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Abstract
Large Language models (LLMs) are trained
on vast amounts of data, including sensitive
information that poses a risk to personal pri-
vacy if exposed. LLMs have shown the ability
to memorize and reproduce portions of their
training data when prompted by adversaries.
Prior research has focused on addressing this
memorization issue and preventing verbatim
replication through techniques like knowledge
unlearning and data pre-processing. However,
these methods have limitations regarding the
number of protected samples, limited privacy
types, and potentially lower-quality generative
models. To tackle this challenge more effec-
tively, we propose “DeMem,” a novel unlearn-
ing approach that utilizes an efficient reinforce-
ment learning feedback loop via proximal pol-
icy optimization. By fine-tuning the language
model with a negative similarity score as a re-
ward signal, we incentivize the LLMs to learn a
paraphrasing policy to unlearn the pre-training
data. Our experiments demonstrate that De-
Mem surpasses strong baselines and state-of-
the-art methods in terms of its ability to gener-
alize and strike a balance between maintaining
privacy and LLM performance.

1 Introduction

Large language models (LLMs) have experienced
exponential growth in recent years, scaling up from
millions to billions to trillions of parameters (Rad-
ford et al., 2019; Brown et al., 2020; Chowdhery
et al., 2022; Fedus et al., 2021). As their scale
increases, the training sets for these models also
expand to billions of tokens (Gao et al., 2020), lead-
ing to overall performance improvements, even in
few-shot learning scenarios (Brown et al., 2020).
However, this growth in model size and training
data has raised practical concerns regarding privacy
risks associated with memorizing the training data.
Adversaries can extract individual sequences from
a pre-trained model, even if the training dataset is
publicly available (Carlini et al., 2021).
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Figure 1: First, LLM is pre-trained on large corpora
in which Deduplication is applied. Then, a subset of
training corpora is employed to learn the LM a DeMem
Policy via negative similarity feedback.

Studies have shown that a language model with
6 billion parameters (GPT-J) can memorize at least
1% of its training data (Carlini et al., 2022). One
potential cause of this memorization is the train-
ing strategy of the language model, as its objec-
tive is to identify the relationships between tokens,
either in an auto-regressive LM setup or through
masked language modelling (MLM) (Devlin et al.,
2018), where the model predicts the masked to-
kens based on their surrounding context (Radford
et al., 2018). Additionally, repeated instances in
the training corpus can contribute to memorization,
as more frequent examples are more likely to be
memorized (Lee et al., 2021). To address the is-
sue of memorization in LLMs, several approaches
have been proposed, including data sanitization
(Lison et al., 2021), the application of differen-
tial privacy algorithms(Abadi et al., 2016; Anil
et al., 2021; Li et al., 2021; Tramèr et al., 2022;
Basu et al., 2021), data deduplication (Kandpal
et al., 2022), and knowledge unlearning (Jang et al.,
2022). These techniques aim to prevent the gener-
ation of memorized content. However, they also
come with certain drawbacks. Data sanitization



assumes that private information can be easily iden-
tified and is not context-dependent. Differential
privacy can lead to lower-quality generative models
(Anil et al., 2021). On the other hand, knowledge
unlearning restricts the number of samples that can
be forgotten at once to avoid degrading the overall
capability of the language model, which may limit
its effectiveness in real-world scenarios.

In this study, we propose DeMemorization (De-
Mem), a reward-based (un)learning framework for
language models. DeMem leverages a paraphras-
ing policy to address memorization, using a nega-
tive similarity metric as a reward to encourage the
language model (LM) to unlearn.

Given samples of prefixes and suffixes from the
original pre-training data of the language model,
we use a prefix as input for the language model to
generate the suffix; then, we compute the negative
BERTScore (Zhang et al., 2019) to measure the
dissimilarity between the true suffix and generated
suffix, the dissimilarity scores are then regarded as
a reward signal to maximize in the training process,
which guarantees that the approximate memoriza-
tion will be mitigated.

For instance, given a training sample like "Alice
Green lives at 187 Bob Street," where the prefix is
"Alice Green lives at" and the suffix is "187 Bob
Street", our goal is to have the fine-tuned LM para-
phrase the suffix as "12 Red Street." This para-
phrasing approach minimizes the memorization
relationship between the prefix and suffix without
erasing the training sample from the LM’s parame-
ters or replacing it with meaningless content, which
can negatively impact the LM’s performance

We conducted experiments using GPT-Neo and
OPT LMs (with models ranging from 125M to 2.7B
parameters) (Black et al., 2021; Zhang et al., 2022).
DeMem achieved little to no performance degra-
dation on the initial LM capabilities measured via
nine common NLP classification benchmarks (Hel-
laswag (Zellers et al., 2019), Lambada (Paperno
et al., 2016), Winogrande (Sakaguchi et al., 2021),
COPA (Roemmele et al., 2011), ARC-Easy, ARC-
Challenge (Clark et al., 2018), Piqa(Bisk et al.,
2020), MathQA (Amini et al., 2019), and Pub-
medQA (Jin et al., 2019)).

We also evaluate DeMem on increasing the con-
text of the prefix, as many studies show that as a
longer context is provided, the memorization ratio
increases (Carlini et al., 2021, 2022). The pro-
posed framework makes no explicit, implicit as-

sumptions or limitations about the data’s structure
or size to be protected. Also, unlike the DP meth-
ods, the proposed framework does not apply any
partition mechanism to split the data into public
data and private data; as language data cannot be
partitioned(Brown et al., 2022), we apply the policy
on all training data as defining, partitioning data
into private and public, and limiting the number of
samples inadequate in the real-world scenarios.

To summarize, our main findings are the follow-
ing:

• Using a reinforcement learning feedback ap-
proach results in little to no performance
degradation of general capabilities while be-
ing practical, consistent, and independent of
increasing the number of protected samples.
At the same time, maintaining the fluency and
coherence of the generated samples.

• As the language model size increases, the con-
vergence rate improves. Convergence refers
to the model-generated suffixes diverging sig-
nificantly from the original ones while the
perplexity difference between generated and
original examples decreases.

• As the size of a language model increases, the
dissimilarity score increases. This suggests
that larger models may tend to "forget" the
memorized data faster.

• Combining Deduplication with DeMemo-
rization enhances privacy with insignificant
degradation(∼0.5%) in the Language model
performance.

2 Background

2.1 Memorization Definitions

In the context of memorization in large language
models, we follow the definition proposed by (Lee
et al., 2021), which introduced approximate mem-
orization. Given a string S, splitted into prefix (P)
and suffix (ST ). We fed the prefix to the LM to
get the generated suffix (SG). The memorization
is measured with the chosen edit distance between
the true and generated suffix. In our study, we
choose the edit distance to be a similarity measure
(SacreBLEU (Post, 2018)) as proposed in (Ippolito
et al., 2022), to be able to capture the approximate
memorization, not just the “Eidetic memorization”
(Carlini et al., 2021) as the definition of verbatim



memorization fails to include more subtle forms of
memorization (Ippolito et al., 2022).

