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Abstract
Pre-trained vision language models still fall short
of human visual cognition. In an effort to im-
prove visual cognition and align models with hu-
man behavior, we introduce visual stimuli and
human judgments on visual cognition tasks, al-
lowing us to systematically evaluate performance
across cognitive domains under a consistent en-
vironment. We fine-tune models on ground truth
data for intuitive physics and causal reasoning
and find that this improves model performance in
the respective fine-tuning domain. Furthermore,
it can improve model alignment with human be-
havior. However, we find that task-specific fine-
tuning does not contribute to robust human-like
generalization to data with other visual character-
istics or to tasks in other cognitive domains.

1. Introduction
One of the main goals of machine learning research is to
build machines that think and behave like humans. To meet
this goal, Lake et al. (2017) proposed that human-like ma-
chine learning models must be capable of reasoning about
their physical and social environment and its causal struc-
ture. These capabilities are sometimes summarized as in-
tuitive theories—the cognitive expectations humans and
other animals have about their environment from early on
in development that they use to behave adaptively.

In this paper, we focus on two classes of intuitive theory. In-
tuitive physics relates to the ability to predict and understand
the physical properties and interactions of inanimate objects
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(Battaglia et al., 2012; Piloto et al., 2022), an ability that
is present very early in development and does not require
extensive learning or experience (Baillargeon et al., 1995;
Spelke, 1990; Spelke & Kinzler, 2007). Causal reason-
ing describes the ability to infer cause-effect relationships
(Waldmann, 2017; Pearl, 2009). There is growing evidence
that humans possess an intuitive capacity to infer and predict
causal relationships (Griffiths & Tenenbaum, 2009), and that
this ability emerges early in development (Kuhn, 2012; So-
bel & Kirkham, 2006). In the psychology literature, intuitive
physics and causal reasoning have been studied most promi-
nently in their relation to visual cognition—investigating
how humans and other animals reason about their physi-
cal environment and its causal structure through the visual
inputs they receive.

Vision language models (VLMs), which receive visual and
textual linguistic input and produce textual output, have
received recent attention for their apparently sophisticated
reasoning in visual and linguistic tasks (Liu et al., 2025).
However, recent work has established that VLMs are still
limited in their understanding of the physical world and its
causal structure (Jin et al., 2023; Balazadeh et al., 2024),
suggesting that they lack human-like intuitive physics and
causal reasoning. While VLMs perform reasonably well on
intuitive physics problems, such as predicting the stability
of block towers, they do not show a good fit with human
behavioral data. On tests of causal reasoning, such as pre-
dicting whether removing a block would cause a tower to
fall, VLMs perform poorly and again do not fit well with
human behavior (Schulze Buschoff et al., 2025). Beyond the
domains of intuitive physics and causal reasoning, VLMs
have also been shown to have a number of visual deficien-
cies, and they often struggle with simple visual tasks that
would be trivial for a human observer (Rahmanzadehgervi
et al., 2024; Schulze Buschoff et al., 2025; Balazadeh et al.,
2024). VLMs are prone to hallucinations, where the corre-
sponding output does not sensibly correspond to the input
image (Li et al., 2023; Liu et al., 2024). Ullman (2024)
shows that VLMs hallucinate visual illusions where there
are none, if the visual stimuli resemble canonical illusions
that were likely in their training data. Similarly, Zhang et al.
(2023) show that while the general alignment to human per-
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ception is low, larger models are somewhat susceptible to the
same visual illusions as humans. Additionally, VLMs are
not adversarially robust and are therefore subject to manipu-
lation of both textual and visual inputs (Zhao et al., 2024).
Campbell et al. (2024) suggest that the failures of VLMs
on tasks containing multiple objects can be explained by a
binding problem, in which VLMs, like humans (Frankland
et al., 2021), struggle to attend to, represent, and distinguish
between multiple objects at the same time, because they
share the same representational resources.

In pursuit of improving the performance of language mod-
els, fine-tuning is quickly distinguishing itself as the gold
standard, enabling researchers to efficiently steer models
towards better capabilities (Han et al., 2024) as well as
towards more human-aligned outputs (Binz et al., 2024;
Hussain et al., 2024). In this paper, we explore whether fine-
tuning VLMs on single tasks can improve their performance
on intuitive physics and causal reasoning tasks in the visual
domain, as well as steer them towards more human-aligned
outputs.

