression rates of 8×8×8 and 16×16×8.

Stage C. Rate PSNR ↑ SSIM ↑ MSE ↓

Stage 1 83 9.350 0.206 0.117
Stage 2 83 23.980 0.697 0.005
Stage 3 83 28.166 0.760 0.001

Stage 1 162×8 11.067 0.353 0.079
Stage 2 162×8 23.808 0.700 0.005
Stage 3 162×8 26.750 0.749 0.002

We assess BTB3D’s three-stage training
via reconstruction metrics and ablations,
demonstrating its scalability from short
subvolumes to full-resolution 3D chest CTs.
The strategy progressively (1) learns local
spatial and short-range temporal features,
(2) extends to longer sequences using over-
lapping tiling, and (3) enhances global co-
herence through decoder-only fine-tuning.
This enables strong representations for
downstream tasks such as report and text-
to-CT generation (Sections 4.2 and 4.3).

Experimental results. Table 1 reports reconstruction performance across training stages [44, 45].
Stage 1, trained on short subvolumes, captures local structure but fails at long-range consistency.
Stage 2 introduces overlapping tiling, yielding the largest improvement: PSNR increases by over 14
dB, SSIM triples, and MSE drops an order of magnitude. Stage 3 refines inter-slice fidelity through
decoder tuning, with modest but consistent gains. Figure 2 visualizes reconstruction quality (8×8×8
variant) across planes. Stage 1 outputs are blurry and lose structure beyond 9 slices. Stage 2 restores
coherent anatomy across distant slices. Stage 3 sharpens fine boundaries such as fissures and vessels.

Dataset and implementation. Aligned with the baselines, we use 25,692 chest CT scans from
21,304 patients in CT-RATE (the largest public 3D medical dataset with paired reports) [3]. The
training set includes 20,000 patients and the test set includes 1,304. Volumes are converted to
Hounsfield Units (HU) and clipped to [−1000, 1000] [46, 47]. For Stages 1 and 2, we use raw
volumes; for Stage 3, volumes are resampled to 0.75 × 0.75 × 1.5 mm and cropped/padded to
512× 512× 241. Training is conducted on 64 NVIDIA H100 GPUs using DDP and mixed precision.
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Figure 2: Reconstruction results of our 8×8×8 model across axial, coronal, and sagittal planes
after each training stage. Progressive improvements demonstrate the effectiveness of our three-stage
strategy, with Stage 2 providing the largest gains in anatomical fidelity and inter-slice consistency.

In Stage 1, the batch size is 8 for 9-slice subvolumes and 40 for single slices. In Stages 2 and 3,
we use a batch size of 1 (with 201 and 241 slices, respectively). The discriminator is reinitialized
at each stage. We use Adam [48] with a learning rate of 1e−5, β2 = 0.99, and ϵ = 1e−8, along
with gradient clipping (threshold: 0.5) [49]. LFQ uses a token dimension of 18 (codebook size:
262,144) [31]. We train Stage 1 for 150k iterations, Stage 2 for 60k, and Stage 3 for 50k.

4.2 Radiology report generation from 3D chest CT

Table 2: Evaluation on Rad-ChestCT proves strong
out-of-distribution generalization. As only binary
labels are available, text-based metrics are omitted.

Model F1 ↑ Precison ↑ Recall ↑

CT2Rep 0.133 0.299 0.139
Merlin 0.182 0.271 0.149
CT-CHAT 0.182 0.382 0.171

Ours-8 0.192 0.269 0.165
Ours-16 0.266 0.272 0.329

We evaluate BTB3D on report generation for
3D CT. Each volume is encoded into a sequence
of latent tokens v ∈ RT×dv by the BTB3D
encoder. For the 16× 16× 8 model, we use 18-
dimensional tokens; for the 8× 8× 8 one, the
token count is quadrupled and the embeddings
are reduced to 72 via merging. A linear layer
maps these tokens to the input space of LLaMA
3.1-8B [50], which autoregressively generates
reports following the CT-CHAT setup [3]. We
adopt the same configuration and pretrained
LLM as CT-CHAT to ensure fair comparison
and isolate the impact of our tokenization.

