Under review as a conference paper at ICLR 2026

TRAINREF: CURATING DATA WITH LABEL DISTRIBU-
TION AND MINIMAL REFERENCE FOR ACCURATE PRE-
DICTION AND RELIABLE CONFIDENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Practical classification requires both high predictive accuracy and reliable confi-
dence for human-AlI collaboration. Given that a high-quality dataset is expensive
and sometimes impossible, learning with noisy labels (LNL) is of great importance.
The state-of-the-art works propose many denoising approaches by categorically
correcting the label noise, i.e., change a label from one class to another, which
can suffer from normality pollution and class ambiguity. The normality pollution
happens when the noise ratio gets higher, leading to prediction inaccuracy, as
such approaches intrinsically learns normality from the noisy dataset. The class
ambiguity happens when the number of classes increases, leading to less reliable
prediction confidence.

In this work, we propose a training-time data-curation framework, TrainRef, to
uniformly address prediction accuracy and confidence calibration by (1) an extrinsic
small set of reference samples Dy, to avoid normality pollution and (2) curate labels
into a class distribution instead of a categorical class to handle sample ambiguity.
Our insights lie in that the extrinsic information allows us to select more precise
clean samples even when |D,| equals to the number of classes (i.e., one sample
per class). Technically, we design (1) a reference augmentation technique to select
clean samples from the dataset based on Di.f; and (2) a model-dataset co-evolving
technique for a near-perfect embedding space, which is used to vote on the class-
distribution for the label of a noisy sample. Extensive experiments on CIFAR-100,
Animal 10N, and WebVision demonstrate that TrainRef outperform the state-of-
the-art denoising techniques (DISC, L2B, and DivideMix) and model calibration
techniques (label smoothing, Mixup, and temperature scaling). Furthermore, our
user study shows that the model confidence trained by TrainRef well aligns with
human intuition. More demonstration, proof, and experimental details are available
athttps://sites.google.com/view/train—-ref.

1 INTRODUCTION

Practical classification application, such as medical diagnosis (Rosenbacke et al., 2024), autonomous
driving (Delavari et al.,[2025)), and fraud detection (Perini & Davis} 2023)), requires both accuracy
and reliable confidence. Recent work by Kalai et al. (Kalai et al., 2025) shows that even highly
capable LLMs tend to produce overconfident false predictions (hallucinations), emphasizing the
importance of calibration as a peer to accuracy. The confidence is useful for the model users to decide
when to adopt model decision (Corbiere et al., [2019; [Pan et al.l [2020). Such model performance
(both accuracy and confidence) usually requires high-quality datasets, however, which are usually
expensive, sometimes impossible (Al [2024; [Forbes| 2024).

Therefore, learning with noisy labels (LNL) solutions emerge to address the challenge. The solutions
evolve from label transition matrix (Hendrycks et al.l 2018 [Patrini et al.,[2017), sample-reweighting
techniques (Li et al.,|2020; Sheng et al., 2024} [Liu et al.,2020), gravitating to the pseudo-labeling
techniques which curate the noisy data from one class to another via semi-supervised learning (Kim
et al.L 2021; Nishi et al., 20215 [Lu et al., 2021} Zheltonozhskii et al., 2022} [Li et al.| 2023)). While
generally effective in improving predictive accuracy, the performance of such categorical curation
(i.e., change one label with another) to learn reliable confidence is limited, especially when the
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Figure 1: Examples of ambiguous samples from CIFAR-100 where the ground-truth label is distribu-
tional rather than categorical. (Left) Snake vs. Worm, where the label can be 70% Snake and 30%
Worm. (Right) Sea vs. Cloud vs. Plain, where the label may be distributed as 50% Sea, 40% Cloud,
and 10% Plain. Categorical labels for such cases encourage overconfident predictions, whereas
distributional labels better capture inherent ambiguity.

number of classes grows, leading to more ambiguous samples (see [Figure T). In practice, to classify
a clinical note into an ICD code, there can be more than 10K classes. In addition, those solutions
curate the labels by learning the label normalities from the intrinsic noisy dataset. When the noise
ratio is high enough, the noisy samples can form the polluting normalities, leading to mis-curation.
On the other hand, confidence calibration solutions include label smoothing (Miiller et al., [2019)),
mixup (Zhang, [2017), and temperature scaling (Hinton, 2015; (Guo et al., |2017) which mitigates
prediction overconfidence for more reliable class distributions. However, their performance is limited
in addressing the mis-confidence caused by label noise.

In this work, we propose a training-time data-curation solution, TrainRef, with the following features.

* Distributional Curation: Different from categorical curation, we learn distributional curation
during training, i.e., change a label from one class to a class distribution, for having high predictive
accuracy and reliable confidence in a uniform manner.

» Extrinsic Reference Set: Different from the state-of-the-arts (Li et al., 2020; Sheng et al.| [2024;
Liu et al.| [2020; [Li et al., [2023)) which curate the labels by learning the label normalities from the
intrinsic noisy dataset, our approach introduces a tiny trusted set of reference samples with the
ground-truth label, D,.. ¢, as label normalities, to avoid normality pollution caused by high noise
ratios. Our approach can be effective even when |D,..s| is as small as the number of classes (one
sample per class).

Given a trusted reference set Dyr and a noisy dataset D, TrainRef adopts a three-stage training
routine by co-evolving the model embedding space and the curated dataset. First, we obtaining a
label-agnostic encoder # by pre-training masked-image modelling (MIM) (Pathak et al.,[2016; Peng
et al.| 12022) task on D. Asa result, the embedding space of # is immune to noise. Next, we design a
reference augmentation technique to select clean samples 75(75 C 75) based on D¢, regarding the
agreement between the samples in Dy and the samples in D through the influence functions (Koh &
Liang, 2017; Pruthi et al.,[2020) computed on 6. Finally, we co-evolve the model 8* and the dataset D
by iteratively (1) fine-tuning a model 6* with learned clean dataset D and (2) curating and enhancing
the dataset D by voting the label distribution for noisy samples with their neighbouring clean samples
on the embedding space of 6*.

Our extensive experiments show that TrainRef significantly outperform the state-of-the-art denoising
solutions (i.e., L2B (Zhou et al., |2024)), DISC (Li et al., [2023)), LSL (Kim et al., [2024)) by 1.82%
to 8.19% across various benchmarks , and the state-of-the-art confidence calibration solutions (i.e.,
label smoothing (Miiller et al.,|2019), mixup (Zhang| 2017), and temperature scaling (Hinton, 2015}
Guo et al.|[2017)) by consistently achieving lower ECE indicating better calibration. Furthermore,
in a blind user study, participants agree with TrainRef’s confidence estimates over previous SOTA
(DISC + mixup) in 75% of cases, corroborating its reliability in practice. More demonstration, proof,
and experimental details are available at https://sites.google.com/view/train-ref.
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2 PROBLEM STATEMENT

Given a collected dataset D = {(x,¥)}\., where each sample consists of an input x € R? and a
one-hot categorical label § = [y1, y2, ..., yc|, ye € {0, 1}, C is the number of classes. We assume
that the true label is a class distribution instead of a one-hot class, that is, D* = {(x,y*)}, where

v =15, u5 ye €0,1], Zgl ys = 1. Thus, we define two types of label misinformation:

» Categorical Noise: The ground-truth label y* is one-hot (e.g., a O-entropy distributional label) but
arg max,y, # argmax,ye.

* Distributional Noise: The ground-truth label y* is a Dirichlet distribution over C' classes, and
y* # y. Intuitively, such noise can lead to an over- or under-confident model.

Our goal is to learn a parameterized mapping fy(.) : R¢ — R" that projects each input into an
embedding space for downstream tasks. We obtain our estimator 0 by minimizing the empirical risk
over a finite dataset with distributional labels (Equation|[I). Here, X || f|| denotes a regularization term,
such as weight decay, that penalizes large parameter values to control the model’s capacity.

b= argmin — > [£(folxi). 33) + M foll G

N
o (xi Y ) €D

In the limit as N — oo, a well-behaved estimator 6 should converge to the true risk minimizer.
0" = argmin B, y)np- [L{fo(x:), ¥7)] +Allfol @

However, in practice, this asymptotic consistency can break down when the dataset D contains label
misinformation (i.e., both categorical and distributional noise).

Rationale If the optimal embedding fg-(.) were available, and § = g o f, where g(.) : R — R¢
is the classification head. Then by Representer Point Theorem (Scholkopf et al.l 2001), any model
prediction at query sample x; can be expressed as a linear combination of representative samples x;,
weighted by their similarity k(x;,x;) (Equation , where each coefficient a;; depends only on the
representative sample (x;,¥;).

Jx) = Y i k(xi,xe) 3)

(Xi,¥:)EDrey

In TrainRef, (i) we estimate the optimal embedding function f , and (i1) we collect a clean reference
set with diverse class prototypes, Dyer = {(Xref, Yres)}. Then given a sample (x, ), we can curate
the label as Equation [4]

-k 1 . .
Y=o D e B xe). fx) @
ref (xrel'yyrcl') EDrer
Here, we set a;; = HD H , 1.e. each clean label directly votes in proportion to its similarity with the

query. We construct the curated dataset D= {(xt, *(x )) |x; € D} to replace D in the follow-up
training processes, and we hope the 6 learnt from D is closer to 6*.