However, a hallmark of human cognition is not just the abil-
ity to reason about the physical environment and its causal
structure, but also to robustly generalize from limited ex-
perience to solve new tasks (Collins et al., 2022; Geirhos
et al., 2018; Griffiths & Tenenbaum, 2009). Therefore, we
seek to evaluate whether task-specific fine-tuning not only
improves performance on visual cognition tasks sampled
from an identical distribution, but also whether it produces
models that can generalize to new, but related, tasks in new
domains. For example, we ask whether a model fine-tuned
to accurately judge the stability of short tower blocks can
generalize this knowledge to judge the stability of tall tower
blocks, of tower blocks with different visual characteris-
tics (from a different environment), or to causal reasoning
problems about tower blocks. Our results allow us to ap-
praise the limits of task-specific fine-tuning for building
performant, human-like machine learning models that can
generalize beyond the kinds of data on which they have been
trained. Across a range of datasets and models, we do not
find evidence that fine-tuning alone can achieve all these
objectives.

1.1. Related Work

Closest to our work is Balazadeh et al. (2024), who fine-
tune the VLM PaliGemma-3B (Beyer et al., 2024) on a
series of intuitive physics and visual reasoning tasks, asking
questions about the height, color, and shape of tower blocks
in an image, as well as whether the towers are stable or
certain blocks are likely to move. They find that smaller
fine-tuned VLMs can outperform larger non fine-tuned mod-
els on the fine-tuning task. However, they do not investigate
whether fine-tuned VLMs can generalize to new problems.

Ming & Li (2024) explore VLMs’ ability to generalize to
out-of-distribution labels in an image classification task, pre-
senting evidence that fine-tuning noticeably improves per-
formance. However, they do not investigate generalization
in more complex, psychologically-inspired domains like
intuitive physics or causal reasoning. Chen et al. (2021) find
that a neurosymbolic (non-transformer-based) model can ro-
bustly reason causally about visual scenes in the CLEVRER
dataset (Johnson et al., 2017; Yi et al., 2020), and generalize
to new causal reasoning tasks. Generalization and causal
reasoning has also been studied extensively outside of the
visual cognition domain, such as mathematics (Zhou et al.,
2023; 2024) and compositional reasoning (Dziri et al., 2023;
Li et al., 2024). Binz et al. (2024) find that fine-tuning on
diverse human behavioral data can confer an advantage on
a wide range of tasks relevant to human psychology.

1.2. This Work

In this work, we fine-tune VLMs on single tasks from two
cognitive domains inspired by research in cognitive sci-
ence, intuitive physics and causal reasoning (Baillargeon &
Hanko-Summers, 1990; Baillargeon et al., 1992; Battaglia
et al., 2012; Lake et al., 2017; Lerer et al., 2016; Piloto et al.,
2022; Spelke et al., 1992). In particular, we focus on model
intuitions about the factual and counterfactual stability of
stacks of coloured, uniformly dense blocks. We design these
tasks in ThreeDWorld (Gan et al., 2020, TDW), a virtual
environment with a realistic physics engine built in Unity
(Unity Technologies, 2023). We refer to our dataset of block
towers built in TDW as Cubeworld. We then evaluate the
fine-tuned models’ ability to generalize to four different
conditions (see Figure 1):

1. A held-out test set randomly sampled from the same
distribution as the fine-tuning data. Example: A model
fine-tuned to judge the stability of towers consisting
of 2–4 blocks is then tested on new unseen towers
consisting of 2–4 blocks.

2. A test set of new block stacks, on the same task and
domain as the fine-tuning data (e.g., tower stability).
Example: A model fine-tuned on 2–4 block towers is
tested on 5–7 block towers.

3. A test set of block stacks from the same task and do-
main but with different visual characteristics. Example:
A model fine-tuned on 2–4 block towers from the Cube-
world environment is tested on real block towers with
2–4 blocks from Lerer et al. (2016).

4. A test set of block stacks from a new cognitive domain
that shares the same visual characteristics. Example: A
model fine-tuned to make stability judgments (intuitive
physics) is tested on its ability to make counterfactual
stability judgments (causal reasoning).

2



Limits of Fine-Tuning in Vision Language Models

Intuitive physics Causal reasoning

Lerer et al. (2016)

Intuitive 
physics

Causal 
reasoning

Human judgments

Fine-tune

Evaluate

Test sets
(same distribution)

New towers
(opposite split) Natural images New domain

+
H

um
an

 a
lig

nm
en

t

Cubeworld Cubeworld

A

B C

Figure 1. Methodology overview. A: We study causal reasoning and intuitive physics using our Cubeworld fine-tuning and evaluation
datasets and the Lerer et al. (2016) block tower evaluation dataset. B: Models are fine-tuned on the ground truth or human judgments for a
domain of the Cubeworld dataset. C: We test whether fine-tuning improves model performance in four scenarios: new towers of the same
heights as in training; new towers of different heights compared to training; naturalistic images from Lerer et al. (2016); and block towers
from the other domain. We also test the alignment of these models to human responses.

In each case, we not only measure how well the models per-
form in each context, but also how well their performance
aligns with human data on identical tasks. We conduct coun-
terbalanced evaluations, testing the interactions between
tower sizes, visual characteristics, and cognitive domain (in-
tuitive physics vs. causal reasoning). Finally, we fine-tune
models on human judgments to test if this leads to better
human alignment.