2.2 RL In Language Models

Unlearning undesirable behaviors is more compati-
ble with the reinforcement learning (RL) paradigm.
In the realm of NLP, RL has been employed to
enhance scalar metrics through reward optimiza-
tion (Ramamurthy et al., 2022; Ziegler et al., 2019;
Ouyang et al., 2022). Lately, RL has gained promi-
nence for addressing undesirable behavior, includ-
ing toxicity, social biases, and offensive speech.
This is accomplished by using Proximal Policy Op-
timization (PPO) (Schulman et al., 2017) to opti-
mize a Language Model (LLM) based on a reward
model. In this paper, we investigate using RL with
a language model to mitigate privacy risks associ-
ated with memorization.

3 Related Work

In this section, we delve into recent studies to miti-
gate memorization in language models, which can
be categorized into three main approaches: data
pre/post-processing, differential privacy methods,
and knowledge unlearning.

Data Pre/Post-Processing: This approach re-
duces memorization in training data by applying
filters before or after feeding it into the language
model. One method is data deduplication (Kandpal
et al., 2022), which removes duplicates and im-
proves model performance. However, it only par-
tially protects against memorization as the model
can still memorize non-duplicate sequences. An-
other approach is "MemFREE decoding" (Ippolito
et al., 2022), which efficiently checks the memo-
rization in the LM generation by an n-gram in the
training dataset.

Differential Privacy (DP): is a widely-used
technique for training models to prevent memoriza-
tion of individual training examples (Abadi et al.,
2016). While effective for fine-tuning language
models (Yu et al., 2021; Li et al., 2021), DP often
reduces performance compared to non-private
models (Anil et al., 2021). State-of-the-art
language models are typically trained without DP,
using large amounts of data and computational
resources. DP algorithms are computationally
expensive, slower to converge, and have lower
utility compared to non-private methods (Anil
et al., 2021). Applying DP to language data is
challenging due to defining private information

boundaries (Brown et al., 2022).
Knowledge Unlearning (UL): is an effective
method that reverses the training objective of mini-
mizing the negative log-likelihood for forgotten
tokens. It minimally affects language modeling
performance in larger models for a small number of
samples. UL has two approaches: batch unlearning
for multiple samples and sequential unlearning
for smaller chunks. However, unlearning a large
number of samples at once significantly degrades
average language model performance. While
UL effectively addresses memorization, it has
not been tested on sample sizes larger than 128.
Also, It does not preserve fluency or coherency for
generated suffixes, which are crucial for practical
applications.

In this work, we compare our proposed method
with a data-preprocessing approach proposed by
(Kandpal et al., 2022), which shows that deduplicat-
ing helps minimize data memorization. While this
method is effective, we show that memorization is
still high in the LMs pre-trained with this approach;
thus, we show that combining pre-processing with
our approach, “DeMemorization,” effectively miti-
gates memorization. We also compare our method
with UL and show it is not inadequate or impracti-
cal in real-world scenarios due to a limited number
of samples to forget at once.

4 Methodology

4.1 DeMemorization Via Dissimilarity Policy

DeMemorization framework operates by learning a
paraphrasing policy to mitigate memorization risks.
We divide each sample into prefixes and suffixes
using an LM and a subset of pre-training data. The
unlearning process is as follows: we select a prefix
P and a true suffix ST , then input the prefix into
the pre-trained LM to produce a suffix SG. Using
a negative similarity metric, we evaluate how the
generated suffix is dissimilar to true. We use that
as a reward signal to encourage the LM to develop
a paraphrasing policy, generating dissimilar tokens
to minimize memorization. These steps can be
summarized as follows:

P, ST ∼ Dt (1)

SG = fθ(sGi+1 |xP1 , ..., xPi) (2)

DisScore = −BERTScore(SG, ST ) (3)



4.1.1 Reward Function
To yield the desired outcome of paraphrasing to
mitigate memorization risk, we need to employ a
similarity function to achieve this goal. The pro-
posed reward function should allow changes in
words or even the entire sentence while preserving
the semantic meaning. Also, while learning the
paraphrasing technique, we aim to ensure that the
fine-tuned or Dememorized LM stays within the
original LM to avoid potentially less coherent and
relevant generation.

Learning Dissimilarity with BERTScore.
To achieve the dissimilarity goal, we employ
BERTScore. One advantage of BERTScore over
other contextual embedding methods is the ability
to operate on pairwise tokens using contextual em-
beddings, providing a more flexible definition of
dissimilarity in our context. This flexibility means
that BERTScore can yield a high similarity score
for different words that share the same entity, en-
couraging the language model to learn a paraphras-
ing policy effectively. We employed the F-score
metric produced using BERTScore.

Achieving Stability Via KL Penalty. To
achieve the stability goal, we introduce a KL di-
vergence penalty term to quantify the dissimilarity
between these two policies. This step helps en-
sure that our optimization process remains within a
trustworthy region. The KL divergence, calculated
for the policies, is expressed as:

KL(θ||θc) =
∑
i∈[1,t]

πθ(ai|si) · log
πθ(ai|si)
πθc(ai|si)

(4)

Here, we denote θ as the pre-trained policy, repre-
senting a model that has undergone initial training
without fine-tuning. Additionally, we introduce θc
as the updated policy, which signifies the policy
after fine-tuning or further training.". We deduct
KL divergence with default value weight β = 0.2
as a penalty term.

4.1.2 Policy Optimization Via PPO
To optimize the policy, we employ a Proximal Pol-
icy Optimization (PPO) methodology, incorporat-
ing a top-p sampling rate of 0.95, a technique com-
monly referred to as Natural Language Policy Opti-
mization (NLPO), as elaborated in-depth in (Rama-
murthy et al., 2022) (please refer to Appendix A for
comprehensive elucidation). A value network V
is included beside the language modeling head to
estimate the value function. The batch size is 32 for

all models; we selected a specific number of steps
for each model as the convergence rate for each
model is different. We mean by convergence in this
context that the model-generated suffixes become
significantly different from the original suffixes but
without a considerable loss in the perplexity as the
difference between the perplexity of the generated
examples and original examples becomes smaller,
so we selected the appropriate number of steps that
balance between these goals.

4.2 Measuring Memorization In Language
Models

As mentioned in subsection 2.1, we adopt the con-
cept of approximate memorization, as it provides a
more precise and adaptable approach to capturing
subtle forms of memorization compared to the limi-
tations of exact memorization. We employ a widely
accepted text similarity measure from standard Nat-
ural Language Processing (NLP) evaluation tech-
niques to quantify approximate memorization accu-
rately: the SacreBLEU metric. SacreBLEU is an
improved version of BLEU, known for its stability
in measuring the quality of machine-generated text.

To measure forgetting, we consider the negative
of SacreBLEU. By utilizing SacreBLEU as a met-
ric for estimating approximate memorization, we
define DeMemorization or forgetting as the process
of minimizing the relationship between the given
prefix P and the suffix S.