Practical Challenges. Applying Equation[d]in practice requires overcoming two challenges:

* Accurate embedding-space estimation. Even with heuristics like the memorization effect (Liu
et al.| [2020) or confidence-based selection (Li et al., 2020;2023)), noisy or over-confident labels in
D can skew the learned embedding space when minimizing the empirical risk (Eq.|1 '

* Reference-set diversity. Manually verified clean references are typically few. We therefore need

methods for augmenting and measuring diversity so that our reference pool contains sufficiently
representative prototypes for reliable label voting.

Next, we introduce our solution TrainRef to address the above challenges.
3
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Figure 2: Overview of TrainRef: given a noisy training dataset D and a small reference dataset D, s
we (1) explore a near-perfect embedding space and (2) augment the reference to learn a function

parameterized by 6* to minimize the empirical risk. The learned embedding space and the curated
dataset are mutually influenced to converge.

3 APPROACH

Figure illustrates the overall framework of TrainRef, which learns a deep classifier from a dataset D
with both categorical and distributional noise, aided by a small clean reference set D;.t. The core idea
is to construct a reliable embedding space S* and an augmented reference set Dy, such that samples

in Dy can collectively provide accurate supervision for the rest of the dataset via neighborhood

voting. The training procedure consists of three iterative phases:

Phase I: General Embedding Space Construction. In this stage, we pre-train model fy from the
training dataset D with loss functions independent from the labels. Specifically, we choose MIM
(Masked Image Modelling) (Pathak et al.l 2016; [Peng et al.l 2022) as the pretraining task which aims
to recover a patch in an image sample from its neighboring patches. By this means, we learn an initial
embedding space, allowing us to extract general semantically meaningful features from the samples.

Phase II: Special Embedding Space Construction. In the next stage, we augment the small
reference set D,..; by introducing a subset of clean samples in D. We consider a sample (x,y) in

D as clean if (x,y) is consistent with all the samples in D,.. . In this work, we introduce influence
function (Koh & Liang| 2017) to measure such consistency (see Section @ As a result, we have

an augmented reference set D;, , which can be used to further retrain ¢ to 6. Comparing to 6, the

embedding space of 6 is more classification-relevant.

Phase III: Embedding Space Refinement. In the final stage, we iteratively update the learned
model §* and its embedding space and the curated model D. On one hand, we curate the dataset D
to D based on the learned embeddlng space and a set of discriminated reference samples. On the
other hand, the curated dataset D is further used to update the model to 6*. The co-evolution process
terminates once both the refined labels ¥* and model parameters 6 converge (see Section

Given the space limit, readers can refer to the Appendix [A]for the dictionary of symbols.

3.1 REFERENCE AUGMENTATION

Our insight lies in that noisy samples are likely to generate strong conflicting training signals with
the ground-truth references, and clean samples can generate aligning or negligible training signals.

Technically, given a pre-trained model fy from masked image modeling, we append a fully connected
classification head g,4(.) : R" — R parameterized by ¢, which is fine-tuned on Dyr. The layer is
used to measure the agreement between a target training sample s; = (x;,¥;) € D and any reference
samples Syef = (Xref; Yref) € Drey. In this work, we adopt Traceln (Pruthi et al.,[2020), a practical
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influence function measuring how likely fitting a training sample s; is helpful or harmful to predict a
reference sample s, f.

IF(Si7SI‘Cf) -

T . - AR
v¢£1 v(b['ret Where {‘Cl ‘C(gd’ o f9 (Xl)5 y’b) (5)

IV Lill - IV Lret ]| Lret = L(gg © fo(Xuct), Yret)

T
1 ~
m Z Z IF(S’L'a Sref)v where Ml = {(Xrefa yref) S Dref ‘ Yief = yz}

t=1 srEM;
(6)

As shown in Equation[6] the influence of training sample i is calculated as the gradient alignment
between this sample and all reference samples with the same label as y;. The final influence score
is averaged over 7' training checkpoints. Training samples with positive IF(s;, Dr¢y) larger than
threshold ;7 are used to construct a larger augmented reference set D) ;. dy is tuned to be 0.8, and
we demonstrate its robustness with different settings in the Appendix The augmented reference

set is further used to update 6 and ¢, collectively referred to as 6.

IF (s, Drer) =

3.2 CURATION-TRAINING CO-EVOLUTION

We formalize co-evolution as an alternating optimization scheme closely analogous to the Expecta-
tion—-Maximization (EM) algorithm (Dempster et al.l [1977), composed of the following two phases:

* Curation (C-step): Holding the current embedding estimator f fixed, we apply Equation {4 to
compute refined curated labels y*. In this phase, each sample is assigned a “responsibility” weight
over C classes, analogous to the E-step in EM algorithm (Dempster et al.,[1977), i.e., posterior
mixture-component assignments.

» Parameter update (P-step): Using the curated labels y* as targets, we update fy by empirical
risk minimization. This update refines the embedding space, which in turn yields more accurate

similarity estimation k(f (X, ), f(x;)) for the subsequent C-step, analogous to the M-step in EM
algorithm (Dempster et al.l [1977), i.e., parameter re-estimation given fixed responsibilities.

By iterating these two phases, the embedding function and the curated labels co-adapt dynamically:
improved embeddings produce more reliable pseudo-labels, and more accurate pseudo-labels guide
sharper embeddings, thereby ensuring progressive convergence despite the presence of label noise.

C-step Curation Principle. We estimate refined labels y* for all samples in the noisy dataset D,
based on neighborhood voting from the augmented reference set D;5;. Given a sample (x,y), the
estimated label distribution y is defined as:

y(x)=—— Z Vief © ]].(Xref € D;‘ote(x)) . Cosine(f(x)7 f(xref)) @)

(XrerYrer) ED ey

where we use cosine similarity as the kernel function, and Z(x) is a normalization constant ensuring
y forms a valid probability distribution: Z(x) = }_; epe, (x)) Cosine(f(x), f (Xref))-

vote

*

To mitigate voting noise, we restrict the voting pool using an indicator function 1 (Xref € Do (X))
that enforces two criteria: (i) semantic relevance to the query sample, defined as

Dyote(x) = {(Xref; Yret) € Dyer | Cosine(f(x), f(Xrer)) > 7} ®)

, where 7 is set to the 75th percentile of the cosine-similarity distribution, and (ii) inter-diversity
among selected references. For the latter, we construct a subset of k£ samples (% is set to half the pool
size) that covers the distribution of Dyg:

Diye(x) = argmax Y ||f(x;)— f(x;)|” )

SCDuoe(x),]S|=Fk 5
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Figure 3: A noisy training sample (in the left) is curated by TrainRef to have a class distribution
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where the probability over the class “sea”, “cloud”, “plain”, “mountain”, and etc (in the middle). In
addition, the reference samples voting for such a curation is shown in the right.

To sharpen the refined label distribution and emphasize confident predictions, we apply a temperature-
controlled transformation following DivideMix (Li et al., 2020). Given ¢ € (0, 1], the sharpened label
is computed as y* = y/*/ (17 g'/?), with t = 0.5 in all experiments.

P-step Optimization Objective. Given the current model parameters ¢ and a curated dataset
D = (x;,¥y) obtained from the C-step, we update ¢ by minimizing the following objective:

ID|

.1 s
Q:arggr;un az [ECE(9¢Of9(Xi)ay'i) JF)‘”o”g] (10)
’ =1

Here, Lo g (-, +) denotes the cross-entropy loss between the model’s prediction and the curated label,

and | 9||§ is an {5 regularization term that discourages overfitting and promotes smoother parameter.
We provide theoretical proof of convergence on our website (TrainRef] 2025)).

4 EXPERIMENT

We evaluate our approach with the following research questions, each addressed with an experiment:

* RQ1 (Predictive Accuracy): How effectively does TrainRef achieve predictive accuracy compared
to state-of-the-art label denoising methods?

* RQ2 (Confidence Reliability): How effectively does TrainRef improve confidence calibration
compared to state-of-the-art calibration methods?

* RQ3 (User study): In practical use, to what extent do humans agree with the confidence estimates
produced by TrainRef?

* RQ4 (Ablation study): What are the contributions of each component to the overall performance?

Implementation details and qualitative analyses are deferred to Appendix [C|due to space limits.

4.1 RQI1: PREDICTIVE ACCURACY

Synthetic Noisy Datasets. We evaluate TrainRef on CIFAR-100 (Krizhevsky et al.,[2009) under three
common noise types: (1) instance-dependent noise (IDN) (Xia et al.,|2020), where each instance is
assigned a noise rate from a truncated Gaussian distribution with class-level rates chosen randomly;
(2) symmetric noise (Sym.) (Li et al., 2020), where labels are flipped uniformly at random to any
other class; and (3) asymmetric noise (Asym.), where labels are flipped to semantically similar or
neighboring classes at a fixed rate. Following |L1 et al.| (2023)), we set symmetric noise levels to
p € {20%, 50%, 80%} and both asymmetric and instance-dependent noise to p = 40%.
Real-World Noisy Datasets. To assess TrainRef in practical settings, we evaluate it on Web-
Vision1.0 (Li et al., 2017) and Animal-10N (Song et al., 2019). WebVision1.0 contains 2.4M
web-crawled images from Google and Flickr. Animal-10N consists of noisy labels from five pairs of
visually similar animal species. Both are challenging real-world benchmarks.

