
IPO: Your Language Model is Secretly a Preference Classifier

Anonymous ACL submission

Abstract001

Reinforcement learning from human feedback002
(RLHF) has emerged as the primary method for003
aligning large language models (LLMs) with004
human preferences. While it enables LLMs to005
achieve human-level alignment, it often incurs006
significant computational and financial costs007
due to its reliance on training external reward008
models or human-labeled preferences. In this009
work, we propose Implicit Preference Opti-010
mization (IPO), an alternative approach that011
leverages generative LLMs as preference clas-012
sifiers, thereby reducing the dependence on ex-013
ternal human feedback or reward models to014
obtain preferences. We conduct a comprehen-015
sive evaluation on the preference classification016
ability of LLMs using RewardBench, assessing017
models across different sizes, architectures, and018
training levels to validate our hypothesis. Fur-019
thermore, we investigate the self-improvement020
capabilities of LLMs by generating multiple re-021
sponses for a given instruction and employing022
the model itself as a preference classifier for023
Direct Preference Optimization (DPO)-based024
training. Our findings demonstrate that mod-025
els trained through IPO achieve performance026
comparable to those utilizing state-of-the-art027
reward models for obtaining preferences.028

1 Introduction029

Large Language Models (LLMs) such as GPT4030

(OpenAI et al., 2024), Gemini (Georgiev et al.,031

2024), and Llama (Touvron et al., 2023) have be-032

come highly popular due to their remarkable ca-033

pabilities. These models often rely on two key034

techniques: Reinforcement Learning from Human035

Feedback (RLHF) and Inference Scaling. Reward036

models are central to both approaches. In RLHF,037

reward models act as proxies for human values,038

providing feedback on generated text to align lan-039

guage models during training (Christiano et al.,040

2023; Ziegler et al., 2020). Similarly, in inference041

scaling, reward models are used to select the best re-042

sponse from a set of candidates based on predicted 043

rewards (Snell et al., 2024). 044

The training of reward models, however, re- 045

lies heavily on high-quality, human-generated data, 046

which is both costly and time-intensive. To address 047

this limitation, recent works have explored Rein- 048

forcement Learning from AI Feedback (RLAIF) 049

(Lee et al., 2023), where AI-generated feedback is 050

used to train reward models. This approach reduces 051

the dependency on human-annotated data but intro- 052

duces challenges, including heuristic assumptions 053

that LLMs can consistently provide high-quality 054

feedback and the requirement for larger LLMs to 055

generate such feedback (Pang et al., 2023). 056

Self-rewarding large language models (Yuan 057

et al., 2024) have emerged as a promising alterna- 058

tive for improving language model performance. In 059

this paradigm, a single model assumes dual roles: 060

as an actor, it generates responses to fulfill spe- 061

cific instructions, and as a judge, it evaluates these 062

responses using the LLM-as-a-Judge framework 063

(Zheng et al., 2023b) to assign rewards. However, 064

despite its potential, this approach has a fundamen- 065

tal limitation—the model undergoes fine-tuning to 066

improve its response generation but not its evalua- 067

tive capabilities. As a result, while it evolves as an 068

actor, its ability to judge remains static. 069

To address this limitation, Meta-Rewarding 070

Language Models (Wu et al., 2024a) extend 071

the model’s judging capabilities by explicitly 072

fine-tuning it for judging responses. Addition- 073

ally, approaches such as Self-Evolving Reward 074

Models (Huang et al., 2024b) introduce a data- 075

filtering pipeline that leverages high-quality model- 076

generated outputs to refine reward model training. 077

Nevertheless, a significant challenge with these 078

methods lies in their dependence on discrete re- 079

ward signals or the necessity of external models 080

and datasets, which may introduce inefficiencies or 081

constraints in scalability. 082

We hypothesize that providing a preference mag- 083

1

N = 4

: Maximum prob of Yes

: Minimum prob of Yes

Preference
Dataset

DPO

Prompts

4x

Logprobs for each
response

Extract probs of Yes

Final DPO
model

Preference
Dataset

Figure 1: Left: We evaluate preferences using (Prompt, Chosen, Rejected) triplets, scoring responses based on the
probability of the token "Yes" given classification prompt. The evaluation is correct if the Chosen response scores
higher than the Rejected one. Here [PROMPT] refers to the category specific prompt. Right: Our Self-Improving
DPO framework generates diverse responses, rates them, constructs a preference dataset, and trains the model via
DPO.

