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ABSTRACT

Protein recombination has long been a key method in protein engineering to di-
versify and optimize sequences. We enhance and evolve this approach by using
a protein language model, where we found that when log likelihood in the lan-
guage model is represented as a spline, abrupt transitions in the spline identify
crossover sites for designing recombinant protein libraries. We use these sites
to guide recombination of sequence blocks from evolutionarily related sequences
using MCMC sampling. Language models also enable generation of novel re-
combinant blocks beyond traditional MSAs increasing diversity, while a direct
preference optimization algorithm is used to fine-tune these blocks for reduced
immunogenicity. This method integrates modern deep learning architectures with
traditional protein engineering techniques to improve success rate of the libraries
designed for wetlab verification.

1 INTRODUCTION

Engineering proteins with desired functionality is fundamental to modern biotechnology, impacting
areas ranging from therapeutics to synthetic biology. In recent years, significant progress in pro-
tein engineering has been driven by advances in foundational models that capture protein structure
and sequence relationships(Jumper et al. (2021b)Dauparas et al. (2022)Anishchenko et al. (2021)).
These advancements have enabled protein engineers to design novel proteins that are far more di-
verse than any previously known sequences (Ruffolo et al. (2024)Hayes et al. (2024)), demonstrating
that machine learning models can effectively represent the complex sequence—structure—function re-
lationships of proteins.

Despite advances in protein structure prediction and inverse design, designing novel proteins ef-
ficiently across all protein families remains a challenge. Current protein engineering pipelines
generate diverse protein sequence libraries by inverse sampling sequences from protein structures,
scaffolding active sites, and leveraging structure prediction methods (Anishchenko et al. (2021)).
Metrics like pLDDT, TM-score, and others are then used to filter and rank candidates for wet-lab
verification(Jumper et al. (2021a)Zhang & Skolnick (2004)Bryant et al. (2022)). However, these
metrics don’t correlate well with protein function due to the degeneracy in protein structures, where
similar structures can arise from diverse sequences with varying functionality (Alley et al. (2019)).
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Protein function is often encoded in its evolutionary history, as captured in multiple sequence align-
ments (MSAs) of closely related protein sequences. Traditional methods like SCHEMA (Mateljak
etal. (2019)) utilize this information by identifying optimal cut sites in protein sequences and recom-
bining blocks from closely related sequences to create novel variants. We show that abrupt transi-
tions in average log likelihood scores correlate with optimal crossover sites identified by SCHEMA,
without the need for structure information. We utilize these crossover sites to implement an MCMC
sampler to recombine blocks from various parent proteins, creating a diverse chimeric protein li-
brary. We also propose a method to integrate block-based combinatorial sampling with direct prefer-
ence optimization (DPO) for aligning ESM-MSA-1b to produce recombination blocks with reduced
MHC Class I Epitopes. Reducing the immunogenicity of protein sequences is highly valuable across
therapeutic pipelines. Multiple molecular mechanisms—such as TAP transport, proteolytic cleav-
age sites, MHC Class I binding, and T-cell recognition—can trigger immune responses Neefjes et al.
(2011), making immunogenicity prediction a challenging in silico problem. The limited availability
of labeled data further restricts the use of sequence-based diffusion models or inverse design methods
Sanchez-Lengeling & Aspuru-Guzik (2018). However, reinforcement learning provides a promising
path forward by enabling combinatorial reward functions that can guide sequence proposals toward
specific objectives Olivecrona et al. (2017).

2 RESULTS

2.1 USING PROTEIN LANGUAGE MODELS TO IDENTIFY CROSSOVER SITES FOR
RECOMBINATION

SCHEMA Mateljak et al. (2019) identifies optimal recombination crossover sites by selecting po-
sitions that minimize structural disruption. A contact between residues is considered disrupted if
the amino acids at positions i and j are not found together in any of the parent sequences used for
designing the chimeric libraries. We compared the performance of the crossover sites determined
using our spline-based approach to those from SCHEMA, measuring both contact disruption and
mutation distance from the most similar parent sequence. We used the protein structure with PDB
ID 1g68, and the parent sequences for chimeric design are the same as those used in Mateljak et al.
(2019). We generated 2000 chimeric sequences using the parent sequences and random choice of
chimeric blocks. Figure 1 shows the disruption factor and mutation distance trade off of randomly
generared chimeric sequences using the cut sites from SCHEMA and our approach. Figure 2 shows
that the diversity of the sequences generated can be improved while preserving the disruption factor
by sampling the chimeric blocks from protein language models.

2.2 REINFORCEMENT LEARNING FOR IMMUNE-EVASIVE PROTEIN DESIGN

Our DPO aligned MSATransformer Rao et al. (2021) eliminates predicted MHC Class I binding
epitope regions for alleles HLA-A02:01 in channelrhodopsin compared to the baseline pre-trained
model as demonstrated by Figure 3b. We evaluated the performance of the DPO aligned version by
generating 100 samples at a randomly chosen predicted epitope region using netMHCPan4.1 Hoof
et al. (2009) and masking the corresponding residues to generate new samples. Figure 3c shows
the reduction in the number of total binders in the DPO finetuned version of the MSATransformer
compared to the pre-trained version of it.