Results on CIFAR with synthetic noise. Table [I] shows the generalization performance under
various noise levels on the CIFAR-100 dataset. Overall, TrainRef consistently outperforms all
the baselines, serving as a new state-of-the-art. Specifically, under severe noise setting (e.g., 80%
symmetric), TrainRef surpasses L2B-C2D by over 10% and remains robust in challenging cases like
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Table 1: Comparison with SOTA methods on CIFAR-100 datasets with different types and levels of
label noise. Mean + standard deviation is reported over 3 runs. The results are primarily derived from
(L1 et al., [2023)) or the original papers.

Noise type Sym 20 % Sym 50 % Sym 80 % Asym 40 % Inst 40 %
CE 5517 £0.12 324040.16 7.70 £0.16 40.63 £0.26 43.17 +0.15
Decoupling (Malach & Shalev-Shwartz,[2017) 52.75 £ 0.11 27.59 £0.16 7.38 £0.09  39.12 £ 0.08 -
Co-teaching (Han et al.| 2018) 5124 £023 2507 £0.18 850+0.06 38.06=£0.15 2321 +0.57
JointOptim (Tanaka et al.||2018) 58.50 £0.47 53.58 £0.43 24.62+0.50 61.17 £0.39 -
Co-teaching+ (Yu et al.,[2019) 5124 £023 2507 £0.18 9.50+0.08 36.58£0.16 24.45+0.71
GCE (Zhang & Sabuncu,[2018) 76.16 £0.11 72.84 £0.12 28.40+ 0.06 46.08 £0.20 45.69 4+ 0.14
PENCIL (Yi & Wul[2019) 55.17£0.12 37.124+0.17 933 +0.33 40.63 £0.26 -
JoCoR (Wei et al.|[2020) 5470 £0.08 26.454+0.13 7.354+0.05 37.09+£0.09 23954044
DivideMix (Li et al.}[2020) 76.16 £ 0.11 72.84 £0.12 28.40 +0.06 55.56 £0.53 76.08 £ 0.35
ELR (Liu et al.}[2020) 69.93 £0.14 58.10 +0.17 28.40+0.06 46.08 £ 0.20 -
ELR+ (Liu et al.|[2020) 76.94 £0.18 73.01 £0.14 58.01 +£0.17 74.39 £0.17 -
Co-learning (Wei et al.|[2020) 69.93 £0.14 58.104+0.17 41.77+0.32 51.50 £ 0.24 -
DISC (Li et al.|[2023) 78.75£0.13 7521 +£0.15 57.61 +£0.29 76.50+£0.15 78.44 +0.19
L2B-C2D (Zhou et al | [2024) 79.67 £0.14 7823 +£0.16 69.66 +0.19 7822+£0.14 79.43 £0.17
Ours 8544 £0.21 82.07 £0.17 77.85+0.35 79.67 £0.22 82.33 £+ 0.16

Table 2: Prediction Accuracy on WebVision. Table 3: Prediction Accuracy on Animal-10N.

Accuracy (%) Top-1 Top-5 Method Accuracy (%)
F-correction (Patrini et al.}|2017) 61.12 82.68 CE (Englesson & Azizpourl|2021) 794 £0.14
MentorNet (Jiang et al | |2018) 63.00 81.40 GCE (Zhang & Sabuncu, [2018) 81.5 £ 0.08
Co-teaching (Han et al.}|2018) 63.58 85.20 SELFIE (Song et al.|[2019) 81.8 £ 0.09
ELR (Liu et al.;[2020) 76.26 91.26 Mixup (Zhang}|2017) 82.7 + 0.03
DivideMix (Li et al.|[2020) 77.32 91.64 Co-learning (Tan et al.}|2021) 83.0
ELR+ (Liu et al.,|2020) 77.78 91.68 PLC (Zhang et al.;[2021) 83.4 4+ 0.43
GIS (Englesson & Azizpour}2021) 77.99 90.62 Nested Co-teaching (Chen et al.|[2021b)  84.1 £ 0.10
CC (Zhao et al.|[2022) 79.36  93.64 GIJS (Englesson & Azizpour, [2021) 84.2 + 0.07
DISC (Li et al.| [2023) 80.28 92.28 DISC (Li et al.|[2023) 87.1 £ 0.15
LSL (Kim et al.,[2024) 81.40 93.00 LSL (Kim et al.,{2024) 89.1
Ours 82.28 95.14 Ours 90.90 £ 0.24
Ours (IN1k Pretrained) 84.10 96.34 Ours (IN1k Pretrained) 93.72 £+ 0.15

asymmetric (40%) and instance-dependent (40%) noise, outperforming DISC (Li et al.} 2023) by
over 3%. Figure 3] provides a training example curated by TrainRef with distributional label in the
instance-dependent 40% noise setting on CIFAR-100. The image belongs to the class “sea” but has
been incorrectly labeled as “plain”. TrainRef assigns a distributional label that balances between
“sea” and “cloud”, reflecting the inherent ambiguity in the image. In addition, we show reference
samples voting this label, explaining how TrainRef makes such a curation decision. More examples
are available at our anonymous website| (TrainRef] 2025)).

Results on WebVision and Animal-10N. Tables 2{and Tables 3| present the generalization perfor-
mance of TrainRef with SOTA methods on real-world noisy datasets, WebVision and Animal-10N,
respectively. The results demonstrate that TrainRef improves the predictive accuracy by 2% - 4% on
both benchmarks, highlighting its effectiveness in handling real-world label noise.

4.2 RQ2: CONFIDENCE RELIABILITY

Setup. We evaluate calibration on CIFAR-100 under three noise regimes: noise-free, symmetric
20%, and symmetric 80%. Baseline calibration methods include (i) Raw cross-entropy (CE) loss,
(i1) Focal variants loss (Focal, AdaFocal, DualFocal/AdaDualFocal (Mukhoti et al., [2020a; Ghosh
et al., 2022} Tao et al.| 2023)), (iii) Post-hoc calibration such as Temperature Scaling (TS) (Guo
et al., 2017), PTS (Tomani et al., 2022)), Spline (Gupta et al.} 2020), MnM (Zhang et al., 2020)), (iv)
Denoising methods (DISC, L2B) with and without TS, and TrainRef with and without TS. We report
accuracy, ECE (Nixon et al.l[2019), and AdaECE (Mukhoti et al.,|2020b). Extended results with
additional metrics (ECEgebias, ECEweep (Roelofs et al., 2022)), other CIFAR-100 noise settings, and
two real-world datasets (Animal-10N, WebVision) are provided in the Appendix [D}


https://sites.google.com/view/train-ref

Under review as a conference paper at ICLR 2026

Table 4: Comparison of confidence calibration performance across noise-free, symmetric 20%
(Sym20), and symmetric 80% (Sym80) settings on CIFAR-100. Results report test accuracy (higher
is better) and calibration errors (ECE, AdaECE; lower is better). Grey-shaded rows indicate methods
where temperature scaling (TS) is applied on top of the base method. Bold entries mark the best
results under the same TS setting (either with TS or without TS).

Noise-Free Sym20 Sym80
Method Test Acc (%) ECE (}) AdaECE (])  Test Acc (%) ECE (|) AdaECE (])  Test Acc (%) ECE (|) AdaECE (/)
CE (Baseline) 71.87 0.1512 0.1508 51.76 0.088 0.0879 16.38 0.0946 0.0946
Runtime Method
Focal Loss (Mukhoti et al.![2020a] 78.31 0.0864 0.0866 52.16 0.1199 0.1198 16.26 0.1055 0.1055
Ada Focal Loss (Ghosh et al.|12022] 78.55 0.0723 0.0717 51.69 0.0923 0.0913 16.68 0.105 0.1049
Dual Focal Loss (Tao et al.; 2023} 71.93 0.0925 0.0924 47.32 0.1476 0.1476 16.95 0.1057 0.1055
CE + Posthoc
CE+TS (Guo et al.|2017] 77.87 0.0293 0.0297 51.76 0.0137 0.0138 16.38 0.0136 0.0097
CE+PTS (Tomani et al.| 2022} 77.87 0.0254 0.0266 51.76 0.0263 0.028 16.38 0.014 0.0135
CE+Spline (Gupta et al. /2020 71.87 0.0306 0.0331 51.76 0.0242 0.028 16.38 0.024 0.0286
CE+MnM (Zhang et al.; 2020} 71.87 0.0212 0.0201 51.76 0.0177 0.0126 16.38 0.0134 0.0085
Mixture

DISC (Li et al.|[2023] 8123 +£0.10 0.113£0.013 0.112£0.011 78.75+0.13 0.118 £0.011 0.114£0.016 57.61 £0.29 0.12+£0.013 0.147 £0.016
DISC+TS 81.23 £0.10 0.025+0.007 0.027 £0.007 78.75+0.13 0.043+£0.005 0.045+0.010 57.61 £0.29 0.061 =+ 0.007 0.053 £ 0.012
L2B (Zhou et al.}[2024] 8231 +£0.14 0.124£0.011 0.131 £0.009 79.67 £0.14 0.103£0.013 0.112£0.009 69.66 +0.19 0.133 £0.009 0.152 + 0.022
L2B+TS 8231 £0.14 0.027£0.008 0.028 +0.009 79.67 £0.14 0.042+0.012 0.043 +£0.011 69.66 +0.19 0.057 £ 0.015 0.061 +0.017
Ours 85.87 & 0.15  0.041 +0.008 0.043 & 0.010 85.44 = 0.21 0.048 + 0.009  0.047 & 0.008 77.85 £ 0.35 0.082 + 0.013  0.086 + 0.011
Ours+TS 85.87 £ 0.15 0.015 +0.007 0.014 & 0.008 85.44 £ 0.21 0.015+0.009 0.016 4 0.006 77.85+0.35 0.011 + 0.005 0.014 £ 0.009

Table 5: User Study Evaluation of Prediction Reliability: At each noise rate, the participants choose
to agree with the predicted confidence of the test sample by either TrainRef or DISC.