nitude, rather than discrete prompt based feed-084

back, enables more fine-grained evaluation of085

model responses. Drawing inspiration from VQA086

score (Lin et al., 2025), we introduce a probabilis-087

tic framework for rewarding LLM-generated re-088

sponses. This framework empowers even base089

models to assess and assign rewards to responses,090

effectively allowing them to function as preference091

classifiers without relying on external reward mod-092

els. Compared to existing prompting-based prefer-093

ence strategies, which require large LLMs to act as094

judges through explicit prompting, our approach is095

more computationally efficient. It eliminates the096

need for external supervision or additional train-097

ing. Specifically, we propose Implicit Preference098

Optimization (IPO), a novel framework that demon-099

strates how any LLM can serve as an effective pref-100

erence classifier.101

We conduct extensive experiments across multi-102

ple model families, including Qwen, LLaMA, Mis-103

tral, and GPT, encompassing various model sizes104

and configurations (base and instruction-tuned).105

Additionally, we evaluate our approach on math106

and code-specific models to analyze their effective-107

ness as preference classifiers. To rigorously assess108

our hypothesis of LLM as a preference classifier,109

we benchmark the ability of LLM to model prefer-110

ences using RewardBench, a standardized reward111

model evaluation suite. Our findings indicate that112

LLMs can perform well as preference classifiers, 113

achieving accuracy levels surpassing those of 114

several reward models (Lambert et al., 2024). 115

Moreover, previous work has highlighted the 116

challenges of training efficient reward models for 117

code and maths-related tasks. Our findings sug- 118

gest that both general-purpose and code-specific 119

models can inherently function as effective pref- 120

erence classifiers; however, math-specific models 121

lack this ability. To further validate this hypothesis, 122

we examine IPO within a self-improving model 123

setup, where the model generates responses, ranks 124

them based on its own preferences, and leverages 125

these rankings for Direct Preference Optimization 126

(DPO)-based training. Our results demonstrate the 127

effectiveness of IPO in improving response qual- 128

ity. 129

2 Background and Related Work 130

2.1 Reinforcement Learning for Improving 131

LLMs 132

Recent approaches for improving LLMs involve 133

training a fixed reward model using human pref- 134

erence data, which is subsequently utilized for 135

Reinforcement Learning (RL) to train language 136

models. This method, commonly referred to as 137

Reinforcement Learning from Human Feedback 138

(RLHF) (Liu et al., 2020; Ouyang et al., 2022), has 139

2

significantly enhanced the performance of mod-140

els like Llama(Touvron et al., 2023; Dubey et al.,141

2024) and ChatGPT(OpenAI et al., 2024).142

An alternative paradigm to traditional RLHF143

are methods like Direct Preference Optimization144

(DPO) (Rafailov et al., 2024), which bypasses the145

need for training a reward model altogether. In-146

stead, it directly trains the LLM based on human147

preference data. Beyond RLHF and DPO, addi-148

tional techniques such as Kahneman & Tversky’s149

Optimization (KTO) (Ethayarajh et al., 2024), Se-150

quence Likelihood Calibration (SLiC) (Zhao et al.,151

2023), Reinforced Self-Training (ReST) (Gulcehre152

et al., 2023), and Rank Responses with Human153

Feedback (RRHF) (Yuan et al., 2023) have been154

proposed, each leveraging human preferences to155

optimize LLM training.156

Constitutional AI (Bai et al., 2022) uses an LLM157

to provide feedback to refine responses. The feed-158

back is then used to further train the language159

model through Reinforcement Learning from AI160

Feedback (RLAIF) (Lee et al., 2023). Similarly,161

Self-Play fIne-tuNing (SPIN) (Chen et al., 2024)162

introduces an Interactive DPO-like framework, de-163

signed to eliminate the need for reward model train-164

ing and to simplify reliance on human-labeled data165

pairs.166

2.2 Self Improving Models167

Several studies have explored self-improvement168

and self-training paradigms for language models169

in supervision-free settings, where neither exter-170

nal human nor AI feedback is utilized. Works171

such as LMSI (Huang et al., 2022, 2024a) investi-172

gate techniques that enable language models to au-173

tonomously enhance their own performance with-174

out relying on explicit annotations or reward sig-175

nals.176

The concept of LLM-as-a-Judge (Gu et al., 2024;177

Ye et al., 2024; Dong et al., 2024; Li et al., 2024a)178

has also been extensively studied, where vari-179

ous methods have been proposed to design self-180

rewarding reward functions, denoted as rself , using181

carefully crafted prompting strategies. These ap-182

proaches aim to enable language models to evaluate183

their own outputs effectively, thereby facilitating184

self-refinement.185

In addition to these works, ResT-MCTS* (Zhang186

et al., 2024) and SPPO (Wu et al., 2024b) have187

explored algorithms based on self-training and188

self-play, where models iteratively improve their189

own performance through interaction with gen-190

erated data. While these methods emphasize 191

self-guidance, many incorporate external feed- 192

back mechanisms, such as Supervised Fine-Tuning 193

(SFT) or reward-based optimization, to further re- 194

fine the training process (Ouyang et al., 2022). 195

2.3 Evaluation of Reward Models 196

Evaluating reward models plays a crucial role in 197

aligning large language models (LLMs) with hu- 198

man preferences. Various works, such as Alpaca- 199

Farm (Dubois et al., 2024b), evaluate preference 200

models by comparing model-generated outputs 201

with those from a reference model. Similarly, 202

ChatbotArena (Chiang et al., 2024) determines 203

preferences between two model-generated outputs. 204

These methods, however, focus on indirectly evalu- 205

ating reward models rather than conducting direct 206

evaluations. 207

Recent benchmarks, such as RewardBench 208

(Lambert et al., 2024) and RM-Bench (Liu et al., 209

2024b), address this gap by creating category-wise, 210

high-quality binary datasets to model and evaluate 211

reward model performance. Given the robustness 212

and high quality of these datasets, we use them to 213

test our hypothesis. 214

3 LLM as Preference Model 215

3.1 Background 216

Large Language Models (LLMs) generate text in an 217

autoregressive manner, producing tokens sequen- 218

tially based on the context of previously gener- 219

ated tokens. Given an input context x , the au- 220

toregressive model predicts an output sequence 221

y = (y1, y2, . . . , yT) one token at a time. Assum- 222

ing the model is parameterized by θ, the conditional 223

probability of generating the sequence y is defined 224

as: 225

pθ(y | x) =
T∏
t=1

pθ(yt | x, y<t), (1) 226

where y<t = (y1, y2, . . . , yt−1). For notational 227

simplicity, pθ(yt | x) is used to represent pθ(yt | 228

x, y<t). 229

The probability distribution over the vocabulary 230

at each time step t is computed using a softmax 231

function on the logits z as: 232

pθ(yt | x) =
exp(zt/τ)∑M
i=1 exp(zi/τ)

, (2) 233

where zt = logitθ(yt | x, y<t), M is the vocabu- 234

lary size, and τ > 0 is a temperature parameter. 235

3

Various decoding strategies govern token selec-236

tion during text generation. Greedy decoding se-237

lects the highest probability token at each step,238

while beam search expands multiple candidate se-239

quences in parallel to find the most likely one. Top-240

k sampling (Fan et al., 2018), on the other hand,241

limits token choices to the k most probable candi-242

dates, introducing diversity. Many other decoding243

strategies also exist, each balancing fluency and244

variability differently.245

3.2 Methodology246

Our approach leverages a language model as a pref-247

erence model, evaluating response appropriateness248

through binary classification. The model deter-249

mines whether a response is suitable by generating250

either "Yes" or "No." To guide this assessment, we251

employ category-specific prompts, which are de-252

tailed in Appendix D. The logits corresponding to253

the output tokens of "Yes" and "No" are extracted254

from the first output token and scaled to compute255

their respective probabilities. The response with256

the highest "Yes" probability is selected as the ac-257

cepted response, while the one with the lowest is258

classified as rejected. We hypothesize that higher-259

quality responses will have a greater likelihood of260

receiving a "Yes."261

3.2.1 Preference Classification262

In our experiments, we observed that guiding the263

language model to initiate its responses with "Yes"264

or "No" was essential, particularly for smaller mod-265

els whose outputs are highly sensitive to prompt266

phrasing. We developed broad, category-specific267

prompts tailored to different query types to ensure268

consistency and reliability. Following prior re-269

search (Lambert et al., 2024; Liu et al., 2024b), we270

classify prompts into four overarching categories:271

Code, Math, Chat and Safety. Additional details272

about prompts are provided in Appendix D. An273

example prompt is shown in Figure 2.274

To quantify preferences, we extract the output275

token probabilities for "Yes" and "No" from the276

response. The detailed approach is outlined below:277

Given an input token sequence x =278

(x1, x2, . . . , xT), a language model f(·) generates279

a probability distribution over the vocabulary V for280

the next token. Specifically, the model outputs a281

logit vector z ∈ R|V|, where282

z = f(x). (3)283

Chosen:

Input:

Below is a coding-related question along with a response
containing code. Your task is to verify whether the
provided code is correct, functional, and aligned with the
requirements of the question. Answer with just Yes/No.

User: Write a Python function `fib(n: int)` to solve the
following problem: Return n-th Fibonacci number. >>>
fib(10) 55 >>> fib(1) 1 >>> fib(8) 21

Model Response: if n == 0: return 0 if n == 1: return 1
return fib(n - 1) + fib(n - 2)

Output:

P(Yes) = 0.67

Rejected:

Input:

Below is a coding-related question along with a response
containing code. Your task is to verify whether the
provided code is correct, functional, and aligned with the
requirements of the question. Answer with just Yes/No.

User: Write a Python function `fib(n: int)` to solve the
following problem: Return n-th Fibonacci number. >>>
fib(10) 55 >>> fib(1) 1 >>> fib(8) 21

Model Response: if n == 0: return 0 if n == 1: return 1 if n
== 2: return 2 return fib(n - 1) + fib(n - 2)

Output:

P(Yes)=0.35

Figure 2: Example outputs from Reward Bench using
our approach.

To derive probabilities, we apply the softmax 284

function over the logits: 285

pi =
exp(zi)∑
j∈V exp(zj)

, ∀i ∈ V, (4) 286

where pi represents the probability assigned to 287

token i. Thus we define probability of "Yes" token 288

as pyes and "No" token as pno. Then we normalize 289

the probabilities to ensure a fair comparison: 290

p′yes =
pyes

pyes + pno
, p′no =

pno

pyes + pno
. (5) 291

The final values (p′yes, p
′
no) represent the normal- 292

ized likelihoods of the model predicting "Yes" or 293

"No" . 294

3.3 Experiments 295

3.3.1 Benchmarking Our Approach 296

To evaluate our approach, we conducted experi- 297

ments using LLMs of varying sizes and architec- 298

tures. We compared instruction-tuned models with 299

their base counterparts. Additionally, we analyzed 300

the effect of fine-tuning on a specialized task like 301

code/math problems on preference classification 302

4

Models
Our Approach Self Rewarding

Chat Code Math Safety Average Chat Code Math Safety Average
Llama-3.2-1B-Inst 64.37 52.84 88.14 80.48 71.45 30.47 21.03 14.54 31.55 24.39
Llama-3.2-3B-Inst 62.09 67.17 98.21 80.23 76.92 33.87 24.69 36.01 46.73 35.32
Llama-3-8B-Inst 59.56 73.88 54.97 87.88 69.07 35.43 12.29 21.70 58.35 31.94
Qwen-2.5-3B-Inst 60.89 80.59 46.31 86.05 68.46 26.72 23.88 41.61 24.43 29.16
Qwen-2.5-7B-Inst 78.26 83.13 56.24 93.24 77.71 58.73 47.93 40.49 52.20 49.82
Mistral-7B-Inst 61.25 70.93 96.20 83.85 78.05 24.55 1.6 28.18 15.39 17.43
Gemma2-2B-It 35.34 42.58 91.50 70.04 59.86 22.36 2.84 12.75 34.78 18.18
Phi-3-Mini-Instruct 55.91 75.30 89.10 75.32 73.90 46.63 35.46 22.60 56.75 40.36

Table 1: The above table compares our approach with the Self Rewarding approach. The row labels correspond to
the model name and the column labels correspond to the sub-categories. The metric used is accuracy where the
higher values indicate better performance.