This relationship represents the information that
the adversary seeks to extract based on the given
prefix. The metric we mentioned quantifies this
relationship. In an example scenario, an adversary
has the personal email address "bob@adam.com"
and seeks to obtain the password. If the LM has
memorized this association, it can provide the pass-
word "12345" when given the email, however,
by minimizing or altering their relationship. LM
can generate a different suffix as the password
"0912,",

As a result, the generated suffixes are valid and
meaningful output without memorizing sensitive
information. This approach achieves the dual ob-
jectives of preserving the LM’s general capability
and the fluency of generated suffixes while ensur-
ing privacy. Also, the solution is more practical
in real-world situations than completely removing
all information, which can negatively impact the
capabilities of the language model (LM).
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Figure 2: Illustration of sequence splitting in the training
& evaluation data.

5 Experiments

In this section, we begin by introducing the dataset
used for training and assessing the paraphrasing
policy. Subsequently, we assess the overall per-
formance of the dememorized LM general per-
formance on nine benchmarks. We then estab-
lish the baseline methods for comparison. Finally,
we define the evaluation metrics that enable us to
measure the memorization and the performance in
downstream tasks.

5.1 Experimental Settings

5.1.1 Memorization Dataset
We employed a subset of the Pile dataset, released
as a benchmark for training data extraction attacks
on large Language Models. Generally, the Pile
dataset contains data from 16 different sources
(e.g., books, Web scrapes, open source code).
We used this version of the subset 1, designed
to be easy to extract to assess targeted attack
performance. The dataset contains only 15,000
samples since the full version has not been
released yet. Each sample consists of 200 tokens
sampled randomly from the Pile training set. The
topics included in the subset are code, news, logs,
conversations, copyrights, links, etc. Most of them
are in the English language. The dataset is splitted
into 13,500 samples for training and 1,500 samples
for testing.

Training & Evaluation Data. Each sample
consists of a 200-token sequence divided into 100
pre-prefix tokens, 50 prefix tokens, and 50 suffix
tokens. During the training phase, we exclusively
utilized the prefix and suffix tokens. However, we
tested the model in two different settings during the

1https://github.com/google-research/
lm-extraction-benchmark

evaluation phase. In the first setting, we evaluated
the model’s ability to predict the suffix when pro-
vided with only the prefix. In the second setting,
we evaluated the model’s capability to predict the
suffix when given the pre-prefix and prefix. This
evaluation assessed the model’s capacity to protect
against acquiring additional information or knowl-
edge. A longer context in a language model can be
considered a form of attack (Carlini et al., 2022).
The sequence splitting is illustrated in Figure 2.

5.1.2 Downstream Tasks
To ensure stronger privacy protections for language
models (LMs) without compromising their original
capabilities, we undertake a comprehensive evalu-
ation that encompasses both privacy risks and the
inherent strengths of LMs. This evaluation involves
quantifying the LMs’ performance across various
classification tasks to assess their general capabil-
ities. The tasks include Hellaswag (Zellers et al.,
2019) and Lambada (Paperno et al., 2016) bench-
marks, which gauge linguistic reasoning abilities,
as well as Winogrande (Sakaguchi et al., 2021)
and COPA (Roemmele et al., 2011), which mea-
sure commonsense reasoning abilities. Addition-
ally, we utilize ARC-Easy, ARC-Challenge (Clark
et al., 2018), Piqa (Bisk et al., 2020), MathQA
(Amini et al., 2019), and PubmedQA (Jin et al.,
2019) benchmarks to assess scientific reasoning
abilities. In addition to these classification tasks.
We also measure the perplexity on the Wikitext
(Merity et al., 2016) and Lambada (Paperno et al.,
2016) datasets to gain insights into the LMs’ lan-
guage understanding and modeling. Whenever pos-
sible, we use the test sets for these evaluations;
otherwise, we resort to the validation sets. Also,
we did not report Lambada’s perplexity & and ac-
curacy as it shows high values for perplexity & low
values for accuracy for the UL baseline. To discard
the anomaly and better assess the performance, we
report it in Appendix E.

5.1.3 Baseline Methods
Our experiments used the GPT-NEO family (125M,
1.3B, 2.7B), pre-trained on the publicly available
825GB Pile dataset. Additionally, we employed
the OPT family (125M, 1.3B, 2.7B) (Zhang et al.,
2022), which was pre-trained on a subset of the
deduplicated version of the Pile, along with other
corpora from diverse domains. OPT served as our
baseline method for deduplication, as per (Jang
et al., 2022), since the deduplicated version of GPT-

https://github.com/google-research/lm-extraction-benchmark
https://github.com/google-research/lm-extraction-benchmark


Model #Samples N-SacreBLEU↑ LM (ACC)↑ LM (PPL)↓ GEN (PPL)↓ Epochs/Steps

NEO125M

32 58.44 3.46 -
128 58.41 43.36 32.28 3.83 -
256 58.82 3.79 -

+UL
32 99.19 38.62 31098.06 19.77 18

128 99.69 36.87 9683877.08 6.54 18
256 99.63 36.34 25146.84 6.03 18

+DeMem
32 67.07 3.74

128 66.21 43.46 33.13 3.93 4
256 67.05 3.95

NEO1.3B

32 30.76 2.02 -
128 34.7 48.93 16.16 2.18 -
256 33.95 2.18 -

+UL
32 99.57 48.61 24.38 4.37 14

128 98.33 41.55 188.65 5.83 8
256 99.15 41.34 62.34 5.37 7

+DeMem
32 52.03 2.44

128 51.34 49.40 16.70 2.62 2
256 52.58 2.65

NEO2.7B

32 26.26 1.8 -
128 27.25 52.67 13.93 1.92 -
256 27.37 1.92 -

+UL
32 99.54 49.70 324.68 4.93 11

128 97.77 47.42 41.50 9.67 8
256 99.37 39.80 118.68 4.53 8

+DeMem
32 49.24 2.3

128 50.81 52.48 14.15 2.38 2
256 50.91 2.35

Table 1: Main Results: GPT-NEO averaged 5 random
samples (s = 32, 128, and 256) for UL. NEO = initial
GPT-NEO LM. UL+ = knowledge unlearning, DeMEM
= DeMemorization. LM ACC. = average accuracy of
8 classification datasets, LM PPL = perplexity of Wiki-
text dataset, GEN PPL = perplexity of generated suffix.
Steps for DeMEM & Epochs for UL

NEO LMs by (Kandpal et al., 2022) were not pub-
licly accessible. We also applied DeMemorization
to the OPT LMs, which can be seen as a combina-
tion of the deduplication approach and DeMemo-
rization, resulting in a significant enhancement in
the privacy of these models. Furthermore, we in-
cluded UL (Jang et al., 2022) as a second baseline
method to highlight weaknesses and distinctions.