Sym. Noise Rate TrainRef (%) DISC (%) Total (%)

20% 62% 38% 100%
50% 74% 26% 100%
80% 78% 22% 100%

Results. Table @] shows that TrainRef consistently achieves the best trade-off between accuracy and
calibration across all noise settings. Focal variants losses amplify noise by up-weighting mislabeled
“hard” samples, while post-hoc methods such as TS only rescale logits p, = softmax(zx/T') and
cannot fix incorrect confidence rankings, yielding low ECE but poor accuracy. Denoising methods
such as DISC and L2B improve accuracy through filtering or hard relabeling, but discard uncertain
yet informative samples, thereby weakening calibration. By contrast, TrainRef utilizes soft labels
and a minimal reference set D,¢ to retain uncertainty and provide reliable supervision, resulting in
stronger calibration and accuracy.

4.3 RQ3: USER STUDY

Setup. We collect confidence scores from the test set after training the models on different noise
levels (i.e., 20%, 50%, and 80%) of CIFAR-100. Specifically, under a noisy rate (e.g., 20%), we learn
TrainRef and the baseline DISC. Then, we select 100 test samples (1) which are predicted to have low
confidence by either TrainRef or DISC; or (2) where TrainRef and DISC have a large disagreement
on their confidence We hire 5 experts as participants, each with over 3 years of experience in model
training and data labeling. Each participant is presented with two anonymous predictions (TrainRef
or the baseline) and asked to choose a predicted confidence to agree with.

Results. Table[5]shows that across all noise settings, participants consistently prefer the predictions
from TrainRef by a significant margin. As the noise rate increases, the preference for TrainRef
becomes even more pronounced. Notably, at an 80% noise rate, in over 75% of cases, participants
consider TrainRef ’s predictions to be more reliable, showing its advantage to produce semantically
meaningful and robust classifications under extreme noise conditions. More examples and results are
available at our anonymous website (TrainRef] [2025)).

4.4 RQ4: ABLATION STUDY

Effectiveness of Initial Reference Set Size. Table[6] shows the effect of varying the initial reference
set size | Dy ¢| on the noise rate of the augmented set D, 7 and test accuracy. Results are reported on
CIFAR-100 with 80% symmetric noise and on two real-world datasets (Animals-10N and WebVision),
for which only test accuracy is available due to the lack of clean labels. TrainRef consistently
maintains a low noise rate (< 5%) in the augmented reference set and high test accuracy across varying
reference sizes, remaining effective even with just one reference sample per class (| D, ¢| = 1). In our
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Table 6: Noise Rate and Sample Counts vs Table 7: Effectiveness of Label Distribution on
Initial Reference Set Size Calibration (CIFAR100 Inst. 40%)
Dataset & Noise Metric k=1 k=5 k=10 k=100
Method Rnge : RSI‘;f;el NNL | ECE | Test Acc (%)
CleanNum 6069 6352 6380 6409
CIFAR-100 <
(Sym 80%) Mis 140 110 103 101 Ours 0.710  0.055 81.07
NR() 0.0230 0.0173 0.0161 0.0157 Ours-TC 0.707  0.032 -
Test Acc 7785 7789 7793 7791 Ours v 0.756  0.065 81.77
— - OursTC v 0.740  0.032 -
WebVision Test Acc 8221 8228 8227 8236 Oume v v 0683 0046 8233
Animals-10N  TestAcc 9075 9090  90.97  90.88 Ours-TC v/ v 0669 0.017 =

experiments, we use | D, 7| = 5 to balance accessibility and performance. These results demonstrate
TrainRef’s ability to efficiently identify clean samples under extreme noise and minimal supervision.
Effectiveness of Label Distribution We evaluate TrainRef on CIFAR-100 with 40% instance-
dependent noise, focusing on the effect of label distribution. Specifically, we replace soft labels with
one-hot labels and apply temperature scaling as in RQ2. Lower ECE (Expected Calibration Error) and
NNL (Negative Log-likelihood) indicate better calibration. As shown in Table[7] TrainRef achieves
the lowest ECE with and without temperature scaling, outperforming all ablations. While one-hot
labels (hard relabel) yield similar test accuracy, they degrade calibration by sharpening decision
boundaries and ignoring ambiguous samples.

Additional ablations on Phase III iteration counts (Appendix[F2)), the role of influence-based reference
augmentation (Appendix [FI)), as well as analyses of computational cost (Appendix [B]), backbone
fairness (Appendix [F-5) and limitations (Appendix [H) are provided in the Appendix.

5 RELATED WORK

Learning with Noisy Labels (& Data Curation) Early LNL methods (Hendrycks et al., 2018}
Patrini et al.}|2017)) assume class-conditional noise modeled by a label transition matrix. However,
theoretical work (Chen et al.l 2021a; |Xia et al., 2020) shows that real-world noise is largely instance-
dependent, making transition matrix estimation both inaccurate and computationally expensive. To
handle instance-specific noise, prior work proposes re-weighting or filtering noisy samples using
loss, confidence, or multi-view signals (Han et al.,2018; [Yu et al.| 2019; |Li et al.| 2020; |Zhu et al.|
2021; [Kim et al., [2024)). Semi-supervised learning (SSL) approaches (Sohn et al.| [2020; [Li et al.|
2023)) assign pseudo-labels to noisy samples, often relying on augmentations (Nishi et al., 2021}
Cubuk et al.l [2020). However, these heuristics degrade under high noise, mislabeling ambiguous
samples and harming generalization (Das & Sanghavi, |2023)). Meta-learning methods (Wu et al.|
20215 |L1 et al., 2019) use clean references for guidance but incur high computational cost due to
bi-level optimization.

Confidence Calibration. Confidence calibration aims to align predicted probabilities with true
correctness likelihoods. Classical post-hoc methods include Temperature Scaling (TS) (Guo et al.,
2017), parameterized transformations such as PTS (Tomani et al.| [2022), spline-based mappings
(Gupta et al.} [2020), and Mix-n-Match (MnM) (Zhang et al.||2020). These methods adjust output
probabilities after training, but they cannot fix mis-ordered confidence rankings learned under noise.
Train-time calibration has also been explored: focal-style losses (Mukhoti et al.| [2020a} |Ghosh et al.,
2022; [Tao et al., 2023) emphasize hard samples but risk amplifying label noise, while denoising
approaches such as DISC (Li et al., |2023) and L2B (Zhou et al., [2024) combine label correction with
calibration. Evaluation metrics like ECE (Nixon et al.,[2019), AdaECE (Mukhoti et al.| [2020a)), and
recent unbiased estimators such as ECEqcpias and ECEgyeep (Roelofs et al.l 2022) provide multiple
perspectives on calibration quality. Our work builds upon these foundations by integrating calibration
with noise-robust training via reference-guided distributional curation.

6 CONCLUSION

We propose TrainRef, a training-time data curation framework that unifies label denoising and
confidence calibration. Through Curation-Training Co-evolution, TrainRef refines the embedding
space, maintains a diverse reference set, and assigns reliable soft labels. Extensive experiments
show it outperforms state-of-the-art methods, improving accuracy and confidence calibration, with
qualitative studies confirming its reliability for real-world noisy-label scenarios. In the future, we will
deliver a library of TrainRef for the community and generalize the technique on generative models.
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TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

A DICTIONARY OF SYMBOLS

Table 8: Dictionary of Symbols Used in Problem Statement (Sec. [2) and Approach (Sec.