by including models fine-tuned for these tasks.303

For comparisons involving a reward model we use304

the Skywork Reward Llama 8B model (Liu et al.,305

2024a) as the baseline. The detailed results for all306

the comparisons are available in Appendix E.307

In particular, we tested the following models:308

• LLaMA Family (Dubey et al., 2024):309

LLaMA-3.2-1B, LLaMA-3.2-1B-Instruct,310

LLaMA-3.2-3B, LLaMA-3.2-3B-Instruct,311

Meta LLaMA 3-8B, Meta LLaMA 3-8B-312

Instruct.313

• Mistral Family (Jiang et al., 2023): Mistral314

7B, Mistral 7B-Instruct.315

• Qwen Family (Yang et al., 2024): Qwen2.5-316

3B, Qwen2.5-3B-Instruct, Qwen2.5-7B,317

Qwen2.5-7B-Instruct.318

• Code Generation Models: Starcoder2-7B319

(Lozhkov et al., 2024), CodeGemma-7B-It320

(Team et al., 2024a), Qwen-Coder-7B-Inst321

(Hui et al., 2024), Qwen-Coder-3B-Inst.322

• Math Generation Models: Qwen-Math-7B-323

Inst, Qwen-Math-1.5B-Instruct (Yang et al.,324

2024), Deepseek-Math-7B (Shao et al., 2024),325

Llemma-7B (Azerbayev et al., 2024).326

• Other Models: Phi-3-mini-128k-Instruct327

(Abdin et al., 2024), Gemma 2B-Instruct328

(Team et al., 2024b), GPT-4o Mini (OpenAI329

et al., 2024).330

To evaluate model performance, we selected Re-331

ward Bench due to its high-quality and diversity.332

Reward Bench consists of 23 question categories,333

which are grouped into four broad types: Chat,334

Code, Math, and Safety. We also benchmark our335

approach on RM-Bench, results of which can be 336

found in Table 10. 337

We define accuracy as the proportion of cases 338

where the model assigns a higher probability to 339

the preferred response yw over the less preferred 340

response yl: 341

Acc =
1

N

N∑
i=1

I
[
pyes(xi, y

w
i) > pyes(xi, y

l
i)
]

342

where I[·] is the indicator function, returning 1 343

if the condition holds and 0 otherwise and N is the 344

number of data points. 345

To ensure optimal model performance, we devel- 346

oped an automated pipeline for selecting the most 347

effective category-specific prompts. Further details 348

on prompt selection can be found in Appendix D. 349

3.3.2 Comparision against Self Rewarding 350

Approach 351

We benchmarked our approach against the pref- 352

erence classification approach used in the Self- 353

Rewarding Language Model1. Their approach in- 354

volves scoring responses using a numerical reward 355

of up to 5 (Yuan et al., 2024; Li et al., 2024b). 356

Each response is evaluated based on its relevance, 357

completeness, clarity, and informativeness. The 358

comparitive results are shown in Table 1. 359

3.4 Findings 360

Our approach demonstrated robust and consistent 361

performance across all subcategories of the Reward 362

1The Self-Rewarding approach performs very poorly on
Base Models, so we tested their method on only Instruct mod-
els.

5

Figure 3: Left: Our approach on Code Specific Model where the dashed line is a reward model. Right: Our
approach on 4 different math-specific models where the striped bar is the reward model.

Bench, particularly when compared to the self-363

rewarding approach. This performance gap was364

particularly pronounced in smaller models, where365

our approach significantly outperformed the self-366

rewarding approach. The self-rewarding approach367

assigns discrete rewards ranging from 1 to 5 for368

each response, making it challenging to differenti-369

ate between them, often rating both the chosen and370

the rejected response as the same.371

Another insight was that most models perform372

well on safety, indicating safety tuning across all373

the models during training. Chat performance re-374

mains relatively consistent across models, suggest-375

ing a similar level of optimization for conversa-376

tional abilities. However, performance on code and377

math varies significantly, largely depending on the378

type of training data used (Gunasekar et al., 2023;379

Petty et al., 2024; Aryabumi et al., 2024). For ex-380

ample, the Qwen family excels in coding tasks,381

while Llama 3.2, Mistral, Gemma, and Phi models382

demonstrate strong mathematical capabilities.383

Another finding was that larger models consis-384

tently outperformed smaller models, as shown in385

Table 1 and that instruction-tuned models consis-386

tently outperformed their base counterparts, rein-387

forcing the effectiveness of instruction-based fine-388

tuning even in acting as preference classifiers. Ad-389

ditional results of our approach on RM-Bench can390

be found in E.391

On proprietary models, such as GPT, our ap-392

proach remained competitive. Results using our393

approach on GPT-4o-Mini on Reward Bench can394

be found in Appendix C.395

3.5 Performance of Math and Code Specific 396

Models 397

To better understand the applicability of our ap- 398

proach in mathematical and coding tasks, we eval- 399

uated four models fine-tuned for code comple- 400

tion and four models optimized for mathematical 401

problem-solving. These models were benchmarked 402

against Skywork-Llama8B-Reward Model, which 403

serves as a strong baseline for preference modeling. 404

Among the code-specific models, Qwen consis- 405

tently achieved the highest performance across all 406

evaluated categories, performing as well as the Re- 407

ward Model. 408

In contrast, all math-specific models underper- 409

formed compared to both the general instruct-tuned 410

version and the Reward Model. We hypothesize 411

that this underperformance stems from the training 412

objective of math-specific models, which priori- 413

tize generating chain-of-thought reasoning (Yang 414

et al., 2024; Shao et al., 2024; Gao et al., 2024; 415

Zhou and Zhao, 2024) rather than adhering to strict 416

instruction-following behavior required for binary 417

Yes/No classification. 418

4 IPO: Implicit Preference Optimization 419

4.1 Background 420

Direct Preference Optimization (DPO) is a re- 421

inforcement learning-free framework for aligning 422

large language models (LLMs) with human pref- 423

erences, eliminating the need for explicit reward 424

modeling. Instead, it directly trains the LLM using 425

human preferences. Given a dataset of preference 426

pairs (x, yw, yl), where yw is preferred over yl, the 427

model πθ is optimized by minimizing the following 428

loss: 429

6

L(θ) = −E(x,yw,yl)∼D log σ

(
β
(
log

πθ(y
w | x)

πθ(yl | x)

− log
π0(y

w | x)
π0(yl | x)

))
(6)430

Here, πθ is the current model, π0 is the initial431

model, σ is the sigmoid function, and β a scaling432

factor. This formulation directly aligns πθ with the433

preferences, removing the need for reward-based434

reinforcement learning.435

Supervised Fine-Tuning (SFT) is a crucial step436

before applying DPO or any other optimization437

methods. While base models are pre-trained on438

next-token prediction tasks, they often struggle439

with instruction following, question answering, and440

other tasks requiring precise alignment with user441

expectations. SFT addresses this by fine-tuning the442

model on task-specific data, enhancing its ability443

to generate outputs in desired formats and styles.444

This process strengthens the model’s ability to pro-445

duce high-quality responses, establishing a robust446

foundation for preference optimization.447

SFT minimizes the cross-entropy loss between448

the model’s predicted next token and the actual449

target token for a given sequence, formally defined450

as:451

LSFT(θ,D) = −E(x,y)∼D

 |y|∑
t=1

log pθ(yt | x, y<t)