Baselines. Prior methods rely on lightweight encoders and contrastive pretraining, limiting tok-
enization quality to capture relevant details for report generation. In contrast, our pretraining (with
architectural and training advances) produces richer representations. We benchmark BTB3D against
three state-of-the-art report generation models. CT2Rep [10] uses a CT-ViT encoder and GPT-
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Table 3: Report generation performance on CT-RATE. BTB3D outperforms prior methods in both
metric types, with the higher compression variant achieving the highest F1 and BLEU scores.

Clinical Accuracy ↑ Natural Language Generation ↑
Model F1 P R CRG B1 B2 B3 B4 Bmean M

CT2Rep 0.160 0.435 0.128 0.359 0.372 0.292 0.243 0.213 0.280 0.197
Merlin 0.160 0.295 0.112 0.352 0.231 0.163 0.124 0.099 0.154 0.148
CT-CHAT 0.184 0.450 0.158 0.368 0.373 0.284 0.231 0.198 0.272 0.215

Ours-8 0.187 0.260 0.150 0.357 0.411 0.307 0.245 0.215 0.295 0.220
Ours-16 0.258 0.260 0.260 0.370 0.439 0.320 0.248 0.213 0.305 0.223

Table 4: Text-conditional CT generation results. BTB3D with lower compression outperforms
previous methods across all metrics, showing superior consistency, image quality, and text alignment.

FID ↓ FVD ↓ CLIP Score ↑
Model Axial Sagittal Coronal Mean CT-Net I3D Text-Img Img-Img

GenerateCT 10.416 10.365 7.754 9.512 7.659 1512.5 23.625 84.287
MedSyn 14.963 12.115 10.698 12.592 13.927 725.81 23.571 84.153

Ours-8 2.479 2.166 2.062 2.236 3.955 325.51 24.270 88.352
Ours-16 7.077 4.226 3.729 5.011 4.020 429.34 23.322 84.957

style decoder with memory modules. CT-CHAT [3] aligns a CLIP-pretrained vision encoder with
LLaMA [51]. Merlin [11] employs an I3D-ResNet backbone pretrained with masked and contrastive
objectives and attaches a decoder similar to CT-CHAT. We use official weights for CT2Rep and
CT-CHAT, both trained on CT-RATE. As Merlin was originally trained on private data and does not
release weights, we retrain it on CT-RATE using the official codebase.

Experimental results. Table 3 reports clinical accuracy (F1, precision, recall, CRG [52]) and
language quality (BLEU, METEOR [53, 54]) on CT-RATE. Merlin achieves high precision but low
recall, tending to under-report findings, while CT2Rep and CT-CHAT show high recall but lower
precision, often hallucinating abnormalities. Our method achieves a better balance, reflected in
superior F1 and CRG scores. The 16× 16× 8 variant achieves the highest F1, with a 40% relative
improvement over CT-CHAT, confirming the effectiveness of our volumetric tokenization. Compared
to CT-CHAT, BLEU-1 improves by 18% and BLEU-mean by 12%. Table 2 presents results on
RadChestCT. Our 16×16×8 model again achieves the highest F1 score, a 46% relative improvement
over the best baselines. Recall also improves substantially, indicating strong generalization to out-of-
distribution data. All clinical metrics are computed using the official CT-RATE report classifier.

Dataset and implementation. We use the CT-RATE dataset for report generation training, with
the findings and impression sections used as in prior baselines. Chest CT scans are resampled to a
voxel spacing of 0.75× 0.75× 1.5 mm and padded or cropped to a uniform size of 512× 512× 241.
For external validation, we use RadChestCT [55], which contains multi-label annotations but no text
reports. Models are trained for 40,000 iterations using DeepSpeed ZeRO-3 on 40 NVIDIA H100
GPUs. We use the AdamW optimizer with a learning rate of 2× 10−5 and a warm-up ratio of 0.03.
Each GPU processes one sample, yielding an effective global batch size of 40. For LoRA, we set
r = 64, α = 128 for the 83 variant, and r = 128, α = 256 for the 162×8 variant.