5.1.4 Implementation Details

For training, we utilized the training subset and fine-
tuned the GPT-Neo & OPT LMs fine-tuned them
for multiple iterations depending on the model size.
To compare our proposed method with UL & dedu-
plication, we followed the configuration proposed
by (Jang et al., 2022) to ensure an adequate com-
parison, as we randomly sample s samples from
the test subset and evaluate the models on those
samples for UL since it forgets s samples only at
once, we make the LM forget the s samples and
then evaluated. To follow the same configuration,
we show the average results of 5 random samplings
of s samples for all of our experimental settings.

To explore the impact of increasing the sample
size to be forgotten, we performed five random sam-
plings of 32, 128, and 256. DeMemorization was
carried out using a batch size of 32, and a default

Model #Samples N-SacreBLEU↑ LM (ACC)↑ LM (PPL)↓ GEN (PPL)↓ Epochs/Steps

OPT125M

32 89.24 9.69 -
128 90.98 41.28 31.94 9.76 -
256 91.03 9.67 -

+UL
32 99.23 37.06 449131.90 12.16 9

128 99.35 36.48 54917065.46 10.44 9
256 99.21 37.19 114952.53 13.64 9

+DeMem
32 94.88 10.86

128 95.30 42.25 33.13 10.78 4
256 95.61 10.58

OPT1.3B

32 71.63 6.72 -
128 71.96 51.65 16.41 6.92 -
256 71.7 6.80 -

+UL
32 99.50 39.16 ⋆ 11.19 7

128 99.84 38.67 ⋆ 7.93 8
256 99.52 36.85 ⋆ 10.7 7

+DeMem
32 92.51 9.78

128 91.56 51.40 17.39 9.47 2
256 91.91 9.25

OPT2.7B

32 71.80 6.27 -
128 67.56 53.74 14.31 6.48 -
256 66.32 6.3 -

+UL
32 99.15 38.60 ⋆ 7.15 11

128 97.87 41.06 ⋆ 13.43 7
256 99.48 38.20 ⋆ 7.6 8

+DeMem
32 94.53 8.28

128 93.08 52.20 15.25 8.31 2
256 93.24 8.16

Table 2: Main Results: OPT averaged 5 random sam-
ples (s = 32, 128, and 256) for UL. UL = knowledge
unlearning, DeMEM = DeMemorization. LM ACC =
average accuracy of 8 classification datasets, LM PPL =
perplexity of Wikitext dataset, GEN PPL = perplexity
of generated suffix. ⋆ means that the value is so high,
Reaching infinity. Epochs for UL & Steps for DeMeM.

value of learning rate of 1.41×10−5 was applied to
all models. We use the default value of KL Beta of
0.2 and a clip range of 0.2. The GPT-Neo & OPT
LMs were employed using the official release in the
Hugging Face library. For UL training and mem-
orization evaluation, we utilized the official code
provided by the authors. For the selection of hyper-
parameters, see Appendix F. In downstream tasks,
we employed the lm-evaluation-harness framework
(Gao et al., 2021) for all baseline methods.

5.1.5 Evaluation Metrics
We conducted a comprehensive evaluation of De-
Memorization and baseline methods, employing a
multi-perspective approach to assess their effective-
ness in three key areas:

(1) Measuring Forgetting: As mentioned in
subsection 4.2, we employed negative Sacre-BLEU
to quantify memorization.
(2) Evaluating Generated Suffixes: To assess text
fluency, we utilized the perplexity score of the un-
derlying original model before forgetting. This
metric enabled us to assess the grammatical cor-
rectness and coherence of the generated suffixes.
(3) Performance on Downstream Tasks: We as-
sessed the performance of the unlearned models
across nine classification tasks, employing accu-
racy scores and perplexity measurements on Wiki-
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text and Lambada.

5.2 Experimental Results & Discussion

We conducted comprehensive experiments to as-
sess the performance of DeMemorization against
the baseline methods. Our main observations are
as follows:

5.2.1 Overview of The DeMemorization
Performance

We comprehensively evaluated the DeMemoriza-
tion approach on nine classification tasks, wikitext
for perplexity, and the generated samples. The eval-
uation results, as shown in Table 1, demonstrate
that the DeMemorization approach effectively pro-
vides privacy and decreases the memorization for
GPT-NEO while maintaining the LM general ca-
pability, measured by evaluating the classification
tasks. It also maintains the fluency of the general
LM and generated suffixes. On the other hand, the
UL approach provides more robust protection since
it removes the data points completely from the train-
ing data, which lowers the general LM capability
by a large margin. This is effective privacy-wise but
needs to be more practical from the performance
perspective. Thus, we tried to balance this tradeoff
by employing the DeMemorization approach. We
provide the results for each dataset in Appendix E
for reference.

5.2.2 Deduplication With DeMemorization &
UL

We included OPT LMs as a baseline for the pre-
processing technique, which applies deduplication
to decrease memorization. Deduplicating the train-
ing data has effectively mitigated memorization, as
Table 1, Table 2 demonstrate. OPT models (dedu-

plicated) exhibit higher N-sacreBLEU scores than
NEO (non-duplicate version) models while achiev-
ing similar or better performance in downstream
tasks. However, even in these models, memoriza-
tion remains high, as only a portion of the memo-
rized samples are duplicates.

Therefore, we explored the UL approach and De-
Memorization. The models that utilized both frame-
works benefited significantly and became more ro-
bust privacy LMs. While UL reduced memoriza-
tion by approximately 99% of N-sacreBLEU, it
also negatively impacted the general capability of
the LM, resulting in an ∼11% difference from the
original LM across various configurations. On the
other hand, DeMemorization achieved compara-
ble results to UL, with a reduction of ∼94% in
memorization, without the need to completely re-
move training data points from the LM parameters.
In comparison, the loss in general LM capability
was insignificant, at around ∼0.5%, in the case of
125M and NEO 1.3B DeMemorization, even en-
hanced performance. These findings suggest that
employing a combination of deduplication and De-
Memorization effectively mitigates memorization
while maintaining the general capability of the LM.
Since data deduplication is applied in most of the re-
cent & large language models (Penedo et al., 2023;
Touvron et al., 2023; Biderman et al., 2023; Taylor
et al., 2022; Scao et al., 2022; Black et al., 2022),
we believe our approach combined with deduplica-
tion will effectively mitigate memorization.

5.2.3 Number of Samples, Stability, &
Universal Policy

We investigated the impact of increasing the num-
ber of samples on the performance of both UL and
DeMemorization. In line with the findings from
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Figure 4: Threshold of 75% SacreBLEU of The Generated Samples Before & After DeMemorization For Neo 2.7B
Longer Context.

(Jang et al., 2022), UL is sensitive to the number
of samples being unlearned simultaneously. Our
experimental results validate this observation in Ta-
ble 1, Table 2. As the number of samples increases,
we observe a decrease in the LM’s performance.
On the other hand, DeMemorization demonstrates
a different behavior as it is unaffected by the num-
ber of samples as shown in Figure 3. In DeMemo-
rization, the LM is fine-tuned one-time using nega-
tive similarity as a reward during training, followed
by evaluation on a separate test set. This allows
the model to learn a universal policy to forget an
unlimited number of samples. Here, the term "un-
limited" signifies the absence of any restrictions,
assumptions, or re-training of the LM regarding the
number of samples to be unlearned.