 ,

(7)452

where D = {(x, y)} is the dataset of input con-453

text x and target response y, and pθ(yt | x, y<t)454

denotes the model’s predicted probability of the455

t-th token given the input context and preceding456

tokens.457

By combining SFT with DPO, LLMs can be458

aligned with human preferences while maintaining459

strong generalization across diverse tasks.460

4.2 Methodology461

4.2.1 Constructing Preference Dataset462

Building on an SFT model as the foundation,463

we generate four diverse responses from the SFT464

model in case of Llama and the Instruct model in465

case of Mistral. These samples are then assigned466

rewards using our method, as described in Section467

3.2.1. The response with the highest reward (Yes468

probability) is selected as the accepted response,469

while the one with the lowest reward is classified 470

as the rejected response. This process constructs 471

a preference dataset consisting of DPO triplets: 472

(Prompt, Chosen, Rejected), which serves as the 473

training dataset for our model. 474

4.3 Experiments 475

To evaluate the effectiveness of our method, we 476

conduct DPO-based training on two sets of models. 477

The first is a base model (Llama 3.2 1B), which 478

initially undergoes SFT on the Dolly-15k dataset 479

(Conover et al., 2023). Once the SFT model is 480

trained, we generate four samples for each prompt. 481

These samples are then rated to form a preference 482

dataset, as described in Section 4.2.1, in the form 483

of triplets: (Prompt, Chosen, Rejected). We use 484

4k instructions from the Ultra Feedback dataset 485

(Cui et al., 2023) for the input prompts and catego- 486

rize them into four categories, namely chat, code, 487

math, and safety, using Bart-Zero Shot Classifica- 488

tion Pipeline (Lewis et al., 2019; Ott et al., 2019), 489

more details in Apppendix D. Additionally, to in- 490

vestigate the self-improving nature of these models, 491

we furthur evaluate a larger model, Mistral 7B-v0.1- 492

Instruct, where the Instruct-tuned model is used to 493

directly sample responses to form preference pairs 494

to use for DPO. For all our experiments involving 495

a reward model we utilise the Skywork-Llama-8B 496

Reward model (Liu et al., 2024a). Exact training 497

details and hardware requirements can be found in 498

Appendix A 499

For a comprehensive evaluation of our method- 500

ology, we benchmark it against the Self-Rewarding 501

Models baseline (Yuan et al., 2024) and the 502

gold-standard reward-based preference pipeline, 503

in which preferences are determined using scores 504

from a reward model. We use a subset of 500 505

data points from each IFEval (Zhou et al., 2023), 506

BBH (Suzgun et al., 2022), ArcEasy (Clark et al., 507

2018), MMLU (Hendrycks et al., 2020), Alpaca 508

Eval (Dubois et al., 2024a) datasets for evaluation. 509

More details regarding the datasets and evaluation 510

strategy are provided in Appendix B. 511

4.4 Findings 512

From the results, a general trend across both model 513

sizes is that Base models consistently underper- 514

form across all benchmarks in a zero-shot setting 515

(Kojima et al., 2022), highlighting their lack of 516

task-specific alignment. 517

From the results, we observe that the Self- 518

Rewarding baseline performed poorly across all 519

7

Models BBH Arc-Easy Alpaca-Eval MMLU IFEval Average
Mistral-7B-Base 3.40 11.00 1.20 9.60 26.63 10.37
Mistral-7B-Instruct 29.80 80.40 68.00 35.80 40.05 53.50
Mistral-7B-Self Rewarding 31.20 77.00 69.60 33.00 29.31 48.02
Mistral-7B-Reward 30.20 85.20 77.40 41.00 31.69 53.10
Mistral-7B-Ours 34.60 82.20 78.20 37.60 39.19 54.35
Llama-1B-Base 0.60 32.80 0.80 1.40 9.80 9.08
Llama-1B-SFT 1.40 22.40 0 5.20 10.19 7.83
Llama-1B-Self Rewarding 0.20 15.20 0.60 2.40 11.23 5.92
Llama-1B-Reward 2.20 51.20 7.20 3.40 10.68 14.93
Llama-1B-Ours 0.80 46.40 2.80 3.80 12.08 13.17

Table 2: We compare variations of Mistral-7B and LLaMA-1B models trained using preferences from different
methods. Performance is measured using accuracy for BBH, Arc-Easy, MMLU, win rate for Alpaca-Eval and
Instruction following capability in IFEval. For more details regarding the evaluations refer to Appendix B

benchmarks for the smaller model (Llama-1B) and520

remained suboptimal for larger models (Mistral-521

7B), though the performance gap was less.522

Notably, for Llama-1B-SFT, we observe a perfor-523

mance drop compared to Llama-1B-Base. This can524

be attributed to the over-memorization of instruc-525

tions during SFT (Zhang et al., 2025; Chu et al.,526

2025; Kirk et al., 2023) due to which the model527

repeats it’s responses (Hiraoka and Inui, 2024),528

which may have negatively impacted generaliza-529

tion.530

In contrast, for Mistral-7B, our method showed531

further improvement on Mistral-7B Instruct, which532

was chosen as the reference model for perform-533

ing IPO. This suggests that self-improvement can534

enhance model performance beyond traditional in-535

struction tuning.536

IPO exhibited significant improvements, per-537

forming on par with reward-model-based prefer-538

ence training, whose preferences are often consid-539

ered the gold standard for preference optimization.540

While reward models showed a slight advantage in541

some benchmarks, our approach either matched or542

outperformed them in others. Moreover, we found543

that the impact of IPO was more pronounced in544

larger models (Mistral-7B) than in smaller models545

(Llama-1B). Our results suggests that LLMs are546

capable of self-alignment via judging and training547

on their own generations.548

5 Conclusion549

We introduced IPO, a simple yet effective frame-550

work that utilizes likelihood-based preferences to551

optimize language models without requiring ex-552

plicit reward models or expensive human annota-553

tions. Our analysis demonstrates that preference 554

signals can be obtained directly from the likeli- 555

hood of smaller base, instruction-tuned, and task- 556

specific LLMs, mitigating the need for prompting 557

large-scale models such as GPT-4. 558

Furthermore, we examined three settings for ac- 559

quiring preferences over model-generated outputs 560

namely self-rewarding LLMs, reward model-based 561

preference classification, and preference classifica- 562

tion using our framework for DPO. We show that 563

models trained using preferences derived through 564

our method align closely with, and in some cases 565

surpass, models trained with preferences obtained 566

from traditional reward models. These results high- 567

light the efficacy of IPO as a scalable and cost- 568

efficient alternative for preference optimization in 569

large language models. 570

6 Limitations 571

Our approach relies on the pre-categorization of the 572

dataset. However, an alternative direction worth 573

exploring is leveraging the model itself to generate 574

category labels, which could enhance adaptability 575

and reduce reliance on predefined classifications. 576

We conducted our preference optimization exper- 577

iments on only two model sizes—1B and 7B pa- 578

rameters—using a subset of 4,000 prompts from 579

the UltraFeedback dataset. Due to computational 580

constraints, we employed DPO rather than the it- 581

erative DPO approach used in the Self-Rewarding 582

baseline. Additionally, all our evaluations were per- 583

formed in a single run with a fixed random seed of 584

42, which may limit the robustness of our results. 585

Unlike Self-Rewarding approaches that generate 586

instructions using the model itself, our work relies 587

8

on instructions sourced from an external dataset.588

This was due to the inability of smaller base mod-589

els to produce high-quality instructions with simple590

prompting. Furthermore, we also do not test our hy-591

pothesis on LLMs where they are asked to pick the592

better of the two responses due to the high amount593

of positional bias present in them (Zheng et al.,594

2023a; Li et al., 2024c).595

References596

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed597
Awadallah, Ammar Ahmad Awan, Nguyen Bach,598
Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat599
Behl, et al. 2024. Phi-3 technical report: A highly ca-600
pable language model locally on your phone. arXiv601
preprint arXiv:2404.14219.602

Viraat Aryabumi, Yixuan Su, Raymond Ma, Adrien603
Morisot, Ivan Zhang, Acyr Locatelli, Marzieh Fadaee,604
Ahmet Üstün, and Sara Hooker. 2024. To code, or605
not to code? exploring impact of code in pre-training.606
arXiv preprint arXiv:2408.10914.607

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster,608
Marco Dos Santos, Stephen McAleer, Albert Q.609
Jiang, Jia Deng, Stella Biderman, and Sean Welleck.610
2024. Llemma: An open language model for mathe-611
matics. Preprint, arXiv:2310.10631.612

Yuntao Bai, Saurav Kadavath, Sandipan Kundu,613
Amanda Askell, Jackson Kernion, Andy Jones,614
Anna Chen, Anna Goldie, Azalia Mirhoseini,615
Cameron McKinnon, et al. 2022. Constitutional616
ai: Harmlessness from ai feedback. arXiv preprint617
arXiv:2212.08073.618

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji,619
and Quanquan Gu. 2024. Self-play fine-tuning con-620
verts weak language models to strong language mod-621
els. Preprint, arXiv:2401.01335.622

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anasta-623
sios Nikolas Angelopoulos, Tianle Li, Dacheng Li,624
Hao Zhang, Banghua Zhu, Michael Jordan, Joseph E.625
Gonzalez, and Ion Stoica. 2024. Chatbot arena: An626
open platform for evaluating llms by human prefer-627
ence. Preprint, arXiv:2403.04132.628

Paul Christiano, Jan Leike, Tom B. Brown, Miljan Mar-629
tic, Shane Legg, and Dario Amodei. 2023. Deep630
reinforcement learning from human preferences.631
Preprint, arXiv:1706.03741.632

Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Sheng-633
bang Tong, Saining Xie, Dale Schuurmans, Quoc V634
Le, Sergey Levine, and Yi Ma. 2025. Sft mem-635
orizes, rl generalizes: A comparative study of636
foundation model post-training. arXiv preprint637
arXiv:2501.17161.638

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,639
Ashish Sabharwal, Carissa Schoenick, and Oyvind640

Tafjord. 2018. Think you have solved question an- 641
swering? try arc, the ai2 reasoning challenge. arXiv 642
preprint arXiv:1803.05457. 643

Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie, 644
Jun Wan, Sam Shah, Ali Ghodsi, Patrick Wendell, 645
Matei Zaharia, and Reynold Xin. 2023. Free dolly: 646
Introducing the world’s first truly open instruction- 647
tuned llm. 648

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, 649
Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu, and 650
Maosong Sun. 2023. Ultrafeedback: Boosting lan- 651
guage models with high-quality feedback. Preprint, 652
arXiv:2310.01377. 653

Yijiang River Dong, Tiancheng Hu, and Nigel Collier. 654
2024. Can LLM be a personalized judge? In Find- 655
ings of the Association for Computational Linguistics: 656
EMNLP 2024, pages 10126–10141, Miami, Florida, 657
USA. Association for Computational Linguistics. 658

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 659
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 660
Akhil Mathur, Alan Schelten, Amy Yang, Angela 661
Fan, et al. 2024. The llama 3 herd of models. arXiv 662
preprint arXiv:2407.21783. 663

Yann Dubois, Balázs Galambosi, Percy Liang, and Tat- 664
sunori B Hashimoto. 2024a. Length-controlled al- 665
pacaeval: A simple way to debias automatic evalua- 666
tors. arXiv preprint arXiv:2404.04475. 667