Symbol Description

D Noisy training dataset, D = { (x4, %)},

D* Ideal clean dataset with distributional labels, D* = {(z;, y;)}

Dot Manually verified small clean reference set

D} Augmented reference set derived from D¢

D Curated dataset with refined soft labels

z; € RY Input sample in d-dimensional space

7 € {0,1}¢ Noisy one-hot label for sample z;

yr €10,1]¢ Ground-truth soft label (class distribution), Zle yr =1

C Number of classes

fo : R4 — R"  Feature extractor / encoder with parameters 0

g - R" — R® Classification head with parameters ¢

6 Trained model parameters from empirical risk minimization

0* Optimal model parameters minimizing true risk

L(--) Loss function (e.g., cross-entropy)

AN Regularization term (e.g., weight decay)

k(xi,x;) Similarity kernel (e.g., cosine similarity) between samples z; and
g(x) Refined soft label of  computed via voting from reference samples
Z(x) Normalization constant to ensure §(z) is a valid probability distribution
T Cosine similarity threshold for voting pool inclusion

k Number of neighbors selected for diverse reference voting

Dyore(2) Set of reference samples with similarity > 7 to

D} () k-diverse subset of Dy () selected via max-diversity

t € (0,1] Temperature parameter for sharpening predicted label distribution
IF(s;, Sref) Influence of sample s; On Sef

M; Subset of D¢ with same label as ;

OIF Threshold for influence to include sample in Dy,

7*(x) Sharpened label distribution: §*(z) = §(z)*/*/ 3" Ge(x)*/*

B COMPUTATIONAL COST ANALYSIS

Training Efficiency. One of the common concerns when introducing a multi-phase training frame-
work is the potential computational overhead. In this section, we provide a detailed breakdown of
the time cost of our method TRAINREF, and compare it with the top-performing baselines under the
same hardware setting—specifically, a single NVIDIA GeForce RTX 4090 GPU.

Phase-wise Training Time. As shown in Table [} TRAINREF comprises three phases: (1) a
self-supervised pretraining phase, (2) an influence-based reference augmentation phase, and (3) a
reference-guided co-evolution phase.

In Phase I, we apply Masked Image Modeling (MIM) using BE1i Tv2 to learn a robust and generaliz-
able embedding space. The tokenization mechanism in BE1Tv2 enables efficient training, with each
MIM epoch taking only 3 minutes. We pretrain the model for 300 epochs in this stage.

In Phase II, we apply influence functions to augment the small trusted reference set, identifying
clean samples from the noisy dataset. The model is then fine-tuned on this augmented reference
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set to enhance its classification capability. This stage requires 5 fine-tuning epochs, each taking
approximately 18 minutes.

In Phase III, we iteratively co-evolve the model and the dataset through reference-guided curation
and distributional supervision. Specifically, the model refines its predictions using neighborhood
voting from the reference set, while the curated dataset is simultaneously updated to reflect these
refined soft labels. This iterative process ensures that both the embedding space and label quality
improve progressively. The finetuning process involves 10 epochs (when N = 2), each taking around
18 minutes. During this stage, standard data augmentation techniques such as MixUp are applied.
Thanks to the high-quality initialization from Phase I, only a small number of finetuning epochs are
sufficient to achieve strong performance.

Despite incorporating a self-supervised pretraining stage, the overall runtime of TRAINREF remains
comparable to the fastest baselines, demonstrating its practical efficiency.

Overall Runtime. As summarized in Table[9} the total training time of TRAINREF is approximately
1470 minutes, which is only marginally higher than DISC (1400 minutes), the most efficient baseline
among state-of-the-art methods. Despite including a self-supervised pretraining stage, our approach
remains competitive in terms of wall-clock time due to (i) the efficiency of BEiT-based MIM and (ii)
the reduced number of fine-tuning epochs required.

Figure ] further illustrates the per-epoch training time across various baselines. Notably, the runtime
of TRAINREF per epoch during finetuning is comparable to that of LSL and CC. These results
collectively show that TRAINREF achieves a favorable trade-off between computational cost and
performance.

Table 9: Training Time Comparison on WebVision (RTX 4090)

Method Time per Epoch (min) Training Epochs Total Time (min)

CC 23 / epoch - -

DISC 14 / epoch 100 1400
LSL 22 / epoch 100 2200
Ours 3 (MIM), 18 (FT) 300 + 15 1470

32
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Figure 4: Training time per epoch (in minutes) across different methods. TRAINREF has a comparable
finetuning cost to LSL and CC, and an efficient pretraining stage with BEiT.

C IMPLEMENTATION DETAILS

C.1 MODEL ARCHITECTURE AND PRETRAINING SETUP

In Phase I of TRAINREF, we adopt the BEiTv2 pipeline to perform self-supervised masked image
modeling (MIM). The encoder is a Vision Transformer (ViT) trained from scratch on each target
dataset. The model consists of 12 transformer blocks, each with 12 attention heads and a hidden
dimension of 768. The patch size is set to 16 x 16, and input images are resized to 224 x 224. We use
a tokenizer pretrained on ImageNet-1K, which yields 8,192 discrete visual tokens. This setup enables
efficient and semantically rich representation learning, which is essential for robust downstream
curation.

For MIM training, we use the AdamW optimizer with a weight decay of 0.05 and cosine annealing
learning rate schedule initialized at 1 x 10~3. A warm-up phase is applied over the first 10,000
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iterations. To prevent overfitting, we use stochastic depth regularization with a drop path rate of
0.1, and stabilize optimization through layer-wise learning rate decay. Training is conducted for 200
epochs on CIFAR-100, CIFAR-80N, Animal10N, and WebVision.

C.2 INFLUENCE-BASED REFERENCE AUGMENTATION

After pretraining, we perform linear probing to prepare for influence function analysis. A randomly
initialized linear classification head is attached to the frozen encoder and trained for 15 epochs on the
clean reference set. Model parameters are saved every 5 epochs to support multi-checkpoint influence
estimation.

We compute the influence score of each training sample relative to reference samples using gradient
similarity. Samples whose normalized influence scores exceed the threshold dir = 0.8 are selected
for inclusion in the augmented reference set. By default, we initialize the reference set with 10 clean
samples per class. The size and quality of this set are further analyzed in our ablation studies.

C.3 FINETUNING AND ITERATIVE CO-EVOLUTION

In Phase II, we fine-tune the model on the augmented reference set to specialize the embedding space.
We use the Adam optimizer with cosine decay, a learning rate of 1 x 10~%, and train for 5 epochs.
RandAugment is applied with parameters (n = 2, m = 10) to enhance generalization, and MixUp
regularization is incorporated using an interpolation coefficient of a = 0.4.

Phase III involves two rounds of iterative co-evolution between the model and the dataset. Each
iteration lasts for 5 epochs and follows the same optimization and augmentation settings as in Phase
II. In each round, refined label distributions are generated via reference-guided voting, and the model
is retrained on the newly curated dataset. This procedure ensures that both the embedding function
and the pseudo-labels are progressively improved.

C.4 REPRODUCIBILITY

All experiments are implemented in PyTorch and conducted on a single NVIDIA RTX 4090 GPU.
Unless otherwise specified, we use a batch size of 128. Detailed training logs, configuration files, and
checkpoints will be made publicly available in the project repository.

This three-phase design enables TRAINREF to efficiently extract semantically aligned embeddings,
construct high-quality reference sets, and iteratively refine soft labels, ultimately yielding a robust
model trained under extreme label noise.

D EXTENDED RESULTS ON CONFIDENCE RELIABILITY

To complement the main results in Section we provide extended evaluations on additional
CIFAR-100 noise regimes (symmetric 20%, 80%, asymmetric 40%) in Table[I0} [IT]and [I2]and on
two real-world datasets (WebVision, Animal-10N) in Table[I3] We also report multiple calibration
metrics, including ECE, AdaECE (Mukhoti et al., 2020a), ECEqcpias, and ECEgyeep (Roelofs et al.),
2022).

Table 10: Detailed results on CIFAR-100 with symmetric 20% noise.

Method Test Acc (%) ECE (}) AdaECE (]) ECEgebias (1) ECEsweep ()
CE 51.76 0.0880 0.0879 0.0878 0.0880
Focal Loss 52.16 0.1199 0.1198 0.1197 0.1201
Ada Focal Loss 51.69 0.0923 0.0913 0.0921 0.0918
Dual Focal Loss 47.32 0.1476 0.1476 0.1474 0.1476
CE+TS 51.76 0.0137 0.0138 0.0130 0.0147
CE+PTS 51.76 0.0263 0.0280 0.0261 0.0261
CE+Spline 51.76 0.0242 0.0280 0.0240 0.0240
CE+MnM 51.76 0.0177 0.0126 0.0168 0.0153
DISC 78.75+0.13 0.118+0.011  0.11440.016 0.117+0.009 0.1184+0.013
DISC+TS 78.7540.13 0.043+0.005  0.04540.010 0.041£0.011 0.05140.013
L2B 79.6710.14 0.103+0.013  0.11240.009 0.108+0.021 0.11740.016
L2B+TS 79.6710.14 0.04240.012  0.04340.011 0.043+0.009 0.0451+0.012
Ours 85.44+0.21 0.048+£0.009  0.047+0.008 0.044+0.009 0.052+0.014
Ours+TS 85.44+0.21 0.015+0.009  0.01610.006 0.012+0.005 0.01610.006

Discussion. These results confirm that TrainRef consistently outperforms state-of-the-art train-time,
post-hoc, and denoising methods in both synthetic and real-world noise scenarios. Its superior
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Table 11: Detailed results on CIFAR-100 with symmetric 80% noise.