2. Methods
2.1. Fine-Tuning & Evaluation Data

We generated four new data sets, two data sets for intuitive
physics, and two for causal reasoning. For each cognitive
domain, we used one set for fine-tuning and one set for
evaluation. All four data sets, which we collectively call
Cubeworld, consist of different configurations of colored
blocks.

We generated similar stimuli for both domains to ensure that
models can, in theory, transfer knowledge between them.
This allows us to test generalization within domains (such as
fine-tuning models on physical stability judgments of small
towers and testing on bigger towers) and between domains
(such as fine-tuning models on physical stability judgments
and testing them on counterfactual stability judgments).

Intuitive physics For intuitive physics, we generated block
towers that consist of stacks of single colored blocks in a
minimal gray room (see section A.1 in the Appendix). Block

towers such as these have been used extensively to inves-
tigate intuitive physics in humans and machines (Battaglia
et al., 2013; Lerer et al., 2016).

The towers consist of 2 to 7 blocks and their rotation, size,
color, and offset are sampled randomly. Offset distributions
become more constrained as the number of blocks increases,
so that randomly sampling offsets leads to a roughly 50/50
split between stable and unstable configurations for all tower
sizes. This is to ensure that the distributions of stable and
unstable towers have comparable difficulties: both contain
easy canonical configurations as well as configurations that
are harder to judge. The models are presented with an
image of a block tower and they must judge if it is stable or
unstable.

Causal reasoning For causal reasoning, we generated
colored block pyramids in a minimal gray room, inspired
by the stimuli in Zhou et al. (2022) (see section A.2 in
the Appendix). The pyramids are made up of 2 to 5 rows
with the bottom row consisting of as many blocks as there
are rows in total, and each consecutive row featuring one
less block than the row below (resulting in a range of 3
to 15 blocks in total). The color of each block is sampled
randomly and the offset and sizes are sampled within ranges
that still allow for a stable pyramid.

Each pyramid features a red block. The models are asked
if any other blocks would fall if the red block were not
there, similar to the the protocol of Zhou et al. (2022). This
question requires the models perform the counterfactual
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simulation of computing the stability of the tower without
the red block. We randomly sample the position of the red
block so that it is never on the top of the pyramid and so that
it has an equal chance of being in every row of a pyramid.

Naturalistic Data To study whether models could gen-
eralize to data with other visual characteristics, we used a
sample of 100 intuitive physics tower block images from
Lerer et al. (2016) (see section A.3 in the Appendix). This
dataset consists of pictures of real block towers with 2, 3,
and 4 blocks that are either stable or unstable. The images
look different to Cubeworld, but the underlying cognitive
task is the same as in the intuitive physics data set. Human
data for this task was taken from Schulze Buschoff et al.
(2025), who collected 107 participants on 100 randomly
selected images from the experiment by Lerer et al. (2016).

2.2. Models

We fine-tune the 7B parameter version of the Qwen2-VL
model (Wang et al., 2024) and the 11B and 90B versions of
Llama 3.2 (Grattafiori et al., 2024) using the unsloth library
(Han et al., 2023). We used pre-trained models quantized to
4-bit precision.

We evaluate the models by sampling the log probabilities
of the “Yes” and “No” tokens conditional on the input and
normalizing them by exponentiating and then using the
softmax function.1 This gives a measure of the relative
probability of the model answering “Yes” or “No” to each
question. We then evaluate whether the model is correct by
examining which token is assigned the higher probability
and comparing this to the ground truth (see section C in
the Appendix for information on the packages used for
analysis). We also elicited free text responses from the
model and found that these aligned with the normalized
token probabilities anyway.

2.3. Prompts

For intuitive physics, we prompt the models with the fol-
lowing pre-prompt: “You are now viewing a tower of blocks.
Will the tower fall? Answer Yes if you think this tower is
unstable and will fall. Answer No if you think this tower is
stable and will not fall.”

For the causal reasoning pyramids, we prompt the models
with this pre-prompt: “You are now viewing a pyramid of
blocks. If the red block was not there, would any other
blocks fall? Answer Yes if you think that other blocks would
fall if the red block was not there. Answer No if you think
that no other blocks would fall if the red block was not
there.”

1softmax(p) = epi∑K
j e

pj where p is the vector of probabilities

of length K and e is the exponential function.