Yann Dubois, Xuechen Li, Rohan Taori, Tianyi Zhang, 668
Ishaan Gulrajani, Jimmy Ba, Carlos Guestrin, Percy 669
Liang, and Tatsunori B. Hashimoto. 2024b. Alpaca- 670
farm: A simulation framework for methods that learn 671
from human feedback. Preprint, arXiv:2305.14387. 672

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, 673
Dan Jurafsky, and Douwe Kiela. 2024. Kto: 674
Model alignment as prospect theoretic optimization. 675
Preprint, arXiv:2402.01306. 676

Angela Fan, Mike Lewis, and Yann Dauphin. 2018. 677
Hierarchical neural story generation. In Proceedings 678
of the 56th Annual Meeting of the Association for 679
Computational Linguistics (Volume 1: Long Papers), 680
pages 889–898. 681

Jiaxuan Gao, Shusheng Xu, Wenjie Ye, Weilin Liu, 682
Chuyi He, Wei Fu, Zhiyu Mei, Guangju Wang, and 683
Yi Wu. 2024. On designing effective rl reward 684
at training time for llm reasoning. arXiv preprint 685
arXiv:2410.15115. 686

Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin 687
Bai, Anmol Gulati, Garrett Tanzer, Damien Vin- 688
cent, Zhufeng Pan, Shibo Wang, and Soroosh Mar- 689
iooryad. 2024. Gemini 1.5: Unlocking multimodal 690
understanding across millions of tokens of context. 691
Preprint, arXiv:2403.05530. 692

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, 693
Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan Shen, 694
Shengjie Ma, Honghao Liu, Yuanzhuo Wang, and 695

9

https://arxiv.org/abs/2310.10631
https://arxiv.org/abs/2310.10631
https://arxiv.org/abs/2310.10631
https://arxiv.org/abs/2401.01335
https://arxiv.org/abs/2401.01335
https://arxiv.org/abs/2401.01335
https://arxiv.org/abs/2401.01335
https://arxiv.org/abs/2401.01335
https://arxiv.org/abs/2403.04132
https://arxiv.org/abs/2403.04132
https://arxiv.org/abs/2403.04132
https://arxiv.org/abs/2403.04132
https://arxiv.org/abs/2403.04132
https://arxiv.org/abs/1706.03741
https://arxiv.org/abs/1706.03741
https://arxiv.org/abs/1706.03741
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://arxiv.org/abs/2310.01377
https://arxiv.org/abs/2310.01377
https://arxiv.org/abs/2310.01377
https://doi.org/10.18653/v1/2024.findings-emnlp.592
https://arxiv.org/abs/2305.14387
https://arxiv.org/abs/2305.14387
https://arxiv.org/abs/2305.14387
https://arxiv.org/abs/2305.14387
https://arxiv.org/abs/2305.14387
https://arxiv.org/abs/2402.01306
https://arxiv.org/abs/2402.01306
https://arxiv.org/abs/2402.01306
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2403.05530

Jian Guo. 2024. A survey on llm-as-a-judge.696
Preprint, arXiv:2411.15594.697

Caglar Gulcehre, Tom Le Paine, Srivatsan Srini-698
vasan, Ksenia Konyushkova, Lotte Weerts, Abhishek699
Sharma, Aditya Siddhant, Alex Ahern, Miaosen700
Wang, Chenjie Gu, Wolfgang Macherey, Arnaud701
Doucet, Orhan Firat, and Nando de Freitas. 2023.702
Reinforced self-training (rest) for language modeling.703
Preprint, arXiv:2308.08998.704

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio705
César Teodoro Mendes, Allie Del Giorno, Sivakanth706
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo707
de Rosa, Olli Saarikivi, et al. 2023. Textbooks are all708
you need. arXiv preprint arXiv:2306.11644.709

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,710
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.711
2020. Measuring massive multitask language under-712
standing. arXiv preprint arXiv:2009.03300.713

Tatsuya Hiraoka and Kentaro Inui. 2024. Repetition714
neurons: How do language models produce repeti-715
tions? arXiv preprint arXiv:2410.13497.716

Audrey Huang, Adam Block, Dylan J. Foster, Dhruv717
Rohatgi, Cyril Zhang, Max Simchowitz, Jordan T.718
Ash, and Akshay Krishnamurthy. 2024a. Self-719
improvement in language models: The sharpening720
mechanism. Preprint, arXiv:2412.01951.721

Chenghua Huang, Zhizhen Fan, Lu Wang, Fangkai722
Yang, Pu Zhao, Zeqi Lin, Qingwei Lin, Dongmei723
Zhang, Saravan Rajmohan, and Qi Zhang. 2024b.724
Self-evolved reward learning for llms. arXiv preprint725
arXiv:2411.00418.726

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu,727
Xuezhi Wang, Hongkun Yu, and Jiawei Han. 2022.728
Large language models can self-improve. Preprint,729
arXiv:2210.11610.730

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-731
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,732
Bowen Yu, Keming Lu, et al. 2024. Qwen2. 5-coder733
technical report. arXiv preprint arXiv:2409.12186.734

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-735
sch, Chris Bamford, Devendra Singh Chaplot, Diego736
de las Casas, Florian Bressand, Gianna Lengyel, Guil-737
laume Lample, Lucile Saulnier, et al. 2023. Mistral738
7b. arXiv preprint arXiv:2310.06825.739

Robert Kirk, Ishita Mediratta, Christoforos Nalmpantis,740
Jelena Luketina, Eric Hambro, Edward Grefenstette,741
and Roberta Raileanu. 2023. Understanding the ef-742
fects of rlhf on llm generalisation and diversity. arXiv743
preprint arXiv:2310.06452.744

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-745
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-746
guage models are zero-shot reasoners. Advances in747
neural information processing systems, 35:22199–748
22213.749

Nathan Lambert, Valentina Pyatkin, Jacob Morrison, 750
LJ Miranda, Bill Yuchen Lin, Khyathi Chandu, 751
Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, 752
Noah A. Smith, and Hannaneh Hajishirzi. 2024. Re- 753
wardbench: Evaluating reward models for language 754
modeling. Preprint, arXiv:2403.13787. 755

Harrison Lee, Samrat Phatale, Hassan Mansoor, Kel- 756
lie Ren Lu, Thomas Mesnard, Johan Ferret, Colton 757
Bishop, Ethan Hall, Victor Carbune, and Abhinav 758
Rastogi. 2023. Rlaif: Scaling reinforcement learning 759
from human feedback with ai feedback. 760

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan 761
Ghazvininejad, Abdelrahman Mohamed, Omer Levy, 762
Veselin Stoyanov, and Luke Zettlemoyer. 2019. 763
BART: denoising sequence-to-sequence pre-training 764
for natural language generation, translation, and com- 765
prehension. CoRR, abs/1910.13461. 766

Junlong Li, Fan Zhou, Shichao Sun, Yikai Zhang, Hai 767
Zhao, and Pengfei Liu. 2024a. Dissecting human and 768
llm preferences. arXiv preprint arXiv:2402.11296. 769

Xian Li, Ping Yu, Chunting Zhou, Timo Schick, Omer 770
Levy, Luke Zettlemoyer, Jason E Weston, and Mike 771
Lewis. 2024b. Self-alignment with instruction back- 772
translation. In The Twelfth International Conference 773
on Learning Representations. 774

Zongjie Li, Chaozheng Wang, Pingchuan Ma, Daoyuan 775
Wu, Shuai Wang, Cuiyun Gao, and Yang Liu. 2024c. 776
Split and merge: Aligning position biases in LLM- 777
based evaluators. In Proceedings of the 2024 Confer- 778
ence on Empirical Methods in Natural Language Pro- 779
cessing, pages 11084–11108, Miami, Florida, USA. 780
Association for Computational Linguistics. 781

Zhiqiu Lin, Deepak Pathak, Baiqi Li, Jiayao Li, Xide 782
Xia, Graham Neubig, Pengchuan Zhang, and Deva 783
Ramanan. 2025. Evaluating text-to-visual generation 784
with image-to-text generation. In European Confer- 785
ence on Computer Vision, pages 366–384. Springer. 786

Chris Yuhao Liu, Liang Zeng, Jiacai Liu, Rui Yan, Ju- 787
jie He, Chaojie Wang, Shuicheng Yan, Yang Liu, 788
and Yahui Zhou. 2024a. Skywork-reward: Bag of 789
tricks for reward modeling in llms. arXiv preprint 790
arXiv:2410.18451. 791

Fei Liu et al. 2020. Learning to summarize from human 792
feedback. In Proceedings of the 58th Annual Meeting 793
of the Association for Computational Linguistics. 794

Yantao Liu, Zijun Yao, Rui Min, Yixin Cao, Lei Hou, 795
and Juanzi Li. 2024b. Rm-bench: Benchmarking 796
reward models of language models with subtlety and 797
style. Preprint, arXiv:2410.16184. 798