4.3 Text-conditional 3D chest CT generation

We evaluate BTB3D’s encoder-decoder on generating 3D chest CT scans from free-text prompts,
assessing the realism, anatomical coherence, and text alignment of its latent representations. For
generation, we use a transformer-based model with cross-attention layers, similar to GenerateCT [12].
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Figure 3: Example generations for a clinical prompt: “Chest CT scan of a 63-year-old male: No
findings compatible with pneumonia were detected. Mild sequelae changes are observed in both
lungs. Atherosclerotic changes noted, with slight increase in the calibration of vascular structures in
the mediastinum. Hepatosteatosis. Hiatal hernia.”. We show one representative slice per anatomical
plane. Ground-truth volumes are omitted, following standard practice in text-to-image generation.

Baselines. GenerateCT [12] adopts a cascaded design (low-resolution 3D generation followed by
2D diffusion upsampling), which leads to spatial inconsistencies. This approach is motivated by the
computational constraints of training a high-capacity 3D encoder-decoder directly on high-resolution
volumes. MedSyn [20] employs a unified 3D transformer with windowed attention to improve
inter-slice consistency but suffers from lower fidelity due to its lightweight architecture.

Experimental results. Table 4 reports FID (per view and mean), FVD (with CT-Net [55] and I3D
backbones), and CLIP-based alignment scores. Since CT-Net is trained on 3D chest CT volumes, it
provides a more relevant assessment than I3D. BTB3D with lower compression achieves substantial
improvements: mean FID drops from 9.51 (GenerateCT) to 2.24 (a 76.5% reduction). FVDCT-Net
improves by 48.3%, confirming better spatiotemporal realism, while CLIP alignment also slightly
increases. The higher-compression BTB3D variant still outperforms GenerateCT and MedSyn across
all metrics, though with smaller margins, highlighting a trade-off between compression and generation
quality. These results underscore the effectiveness of our encoder-decoder network for high-fidelity,
text-aligned 3D medical image synthesis. Figure 3 illustrates qualitative differences: our model
generates sharper volumes with clearer anatomical structures and better alignment to the clinical
prompt, while MedSyn and GenerateCT outputs appear blurrier or contain inter-slice artifacts.

Dataset and implementation. We use CT-RATE, with CTs resampled as in Section 4.2. Prompts
are generated as: "Chest CT scan of a {age}-year-old {sex}: {impression}", following GenerateCT.
The generation model is a 12-layer transformer (1024 hidden size, 16 heads), trained using flow
matching loss [56]. We apply [7, 7, 7] windowed self-attention and [2, 2, 2] patching. Prompts are
encoded using the T5v1.1-base model [57]. Training is conducted on 16 H100 GPUs for 1500 epochs,
using AdamW with a learning rate of 10−4. The batch size is 4 for the 83 variant and 8 for 162×8.
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5 Conclusion