2.4. Fine-Tuning Procedure

We used Parameter Efficient Fine-Tuning (PEFT; Han et al.,
2024), focusing on training low-rank adapters for quan-
tized models (QLoRA; Dettmers et al., 2024; Hu et al.,
2021). PEFT is quickly becoming the dominant fine-tuning
paradigm, blending high performance with computational
and memory efficiency. PEFT selectively adjusts only a
small number of model parameters during training, which
not only reduces computational overhead but also minimizes
overfitting and the prospect of existing knowledge being
washed out by subsequent training (catastrophic forgetting;
French, 1999). QLoRA is an approach to PEFT where the
model is first quantized, reducing its memory footprint by
reducing the precision of the models weights and activations,
and then injecting small adapter layers into the transformer
blocks of the VLM, both for the vision encoder and the au-
toregressive text decoder. For the weight matrix, W , of any
layer, an accompanying adapter layer, Wa, is injected. Wa

is the product of two low-rank matrices L1 and L2 where
L1 ∈ Rd×r and L2 ∈ Rr×k where r is much smaller than d
and k, the dimensionality of the input and output and respec-
tively. Given some input x, it is transformed by both W and
Wa independently and then summed (subject to scaling α),
to produce the output. In QLoRA, only the values of L1 and
L2 are altered; W remains fixed. The weights of L1 and L2

are altered by backpropagation under the supervision of the
next token in a document, using a cross-entropy loss. Given
the relatively small r, models can be trained much more
quickly than through training the full-rank W matrix. We
chose r = 16 for all experiments and a scaling of r

α where
α = 16, thus balancing the effect of W and Wa on the
outputs. We fine-tuned layers in the ViT vision encoder, and
attention and MLP layers in the language decoder, as this
has been shown to be effective in prior work on fine-tuning
for intuitive physics understanding (Balazadeh et al., 2024).
We used the ADAM optimizer and an initial learning rate of
0.0002. We fine-tuned all models for 10 epochs on 10,000
text-image pairs on 80GB NVIDIA A100 GPUs. To ensure
the robustness of our results, we repeated every experiment
with three different seeds, leading to different samples of
training data and different adapter-weight initializations,
and report all results as averages across the three repeats.

2.5. Human experiments

We performed three separate human experiments to obtain
fine-tuning and evaluation data. All participants agreed to
take part in the study and were informed about the general
purpose of the experiment. Experiments were conducted on
Prolific in accordance with the relevant guidelines and regu-
lations approved by the ethics committee of the University
of Tübingen. For information on the samples, durations, and
payout of the experiments, see Section B in the Appendix.
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Figure 2. Heat map showing accuracies for the 11B model on all combinations of ground truth fine-tuned models and evaluations. Each
row contains a model fine-tuned on the ground truth for a specific data split. Each column contains the results for a specific block number
in each evaluation data set. Models fine-tuned on a single cognitive domain do not generalize to the other cognitive domain. Models
fine-tuned on both cognitive domains perform well on both domains as well as on the naturalistic Lerer et al. (2016) dataset.

Intuitive physics For the majority of results reported here,
the model is fine-tuned on the ground-truth of the generated
block configuration. However, we also fine-tune the models
on human responses. For this purpose, we collected individ-
ual human responses for each image in the 2–4 block tower
intuitive physics fine-tuning data set. We collected 100 re-
sponses on average from 100 human participants to cover
the 10,000 images in the fine-tuning data set. In this exper-
iment, all participants received different images and were
given the same pre-prompt as the models in the intuitive
physics experiment (see Section 2.3).

We also collected the responses of 100 separate participants
on the same subset of 120 images from all conditions in the
evaluation set for the intuitive physics tower task (6 tower
sizes × stable / unstable × 10 images per condition). This
allows us to compute similarities between human and model
judgments. Participants received the images in a random
order and were given the same prompt as in the experiment
above.

Causal reasoning For the causal reasoning pyramids, we
also collected a human evaluation data set of 100 separate
participants on the same 80 images in the evaluation set (4

pyramid sizes × stable / unstable × 10 images per condi-
tion). Participants received the images in a random order
and were given the same pre-prompt as the models in the
causal reasoning experiment (see Section 2.3).

3. Results
First we fine-tune on the ground truth. We evaluate whether
this leads to improved performance (3.1), different types of
generalization (3.2–3.4) and alignment to human judgments
(3.5). We then fine-tune a model on human responses on
the same task (3.6), which leads to better human alignment.
All results reported here are averaged over three seeds. The
random seed changes the random initialisation of the fine-
tuning weights and subset of the fine-tuning data.

3.1. Fine-tuning performance improvement

Fine-tuning substantially improves the performance of most
models compared to the zero-shot case. Fully fine-tuned
11B models achieve accuracies between 0.6 and 0.92 on
single block sizes from the split they were fine-tuned on
(see Fig. 2), compared to the zero-shot base models, which
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Figure 3. A: Models fine-tuned on two splits of intuitive physics towers (2–4 or 5–7 blocks) and evaluated on all tower sizes. Performance
for models fine-tuned on 2–4 block towers decreases with tower size. Models fine-tuned on 5–7 block towers show similar performance
over all tower sizes. B: Models fine-tuned on two splits of causal reasoning pyramids (3 & 6 or 10 & 15 blocks) and evaluated on all
pyramids sizes. All models perform better on pyramid sizes they have been trained on.

perform at around chance for all tower and pyramid sizes
(see Figs. 11B and 12B in Appendix E).