In UL, however, the model is fine-tuned and
evaluated on the same samples to forget them at a
time. To unlearn or forget multiple samples, the
model needs to undergo fine-tuning multiple times
through sequential or batch unlearning. In each
iteration, the model is fine-tuned with a specific
number of samples (typically 32, as suggested by
the authors) to prevent a decrease in the LM’s over-
all capability. This can be regarded as an assump-
tion about the number of samples to be protected
simultaneously, leading to an incomplete solution.
See Appendix G to highlight more UL framework
assumptions.

5.2.4 Perplexity of WikiText & Generated
Suffix

Perplexity serves as a crucial metric for assessing
the overall performance of a Language Model (LM)
in terms of its ability to generate fluent and coherent
text. We computed perplexity for Wikitext and
presented the results in Table 1, Table 2.

DeMemorization had a minimal impact on per-

Model #Parameters BEFORE AFTER
N− SacreBLEU ↑ PPL ↓ N− SacreBLEU ↑ PPL ↓

NEO
125M 45.74 4.12 55.04 4.15
1.3B 59.58 6.64 88.91 7.68
2.7B 10.55 1.41 32.66 1.54

OPT
125M 89.35 11.99 94.47 12.38
1.3B 59.58 6.64 88.91 7.68
2.7B 56.35 5.95 89.37 6.76

Table 3: Comparsion of Negative SacreBLEU & Per-
plexity Means Before & After Applying The Framework
On a Longer Context; 100 Extra Tokens Combined With
The Prefix

plexity for all models. UL showed significantly
higher perplexity in some cases, even reaching in-
finity. UL’s high perplexity is attributed to its gradi-
ent ascent approach, which softens the probability
distribution and leads to a more uniform distribu-
tion and higher perplexity. However, this softening
procedure degrades LM performance as the model
becomes less confident in generating tokens. We
also evaluated the perplexity of unlearned samples,
which is crucial in practical applications where the
unlearned data domain is used. DeMemorization
caused an average degradation of approximately
0.5% in NEO models and around 1.5% in OPT
models. UL exhibited higher degradation in both
models due to the complete removal of correspond-
ing data points from the model parameters.

5.2.5 Protection Against Discoverability
Phenomenon

Discoverability phenomenon refers to the obser-
vation that some memorization only becomes ap-
parent under certain conditions, such as when a
model is prompted with a sufficiently long con-
text. (Carlini et al., 2022) found that the fraction
of extractable sequences increases in a log-linear
fashion with the number of tokens in the context.



Prefix True Suffix Generated Suffix-Before Generated Suffix-After N-SacreBLEUB N-SacreBLEUA PPLB PPLA

"POT-Creation-Date: 2017-02-24 11:50-0800\n" "PO-
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"Language-Team: LANGUAGE
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80.12 96.52 3.80 6.64

Figure 5: Generated & True Suffixes given the prefixes before & after applying DeMem. Green indicates that this
part is memorized according to the true suffix, while red indicates that it’s dissimilar.

For example, with a context of 50 tokens, approxi-
mately 33% of training sequences can be extracted
from the NEO-6B model. However, with a context
of 450 tokens, this percentage rises to 65%.

We evaluated our DeMemorization approach by
increasing the prefix context from 50 to 150 tokens.
The results in Table 1, Table 2 show that extending
the context does not significantly impact the 125M
model in NEO, with a forgetting rate decrease from
58.44% to 45.47%, and has no effect in OPT-125M.
However, for larger models like 1.3B and 2.7B, a
longer context considerably reduces the forgetting
rate by approximately 49% in NEO and around
10% in OPT. Nevertheless, DeMemorization effec-
tively counters this type of attack, increasing the
forgetting rate by approximately 10% for the 125M
model and approximately 30% for larger sizes in
OPT & NEO as shown in Table 3. This demon-
strates the universality and generalizability of the
learned policy across various scenarios.

5.2.6 Approximate Memorization Threhold
Based on (Ippolito et al., 2022), a BLEU score of
75% for the generated suffix is considered a suit-
able threshold for determining approximate mem-
orization. However, our investigation found that
even a threshold as low as 50% after applying the
framework can mitigate this issue. Nevertheless,
we chose to use the widely accepted threshold of
75% to demonstrate the effectiveness of our frame-
work. Applying DeMemorization to the LM re-
sulted in a significant decrease in memorized sam-
ples. For GPT-Neo 1.3B and 2.7B, approximate

memorization examples decreased from 910 to 497
and 1036 to 321, respectively (refer to Appendix B
for other models). The red region in Figure 4 rep-
resents samples with scores equal to or above 75%.
After DeMemorization, the distribution of samples
spreads more evenly across different values instead
of being concentrated beyond the 75% threshold.
Box plots (see Appendix D) confirm the efficiency
of the DeMemorization approach, as evidenced by
the median of the sample’s distribution before and
after DeMemorization.

5.2.7 Qualitative Results
Figure 5 demonstrates that the framework is capa-
ble of learning a policy that reduces or eliminates
the amount of memorized personal data, such as
email addresses. However, it should be noted that
in certain instances, this can increase perplexity.
More samples demonstrating Dememorization can
be found in Appendix C.

6 Conclusion

In this paper, we present a novel framework that
tackles the problem of training data memorization
in LLMs. We achieve this by employing an RL
paraphrasing policy. Through extensive evalua-
tions conducted in diverse settings, we demonstrate
the effectiveness of our approach. Our framework
successfully reduces memorization by significantly
decreasing the SacreBLEU score while preserving
the overall capabilities of the LM as measured by
nine classification benchmarks.



Limitations

One of the limitations of our work is that it relies
on a single scalar reward for optimization, as the
problem has dual objectives: dissimilarity and per-
plexity. To overcome this limitation, we suggest
exploring other techniques, such as Multi-objective
Reinforcement Learning, which can potentially en-
hance performance and optimize both objectives
simultaneously.

Ethics Statement

Improving the large language model to be privacy-
preserving is crucial since the language models
have become more prominent and involved in many
applications in multi-aspect of life. Ensuring the
data privacy of those models is vital since some ad-
versary may be able to reach that information. To
make those models widely used, we have to guaran-
tee they cannot emit private data. In this paper, we
hope our work will serve as a foundation for devel-
oping new and innovative solutions to the problem
of approximate memorization in large language
models since verbatim memorization can give a
false sense of privacy, as earlier work suggested.
Our proposed framework provides a promising ap-
proach to addressing this issue. Further research
and experimentation in this area can lead to even
more effective methods for reducing memoriza-
tion in these models. Our work also highlights the
importance of considering both the computational
cost and the performance trade-off when develop-
ing new techniques for addressing memorization in
large language models.
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A Natural Language Policy Optimization vs PPO

To tackle the challenge posed by large action spaces in language generation tasks, the NLPO (Natural
Language Policy Optimization) framework was proposed. Previous research by (Ramamurthy et al., 2022)
highlighted the difficulties faced by existing RL algorithms when dealing with models like GPT-2/3 and
T5, which have extensive vocabularies of 50K and 32K tokens, respectively, and this issue becomes even
more pronounced with newer models. NLPO introduces a masking policy that is periodically updated
and incorporates a top-p sampling technique during training. This technique helps address the dilemma
of balancing the inclusion of task-relevant information while mitigating the risk of reward hacking. By
extending the PPO (Proximal Policy Optimization) algorithm, NLPO aims to enhance the stability and
effectiveness of training language models. NLPO achieves this by employing top-p sampling through
generating, which restricts the selection of tokens to a smaller setting where the cumulative probability
surpasses a given threshold parameter, p (Holtzman et al., 2018).