We introduced BTB3D, a framework that advances vision-language modeling for 3D medical imaging.
It unifies 2D and 3D processing through a causal convolutional encoder-decoder and compact
volumetric tokenization. Our three-stage training scales learning from local patterns to full-volume
anatomical coherence, addressing memory and resolution bottlenecks. BTB3D achieves state-of-
the-art results in both radiology report generation and text-conditioned 3D CT synthesis. Notably,
the 8×8×8 variant excels in fine-grained tasks such as text-to-CT synthesis, while the 16×16×8
variant is better suited for memory-constrained settings and high-level tasks like report generation.
We believe BTB3D is a significant step toward scalable and clinically meaningful vision-language
modeling in 3D medical imaging, and we expect its open-source release to catalyze further research.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state two main claims: (1) BTB3D
achieves state-of-the-art performance on both radiology report generation and text-
conditional 3D CT synthesis, and (2) its improvements stem from a unified causal encoder-
decoder architecture and a three-stage training strategy. These claims are thoroughly
validated in Section 4 through reconstruction analysis (Section 4.1), report generation bench-
marks (Section 4.2), and CT synthesis metrics (Section 4.3). Quantitative improvements
(such as a 40% F1 gain over CT-CHAT for report generation and a 76.5% FID reduction over
GenerateCT) directly support the claims. The paper also discusses architectural trade-offs
and generalization, aligning the claims with the demonstrated scope and limitations.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper discusses several limitations throughout and includes a dedicated
section in the Appendix. Specifically, we acknowledge that BTB3D is evaluated only on
chest CTs due to the lack of large-scale paired datasets for other anatomies and modalities.
Also, our method requires substantial computational resources for training, which may limit
accessibility. Finally, although we evaluate performance using both clinical and generative
metrics, further validation through expert reader studies and prospective clinical trials is
necessary to assess real-world safety and efficacy.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.
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• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper is focused on an empirical vision-language modeling framework for
3D medical imaging and does not contain theoretical results, assumptions, or proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide detailed methodology in Section 3 and implementation details
in Section 4. Our experiments use the publicly available CT-RATE dataset for training
and in-domain evaluation, and RadChestCT for out-of-distribution validation. We release
all training and validation scripts, along with pretrained model weights, to ensure full
reproducibility of the results and support verification of all main claims.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We will open-source our codebase, including all training, validation, and
evaluation scripts. The repository will contain detailed instructions on setting up the
environment, accessing and preprocessing the CT-RATE and RadChestCT datasets, and
reproducing all experiments reported in the paper. Pretrained weights for BTB3D and the
generation models will also be provided to ensure faithful replication of our results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All training and evaluation details are thoroughly described in Section 4,
including dataset splits, preprocessing steps, model configurations, optimizer settings, batch
sizes, learning rates, training schedules, and hardware setup. We also specify stage-wise
training parameters and evaluation protocols for each task, ensuring the experimental setup
is fully transparent and reproducible.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Due to the substantial computational cost of training large 3D models on high-
resolution CT volumes, we did not conduct repeated runs or report statistical significance
metrics such as error bars or confidence intervals. Our focus was on demonstrating consistent
performance gains across multiple benchmarks using standardized evaluation protocols. We
acknowledge this as a limitation and will consider statistical analysis in future work.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We detail the hardware and software setup in Section 4. Batch sizes, memory
constraints, and stage-wise training configurations are specified, allowing estimation of
training time and resource requirements. This enables reproducibility and helps assess the
computational cost of our method.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).
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9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have carefully reviewed the NeurIPS Code of Ethics and ensured that all
aspects of our research (including data usage, model development, evaluation, and reporting)
fully comply with its principles. The datasets used are publicly available, de-identified, and
ethically sourced, and we maintain transparency and reproducibility throughout the work.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We provide a discussion of both potential positive and negative societal impacts
in the Appendix. On the positive side, BTB3D has the potential to improve diagnostic
accuracy, reduce radiologist workload, and enable better access to training tools through
high-quality synthetic CT data. On the negative side, we acknowledge potential risks such
as misuse of generative models for medical fraud or reconstruction of sensitive information
from improperly anonymized data. We emphasize the importance of proper anonymization
and include cautionary notes regarding ethical deployment and data governance.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
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Justification: While we rely solely on publicly available datasets, we acknowledge the
potential misuse of generative models. To mitigate this, access to our pretrained models is
gated: researchers must apply for access to the model weights, and requests are manually
reviewed to ensure responsible use. This safeguard helps prevent fraudulent or unethical
deployment of our generation models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All external assets used are publicly available datasets, and we comply with
their respective licenses (We cite the original papers and follow license terms). Specifically:

• CT-RATE dataset: Released under the CC BY-NC-SA 4.0 license.
• RadChestCT dataset: Released under the CC BY-NC-ND 4.0 license.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We will release all new assets (including code, pretrained models, and training
scripts) under the CC BY 4.0 license. The GitHub repository includes comprehensive
documentation covering usage instructions, training configurations, dependencies, and
licensing terms to facilitate reproducibility and reuse.