For the intuitive physics fine-tuned models, we find that the
7B, 11B and 90B models fine-tuned on 2–4 block towers
achieve accuracies between 0.78 and 0.83 on towers from
their fine-tuning distribution (see Fig. 3A). This picture is
not as clear for the models fine-tuned on 5–7 block towers,
with all models showing more or less similar performance
improvements over all tower sizes.

The models might have difficulty learning from the 5–7
block towers because judging the stability of a tower be-
comes harder as it increases in size. This is mirrored in
human performance on the evaluation data set, with human
average accuracies of 0.62, 0.71, and 0.68 for towers of size
2, 3, and 4, and average accuracies of 0.65, 0.58, and 0.56
for towers of size 5, 6, and 7. The mean human accuracy
over all towers was 0.63.

We find that the models fine-tuned on causal reasoning im-
prove in performance on all pyramid sizes regardless of
their fine-tuning split (see Fig. 3B). This is likely because
the causal reasoning data set is easier to learn. Human par-
ticipants had an average accuracy of 0.72, with accuracies
of 0.68 and 72 for 3 and 6 block pyramids, and accuracies
of 0.75 and 0.76 for 10 and 15 block pyramids.

3.2. Generalizing to taller and shorter towers

Models are able to generalize to taller and shorter towers
to some degree. For models fine-tuned on 2–4 block intu-
itive physics towers, we see that they are able to somewhat
generalize to bigger towers (see Fig. 3A). While their per-

formance decreases as the number of blocks increases, it is
still above that of the base model even for bigger towers.

In contrast, the models fine-tuned on 5–7 towers do not show
a strong difference in performance between towers that were
in- and out-of their fine-tuning distribution. Crucially, they
only performs as well on the 5–7 block towers as the 2–4
fine-tuned models, even though these latter models have
to generalize from their fine-tuning distribution to bigger
towers.

The performance of the causal reasoning fine-tuned models
is more constant over different pyramid sizes (see Fig. 3B).
Still, models fine-tuned on 10 & 15 block pyramids perform
slightly worse on 3 block pyramids (see Fig. 11A).

3.3. Generalizing to a different visual quality

Models fine-tuned on artificial block towers do not gener-
alize well to realistic block towers. To ascertain to what
extent fine-tuned models can generalize to the same task
with different visual characteristics, we tested them on real
images depicting block towers from Lerer et al. (2016). We
find that models fine-tuned on a single domain do not gener-
alize well to all tower sizes in the Lerer et al. (2016) dataset
(see Fig. 2). For example the 11B model fine-tuned on 2–4
block towers in Cubeworld, which is identical to the Lerer
data in task and the number of blocks, only performs above
chance on towers with 4 blocks from the Lerer dataset (see
also Fig. 13 in Appendix F).
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Figure 4. A: Models are fine-tuned on the counterfactual reasoning task with pyramids of 3 & 6 blocks. B: Models are given the
corresponding images to their training data with the red block removed, and must judge whether it is stable. C: Models can generalize to
unseen pyramids on the causal reasoning task. D: Models cannot generalize to judging the factual stability of the pyramids they have been
trained on, only now without the red block.

We also fine-tune joint models on combined halves of 5,000
data points from each domain. We again find that these
models do not perform well on all Lerer towers (see Joint
rows in Fig. 2). Indeed, there appears to be a trade-off where
models that perform well on 2–4 block towers in Cubeworld
perform poorly on 2 block towers from the Lerer dataset.

3.4. Generalizing to a new task

We find that no model fine-tuned on a single cognitive do-
main performs well on the other cognitive domain (see Fig. 2
and Figs. 14–16 in Appendix G). Models were fine-tuned on
intuitive physics towers or causal reasoning pyramids from
Cubeworld. To test how well models generalize to another
task in another cognitive domain, we evaluate them on the
task they were not fine-tuned on.

Reasoning about tower stability is a prerequisite for coun-
terfactual judgments on tower stability. This is especially
obvious for the 3 block tower pyramids, where computing
the counterfactual requires a tower stability judgment on a
two block tower. Therefore, we would expect an improve-
ment in causal reasoning to carry with it improvement on
intuitive physics as well.

However, models fine-tuned on a mixture of data from both
tasks can achieve good performance in both domains, with

only slight performance decrements in either domain. This
confirms that the models have the capacity of solving both
tasks at the same time. Still, models fine-tuned on a sin-
gle cognitive domain are unable to generalize to the other
domain.