B Displaying Approximate Memorization Threshold

Recent studies suggested that approximate memorization occurs at the BLEU score of 75%; we follow
this suggestion and demonstrate the effectiveness of the proposed framework in this section by comparing
the number of samples that exceed this threshold before and after applying the framework.

SacreBLEU(suffixG, suffixT ) > 0.75 (5)

(a) True Suffixes Standard Setting (b) Generated suffixes Standard Setting

(c) True Suffixes Longer Context Setting (d) Generated Suffixes Longer Context Setting

Figure 6: Threshold of 75% Of The True & Generated Samples SacreBLEU For GPT-Neo 125M Standard Setting

As shown in Figure 6, the memorization ratio for the GPT-Neo 125M model is relatively low. However,
when using standard and longer context settings, there are many instances where the samples are distributed
on and beyond the 75% threshold. Despite this, after implementing the proposed framework, the
distribution of samples is more evenly spread across various values rather than being concentrated solely
in the region beyond the 75% threshold. In contrast to the other variation, GPT-Neo 1.3B & 2.7B have a
large memorization ratio, especially in case of longer context; the framework effect can be seen obviously
as many samples exceed the threshold in case of those variations as shown in Figure 7 and Figure 8.



(a) True Suffixes Standard Setting (b) Generated suffixes Standard Setting

(c) True Suffixes Longer Context Setting (d) Generated Suffixes Longer Context Setting

Figure 7: Threshold of 75% Of The True & Generated Samples SacreBLEU For GPT-Neo 1.3B Standard Setting

(a) True Suffixes Standard Setting (b) Generated suffixes Standard Setting

(c) True Suffixes Longer Context Setting (d) Generated Suffixes Longer Context Setting

Figure 8: Threshold of 75% Of The True & Generated Samples SacreBLEU For GPT-Neo 2.7B Standard Setting



C Qualitative Results

In this section, we demonstrate the effectiveness of our proposed framework by presenting a thorough
analysis of samples generated before and after its application. To provide a comprehensive evaluation, we
have chosen samples from various model sizes, including 125M, 1.3B, and 2.7B, and included examples
from both standard and longer contexts. Additionally, we present samples from different training phases
to showcase the learned policy’s evolution over time. As previously mentioned, the policy initially focuses
on replacing individual words or numbers to decrease the similarity between samples. As the training
process progresses, the policy becomes more aggressive and replaces entire phrases, as shown in Figure 9.

Prefix True Suffix Generated Suffix-Before Generated Suffix-After N-SacreBLEUB N-SacreBLEUA PPLB PPLA

IF A STAY OF EXECUTION OF SENTENCE AND
RELEASE UPON BAIL HAS BEEN PREVIOUSLY

GRANTED BY THE TRIAL COURT OR THIS COURT, it
is temporarily continued for a period not to exceed sixty
days upon the bail previously posted. The purpose of a

continued stay is to allow Appellant to file with the
Supreme Court of Ohio an application for a stay during
the pendency of proceedings in that court. If a stay is

continued by this entry, it will terminate at the earlier of
the expiration of the sixty day period, or the failure of the

Appellant to file a notice of appeal with the Supreme
Court of Ohio in the

forty-five day appeal period
pursuant to Rule II, Sec. 2 of
the Rules of Practice of the

Supreme Court of Ohio.
Additionally, if the Supreme
Court of Ohio dismisses the
appeal prior to expiration of

sixty days, the

forty-five day appeal period
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Figure 9: Suffixes that are memorized by the employed language models and the generated suffixes given the same
prefix. Green indicates that this part is memorized according to the true suffix, while red indicates that it’s dissimilar.



D Median Comparison

(a) GPT-Neo 125M On Standard Setting (b) GPT-Neo 1.3B On Standard Setting (c) GPT-Neo 2.7B On Standard Setting

(d) GPT-Neo 125M On Long Setting (e) GPT-Neo 1.3B On Long Setting (f) GPT-Neo 2.7B On Long Setting

Figure 10: Displaying The Negative SacreBLEU Distribution of The Models On Standard & Long Settings Before
(blue) & After (orange) Applying The Framework



E Results of Each Dataset

Model #Samples Hella. Lamba. Wino. COPA ARC-E ARC-C Piqa MathQ PubQ Avg
(ACC) (ACC) (ACC) (ACC) (ACC) (ACC) (ACC) (ACC) (ACC) (ACC)

NEO125M - 28.66 37.35 50.43 64.0 43.72 19.11 63.05 22.78 55.10 43.36

+DeMEM - 28.54 34.09 50.74 64.00 43.89 19.96 63.00 22.44 55.10 43.46

+UL 32

28.47 1.3 52.09 60.00 36.90 20.13 58.48 21.10 39.30 39.56
27.03 0.05 50.59 59.00 31.18 18.94 54.95 20.40 33.80 36.98
28.40 1.94 50.90 61.00 37.87 19.53 60.01 21.00 36.20 39.36
26.66 0.09 52.95 56.00 31.90 19.28 55.22 19.93 33.80 36.97
26.71 3.55 50.27 54.00 31.10 22.61 58.97 22.91 55.20 40.22

+UL 128

26.31 0 51.61 54.00 29.67 18.85 53.69 19.43 33.80 35.92
26.26 0.13 51.30 55.00 29.46 20.30 56.90 21.34 55.20 39.47
26.91 0.67 51.30 59.00 32.91 18.08 55.76 20.97 33.90 37.35
26.40 0 51.69 55.00 29.58 18.17 53.59 .20.20 33.80 36.05
26.40 0 51.06 53.00 29.16 18.60 52.55 19.83 33.80 35.55

+UL 256

26.61 0 50.67 56.00 30.97 18.25 53.91 20.26 33.80 36.31
26.56 0 53.51 56.00 31.94 20.64 59.03 22.37 55.20 36.14
26.78 0.05 50.35 56.00 31.94 18.68 54.57 20.50 33.80 36.58
26.56 0 50.82 55.00 30.93 18.60 54.24 20.43 33.80 36.30
26.73 0 51.06 55.00 31.39 18.43 54.02 20.63 33.80 36.38