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed- 799
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi, 800
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, 801
et al. 2024. Starcoder 2 and the stack v2: The next 802
generation. arXiv preprint arXiv:2402.19173. 803

10

https://arxiv.org/abs/2411.15594
https://arxiv.org/abs/2308.08998
https://arxiv.org/abs/2412.01951
https://arxiv.org/abs/2412.01951
https://arxiv.org/abs/2412.01951
https://arxiv.org/abs/2412.01951
https://arxiv.org/abs/2412.01951
https://arxiv.org/abs/2210.11610
https://arxiv.org/abs/2403.13787
https://arxiv.org/abs/2403.13787
https://arxiv.org/abs/2403.13787
https://arxiv.org/abs/2403.13787
https://arxiv.org/abs/2403.13787
https://arxiv.org/abs/1910.13461
https://arxiv.org/abs/1910.13461
https://arxiv.org/abs/1910.13461
https://arxiv.org/abs/1910.13461
https://arxiv.org/abs/1910.13461
https://openreview.net/forum?id=1oijHJBRsT
https://openreview.net/forum?id=1oijHJBRsT
https://openreview.net/forum?id=1oijHJBRsT
https://doi.org/10.18653/v1/2024.emnlp-main.621
https://doi.org/10.18653/v1/2024.emnlp-main.621
https://doi.org/10.18653/v1/2024.emnlp-main.621
https://arxiv.org/abs/2410.16184
https://arxiv.org/abs/2410.16184
https://arxiv.org/abs/2410.16184
https://arxiv.org/abs/2410.16184
https://arxiv.org/abs/2410.16184

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal,804
Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,805
Diogo Almeida, Janko Altenschmidt, Sam Altman,806
and Shyamal Anadkat. 2024. Gpt-4 technical report.807
Preprint, arXiv:2303.08774.808

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,809
Sam Gross, Nathan Ng, David Grangier, and Michael810
Auli. 2019. fairseq: A fast, extensible toolkit for811
sequence modeling. In Proceedings of NAACL-HLT812
2019: Demonstrations.813

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,814
Carroll Wainwright, Pamela Mishkin, Chong Zhang,815
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.816
2022. Training language models to follow instruc-817
tions with human feedback. Advances in neural in-818
formation processing systems, 35:27730–27744.819

Jing-Cheng Pang, Pengyuan Wang, Kaiyuan Li, Xiong-820
Hui Chen, Jiacheng Xu, Zongzhang Zhang, and Yang821
Yu. 2023. Language model self-improvement by re-822
inforcement learning contemplation. arXiv preprint823
arXiv:2305.14483.824

Jackson Petty, Sjoerd van Steenkiste, and Tal Linzen.825
2024. How does code pretraining affect lan-826
guage model task performance? arXiv preprint827
arXiv:2409.04556.828

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano829
Ermon, Christopher D. Manning, and Chelsea Finn.830
2024. Direct preference optimization: Your lan-831
guage model is secretly a reward model. Preprint,832
arXiv:2305.18290.833

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,834
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan835
Zhang, Y. K. Li, Y. Wu, and Daya Guo. 2024.836
Deepseekmath: Pushing the limits of mathemati-837
cal reasoning in open language models. Preprint,838
arXiv:2402.03300.839

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Ku-840
mar. 2024. Scaling llm test-time compute optimally841
can be more effective than scaling model parameters.842
Preprint, arXiv:2408.03314.843

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se-844
bastian Gehrmann, Yi Tay, Hyung Won Chung,845
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny846
Zhou, et al. 2022. Challenging big-bench tasks and847
whether chain-of-thought can solve them. arXiv848
preprint arXiv:2210.09261.849

CodeGemma Team, Heri Zhao, Jeffrey Hui, Joshua850
Howland, Nam Nguyen, Siqi Zuo, Andrea Hu,851
Christopher A Choquette-Choo, Jingyue Shen, Joe852
Kelley, et al. 2024a. Codegemma: Open code models853
based on gemma. arXiv preprint arXiv:2406.11409.854

Gemma Team, Morgane Riviere, Shreya Pathak,855
Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupati-856
raju, Léonard Hussenot, Thomas Mesnard, Bobak857
Shahriari, Alexandre Ramé, et al. 2024b. Gemma 2:858
Improving open language models at a practical size.859
arXiv preprint arXiv:2408.00118.860

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 861
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 862
Bashlykov, Soumya Batra, Prajjwal Bhargava, and 863
Shruti Bhosale. 2023. Llama 2: Open foundation and 864
fine-tuned chat models. Preprint, arXiv:2307.09288. 865

Tianhao Wu, Weizhe Yuan, Olga Golovneva, Jing Xu, 866
Yuandong Tian, Jiantao Jiao, Jason Weston, and Sain- 867
bayar Sukhbaatar. 2024a. Meta-rewarding language 868
models: Self-improving alignment with llm-as-a- 869
meta-judge. arXiv preprint arXiv:2407.19594. 870

Yue Wu, Zhiqing Sun, Huizhuo Yuan, Kaixuan Ji, Yim- 871
ing Yang, and Quanquan Gu. 2024b. Self-play pref- 872
erence optimization for language model alignment. 873
arXiv preprint arXiv:2405.00675. 874

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, 875
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, 876
Fei Huang, Haoran Wei, et al. 2024. Qwen2. 5 tech- 877
nical report. arXiv preprint arXiv:2412.15115. 878

Ziyi Ye, Xiangsheng Li, Qiuchi Li, Qingyao Ai, Yu- 879
jia Zhou, Wei Shen, Dong Yan, and Yiqun Liu. 880
2024. Beyond scalar reward model: Learning gen- 881
erative judge from preference data. arXiv preprint 882
arXiv:2410.03742. 883

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, 884
Xian Li, Sainbayar Sukhbaatar, Jing Xu, and Ja- 885
son E Weston. 2024. Self-rewarding language mod- 886
els. In Forty-first International Conference on Ma- 887
chine Learning. 888

Zheng Yuan, Hongyi Yuan, Chuanqi Tan, Wei Wang, 889
Songfang Huang, and Fei Huang. 2023. Rrhf: Rank 890
responses to align language models with human feed- 891
back without tears. Preprint, arXiv:2304.05302. 892

Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue, 893
Yuxiao Dong, and Jie Tang. 2024. Rest-mcts*: Llm 894
self-training via process reward guided tree search. 895
arXiv preprint arXiv:2406.03816. 896

Dylan Zhang, Qirun Dai, and Hao Peng. 2025. The 897
best instruction-tuning data are those that fit. arXiv 898
preprint arXiv:2502.04194. 899

Yao Zhao, Rishabh Joshi, Tianqi Liu, Misha Khalman, 900
Mohammad Saleh, and Peter J. Liu. 2023. Slic-hf: 901
Sequence likelihood calibration with human feed- 902
back. Preprint, arXiv:2305.10425. 903

Chujie Zheng, Hao Zhou, Fandong Meng, Jie Zhou, and 904
Minlie Huang. 2023a. Large language models are 905
not robust multiple choice selectors. In The Twelfth 906
International Conference on Learning Representa- 907
tions. 908

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan 909
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, 910
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023b. 911
Judging llm-as-a-judge with mt-bench and chatbot 912
arena. Advances in Neural Information Processing 913
Systems, 36:46595–46623. 914

11

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://openreview.net/forum?id=0NphYCmgua
https://openreview.net/forum?id=0NphYCmgua
https://openreview.net/forum?id=0NphYCmgua
https://arxiv.org/abs/2304.05302
https://arxiv.org/abs/2304.05302
https://arxiv.org/abs/2304.05302
https://arxiv.org/abs/2304.05302
https://arxiv.org/abs/2304.05302
https://arxiv.org/abs/2305.10425
https://arxiv.org/abs/2305.10425
https://arxiv.org/abs/2305.10425
https://arxiv.org/abs/2305.10425
https://arxiv.org/abs/2305.10425

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Sid-915
dhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou,916
and Le Hou. 2023. Instruction-following evalu-917
ation for large language models. arXiv preprint918
arXiv:2311.07911.919

Yongwei Zhou and Tiejun Zhao. 2024. Dual instruction920
tuning with large language models for mathematical921
reasoning. arXiv preprint arXiv:2403.18295.922

Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B.923
Brown, Alec Radford, Dario Amodei, Paul Chris-924
tiano, and Geoffrey Irving. 2020. Fine-tuning lan-925
guage models from human preferences. Preprint,926
arXiv:1909.08593.927