Method Test Acc (%) ECE (}) AdaECE (]) ECEqdebias (1) ECEsweep (1)
CE 16.38 0.0946 0.0946 0.0945 0.0945
Focal Loss 16.26 0.1055 0.1055 0.1054 0.1055
Ada Focal Loss 16.68 0.1050 0.1049 0.1048 0.1050
Dual Focal Loss 16.95 0.1057 0.1055 0.1054 0.1057
CE+TS 16.38 0.0116 0.0097 0.0069 0.0078
CE+PTS 16.38 0.0120 0.0135 0.0097 0.0109
CE+Spline 16.38 0.0240 0.0286 0.0239 0.0257
CE+MnM 16.38 0.0134 0.0085 0.0069 0.0068
DISC 57.6140.29 0.120+0.013  0.14740.016 0.133+0.005 0.1544-0.015
DISC+TS 57.6140.29 0.061+0.007  0.05340.012 0.065+0.008 0.05340.013
L2B 69.6610.19 0.133+0.009  0.15240.022 0.171£0.017 0.1214-0.008
L2B+TS 69.6640.19 0.057+0.015  0.06140.017 0.055+0.011 0.0594-0.007
Ours 77.854+0.35 0.082+0.013  0.086+-0.011 0.080+0.007 0.088+-0.010
Ours+TS 77.851+0.35 0.011+0.005  0.01440.009 0.013+0.007 0.0094-0.005

Table 12: Detailed results on CIFAR-100 with asymmetric 40% noise.

Method Test Acc (%) ECE (}) AdaECE ({) ECEgebias )  ECEgyeep (1)
CE 41.85 0.0231 0.0242 0.0228 0.0227
Focal Loss 38.35 0.0316 0.0319 0.0313 0.0320
Ada Focal Loss 38.71 0.0163 0.0173 0.0160 0.0151
Dual Focal Loss 32.79 0.0540 0.0556 0.0536 0.0532
CE+TS 41.85 0.0253 0.0258 0.0254 0.0260
CE+PTS 41.85 0.0165 0.0156 0.0162 0.0166
CE+Spline 41.85 0.0177 0.0188 0.0155 0.0183
CE+MnM 41.85 0.0235 0.0245 0.0268 0.0276
DISC 76.50£0.15 0.140+£0.017  0.135+0.012 0.127+0.023 0.1231+0.015
DISC+TS 76.50+0.15 0.066£0.007  0.06110.009 0.059+0.013 0.057+0.009
L2B 78.22+0.14 0.134+£0.009  0.121+0.011 0.126£0.009 0.1421+0.011
L2B+TS 78.22+0.14 0.067£0.007  0.058+0.008 0.061£0.009 0.071+0.015
Ours 79.67+0.22 0.071+£0.011  0.084+0.012 0.076-0.009 0.077+0.013
Ours+TS 79.67+0.22 0.015+£0.005  0.021+0.007 0.014-£0.006 0.017+0.005

performance stems from two principles: (i) robust anchoring via a small clean reference set, which
avoids error amplification, and (ii) distributional relabeling, which preserves uncertainty while
improving both accuracy and calibration.

E ADDITIONAL EXPERIMENTAL RESULTS ON CIFAR-80N

To further assess the robustness of TrainRef under realistic noisy-label conditions, we conduct
experiments on the CIFAR-80N benchmark. Following the protocol of (Yao et al.,[2021), CIFAR-80N
is constructed by treating the last 20 classes of CIFAR-100 as out-of-distribution (OOD), while the
remaining 80 classes are considered in-distribution. This setting introduces open-set label noise by
mixing semantically unrelated classes, which challenges a model’s ability to generalize under both
closed-set and open-set noise.

We inject both symmetric and asymmetric label noise on the in-distribution subset, following the
setup of (Sheng et all [2024). Specifically, symmetric noise is applied at p € {20%,80%} and
asymmetric noise is applied at p = 40%. These configurations allow us to evaluate model robustness
under varying degrees of noise severity.

As shown in Table [T4] TrainRef achieves substantial performance gains over previous state-of-the-art
methods. In the Sym. 20% setting, TrainRef improves accuracy by 12.74% over the best prior
method. Under the severe Sym. 80% noise, TrainRef surpasses the closest baseline by 32.29%.
In the Asym. 40% case, which involves structured noise aligned with semantic class relationships,
TrainRef achieves an improvement of 19.52%.

These gains highlight the effectiveness of TrainRef ’s unified framework in handling both closed-set
and open-set noise. Notably, TrainRef does not discard OOD samples outright. Instead, it leverages
reference-guided distributional labeling to assign soft targets to OOD samples based on semantic
similarity. This design allows OOD instances to contribute positively to representation learning,
rather than being treated as outliers.

These results reinforce the generalization ability of TrainRef in practical noisy-label scenarios, where
label corruption often involves both ambiguity and distribution shift. Additional qualitative examples
of TrainRef ’s curation process can be found in (TrainRef, 2025)).
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Table 13: Accuracy and calibration on WebVision and Animal-10N. Lower calibration errors are
better.

WebVision Animals-10N

Method Test Acc ECE AdaECE ~ ECEqebias  Test Acc ECE AdaECE  ECEqgyeep

CE 63.23 0.1306 0.1306 0.1287 80.21 0.1659 0.1656 0.1659
DISC 80.17 0.1021 0.1021 0.1008 87.03 0.0865 0.0865 0.0876
Ours 82.33 0.0835 0.0823 0.0819 90.85 0.0289 0.0282 0.0298
CE+TS 63.23 0.0277 0.0312 0.0264 80.21 0.1306 0.1298 0.1305
DISC+TS 80.17 0.0337 0.0374 0.0323 87.03 0.0312 0.0306 0.0350
Ours+TS 82.33 0.0226 0.0265 0.0213 90.85 0.0254 0.0221 0.0253

Table 14: Test accuracy (%) on CIFAR-80N under varying noise levels. TrainRef achieves consistent
improvements across both mild and severe noise settings in open-set scenarios.

Method CIFAR-80N
Sym. 20% Sym. 80% Asym. 40%

Standard 29.37 4.20 2225
Co-teaching (Han et al.}|2018)  60.38 16.59 42.42
Co-teaching+ (Yu et al.}|2019) 53.97 12.29 43.01
JoCoR (Wei et al.|[2020) 59.99 12.85 39.37
Jo-SRC (Yao et al.;[2021) 65.83 29.76 53.03
SELC (Lu & He, [2022) 57.51 22.79 47.50
DivideMix (Li et al.,|2020) 57.47 21.18 37.47
Co-LDL (Sun et al.||2021) 58.81 24.22 50.69
UNICON (Karim et al.}[2022)  54.50 36.75 51.50
NCE (Li et al.}[2022) 58.53 39.34 56.40
SOP (Liu et al.;[2022) 60.17 34.05 53.34
SPRL (Shi et al.}[2023) 47.90 22.25 40.86
AGCE (Zhou et al.|[2023) 60.24 25.39 44.06
DISC (Li et al.|[2023) 50.33 38.23 47.63
SED (Sheng et al.||2024) 69.10 42.57 60.87
TrainRef (Ours) 81.84 74.86 80.39

F ADDITIONAL ABLATION STUDY

F.1 ABLATION ON INFLUENCE-BASED REFERENCE AUGMENTATION

To evaluate the effectiveness of influence-based reference set augmentation, we conduct a comparative
study against several alternative strategies for reference construction and data utilization. This
experiment is performed on CIFAR-100 under three distinct label noise conditions: symmetric noise
at 20% and 80%, and instance-dependent noise at 40%.

We compare the following configurations:

* KNN Embedding Voting: Clean sample selection using k-nearest neighbor consistency in
the embedding space, without reference set expansion or direct interaction with noisy labels.

* Full Dataset Fine-tuning: Standard fine-tuning on the entire noisy training set without any
filtering.

* Initial Reference Set Fine-tuning: Model is fine-tuned only on the initial manually speci-
fied reference set (set to 500 samples).

* First Augmented Reference Set Fine-tuning: Model is trained using the reference set
expanded via influence score-based selection.

Note that both the KNN-based method and the Initial Reference Set approach do not interact with
noisy labels during training, and thus their performance remains constant across different noise
configurations.

As shown in Table[T3] fine-tuning on the influence-augmented reference set yields substantial gains
across all noise settings. Compared to full-dataset training, the improvement exceeds 6% under
symmetric 20% noise, 59% under symmetric 80% noise, and 22% under instance-dependent noise.
These results underscore the importance of influence-guided augmentation in filtering out noisy
examples and expanding the clean set with high precision.
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Table 15: Ablation study on influence-based reference augmentation. Performance (accuracy in %) is
reported under various label noise settings on CIFAR-100.