NEO1.3B - 38.65 57.20 54.93 69.00 56.18 23.12 71.10 24.05 54.40 48.93

+DeMEM - 38.73 51.71 55.48 73.00 55.17 23.63 70.72 23.65 54.80 49.40

+UL 32

39.00 24.23 54.69 74.00 54.25 25.25 69.58 23.11 52.00 48.98
38.50 32.56 54.61 - 72.00 55.47 25.25 69.47 23.31 50.80
35.51 65.70 53.82 75.00 51.13 22.86 68.11 24.22 55.00 48.21
38.34 61.01 54.69 69.00 53.66 23.80 69.26 24.69 53.60 48.38
37.41 64.48 56.66 73.00 52.94 23.63 69.15 23.85 53.70 48.79

+UL 128

27.96 8.81 52.88 55.00 30.00 19.28 56.03 21.57 54.80 39.69
33.32 59.88 57.30. 66.00 47.34 21.58 65.72 25.19 55.10 46.44
26.89 0 52.09 54.00 27.98 20.30 53.21 20.33 34.40 36.15
30.11 40.52 53.90 65.00 42.29 20.81 61.91 23.68 55.00 44.09
31.14 6.63 55.72 63.00 42.29 19.53 63.05 22.17 34.00 41.36

+UL 256

28.79 5.93 52.17 55.00 33.45 18.85 56.80 21.60 56.70 40.42
29.43 39.53 53.35 60.00 36.57 19.28 59.63 23.24 55.20 42.09
28.02 28.10 53.90 62.00 34.97 19.11 58.75 23.31 54.60 41.83
29.19 31.34 52.40 55.00 35.47 19.36 58.75 22.61 55.20 41.00
29.92 15.11 52.88 56.00 37.07 19.11 58.86 21.94 55.30 41.38

NEO2.7B - 42.71 62.24 57.70 79.00 61.06 27.47 72.19 24.05 58.30 52.67

+DeMEM - 42.30 59.42 58.01 79.00 60.14 27.47 71.65 24.58 56.70 52.48

+UL 32

39.33 61.96 55.80 77.00 58.75 27.81 69.91 24.12 55.30 51.00
28.34 23.48 53.11 75.00 31.90 22.44 55.60 21.84 52.70 42.61
41.73 46.49 58.56 76.00 57.40 27.64 70.94 24.79 60.90 52.24
43.69 44.65 58.16 73.00 59.34 27.04 71.87 25.22 60.30 52.33
39.89 66.46 56.74 74.00 54.71 28.66 68.55 24.55 55.30 50.30

+UL 128

31.86 55.88 54.38 69.00 43.60 20.39 66.26 23.21 55.30 45.50
30.75 41.04 54.53 65.00 40.36 20.13 63.54 22.47 55.60 44.85
41.52 50.86 58.64 71.00 58.37 25.51 71.32 23.91 61.10 51.42
37.16 58.43 58.32 71.00 50.25 23.72 69.04 24.38 56.90 48.84
39.20 17.54 59.27 73.00 52.14 25.85 68.60 22.51 37.80 47.29

+UL 256

31.86 55.88 54.38 69.00 43.60 20.39 66.26 23.21 57.00 45.71
25.80 0.15 52.72 58.00 26.09 19.45 53.91 19.96 55.20 38.90
26.52 0.03 51.69 58.00 27.44 17.91 54.89 19.63 56.60 39.08
25.97 0 49.88 58.00 26.34 20.30 53.15 19.86 44.40 37.24
29.42 6.30 50.67 62.00 30.59 20.47 56.03 20.56 34.70 38.00

Table 4: Main Results: NEO averaged 5 random samples (s = 32, 128, and 256) for UL. UL = knowledge unlearning,
DeMEM = DeMemorization. LM ACC = average accuracy of 8 classification datasets. Lambada Accuracy is
excluded from the average due to anomalies



Model #Samples Hella. Lamba. Wino. COPA ARC-E ARC-C Piqa MathQ PubQ Avg
(ACC) (ACC) (ACC) (ACC) (ACC) (ACC) (ACC) (ACC) (ACC) (ACC)

OPT125M - 29.21 37.92 50.28 66.00 43.52 19.11 63.00 22.04 37.10 41.28

+DeMEM - 28.90 36.08 50.43 66.00 40.99 19.70 62.73 21.64 47.60 42.25

+UL 32

26.84 0.56 50.03 60.00 28.87 19.79 57.01 21.50 33.80 37.23
26.61 0.02 52.40 60.00 28.49 19.88 56.47 20.77 33.80 37.30
26.87 2.27 49.25 58.00 29.40 19.70 57.67 21.17 33.80 36.98
26.67 0.42 49.48 61.00 28.61 20.30 56.42 20.67 33.80 37.12
26.68 0.34 51.46 56.00 28.95 20.39 55.71 20.46 33.80 36.68

+UL 128

26.61 0.03 48.22 57.00 28.40 21.16 54.89 20.23 33.80 36.29
26.70 0.03 49.40 57.00 28.57 21.16 55.33 20.70 33.80 36.58
26.62 0 50.11 58.00 28.32 21.07 54.57 19.83 33.80 36.54
26.68 0.03 51.14 57.00 28.32 21.50 55.05 20.70 33.80 36.77
26.50 0.01 49.32 57.00 28.28 20.64 54.62 19.69 33.80 36.23

+UL 256

26.73 1.2 49.64 60.00 28.57 21.16 57.12 21.27 33.80 37.29
26.91 0.7 50.82 61.00 28.74 20.64 56.40 21.34 33.80 37.46
26.99 0.5 50.27 59.00 28.36 21.50 56.52 20.77 33.80 37.15
26.84 0.4 50.82 58.00 28.07 21.84 56.25 21.23 33.80 37.11
26.93 0.8 49.48 58.00 28.15 21.33 56.63 21.13 33.80 36.93

OPT1.3B - 41.48 57.91 59.35 79.00 57.07 23.42 71.76 23.29 57.90 51.65

+DeMEM - 41.57 53.74 60.45 78.00 55.13 24.91 70.83 23.85 56.50 51.40

+UL 32

30.37 0.64 52.17 59.00 28.15 23.72 56.69 20.50 55.50 40.76
30.60 4.48 51.30 59.00 29.71 23.29 57.61 20.93 40.40 39.10
30.07 0.81 51.93 60.00 27.73 23.03 56.47 20.90 51.20 40.16
28.13 0 51.77 54.00 27.18 22.35 55.27 19.83 33.80 36.54
30.28 1.88 50.82 63.00 29.04 22.18 57.07 21.23 40.40 39.25

+UL 128

27.10 0 51.14 53.00 24.07 21.75 55.93 19.26 55.20 40.76
27.49 0 51.38 51.00 24.32 22.26 56.20 19.29 55.20 39.10
27.34 0 50.90 54.00 24.66 23.20 55.76 19.09 55.20 40.16
28.53 0 51.06 60.00 27.86 22.44 55.60 20.67 48.90 36.54
27.16 0 53.27 49.00 24.74 22.01 56.42 19.26 55.20 39.25