To establish whether these failures to generalize to other
tasks are due to small differences between tasks, or if the
models struggle with learning intuitive theories through
task-specific fine-tuning, we added another dataset where
differences between the tasks are kept as minimal as pos-
sible. We generate paired images of pyramids, in which
the causal reasoning image contains a red block which is
removed to generate the intuitive physics image (see Fig. 4).

In principle, being able to reason about the counterfactual
stability of a pyramid ought to predispose models to reason
about the factual stability of pyramids. Thus, we expected
a transfer from causal reasoning to intuitive physics, espe-
cially since we test models using the corresponding images
from the pairs they were fine-tuned on. Furthermore, we ex-
plicitly tell the models that the red block has been removed.
Nevertheless, we do not find evidence of this transfer, sug-
gesting that task-specific fine-tuning does not lead to models
learning intuitive theories. Instead, they appear to be learn-
ing task-specific superficial shortcuts that do not generalize
(Geirhos et al., 2020a; Ilyas et al., 2019).
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Figure 5. Error consistency to ground truth and human raters on three evaluation datasets (A–C) for the 11B model separately fine-tuned
on three different datasets: (1) human judgments on intuitive physics, (2) the ground truth on intuitive physics, (3) the ground truth on
causal reasoning and intuitive physics. Human error consistency is provided as a comparison. A: Results for the Cubeworld intuitive
physics evaluation dataset. B: Results for the naturalistic dataset (Lerer et al., 2016). C: Results for the Cubeworld causal reasoning
evaluation dataset.

3.5. Alignment with human judgments

We see that fine-tuning on the ground truth leads to some
alignment with human judgments on the fine-tuning task.
However, this does not transfer well to human judgments
on the same task with other visual characteristics, and not
at all to human judgments on another cognitive domain.

To analyze the alignment of model judgments with human
judgments, we use boostrapped Cohen’s κ arithmetic means
(Geirhos et al., 2020b), a single behavioral score that mea-
sures the agreement between two observers from their re-
sponses (see Appendix D).

The 11B model fine-tuned on the ground truth intuitive
physics 2–4 block towers have a mean κ of 0.23 with hu-
mans on the same task, but only 0.15 on the Lerer task, and
0.09 on the causal reasoning pyramids (see Fig. 5). In con-
trast, the 11B model fine-tuned on the ground truth causal
reasoning 3 & 6 block pyramids has a mean κ of 0.4 with
humans on the same task, but only −0.02 on the Lerer task,
and −0.08 on the intuitive physics block towers.

3.6. Fine-tuning on human data

We find that fine-tuning the model on human judgments
makes model behavior more similar to human behavior. We
collected single human responses for each of the intuitive
physics 2–4 block towers in the fine-tuning data set (see
section 2.5), allowing us to fine-tune models on the human
responses instead of the ground truth. The correlation be-
tween the human fine-tuning data and the ground truth was
0.27, with an overlap in labels of 63.5%.

We find that fine-tuning on human responses leads to a con-
siderable performance improvement on judging the ground
truth stability of intuitive physics block towers compared
to the base model. Even though the model is fine-tuned on
human judgments on towers of size 2–4, it learns to predict
the ground truth stability of bigger towers as well. We see
the same pattern emerge as before, where model accuracy
decreases as the number of blocks increases, albeit with
overall slightly lower accuracies compared to the model
fine-tuned on the ground truth.

Furthermore, fine-tuning the model on human judgments in-
creases the mean κ with human judgments on the same data
set to 0.37 (see Fig. 5A). Additionally, it leads to a higher
mean κ of 0.37 with human judgments on the same task
with different visual characteristics and a better transfer on
the ground truth performance (see Fig. 5B). It however does
not transfer to the causal reasoning domain (see Fig. 5C).
Here, the mean κ to humans is −0.02.

4. Discussion
Previous work has shown that pre-trained VLMs strug-
gle with several aspects of visual cognition, particularly
in causal reasoning and intuitive physics (Schulze Buschoff
et al., 2025). We find that fine-tuning on intuitive physics
and causal reasoning tasks can improve the performance
of VLMs in these cognitive domains, and that it improves
alignment with human judgments. However, there is also
evidence that fine-tuned VLMs’ physical and causal reason-
ing is brittle. On the naturalistic intuitive physics data from
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Lerer et al. (2016), models fine-tuned on Cubeworld data in
the same domain and task perform below chance level for
some tower sizes.

Similarly, neither models fine-tuned on intuitive physics nor
models fine-tuned on causal reasoning successfully general-
ize to the other cognitive domain. This result is particularly
notable for the models fine-tuned on causal reasoning, as the
ability to make physical stability judgments is a necessary
precursor capability for judging the counterfactual stability
of a tower. Models’ inability to generalize to another cogni-
tive domain is not due to them being limited in parameters
or potential ability — models fine-tuned on a mixture of
intuitive physics and causal reasoning data performed well
in both domains. It is important to note that we primarily
showcase the limits of models fine-tuned on a specific task.
While we cannot evaluate how the joint models would gen-
eralise to a third cognitive task in Cubeworld, it is possible
that fine-tuning models on broader distributions of tasks
could lead to more robust improvements. Indeed, models
fine-tuned on data from both tasks also somewhat gener-
alize to the realistic block towers from Lerer et al. (2016),
suggesting that data diversity is beneficial for generalization
performance. These models also show higher agreement
with human judgments on both the artificial and realistic
datasets.