Method CIFAR-100

Sym. 20% Sym. 80% Inst. 40%
KNN Embedding Voting - 51.70 + 1.64 -
Full Dataset Fine-tuning 66.04+028 13.17+120 54.83+0.85
Initial Reference Set Fine-tuning - 64.63 £0.18 -

1st Augmented Ref. Set Fine-tuning 81.24 +0.88 72.91+0.73 76.81 +1.30

The ablation confirms that influence-based augmentation plays a central role in enabling TrainRef to
scale from a minimal trusted set to a robust, curated training set, which in turn leads to substantial
improvements in downstream performance.

F.2 EMBEDDING SPACE QUALITY ACROSS PHASES

The design of TRAINREF reflects a progressive strategy to approximate an ideal embedding through
phase-wise refinement. Our objective is to demonstrate that improved embedding quality is positively
correlated with better noise detection and label refinement.

To empirically validate this, we measure the quality of the learned embedding space at each stage
of the training pipeline using a non-parametric KNN classifier. Specifically, we compute the top-1
KNN classification accuracy using features extracted from the frozen encoder after each phase. The
rationale is that better separation and alignment of class representations in the feature space should
yield higher KNN accuracy, making it a suitable proxy for embedding quality.

Table 16: KNN classification accuracy (%) on CIFAR-100 across different phases of TRAINREF.
Embedding quality improves consistently as the model progresses through the three-phase framework.

Metric Phase I (MIM) Phase II (Ref. Aug) Phase III (1st Iter) Phase III (2nd Iter)

KNN Accuracy (%) 52.18 75.18 77.78 79.12

As shown in Table the embedding quality improves substantially from Phase I to Phase III.
The initial self-supervised encoder achieves modest KNN accuracy (52.18%), reflecting its general-
purpose nature. Fine-tuning on the influence-augmented reference set in Phase II leads to a significant
jump (75.18%), and iterative refinement in Phase III further improves separability, reaching 79.12%
after the second iteration.

These results empirically support our design rationale: although a perfect embedding space is not
assumed, our framework steers the representation space toward that ideal through principled, iterative
refinement. We will revise the main text to make this intent more explicit and to avoid any ambiguity
regarding our assumptions.

F.3 SENSITIVITY ANALYSIS OF 7

Training samples with positive IF(s;, D,.s) larger than threshold d;7 are used to construct an
augmented reference set D}, - In the main experiments we set orrp = 0.8, and here we study its
sensitivity under different values. After constructing Dy, ;, the parameters ¢ and ¢ are updated jointly,

denoted 6.

Table reports F1 scores on CIFAR-100 across three noise settings when varying §;p €
{0.9,0.8,0.7}. The results show stable performance across different thresholds, confirming the
robustness of TrainRef to the choice of 67 5.

F.4 GENERALIZATION TO NON-TRANSFORMER ARCHITECTURES

To assess whether TRAINREF is limited to transformer-based architectures, we investigate its applica-
bility to convolutional neural networks (CNNs), specifically ResNet34.

We note that Phase I of TRAINREF leverages Masked Image Modeling (MIM), which is inherently
tailored to transformer-based architectures such as BEiTv2. This is because patch-level masking
and reconstruction, core to MIM objectives, are not naturally compatible with the inductive biases
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Table 17: Sensitivity analysis of 07 on CIFAR-100. Results are reported as F1 scores.

CIFAR-100 Setting 677 =0.9 6;p =08 07rp =0.7

Sym-50% 0.871 0.942 0.920
Asym-40% 0.834 0.921 0.907
Inst-40% 0.866 0.934 0.919

of CNNs. However, once the reference-guided soft labels are obtained, the curated dataset is
architecture-agnostic and can be used to train alternative backbones.

To explore this, we adopt a hybrid setup where BEiTV2 is used solely for Phase I to obtain soft
labels, and a ResNet34 is trained from scratch in Phases II and III using the curated dataset. Table
summarizes the performance under symmetric and instance-dependent label noise on CIFAR-100.

Table 18: Test accuracy (%) on CIFAR-100 with different architectures. BEiTv2 is used for soft-label
generation, and ResNet34 is trained from scratch on the curated dataset. Despite underperforming
the end-to-end BEiTV2 pipeline, the hybrid setup outperforms the strongest ResNet-based baseline
(L2B-C2D), demonstrating architecture generalizability.

Method (Backbone) Sym. 50% Sym. 80% Inst. 40%
DISC (Li et al.}[2023) (ResNet34) 7521+0.15 57.61+0.29 7844+0.19
L2B-C2D (Zhou et al.;|2024) (ResNet34) 78.10 69.60 -
TRAINREF (BEiTv2 — ResNet34) 7898 +0.11 74.80+0.17 79.87 £0.13
TRAINREF (BEiTv2 end-to-end) 82.07+0.17 77.85+0.35 82.33+0.16

These results show that although using BEiTv2 end-to-end yields the strongest performance—likely
due to continuity in feature learning from MIM to classification—the hybrid setup still achieves
significant gains over state-of-the-art CNN-based baselines. This underscores the robustness and
modularity of our reference-based relabeling framework, which can benefit downstream models
regardless of architecture.

We conclude that while transformer-based architectures are preferred due to their compatibility with
MIM, the relabeling and curation components of TRAINREF are generalizable and transferable to
alternative backbones such as CNNs.

F.5 FAIRNESS OF BACKBONE CHOICE

TRAINREF adopts a transformer-based backbone (BEiTv2) for its end-to-end pipeline, whereas
many prior baselines are implemented with ResNet-50. To ensure that the performance gains of
TRAINREF are not solely attributable to architectural differences, we re-evaluate DISC and L2B
under the same transformer backbone. This provides a fair comparison by aligning backbone capacity
across methods.

Table @]reports results on CIFAR-100 (Sym. 20%, Asym. 40%), WebVision, and Animals-10N.
Transformer backbones improve both DISC and L2B compared to their ResNet-50 counterparts, but
TRAINREF consistently achieves the highest accuracy. This indicates that while backbone choice
contributes to performance, the primary gains arise from the proposed reference-based curation
framework.

Table 19: Test accuracy (%) of DISC, L2B, and TRAINREF with ResNet-50 and transformer
backbones. Results show that TRAINREF’s improvements persist under fair backbone alignment,
confirming that the advantage is not due to architectural bias.

Method (Backbone) CIFAR-100 Sym. 20%  CIFAR-100 Asym. 40%  WebVision ~ Animals-10N
DISC (ResNet-50) 78.75 76.50 80.28 87.10
DISC (Transformer) 80.31 77.52 80.79 88.45
L2B (ResNet-50) 79.67 78.22 80.56 89.03
L2B (Transformer) 80.91 79.03 81.15 89.92
TRAINREF (Transformer) 85.44 79.67 82.28 90.90
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These findings demonstrate that transformer backbones provide benefits across methods, but the
consistent superiority of TRAINREF highlights the effectiveness of its reference-based curation
strategy rather than architectural advantage alone.

G PERFORMANCE UNDER NOISE-FREE CONDITIONS

To further assess the effectiveness and generalizability of TRAINREF, we report its performance
under fully clean training conditions using standard cross-entropy (CE) loss. This experiment serves
to answer whether the proposed soft-labeling framework is still beneficial in the absence of label
noise.

We evaluate TRAINREF and several strong baselines on CIFAR-100 and CIFAR-80N under noise-free
settings. Additionally, we conduct an ablation in which we disable the soft-labeling component of
our method and train solely on one-hot targets derived from the clean labels.

Table 20: Test accuracy (%) on CIFAR-100 (noise-free) and CIFAR-80N (close-set noise-free, open-
set noise at 20%). TRAINREF achieves state-of-the-art performance in both settings, showing benefits
of soft-labeling and robustness under partial open-set corruption.

Method CIFAR-100 (Clean)  CIFAR-80N (20% Open-Set Noise)
CE (Standard Cross-Entropy) 77.87+0.17 64.12+0.16
DISC (Li et al.|[2023) 81.23 £0.10 68.88 +0.13
SED (Sheng et al.;[2024) 67.48 £0.21 69.80 +£0.19
TRAINREF (w/o soft label) 83.77 £0.10 80.19 +£0.13
TRAINREF 85.87 +0.15 82.81+0.20

As shown in Tables[20] TRAINREF achieves 85.87% accuracy on CIFAR-100 and 82.81% on CIFAR-
80N under noise-free conditions. These results are only marginally lower than those obtained under
symmetric 20% noise (85.44% and 81.84%, respectively), with performance drops of just 0.43% and
0.97%. In contrast, the best baseline (DISC) experiences significantly larger degradations of 2.48%
and 8.64%, respectively.

Furthermore, removing the soft-labeling component from TRAINREF leads to noticeable declines
in accuracy, even under clean supervision. This supports our claim that rigid one-hot labels may
introduce inductive bias or semantic overconfidence, particularly in ambiguous instances, and that
learning from distributional supervision remains beneficial.

These findings validate the utility of our approach in both noisy and clean regimes and emphasize the
general-purpose benefit of soft label learning.

H LIMITATIONS

While TRAINREF demonstrates strong performance across noisy vision benchmarks, several limita-
tions remain:

* Generalization to Other Modalities. Our study is limited to image classification tasks. Although
the framework of reference-guided distributional curation is conceptually extensible, adapting
it to other modalities such as text and speech requires careful design of influence functions and
embedding spaces that may differ substantially from vision tasks.