A Implementation and Hardware Details928

We conducted all training procedures using QLoRA929

with bfloat16 precision for DPO-based training and930

full fine-tuning for SFT. Our LLaMA-based models931

were trained on a single A100 GPU with 40GB932

VRAM, while Mistral training was performed on a933

single A100 GPU with 80GB VRAM. Inferences934

presented in Section 3 were carried out using T4935

GPUs with float16 precision, whereas evaluation936

results in Section 4 were obtained using A10 GPUs937

with bfloat16 precision. For sampling responses on938

UltraFeedback for DPO , we used a temperature of939

0.7 and a top_k value of 40.940

Hyperparameter Value

Number of Training Epochs 3
Train Batch Size 4
Learning Rate 5× 10−4

Optimizer AdamW
Learning Rate Scheduler Cosine

Table 4: Training Hyperparameters for SFT Training

Hyperparameter Value

Number of Training Epochs 3
Train Batch Size 6
Learning Rate 5× 10−4

Optimizer AdamW
Learning Rate Scheduler Cosine
DPO Beta 0.1
LoRA Alpha 128
LoRA Dropout 0.05
LoRA Rank (r) 256

Table 5: Training Hyperparameters for DPO Training

B Evaluation Dataset and Strategy 941

To conduct our evaluation, we randomly sample a 942

subset of 500 examples from each of the datasets. 943

• IFEval (Instruction-Following Evalua- 944

tion)2: Assesses the ability of large language 945

models to follow explicit, verifiable instruc- 946

tions, such as “write in more than 400 words” 947

or “mention the keyword ‘AI’ at least three 948

times.” 949

IFEval has four accuracy metrics to evalu- 950

ate the instruction-following capabilities of 951

Large Language Models (LLMs). Prompt- 952

level strict-accuracy measures the percentage 953

of prompts where all verifiable instructions 954

are followed exactly, providing a strict eval- 955

uation of the model’s ability to handle com- 956

plex prompts without errors. Instruction-level 957

strict-accuracy evaluates the percentage of in- 958

dividual instructions followed precisely across 959

all prompts, offering a granular view of the 960

model’s performance on specific instruction 961

types. Prompt-level loose-accuracy is a more 962

lenient version of prompt-level strict-accuracy, 963

where responses are transformed (e.g., remov- 964

ing markdown tags or intros/outros) to re- 965

duce false negatives, accounting for minor 966

deviations. Similarly, Instruction-level loose- 967

accuracy measures the percentage of individ- 968

ual instructions followed with leniency, using 969

transformed responses to identify cases where 970

the model almost adheres to instructions. The 971

final metric is the average of all the four accu- 972

racies. Each category specific result of IFEval 973

are shown in Table 6 974

• MMLU (Massive Multitask Language Un- 975

derstanding)3: Evaluates models across 57 976

subjects using multiple-choice questions, cov- 977

ering disciplines such as humanities, STEM, 978

and social sciences, to measure broad knowl- 979

edge and reasoning capabilities. 980

• BBH (BIG-Bench Hard)4: BigBench Hard 981

dataset, focuses on complex problem-solving 982

areas such as multistep arithmetic, algorithmic 983

reasoning, and advanced language comprehen- 984

sion. 985

• ARC-Easy (AI2 Reasoning Challenge 986

2https://huggingface.co/datasets/google/IFEval
3https://huggingface.co/datasets/cais/mmlu
4https://huggingface.co/datasets/lukaemon/bbh

12

https://arxiv.org/abs/1909.08593
https://arxiv.org/abs/1909.08593
https://arxiv.org/abs/1909.08593
https://huggingface.co/datasets/google/IFEval
https://huggingface.co/datasets/cais/mmlu
https://huggingface.co/datasets/lukaemon/bbh

Category Self-Rewarding (%) Ours (%) Binary (%)
Chat 62.64 83.72 77.63
Safety 57.14 91.74 78.44
Code 62.80 95.32 94.10
Math 34.90 59.50 73.40
Average 54.37 82.57 80.89

Table 3: Comparison of accuracy between GPT-4o-Mini-Self, GPT-4o-Mini-Ours and GPT-Binary across different
categories.

- Easy)5: Comprises grade-school-level,987

multiple-choice science questions designed to988

assess fundamental reasoning and knowledge.989

• Alpaca-Eval6: A benchmark that compares990

model-generated responses against given re-991

sponses, employing GPT as an evaluator to992

determine output quality.993

For the evaluation of MMLU, BBH, and ARC-994

Easy, we utilize GPT-4o-mini to compare model-995

generated responses with ground-truth answers.996

For IFEval, we employ the official evaluation code.997

Similarly, for Alpaca-Eval, we use GPT-4o-mini to998

compare the model-generated response against the999

ground-truth response from text_davinci_003 and1000

determine the better output. All our sampling for1001

the evaluations was performed using a temperature1002

of 0.5 and top_k value of 40.1003

C Results on GPT1004

We also evaluated our approach on proprietary mod-1005

els like GPT-4o-Mini and found that it significantly1006

outperformed both the Self-Rewarding approach1007

and the Binary Approach. In the Binary Approach,1008

the model is given both the chosen and rejected re-1009

sponses along with the prompt and is asked to select1010

the better one. To mitigate positional bias—where1011

LLMs tend to favor the first response—a random1012

shuffle is applied to ensure that neither the chosen1013

nor the rejected response receivs a systematic ad-1014

vantage. The results for Binary Eval were taken1015

directely from Reward Bench7. The results for the1016

same are shown in Table 3.1017

5https://huggingface.co/datasets/allenai/ai2_
arc

6https://huggingface.co/datasets/tatsu-lab/
alpaca_eval

7https://huggingface.co/spaces/allenai/
reward-bench

D Prompts 1018

Based on the predefined categories, a pool of N 1019

prompts were generated using GPT. A small sam- 1020

ple of 50 data points was selected from each cat- 1021

egory in Reward Bench, and the prompts were 1022

tested on this subset to determine the most effective 1023

one. The model used for testing was LLaMA-1B- 1024

Instruct, and the prompt with the highest accuracy 1025

in each category was used for evaluation on Re- 1026

ward Bench. The final set of selected prompts for 1027

Reward Bench evaluations are shown in Table 7 1028

and those for DPO are shown in 8 . 1029

Note: For DPO-based training, instructions were 1030

classified into four categories 1031

Categories of Prompts: 1032

• Code: Questions that involve generating or 1033

interpreting code. 1034

• Math: Questions related to mathematical 1035

computations or reasoning. 1036

• Chat: General conversational questions, often 1037

open-ended or casual. 1038

• Safety: Questions focused on evaluating or 1039

ensuring safety in responses. For our eval- 1040

uation on the Reward Bench dataset we fur- 1041

ther subcategorize it into Safety General and 1042

Safety Refusal. 1043

E Additional Results 1044

To further demonstrate the effectiveness of our ap- 1045

proach, we also evaluate our approach on an addi- 1046

tional benchmark, RM-Bench results of which are 1047

shown in Table 10 1048

13

https://huggingface.co/datasets/allenai/ai2_arc
https://huggingface.co/datasets/allenai/ai2_arc
https://huggingface.co/datasets/tatsu-lab/alpaca_eval
https://huggingface.co/datasets/tatsu-lab/alpaca_eval
https://huggingface.co/spaces/allenai/reward-bench
https://huggingface.co/spaces/allenai/reward-bench

Strict Loose
Average

Prompt-level Instruction-level Prompt-level Instruction-level

Mistral Self 20.52% 33.09% 25.88% 37.77% 29.31%
Mistral Ours 31.79% 41.85% 36.60% 46.52% 39.19%
Mistral Reward 23.11% 34.05% 28.84% 40.77% 31.69%
Mistral Base 21.26% 30.10% 23.29% 31.89% 26.63%
Mistral Instruct 33.27% 43.17% 36.41% 47.36% 40.05%

Llama Base 5.95% 11.35% 8.17% 13.75% 9.80%
Llama SFT 5.02% 12.63% 7.24% 15.87% 10.19%
Llama Self 6.28% 13.19% 8.32% 17.15% 11.23%
Llama Ours 6.47% 14.27% 9.61% 17.99% 12.08%
Llama Reward 6.47% 12.71% 7.95% 15.59% 10.68%

Table 6: Performance comparison of different models under strict and loose conditions.

Task Prompt

Chat Below is a question and its response. Assess if the response is helpful and
correct. Answer just Yes/No.

Code Below is a coding-related question along with a response containing code. Your
task is to verify whether the provided code is correct, functional, and aligned
with the requirements of the question. Answer with just Yes/No.

Maths Below is a math question along with a response containing a solution. Your
task is to verify whether the solution is correct, the reasoning is logical, and the
final answer is accurate. Answer with just Yes/No.

Safety(General) Below is a potentially unsafe or inappropriate question, along with a refusal
response. Verify whether the refusal response is appropriate. Answer Yes/No.

Safety(Refusal) Below is a question and a refusal response. Ensure the refusal response aligns
with ethical and safety guidelines while maintaining professional clarity. An-
swer Yes/No.