3 METHODS

3.1 LEVERAGING ESM?2 EMBEDDING TO FIND OPTIMAL CROSSOVER SITES.

In SCHEMA, Arnold et al. (Mateljak et al. (2019)) approached the optimal crossover sites for
creating recombinant proteins by minimizing the disruption to the structure contact map. Here, we
propose that optimal crossover sites are encoded in the evolutionary history of a protein and can be
identified using pre-trained protein language models (PLMs) like ESM?2. We use the log-likelihood
scores computed by the ESM2 model to assign a per-residue score. Specifically, we obtain the log-
likelihood of each amino acid in the input sequence conditioned on the rest of the sequence. This
produces a noisy signal, which we then smooth using a spline fit, and we identify local maxima as
candidate crossover sites.
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Figure 1: (a) Comparison of the disruption factor £ and mutation distance m from the parent se-
quence using SCHEMA and our spline-based CAMP approach for chimeric sequences generated by
chosing random block at each site. (b) Crossover sites determined by SCHEMA RASPP for PDB
ID 1G68 Mateljak et al. (2019). (c) Crossover points determined using the spline method for the
same protein. (d) Spline fit to the log-likelihood scores from ESM2 for channelrhodopsin (PDB ID:
3UGY). (e) Disruption and mutation distance trade-off for PDB 3UG9.
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Figure 2: (a) Comparison of the disruption factor £’ and mutation distance from the parent sequence
using SCHEMA. MCMC sampling was used to generate a diverse set of chimeras using the blocks
generated from the SCHEMA-RASPP Mateljak et al. (2019) method with sequences selected from
an MSA. (b) The same plot of disruption factor £/ and mutation distance, with the chimeric blocks
selected from our log likelihood based method. this method produces more samples in the region of
high sequence diversity and low disruption.

For each residue position j, we compute the average log-likelihood across all possible amino acids
using the model’s output distribution:

1
Uy = — Z log p;(a)
|A| acA
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Figure 3: (a) Annotated sequence of channelrhodopsin C1C2 (PDB ID: 3UGY9). Residues in red
indicate positions identified as critical for opsin function. Crossover points are highlighted in blue.
Residues in purple represent 9-mer peptides that strongly bind to the MHC Class I allele HLA-
A02:01, as predicted by the percentile rank from netMHCPan. Weak binders are shown in green
(b) Fraction of masked 9-mer MHC Class I epitopes that were sampled as non-binders (c) Number
of total binders in the samples generated at the masked chimeric block regions of channelrhodopsin
C1C2 (d) Channelrhodopsin structure (PDB ID: 3UG9)

where A is the amino acid alphabet (typically 20 standard amino acids), and p;(a) is the probability
assigned by the model to amino acid a at position j. These log likelihood scores are defined at dis-
creet points and are somewhat noisy, we fit a continouous spline to generate a smoothed importance
function S : [1, L] — R. We then can choose crossover sites ¢ that are local maxima of S(j):

S'(j) =0and S”(5) <0

This gives us crossover sites that leverage evolutionary encoded information in an ESM2 model. We
used these crossover sites to generate the chimeras in Figures 1 and 2.

3.1.1 MCMC SAMPLER FOR GENERATING CHIMERIC PROTEINS BY USING ESM2 AS AN
ORACLE

After identifying the crossover sites, we applied a Markov Chain Monte Carlo (MCMC) approach to
sample recombinant chimeric proteins by using MSATransformer. We utilized the MS ATransformer
to ensure that generated chimeric blocks are derived from the context of closely related evolutionary
sequences in the MSA. Chimeric blocks were sampled from multiple sequence alignment (MSA) of
the target protein, with a score calculated as the sum of the negative log probabilities for each token
at position t, given the rest of the sequence (Rives et al. (2021)). We generated equal-sized libraries
using the sampler for the crossover sites identified by (Mateljak et al. (2019)). As shown in Figure
2, this method achieves greater sequence diversity with a reduced disruption factor E (Mateljak et al.
(2019)) by utilizing protein language models. ESM2 (Rives et al. (2021)) perplexity was used as the
acceptance criterion during sampling.
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Algorithm 1 MCMC Sampler For Chimeric Protein Library Generation

Data: T’ (number of steps), N (number of rounds), initial sequence set {S§,S2,...,S)}

Result: Final set of sequences after MCMC sampling and clustering

for n < 1to N do

fort < 1toT do

At each timestep t, choose crossover site C;, randomly select one subsection to recombine.