Guidelines:

• The answer NA means that the paper does not release new assets.
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• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This work does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This work does not involve human subjects and therefore does not require
IRB.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLMs were used only for writing and editing assistance, not as part of the core
methodology.

Guidelines:
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• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Technical Appendices and Supplementary Material

In this supplementary document, we provide additional insights and supporting materials for our main
paper. We begin by outlining the key limitations of our work and discussing the broader societal and
clinical implications of the BTB3D framework, particularly with regard to its capabilities in radiology
report generation and text-conditioned 3D CT volume synthesis. We then present further experimental
details that expand upon the methodology described in the main text. Additional qualitative and
quantitative results are also included to further validate our findings. All code, pretrained model
weights, and instructions to reproduce our experiments will be made openly available in our GitHub
repository to promote transparency, reproducibility, and further research in the field.

A.1 Limitations and Broader Impacts

Limitations. While our BTB3D framework significantly improves tokenization and decoding for
3D medical vision-language modeling (especially for 3D chest CT scans), several limitations remain.
First, our current framework does not explicitly model clinical reasoning or uncertainty, both of which
are crucial for real-world deployment in clinical settings. Incorporating modules for uncertainty
estimation or causal inference remains an open challenge for future studies.

Second, the scope of our experiments is limited to 3D chest CT scans, primarily due to the lack of
large-scale, publicly available paired datasets (with reports) for other anatomical regions or modalities
(e.g., MRI, PET). While BTB3D is designed to generalize across 2D and 3D inputs, we have not yet
validated its transferability to other clinical domains. Future efforts should extend the architecture to
whole-body imaging and explore zero-shot or few-shot generalization across organs.

Third, although BTB3D supports both 2D and 3D training modes, we used only 2D slices extracted
from 3D volumes in CT-RATE to remain consistent with baselines and ensure fair comparisons. As
such, we have not demonstrated its transfer capabilities (e.g., transfer from pretrained 2D models or
joint training with 2D paired datasets), which limits the evaluation of BTB3D’s capabilities.

Fourth, statistical analysis is limited due to the high computational cost of 3D training. We did not
perform repeated runs or report confidence intervals. Thus, while our results demonstrate strong and
consistent performance across multiple benchmarks, statistical significance remains to be validated.

Lastly, although we evaluate both clinical and generative metrics, BTB3D has not yet been assessed
in real clinical workflows. Validation through expert reader studies or prospective trials is necessary
to fully establish its utility, reliability, and safety in decision-making environments.

Broader impacts. BTB3D offers promising benefits for both clinical and research communities.
High-quality radiology report generation from 3D CT scans can reduce reporting delays, alleviate
radiologist burnout, and improve documentation consistency, particularly in high-volume settings
such as emergency departments or large-scale screening programs. Moreover, BTB3D’s ability
to synthesize realistic, anatomically plausible CT scans from text opens new avenues for training,
simulation, and rare disease modeling. In educational settings, synthetic CT scans can be used to
create diverse training sets for radiology students and enhance learning outcomes through exposure
to rare or atypical cases. In research, BTB3D may support data augmentation, helping mitigate class
imbalance in supervised learning tasks and enabling pretraining in low-resource environments.

However, the generative capabilities of the BTB3D framework also present potential risks. Synthetic
scans, if not properly labeled or constrained, may be misused in regulatory or insurance contexts, or
exploited for fraudulent purposes. Additionally, there is a non-trivial risk of inadvertently replicating
identifiable patient anatomy, even when training data is anonymized. While our work uses only pub-
licly available, fully de-identified datasets (e.g., CT-RATE), developers must ensure strict compliance
with data governance and anonymization protocols when deploying similar models.