+UL 256

27.87 0 51.46 56.00 27.27 21.75 56.20 20.77 34.70 37.00
28.32 0 50.82 56.00 28.03 22.18 56.63 20.77 34.10 37.10
27.93 0 50.74 54.00 27.94 21.24 55.05 20.16 33.90 36.37
27.98 0 50.82 54.00 28.03 21.58 55.87 20.80 33.80 36.37
28.03 0 51.14 54.00 27.06 22.44 55.60 20.56 38.70 37.19

OPT2.7B - 45.84 63.57 61.01 77.00 60.77 26.88 73.83 23.85 60.80 53.74

+DeMEM - 41.57 53.73 60.22 76.00 58.08 24.74 72.41 23.71 60.90 52.20

+UL 32

30.88 0.75 52.56 58.00 29.50 23.20 57.61 20.67 55.60 41.00
25.32 0 50.35 50.00 24.20 22.26 54.46 19.59 55.20 37.67
28.26 0 51.14 51.00 25.42 23.37 54.89 20.36 55.20 38.70
25.28 0 51.69 49.00 23.82 21.84 54.46 19.19 55.20 37.56
25.37 0 50.19 53.00 24.45 22.86 54.57 19.09 55.20 38.09

+UL 128

27.31 0 51.93 47.00 24.70 22.01 57.39 19.56 55.20 38.14
37.09 37.55 49.88 65.00 39.39 22.61 64.09 20.83 54.50 44.17
27.67 0 51.85 47.00 24.70 22.18 56.36 19.09 55.20 38.00
36.16 34.32 49.64 64.00 38.88 21.75 62.84 21.84 54.40 43.69
31.67 9.64 49.48 62.00 31.14 23.12 59.57 22.17 51.40 41.32

+UL 256

25.89 0 51.06 49.00 24.36 22.61 56.63 19.36 55.20 38.01
27.21 0 52.56 43.00 24.70 22.35 56.96 19.32 55.20 37.66
31.10 7.97 50.27 60.00 31.52 22.61 60.44 22.11 41.90 39.99
26.86 0 50.43 44.00 24.24 21.67 55.76 19.43 55.20 37.20
25.32 0 50.59 54.00 24.62 22.44 54.18 18.79 55.20 38.14

Table 5: Main Results: OPT averaged 5 random samples (s = 32, 128, and 256) for UL. UL = knowledge unlearning,
DeMEM = DeMemorization. LM ACC = average accuracy of 8 classification datasets. Lambada Accuracy is
excluded from the average due to anomalies



Model #Samples Lamba. Wikitext.
(PPL)↓ (PPL)↓

NEO125M - 30.26 32.28

+DeMEM - 33.58 33.13

+UL 32

10919.67 357.79
1818857.11 3961.67

7405.89 335.80
3385138.77 6732.11

25647.89 144102.93

+UL 128

2655013035093.51 9621014
124900785 36560950
182274.05 1935.31

1395018915.85 163375.73
747238174142.82 2072110.35

+UL 256

128824105.70 40390.67
17736.35 41620.78

5446764.91 9477.52
47724404.48 22130.00
9320659.24 12115.23

NEO1.3B - 7.49 16.16

+DeMEM - 9.01 16.70

+UL 32

31.33 26.77
20.60 24.67
6.61 22.39
7.53 20.90
7.087 27.16

+UL 128

747.21 53.23
14.52 36.09

4920762.54 770.51
41.42 41.93

342.03 41.51

+UL 256

13.72 61.20
189789.40 227.06
189367.90 91.03
681965.60 171.54

705.34 42.59

NEO2.7B - 5.62 13.93

+DeMEM - 6.51 14.15

+UL 32

6.13 19.87
2992343.20 1531.31

10.44 28.07
10.28 17.41
6.23 17.11

+UL 128

17.83 61.20
41.04 63.78
8.91 16.15
10.58 33.69
53.39 116.89

+UL 256

25.89 0
27.21 0
31.10 7.97
26.86 0
25.32 0

Table 6: Perplexity Results On Lambada & Wikitext: NEO averaged 5 random samples (s = 32, 128, and 256) for
UL. UL = knowledge unlearning, DeMEM = DeMemorization.



Model #Samples Lamba. Wikitext.
(PPL)↓ (PPL)↓

OPT125M - 26.02 31.94

+DeMEM - 31.14 35.35

OPT1.3B - 6.64 16.41

+DeMEM - 7.61 17.39

OPT2.7B - 5.11 14.31

+DeMEM - 7.61 15.25

Table 7: Perplexity Results On Lambada & Wikitext: OPT For Original LM & DeMEM Since UL produced Infinity.

F Baseline Method Hyperparameters

We selected the hyperparameters for UL based on (Jang et al., 2022) for NEO models, using the number
of epochs required for unlearning until the target sequences meet the forgetting criteria. For OPT models,
we used half the number of epochs compared to NEO models in specific sizes, as OPT models achieved
the same loss as NEO models but in fewer epochs.

G Memorization’s Assumptions

As previously discussed, presenting assumptions to address the memorization problem often leads to
incomplete solutions. This is evident in the case of differential privacy, which assumes whether the
data is private or not. Similarly, UL assumes that the training and evaluation data are memorized,
which is impractical in real-world applications considering that language models are trained on vast
corpora with billions of tokens. Furthermore, fine-tuning an LM in an application involving potentially
sensitive/private data poses challenges in splitting the data into sensitive/private and non-sensitive/private
portions for the purpose of forgetting (Levine, 2021; Porcaro, 2022; Brown et al., 2022). On the other
hand, DeMemorization does not rely on assumptions about the training data that need to be unlearned.
Instead, we fine-tune the LM to learn a universal policy that reduces the relationship between the prefix
and suffix. This policy achieves its objective by replacing the token with a similar entity or a context
that is semantically correct but not directly linked to the same prefix, as illustrated in Figure 3. Another
assumption is the limited number of samples to be unlearned at once, which we discussed before.

H Hardware & Software Dependencies

In order to fine-tune GPT-Neo models of sizes 125M and 1.3B, we utilized a cluster of two V100 GPUs,
each equipped with 32GB of VRAM. The 125M model required approximately 0.38 minutes per PPO
epoch, resulting in a total computation time of 3.04 minutes for six epochs. The 1.3B model required a
slightly longer computation time of 1.68 minutes per PPO epoch, for a total of 13.44 minutes over eight
epochs. For the largest variant, GPT-Neo 2.7B, we utilized a cluster of four V100 GPUs, each with 32GB
of VRAM, and employed a sharding strategy with zero 3 (Rasley et al., 2020). Each PPO epoch for this
model required 5.125 minutes, resulting in a total computation time of approximately 20 minutes over
four epochs. For finetuning those models, we employed the HuggingFace library (Wolf et al., 2019) for
training and Pytorch (Paszke et al., 2017) for parallelizing the model. For RL fine-tuning, we employed
TRL (Transformer Reinforcement Learning) library(von Werra et al., 2020).