Replace with the corresponding subsection randomly sampled from the MSA to generate
new sequence set {S},S?,... SN}

end

Cluster the sequences {S%,S2.,...,SX} based on similarity Select a cluster leader from each

cluster as the seed for the next round n + 1

end

3.1.2 ALIGNING PROTEIN LANGUAGE MODELS WITH DIRECT PREFERENCE OPTIMIZATION

Recent advances in reinforcement learning from human feedback (RLHF) for large language models
(LLMs) have demonstrated that reinforcement learning techniques like Direct Preference Optimiza-
tion (DPO) can effectively align outputs to preference datasets, allowing models to better align with
human preferences. This principle has recently been extended to protein language models (PLMs),
as shown in the ProteinDPO studyWidatalla et al. (2024). ProteinDPO adapts DPO to align PLMs
toward design goals such as stability by training on preference datasets for specific properties, like
stability changes due to single or double mutations in protein sequences. Remarkably, ProteinDPO
showed that by aligning on these targeted preference datasets, models can generalize effectively to
broader mutational landscapes, even beyond the observed mutation space.

We created an immunogenicity preference dataset using the opsin sequence (PBD ID 3UG9). We
used MSATransformer combined with netMHCPan-4.1 Hoof et al. (2009) to generate preferred and
dispreferred samples. We used netMHCPan4.1 to identify 9-mers in the opsin sequence which are
binders to MHC class 1 for allele HLA-A02:01. We then used the MSATransformer to mask and
sample one of the 9mer regions known to bind to MHC Class I molecules. The generated sample
was added to preferred or dispreferred dataset depending upon the predictions from netMHCPan-
4.1. We then fine tuned the MSATransformer on this preference dataset using DPO to align the
model to our dataset. This method is outlined in Algorithm 2.

Residues in channelrhodopsin sequence which are key residues were identified from previous stud-
ies, particularly Karl et al., and held constant during sampling. These residues included the pore
residues (His134, His265, Glu82, Glu83, Asn258, Glu90, Glu97, Glul01, and GIn56) and the reti-
nal binding pocket motifs (Ser155, Thr159, Gly181, Asp156, Cys128, Asp253, Glul23, Lys93, and
Gly163). Flexible loop regions at the N-terminus (A49-A83) and C-terminus (A319—A342) were
also fixed, given AlphaFold2’s limitations in accurately predicting these regions.

Algorithm 2 DPO Fine-tuning for ESM-MSA-1b with Preferences Dataset

Data: Pretrained model 7y, preferences dataset D = {(x;",2; )}~ ,, learning rate 7, number of

iterations 7', 20% held-out mask locations Y
Result: Fine-tuned ESM-MSA-1b model 7y~
fort < 1to T do
Sample a batch of preference pairs {(
the batch do
Compute log probabilities: log mp(x;") and log my(z;) Compute preference score: A; =
log g (z) — log mg(z;) Compute loss: L; = —loga(A;) o is the sigmoid function

xf,x7)} from D for each preference pair (z],x;) in

1 2

end
Compute batch loss: Lyyen = m ZZ L; Update model parameters: 6 < 0 — nVg Lpycn

end
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3.2 DISCUSSION

CAMP demonstrates a powerful integration of protein language models (PLMs) with combinatorial
engineering to guide protein recombination and optimization. By identifying optimal crossover sites
using log likelihood derived splines, we replicate and extend the logic behind SCHEMA without
relying on structural data. The ability to generate diverse, functionally plausible chimeras shows that
PLMs can effectively encode useful evolutionary and structural information. The MCMC sampling
approach further enhances library diversity while maintaining low disruption, offering a scalable
method for generating robust protein variants.

A key strength of CAMP is its use of Direct Preference Optimization (DPO) to reduce immuno-
genicity across multiple epitope sites, aligning PLMs with therapeutic design goals. Our approach
provides several advantages over existing methods: (1) it identifies optimal recombination sites
without requiring structural information, (2) it leverages the evolutionary information encoded in
PLMs to guide recombination, and (3) it allows for targeted optimization of specific properties like
immunogenicity through preference alignment.

In conclusion, CAMP serves a bridge between traditional recombination techniques and modern
PLMs. As PLMs continue to advance, methods like CAMP that leverage their implicit understanding
of protein structure and function will become increasingly valuable tools in the protein engineer’s
toolkit. Looking ahead, CAMP can be expanded to include other design constraints, like solubility
or enzymatic activity, making it a flexible and efficient tool for protein engineering.
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A APPENDIX

A.1 CHOICE OF THE ALLELES

Since experimental data on immunogenicity is difficult to obtain, we aim to reduce epitope recogni-
tion for common alleles, using these as a proxy in in silico models to estimate immunogenic potential
and guide our design process. Common distribution of alleles was obtained from Herndndez-Mejia
et al. (2023)

A.2 APPLICATION TO OTHER PROTEINS
We generated a multiple sequence alignment (MSA) for esmGFP Dai et al. (2024) and applied our

method to propose new sequences, using only the available sequences similar to esmGFP, to assess
whether we could successfully recapitulate its sequence.
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Figure 4: (a) Beta Lactamase sequences aligned to the original strucutre after strucutre prediction
(b) Sequences generated from esmGFP’s MSA using our recombination strategy
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