* Scalability to Large-Class Problems. Even though TRAINREF is effective with as little as
one clean sample per class, scaling to tasks with tens of thousands of classes (e.g., fine-grained
clinical coding) still requires non-trivial human effort to collect a sufficiently diverse reference set.
Reducing this dependency on human annotation remains an important direction.

* Reliance on Reference Anchors. The success of our method hinges on the availability of a trusted
reference set, however small. In domains where no reliable clean data exists, alternative strategies
for bootstrapping anchors are necessary.

These limitations highlight opportunities for future work, particularly in extending TRAINREF to
broader modalities and reducing its reliance on human effort in extremely large-scale classification
settings.
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Figure 5: Representative ambiguous CIFAR-100 samples with expert-provided soft labels used to
evaluate distributional-noise curation.

I PER-TYPE ANALYSIS OF CATEGORICAL VS. DISTRIBUTIONAL NOISE

TrainRef is designed to address two complementary forms of label misinformation: (i) categorical
noise, where the ground-truth is one-hot but the observed label is flipped, and (ii) distributional noise,
where the ground-truth should be a soft class distribution due to inherent ambiguity. To quantify

TrainRef’s effectiveness on each type separately, we conduct the following controlled analysis on
CIFAR-100.

Subset construction. We embed all CIFAR-100 training images using a pretrained DINOv2
encoder and compute a local neighborhood label distribution for each sample via k-nearest-neighbor
voting in embedding space. We then use the entropy of this neighborhood distribution as an ambiguity
indicator:
* Distributional-noise subset (ambiguous). We select samples with high neighborhood entropy
(H > 1.5), and randomly sample 50 cases. Three independent experts annotate each case with
a soft label distribution. Representative samples and expert-provided soft labels are shown in
Figure 3]
o Categorical-noise subset (unambiguous + injected flips). We select low-entropy samples (H <
0.1) as unambiguous instances, inject 20% symmetric hard-flip noise, and evaluate TrainRef’s
ability to identify and remove mislabeled samples.

Evaluation metrics. For the categorical-noise subset, we report the mislabeled fraction before and
after curation. For the distributional-noise subset, we measure the KL divergence between TrainRef’s
curated soft labels and the expert soft labels.

Results. After TrainRef curation:

 Categorical noise rate: 20% — 0.32%.
¢ Distributional noise (KL to human soft labels): 1.67 — 1.43.

These results indicate that TrainRef removes categorical noise aggressively by filtering or correcting
clear label flips, while refining distributional noise more subtly by shifting labels toward calibrated
soft distributions rather than discarding them. Importantly, as demonstrated in Table[7] preserving
and curating distributional labels is crucial for both accuracy and confidence calibration, even when
the absolute reduction in KL is smaller.
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J REFERENCE-SET DIVERSITY: MEASUREMENT, AUGMENTATION BEHAVIOR,
AND THRESHOLD SENSITIVITY

TrainRef relies on a small clean reference set D and its influence-augmented expansion D;. A
key practical concern is whether D, is sufficiently diverse to represent semantic modes within each
class, and whether influence-based augmentation preserves or improves this diversity.

Measuring diversity. Diversity is not characterized by set size alone. We measure semantic
diversity within each class using the average pairwise cosine similarity of reference embeddings:

E cos(zi, zj)

Simintra ( )
ref ref | i<j

| D¢
where z; is the DINOv2 embedding of sample 7 and Df,; denotes reference samples in class c. We
report the mean over classes. Lower Simy,, indicates broader coverage of distinct semantic modes
(higher diversity).

Why influence augmentation does not collapse diversity. Influence scores are computed via
gradient alignment with the reference training signal (Sec. 3.1), rather than raw embedding proximity.
A candidate is added to D} if it strengthens (or at least does not conflict with) the reference objective.
As a result, TrainRef can select label-consistent yet embedding-diverse samples, instead of only

near-duplicates of the initial seeds.

Empirical comparison at matched size. To isolate the effect of augmentation strategy from
reference size, we compare two expansions with the same number of added samples per class: (i)
Embedding-NN augmentation, which adds nearest neighbors in embedding space; and (ii) Influence
augmentation (ours), which adds samples with high influence scores (Sec. 3.1). Average intra-class
cosine similarity (lower = more diverse):

¢ Embedding-NN augmentation: 0.67

¢ Influence augmentation (ours): 0.55
Figures [6] and [7] provide qualitative evidence: embedding-NN expansion concentrates around the
initial seeds, while influence expansion covers multiple semantic modes per class.

Influence-threshold sensitivity. The influence threshold §;p primarily controls the cleanliness
of D7; with an indirect cleanliness—diversity trade-off: higher d;r yields a cleaner but potentially
narrower expansion, while lower d1r admits mildly aligned samples that may increase coverage but
risk adding noise. Sensitivity results in Appendix F.3 (Table 17) show TrainRef remains stable across

a reasonable range of dyp, indicating that performance does not hinge on a finely tuned threshold.

K EFFECT OF INITIAL NOISE AND INFLUENCE THRESHOLD ON PHASE III
CONVERGENCE

We provide a theoretical insight into how the initial noise level of the training set (pg) and the
influence threshold (J1r) used in Phase II affect the convergence speed of Phase III co-evolution.

Setup recap. Let pg := P[y # y*] be the initial label noise rate in the noisy training set D. Phase I
augments the clean reference set D,..¢ into D7 . by selecting training samples whose influence score
exceeds Orf.

Define

ac(61r) = Plclean sample added], ., (d1r) = P[noisy sample mistakenly added],

ref

and the noise-to-clean ratio

K((;IF) =
Then the resulting noise rate of D}, is

Pok(d1F)
(1 =po) + por(dir)

q(d1ripo) = (1D)
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Figure 6: Embedding-NN augmentation expanded from the same initial D..;. The expansion clusters
tightly around the seeds, indicating limited diversity gain.

Initial Reference Set (Test - 1 per class) Proposed Augmented Reference Set (Influence - up to 100 per class)
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Figure 7: Influence-based augmentation expanded from the same initial D,.s. The expansion covers
multiple semantic modes per class, increasing reference diversity.

Assumption K.1 (i.i.d. soft voting model). For a fixed sample with true label y*, let Z; € [0, 1]
denote the soft weight assigned to y* by the j-th voting neighbor in the C-step. Assume {Z; }le are

i.i.d. with mean p(01r; po) > 3.
Assumption K.2 (Clean/noisy neighbor separation). There exists 5 € (1/2, 1] such that

pe(Orr) == E[Z; | jclean] > B, pu(dir) := E[Z; | j noisy] <1 — 3.

Key bound on C-step error. Let Z = % ZKzl Z; be the average soft support for the true class.
By Hoeffding’s inequality and Assumptions @-@
P[C-step wrong] = P[Z < 1] < exp(—2K(u — 1)?)
< exp(—c (1 = 2(0rip0))?) (12)

where ¢ := 2K (8 — %)2 Thus, a cleaner augmented reference set (smaller ¢) yields a smaller C-step
error.

Assumption K.3 (Co-evolution error contraction). One full co-evolution iteration contracts the
classification error:

err1 < p(po, ir) er,  p(po, 61r) = exp(—c (1 — 2q(dir;po))?) € (0,1).
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Theorem K.4 (Iteration complexity of Phase III). Under Assumptions[K.1|and[K.3] if q(51r: po) < &,
then Phase Il converges linearly:

et < p(po, d1r)"eo-
To achieve e; < ¢, it suffices to take

log(eo/e) ~_ log(eo/e) (13)
— —logp(po,dir)  c(1 —2q(01r;po))?
Setting ey ~ po and substituting equation[I]]yields
2
1—
T> log(po/¢) ) (( Po) +p0“(5IF)) (14)

c (1= po(1 + k(6r)))°

Interpretation. Equation equation |14/ makes the dependence explicit:
* Effect of initial noise p,. Larger p, increases the required iterations through both the log(po /<)
term and by enlarging ¢(d1r; po), which weakens the contraction factor.
 Effect of influence threshold d1r. Increasing djp makes Phase II selection more stringent,
decreasing (drr) and thus ¢(d1r; po). This strengthens contraction and reduces T'. Conversely,
an overly low threshold may admit more noisy references, increasing ¢ and slowing convergence.

Example. Suppose pg = 0.5, éip = 0.8, and £(d1r) =~ 1/20 (i.e., clean samples are ~20x more
likely to be selected than noisy ones). To reach € = 0.2, equation[T4] gives

log(5/2) (1+k)* 112
c (1-r2 ¢

Tz

suggesting that only ~2 iterations are sufficient when ¢ ~ 1. Empirically, we observe that 3 Phase III
iterations are enough for convergence across most noise settings, consistent with the bound.

L USE OF LARGE LANGUAGE MODELS

In preparing this manuscript, we employed large language models (LLMs) solely as auxiliary tools
for language refinement. Their usage was limited to polishing expressions, checking grammar, and
improving readability. No parts of the technical content, experimental design, analysis, or results
were generated by LLMs. All scientific contributions, methods, and evaluations presented in this
paper were conceived, implemented, and validated entirely by the authors.
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