Finally, the substantial computational cost of training such models may exacerbate disparities in
access to advanced medical AI. Ensuring open-source availability and supporting low-resource
inference are critical to democratizing BTB3D’s benefits. Continued oversight and interdisciplinary
dialogue will be essential to ensuring the responsible deployment of generative models in healthcare.
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A.2 Additional Experimental Details

Three-stage training performance. To further evaluate the impact of our progressive training
strategy, we qualitatively assess the reconstruction performance of BTB3D across the three stages of
training in Figure 4. The figure presents axial, coronal, and sagittal slices reconstructed by our two
model variants (16×16×8 and 8×8×8) at each stage and compares them to the ground truth.

In Stage 1, the model is trained solely on small, non-overlapping 3D volumes and 2D slices. This
initialization allows the model to learn basic volumetric structure and inter-slice continuity but suffers
from block artifacts and poor spatial coherence, especially in regions with high anatomical complexity.
As seen in the leftmost columns of Figure 4, both variants at this stage produce noisy and blurry
reconstructions with limited detail and sharpness. Stage 2 introduces overlapping windows during
training, which significantly improves anatomical consistency across slices and helps reduce the
block discontinuities learned in Stage 1. This stage yields the largest qualitative leap in fidelity, with
more well-defined boundaries of lung lobes, airways, and soft tissue structures. The improvements
are most noticeable in the axial and sagittal views, where inter-slice alignment and smoothness are
critical for clinical interpretability. Stage 3 refines the decoder with high-resolution patches while
keeping the encoder part frozen. This final stage enhances local detail, texture realism, and structural
sharpness without sacrificing the global consistency achieved in Stage 2. Notably, lung fissures,
pleural contours, and fine vascular structures become visibly clearer, indicating that the decoder has
learned to reconstruct complex anatomical regions with higher fidelity and resolution.

Comparing the two BTB3D variants, the 8×8×8 model consistently achieves superior anatomical
fidelity and inter-slice coherence in reconstruction, as expected due to its lower compression rate and
higher capacity. In contrast, the 16×16×8 variant (while more compressed) proves more effective for
language-driven tasks such as report generation, where coarse global structure suffices and memory
efficiency is critical. Our three-stage training pipeline plays a pivotal role for both models: it first
captures global structure, then progressively refines local detail, enabling accurate and high-resolution
3D reconstructions from compact tokens. This staged optimization bridges the gap between token
efficiency and clinical utility, facilitating both high-fidelity text-conditional CT generation and precise
report generation, underscoring BTB3D’s versatility in multimodal 3D medical image understanding.

Radiology report generation from 3D chest CT. We comprehensively evaluate BTB3D’s capabil-
ity in generating accurate and clinically coherent radiology reports from volumetric chest CT scans.
As described in the main paper, each CT volume is first compressed into a compact sequence of
frequency-aware 3D tokens by our encoder, and these tokens are then passed to a pretrained LLM
(LLaMA 3.1 8B) for report generation via a linear projection layer. To ensure fairness, we use
the official weights for CT2Rep and CT-CHAT, both trained on the same CT-RATE dataset. Since
Merlin was originally trained on a private dataset and neither its weights nor training data are publicly
available, we retrained Merlin on CT-RATE using its official codebase and default hyperparameters.

Our evaluation includes both internal (CT-RATE test set) and external (RAD-ChestCT) benchmarks.
The results in Table 5 show that BTB3D (particularly the 16×16×8 variant) outperforms prior
methods in average abnormality level F1 scores, achieving higher clinical precision in most of the
findings. This trend holds in Table 6, where our BTB3D framework demonstrates strong out-of-
distribution generalization, with the 16×16×8 variant yielding a 46% relative F1 improvement over
CT-CHAT (the previous state-of-the-art method). This highlights the robustness of our tokenization
and training pipeline, even when evaluated on unseen institutional distributions.