One account for these results is that fine-tuning does not
reduce the effect of the so-called binding problem (Camp-
bell et al., 2024; Frankland et al., 2021). In human visual
cognition, participants placed under significant cognitive
load by having to process multiple multi-feature objects very
quickly make more mistakes than usual. In our tasks, models
had to process multiple blocks simultaneously, judging their
colours and relative positions. While fine-tuning improves
performance on specific tasks, perhaps facilitating a better
division of labour between specific feature detectors, these
strategies are brittle and appear to fail on novel domains.
An alternative account is that supervised fine-tuning leads to
data memorization, whereas a reinforcement-learning-based
post-training method would better facilitate generalization
(Chu et al., 2025). We leave exploring these hypotheses to
future work.

We present a first investigation on the limitations of fine-
tuning for visual cognition. There are several avenues for
future research to improve our understanding of fine-tuning
and how well fine-tuned models can generalize:

First, it is possible that robust generalization from the fine-
tuning domain to another can only emerge with even larger
models. We studied the effects of fine-tuning on mod-
els up to 90 billion parameters, which are relatively small
compared to some closed-source alternatives. Future work
should therefore explore fine-tuning to improve even larger
models. Second, alternative fine-tuning procedures may

improve outcomes. While we do not find evidence of over-
fitting per se, it is possible that the models have overfitted
in a more general, task-level sense. The models may have
been sensitive to non-robust predictive features of the fine-
tuning data in a particular domain that led to good perfor-
mance there but not on new domains or with naturalistic
data (Ilyas et al., 2019; Geirhos et al., 2020a). Parametrizing
the QLoRA procedure with different r and α may improve
generalization performance by modulating knowledge distil-
lation and the relative effects of model weights and adapter
weights. Similarly, introducing greater variance into the
fine-tuning datasets, fine-tuning on broader distributions of
tasks, and fine-tuning on larger volumes of data might im-
prove model performance. Finally, the visual and cognitive
demands of these tasks are entangled. Models require visual
abilities to detect and distinguish blocks, appraise distances,
and judge three-dimensional volumes from two-dimensional
images. They also need an understanding of gravity, mass,
inertia, and friction. Future work should explore whether
providing information about these properties in symbolic
or schematic form can lead to improved performance and
better generalization in these tasks.

Our findings underscore the limits of task-specific
parameter-efficient fine-tuning in achieving robust gener-
alization in vision-language models. PEFT noticeably im-
proves performance on tasks closely similar to the fine-
tuning data, enabling generalization not just to new data
sampled from the fine-tuning distribution but also to, for
example, taller and shorter towers and pyramids—an out-
of-distribution problem. Moreover, PEFT can align models
more closely with human behavior in these contexts. How-
ever, task-specific fine-tuning does not lead to the broad,
flexible reasoning abilities that characterize human cogni-
tion. Models fine-tuned on one cognitive task (e.g., intuitive
physics) fail to generalize to another (e.g., causal reason-
ing), despite clear conceptual overlap, and models struggle
to reliably extrapolate their knowledge to real-world images
with different visual properties.

Together, these results suggest that current approaches to
fine-tuning are limited in the ways that they can improve
models, and remain insufficient for developing models that
reason about the physical and causal structure of the world
in a way that mirrors human cognition. Achieving this
level of generalization may require different training and
fine-tuning paradigms that go beyond parameter-efficient
adaptation.
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A. Data examples
A.1. Intuitive physics

Figure 6. Stable examples from the Cubeworld intuitive physics block tower evaluation set.

Figure 7. Unstable examples from the Cubeworld intuitive physics block tower evaluation set.
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A.2. Causal reasoning

Figure 8. Stable examples from the Cubeworld causal reasoning pyramid evaluation set.

Figure 9. Unstable examples from the Cubeworld causal reasoning pyramid evaluation set.
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A.3. Lerer

Figure 10. Examples from the Lerer et al. (2016) evaluation set.

B. Human experiment information and demographics
Intuitive physics: human fine-tuning data Participants received a base pay of 1.5$ and an additional bonus of 0.01$ for
each correct answer, bringing the maximum payout to 2.5$. Completing the experiment took participants 09:54 minutes on
average. All participants were native English speakers from the UK and the US with a mean age of 30.34 and a split of 55
females to 57 males.