Table 7: Final prompts used for Evaluation on Reward and RM Bench

Category Prompt
Code Below is a coding-related question along with a response containing code. Your task is to

verify whether the provided code is correct, functional, and aligned with the requirements of
the question. Answer with just Yes/No.

Chat Below is a question, along with a response to that question. Your task is to verify whether the
response is helpful, factually correct, logically sound, and contextually appropriate. Answer
with just Yes/No.

Safety Inspect the response to ensure it is safe and appropriate for the question below. Answer
Yes/No.

Math Below is a math question along with a response containing a solution. Your task is to verify
whether the solution is correct, the reasoning is logical, and the final answer is accurate.
Answer with just Yes/No.

Table 8: Final set of prompts used for DPO.

14

Dataset
Llama
3.2-1B

Llama
3.2-1B

Instruct
Llama
3.2-3B

Llama
3.2-3B

Instruct
Meta

Llama-3-8B

Meta
Llama-3-8B

Instruct
Mistral
7B-v0.1

Mistral
7B

Instruct-v0.1
Qwen
2.5-3B

Qwen
2.5-3B

Instruct
Qwen
2.5-7B

Qwen
2.5-7B

Instruct

SKYWORK
8b

reward

hep-cpp 54.88 49.39 68.29 65.24 57.32 74.39 70.12 75.00 82.93 76.22 84.76 78.05 92.68

math-prm 23.49 88.14 98.21 98.21 77.18 54.97 97.99 96.20 24.61 46.31 68.46 56.24 95.75

llmbar-adver-GPTInst 63.04 64.13 44.57 53.26 59.78 71.74 71.74 75.00 51.09 83.70 59.78 78.26 71.74

refusals-dangerous 76.00 94.00 22.00 72.00 25.00 91.00 45.00 86.00 72.00 78.00 74.00 96.00 92.00

hep-python 50.61 52.44 61.59 71.34 53.66 77.44 67.07 76.22 77.44 78.66 89.02 89.02 93.29

alpacaeval-easy 34.41 83.23 34.66 53.79 56.15 24.22 20.00 42.36 36.40 27.33 46.71 80.25 92.92

hep-java 54.88 55.49 58.54 67.68 49.39 78.05 74.39 68.29 85.37 86.59 88.41 84.15 92.68

llmbar-adver-GPTOut 55.32 46.81 36.17 44.68 29.79 44.68 46.81 53.19 53.19 48.94 53.19 59.57 68.09

alpacaeval-hard 49.69 88.20 55.16 70.43 50.81 40.62 27.70 63.23 38.63 33.66 50.06 88.45 84.60

hep-go 49.39 45.73 53.66 64.63 57.93 73.78 70.73 73.78 81.10 82.93 83.54 85.98 90.24

refusals-offensive 73.00 97.00 49.00 97.00 86.00 99.00 45.00 97.00 23.00 94.00 98.00 100.00 98.00

xstest-should-refuse 56.49 77.92 67.53 92.21 82.47 98.70 46.75 92.21 54.55 93.51 84.42 94.16 77.27

donotanswer 38.24 55.88 64.71 82.35 69.12 91.91 63.97 80.88 62.50 91.18 78.68 90.44 70.59

mt-bench-hard 51.11 60.00 64.44 64.44 48.89 48.89 48.89 53.33 55.56 55.56 64.44 66.67 71.11

llmbar-adver-neighbor 64.18 58.96 50.00 60.45 59.70 74.63 45.52 59.70 44.03 72.39 60.45 73.88 75.37

mt-bench-easy 60.71 60.71 60.71 78.57 50.00 89.29 60.71 75.00 60.71 78.57 89.29 100.00 100.00

llmbar-adver-manual 65.22 52.17 52.17 47.83 47.83 63.04 45.65 52.17 41.30 56.52 45.65 60.87 63.04

mt-bench-med 37.78 64.44 64.44 71.11 51.11 60.00 57.78 60.00 55.56 73.33 71.11 93.33 86.67

xstest-should-respond 53.60 77.60 57.60 57.60 50.00 58.80 72.40 63.20 84.40 73.60 90.40 85.60 86.40

hep-rust 48.78 53.05 64.02 65.85 51.22 68.29 63.41 62.80 79.27 74.39 85.98 74.39 90.24

hep-js 44.51 60.98 63.41 68.29 56.71 71.34 66.46 69.51 81.71 84.76 82.93 87.20 93.29

alpacaeval-length 62.61 70.43 69.94 69.44 69.94 62.11 63.11 68.82 53.42 66.83 54.41 71.68 86.71

llmbar-natural 58.00 59.00 54.00 69.00 64.00 76.00 51.00 71.00 62.00 73.00 74.00 88.00 82.00

Table 9: Reward Bench Performance Across Different Levels

15

Model Levels
RM-Bench

chat
RM-Bench

code
RM-Bench

math
RM-Bench

safety response
RM-Bench

safety refuse

Llama-1B

level 1 48.06 54.39 46.31 31.85 38.73
level 2 64.34 55.26 48.58 69.43 53.52
level 3 60.47 50.44 41.59 61.78 71.13
mean 57.62 53.36 45.49 54.35 54.46

Llama-1B-Instruct

level 1 51.16 51.32 49.53 71.34 67.61
level 2 61.24 53.51 47.45 68.15 77.11
level 3 60.47 49.56 45.75 73.89 63.38
mean 57.62 51.46 47.57 71.13 69.37

Llama-3B

level 1 54.26 51.75 47.26 68.15 7.04
level 2 33.33 52.19 46.12 78.34 37.32
level 3 33.33 49.12 45.75 36.94 55.28
mean 40.31 51.02 46.38 61.15 33.22

Llama3b-Instruct

level 1 56.59 50.88 50.09 87.90 55.28
level 2 44.96 55.26 48.02 86.62 60.56
level 3 52.71 49.56 47.45 94.27 76.76
mean 51.42 51.90 48.52 89.60 64.20

Llama-8B

level 1 54.26 53.51 48.02 99.36 2.46
level 2 56.59 56.58 51.98 83.44 29.58
level 3 50.39 51.75 47.26 64.33 63.38
mean 53.75 53.95 49.09 82.38 31.81

Llama-8B-Instruct

level 1 65.12 55.70 50.28 56.05 75.00
level 2 36.43 55.70 49.72 96.18 30.28
level 3 50.39 53.51 46.12 64.33 87.68
mean 50.65 54.97 48.71 72.19 64.32

Mistral-7b

level 1 50.39 46.49 52.17 96.18 20.42
level 2 61.24 53.51 49.34 44.59 89.44
level 3 51.94 46.49 43.10 75.16 84.15
mean 54.52 48.83 48.20 71.97 64.67

Mistral-7b-Instruct

level 1 44.19 50.88 52.55 61.78 96.48
level 2 58.91 52.63 55.39 39.49 81.69
level 3 58.91 53.95 48.20 52.87 96.83
mean 54.01 52.49 52.05 51.38 91.67

Qwen2.5-3B

level 1 65.89 48.68 54.06 95.54 94.01
level 2 58.14 52.19 51.23 82.80 88.03
level 3 48.84 50.44 46.12 94.90 49.65
mean 57.62 50.44 50.47 91.08 77.23

Qwen2.5-3B-Instruct

level 1 72.87 51.32 60.87 46.50 63.38
level 2 55.04 53.07 57.66 31.85 90.49
level 3 55.04 54.82 50.47 84.71 96.83
mean 60.98 53.07 56.33 54.35 83.57

Qwen2.5-7B

level 1 72.87 56.58 56.14 100.00 100.00
level 2 47.29 56.58 54.06 96.82 94.72
level 3 51.16 53.07 47.64 94.27 100.00
mean 57.11 55.41 52.61 97.03 98.24

Qwen2.5-7B-Inst

level 1 80.62 58.33 62.19 91.08 100.00
level 2 61.24 58.33 62.00 85.99 96.83
level 3 64.34 55.26 50.28 63.06 100.00
mean 68.73 57.31 58.16 80.04 98.94

SKYWORK-8b-reward

level 1 86.04 53.07 62.38 94.90 97.18
level 2 55.04 53.51 65.41 82.80 98.94
level 3 41.09 48.25 66.16 87.26 100.00
mean 60.72 51.61 64.65 88.32 98.60

Table 10: Performance of various models, across different levels on RM-Bench

16

	Introduction
	Background and Related Work
	Reinforcement Learning for Improving LLMs
	Self Improving Models
	Evaluation of Reward Models

	LLM as Preference Model
	Background
	Methodology
	Preference Classification

	Experiments
	Benchmarking Our Approach
	Comparision against Self Rewarding Approach

	Findings
	Performance of Math and Code Specific Models

	IPO: Implicit Preference Optimization
	Background
	Methodology
	Constructing Preference Dataset

	Experiments
	Findings

	Conclusion
	Limitations
	Implementation and Hardware Details
	Evaluation Dataset and Strategy
	Results on GPT
	Prompts
	Additional Results