Figure 5 offers a qualitative comparison across models, illustrating report generation for the same
CT scan. BTB3D’s reports more faithfully reproduce key clinical details from the ground truth,
particularly with the higher compression (16×16×8) variant, supporting the notion that coarser
representations, while less suitable for pixel-level synthesis, may better capture global semantics for
language modeling. Meanwhile, the 8×8×8 variant provides more spatially detailed reconstructions
but slightly underperforms on text generation metrics, suggesting a trade-off between compression
depth and semantic abstraction. In all comparisons, BTB3D demonstrates a compelling advantage by
combining precise volumetric tokenization with a scalable training strategy, ultimately allowing both
fine-grained anatomical reconstruction and clinically relevant report generation.
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Text-conditional 3D chest CT generation. To evaluate the generative capabilities of BTB3D, we
benchmark its performance on synthesizing realistic and anatomically coherent 3D chest CT volumes
from free-text clinical prompts. As shown in Figure 6, BTB3D generates sharper, more anatomically
faithful volumes compared to MedSyn and GenerateCT, with improved inter-slice consistency and
alignment to prompt semantics. For fair comparison, we use the official pretrained weights for both
MedSyn and GenerateCT, which were trained on the same modality (3D chest CT), ensuring that
differences in performance stem from architectural and training innovations.

Quantitative results reported in the main paper (Table 4) show that our BTB3D framework with
the lower compression variant (8×8×8) achieves the best overall performance across all generative
metrics. Specifically, it reduces the mean Fréchet Inception Distance (FID) from 9.51 (GenerateCT)
and 12.59 (MedSyn) to just 2.24, a 76.5% improvement, demonstrating superior fidelity. We compute
FID using the FIDMetric from the MONAI library [58], leveraging a RadImageNet-pretrained
ResNet50 backbone [59], which is better suited for grayscale radiology images than traditional
Inception networks. Following standard practice established by GenerateCT and MAISI [24], FID
is calculated on the central 40% of slices (in each anatomical plane) across 100 randomly selected
volumes per method, reducing boundary noise and focusing on clinically relevant regions.

In terms of temporal and anatomical realism, Fréchet Video Distance (FVD) is computed using
both CT-Net (specialized for 3D chest CTs) [55] and I3D (trained on RGB videos). BTB3D
again significantly outperforms prior work, halving the FVD compared to GenerateCT. To assess
semantic alignment between text prompts and generated volumes, we compute CLIP scores using the
CLIPScore implementation from Torchmetrics. We follow GenerateCT’s protocol: axial slices are
resized to 224× 224 and converted to pseudo-RGB by repeating the single intensity channel. Using
clip-vit-base-patch16, we observe that BTB3D achieves the highest text-image alignment score
(24.27), suggesting it captures fine semantic cues better than prior methods.

Interestingly, we note a compression-quality trade-off: while the 8×8×8 variant excels in fine-
grained reconstruction and text-conditional volume synthesis, the more compact 16×16×8 variant
still surpasses existing baselines and may be preferable in memory-constrained or latency-sensitive
settings. Together, these results confirm that BTB3D’s volumetric tokenization and three-stage
training pipeline offer a significant leap forward in text-conditional 3D medical image generation,
bridging the gap between semantic understanding and pixel-level anatomical coherence.
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Figure 4: Qualitative reconstruction results across axial, coronal, and sagittal planes for two BTB3D
variants: 16×16×8 (top) and 8×8×8 (bottom). The figure shows outputs after Stage 1 (short-volume
training), Stage 2 (overlapping-window training), and Stage 3 (decoder refinement), compared to the
ground truth. The progressive improvements highlight the effectiveness of our three-stage training
strategy. Stage 2 yields the largest gain in anatomical fidelity and inter-slice consistency, while Stage
3 further sharpens structural details such as lung fissures and vascular boundaries.
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Table 5: Abnormality-based F1 scores on CT-RATE along with the prevalence ratio of each abnormal-
ity in the test set. BTB3D consistently achieves the highest clinical accuracy across most categories,
with the higher-compression variant (16×16×8) demonstrating superior overall performance.