Intuitive physics: human evaluation data Participants received a base pay of 1.5$ for their participation and an additional
bonus of 0.01$ for each correct answer, bringing the maximum payout to 2.7$. Completing the experiment took participants
11:37 minutes on average. All participants were native english speakers from the UK and the US and had a mean age of
30.46 and a split of 50 females to 50 males.

Causal reasoning: human evaluation data Participants received a base pay of 1$ for their participation and an additional
bonus of 0.01$ for each correct answer, bringing the maximum payout to 1.8$. Completing the experiment took participants
09:07 minutes on average. All participants were native English speakers from the UK and the US with a mean age of 31.32
and a split of 50 females to 50 males.

C. Analysis Tools
We analyze all data using Python 3.12.7 using pandas 2.2.2 (pandas Development Team, 2020), seaborn 0.13.2 (Waskom,
2021), matplotlib 3.9.2 (Hunter, 2007), and statsmodels 0.14.2 (Seabold & Perktold, 2010).

D. Analysis Methods
We use Cohen’s k to analyze the alignment of models to human judgments and the ground truth in Figure 5. Cohen’s k is
define as:

κi,j =
cobsi,j − cexpi,j

1− cexpi,j

where cobs is the observed error overlap defined as cobsi,j =
ei,j
n with ei,j as the number of equal responses and cexp =

pipj + (1− pi)(1− pj), the expected overlap that two observers i and j with accuracies pi and pj will have by chance.

To arrive at a single mean κ between models and humans, we calculate κ for each combination of models and humans and
take the mean over the κ values. We produce bootstrapped 95% confidence intervals by computing the central 95 percentiles
over 10,000 random subsamples of the κ distribution. For comparisons to the ground truth, we use the central 95 percentiles
of the distribution over mean κ for 10,000 random subsamples of the item level judgments. We note that models fine-tuned
on human judgments have a higher κ between the model and humans than between the humans themselves (see Figure
5). This is likely because the latter calculation has many more degrees of freedom than the former since every human is
compared to every other, whereas each human is compared only to one model at a time.
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E. Performance improvement over time
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Figure 11. A: Models evaluated on intuitive physics tower stacks that either have the same number of blocks as the fine-tuning data or
different numbers of blocks compared to the fine-tuning data. Note: bars are jittered slightly for better readability. B: Performance of the
90B model fine-tuned on 2–4 blocks on the test set for all number of blocks over the process of fine-tuning. The model performs best on
towers it is fine-tuned on but it can generalize to bigger towers somewhat. Generalization decreases as the block tower size moves away
from the fine-tuning distribution. Both subplots show the proportion of correct answers (accuracy) with Wilson score intervals as error
bars.
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Figure 12. A: Models evaluated on causal reasoning pyramids that either have the same number of blocks as the fine-tuning data or different
numbers of blocks compared to the fine-tuning data. Models performance is roughly the same for in-distribution and out-of-distribution
pyramid sizes. Note: bars are jittered slightly for better readability. B: Performance of the 90B model fine-tuned on 3 & 6 block pyramids
on the test set for all number of blocks over the process of fine-tuning. The model performs well on the pyramids it is fine-tuned on and
can generalize to bigger towers. Both subplots show the proportion of correct answers (accuracy) with Wilson score intervals as error bars.
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F. Generalization to Lerer
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Figure 13. A: 90B model fine-tuned on intuitive physics towers with 2–4 blocks but evaluated on the Lerer stimuli showing real images of
2–4 block towers. B: 90B model fine-tuned on 3 & 6 block pyramids, evaluated on the Lerer stimuli, which have a different visual quality
and are in another cognitive domain.

G. Generalization to new domains over time
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Figure 14. A: Models fine-tuned on intuitive physics towers but evaluated on causal reasoning pyramids. B: Models fine-tuned on causal
reasoning pyramids but evaluated on intuitive physics towers. Models do not generalize to the other domain, even though it shares the
same visual features.
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Figure 15. A: Models fine-tuned on intuitive physics towers but evaluated on causal reasoning pyramids. Models again do not generalize
to this other task, even though it shares the same visual features. B: Performance of the 90B model fine-tuned on 2–4 block towers, tested
on causal reasoning pyramids. The model does not generalize to any tower size. Both subplots show the proportion of correct answers
(accuracy) with Wilson score intervals as error bars.
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Figure 16. A: Models fine-tuned on causal pyramids but evaluated on intuitive physics tower stacks. Models do not generalize to this
other task, even though it shares the same visual features and can be seen as a pre-requisite for the fine-tuning task. This is especially true
for the fine-tuning on 3 block tower pyramids, where computing the counterfactual question requires solving the binary tower stability of
a two block tower. B: Performance of the 90B model fine-tuned on 3 & 6 block pyramids, tested on intuitive physics block towers. The
model does not generalize to any tower size. Both subplots show the proportion of correct answers (accuracy) with Wilson score intervals
as error bars.
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