Abnormality Ratio Ours-16 Ours-8 CT-CHAT Merlin CT2Rep

Medical material 0.103 0.142 0.120 0.006 0.057 0.000
Arterial wall calcification 0.285 0.414 0.273 0.451 0.262 0.322
Cardiomegaly 0.107 0.305 0.207 0.123 0.176 0.013
Pericardial effusion 0.074 0.095 0.095 0.009 0.060 0.000
Coronary artery wall calc. 0.252 0.403 0.260 0.412 0.235 0.335
Hiatal hernia 0.137 0.164 0.118 0.207 0.110 0.074
Lymphadenopathy 0.260 0.358 0.209 0.069 0.227 0.013
Emphysema 0.197 0.196 0.155 0.391 0.216 0.198
Atelectasis 0.235 0.269 0.242 0.341 0.199 0.323
Lung nodule 0.448 0.427 0.397 0.443 0.290 0.029
Lung opacity 0.390 0.408 0.382 0.266 0.312 0.557
Pulmonary fibrotic sequela 0.273 0.318 0.211 0.069 0.117 0.104
Pleural effusion 0.124 0.308 0.199 0.173 0.183 0.341
Mosaic attenuation pattern 0.083 0.183 0.094 0.064 0.076 0.198
Peribronchial thickening 0.117 0.125 0.043 0.000 0.054 0.099
Consolidation 0.191 0.259 0.185 0.120 0.174 0.236
Bronchiectasis 0.109 0.126 0.094 0.091 0.075 0.013
Interlobular septal thick. 0.082 0.135 0.087 0.075 0.065 0.032

Mean 0.193 0.258 0.187 0.184 0.160 0.160

Table 6: Abnormality-wise F1 scores on the RAD-ChestCT dataset (external test set), along with
the prevalence ratio of each abnormality. BTB3D demonstrates strong generalization performance,
particularly with the 16×16×8 variant, achieving the highest F1 score across most categories.

Abnormality Ratio Ours-16 Ours-8 CT-CHAT Merlin CT2Rep

Medical material 0.327 0.235 0.154 0.000 0.107 0.000
Calcification 0.706 0.671 0.406 0.567 0.359 0.434
Cardiomegaly 0.109 0.187 0.151 0.181 0.031 0.010
Pericardial effusion 0.155 0.193 0.101 0.007 0.047 0.089
Hiatal hernia 0.117 0.149 0.087 0.149 0.136 0.173
Lymphadenopathy 0.165 0.252 0.227 0.121 0.176 0.000
Emphysema 0.273 0.201 0.172 0.412 0.242 0.142
Atelectasis 0.298 0.350 0.265 0.387 0.194 0.153
Lung nodule 0.802 0.424 0.408 0.721 0.495 0.068
Lung opacity 0.539 0.542 0.389 0.140 0.394 0.560
Pulmonary fibrotic sequela 0.132 0.204 0.139 0.026 0.174 0.157
Pleural effusion 0.200 0.290 0.199 0.043 0.135 0.032
Peribronchial thickening 0.085 0.117 0.064 0.000 0.095 0.039
Consolidation 0.139 0.217 0.145 0.108 0.149 0.264
Bronchiectasis 0.158 0.128 0.084 0.034 0.122 0.000
Interlobular septal thick. 0.069 0.091 0.075 0.008 0.057 0.000

Mean 0.267 0.266 0.192 0.182 0.182 0.133
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Figure 5: Example of radiology report generation for the same 3D chest CT scan using our BTB3D
method (both 16×16×8 and 8×8×8 variants) compared to baseline models (CT-CHAT, Merlin,
CT2Rep) and the ground truth report. Key phrases from the ground truth are highlighted and
matched across model outputs using consistent colors to indicate alignment. Our BTB3D framework,
especially the higher compression rate variant, produces more detailed, clinically relevant, and
accurate radiology reports, showing superior coverage of anatomical structures and abnormalities.
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Figure 6: Text-conditioned CT generation results for two clinical prompts using MedSyn, GenerateCT,
and our BTB3D models. For each case, we show one representative slice per anatomical plane. The
lower-compression variant of BTB3D produces the most consistent volumes, demonstrating superior
alignment with the prompt. Prompts and corresponding anatomical regions are highlighted using
color overlays. Ground-truth volumes are omitted, following standard practice in generative tasks.
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