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ABSTRACT

Although increasingly training-expensive, most self-supervised learning (SSL)
models have repeatedly been trained from scratch but not fully utilized, since only
a few SOTAs are employed for downstream tasks. In this work, we explore a sus-
tainable SSL framework with two major challenges: i) learning a stronger new
SSL model based on the existing pretrained SSL model, also called as “ base”
model, in a cost-friendly manner, ii) allowing the training of the new model to
be compatible with various base models. We propose a Target-Enhanced Con-
ditional (TEC) scheme which introduces two components to the existing mask-
reconstruction based SSL. Firstly, we propose patch-relation enhanced targets
which enhances the target given by base model and encourages the new model
to learn semantic-relation knowledge from the base model by using incomplete
inputs. This hardening and target-enhancing help the new model surpass the base
model, since they enforce additional patch relation modeling to handle incom-
plete input. Secondly, we introduce a conditional adapter that adaptively adjusts
new model prediction to align with the target of different base models. Exten-
sive experimental results show that our TEC scheme can accelerate the learning
speed, and also improve SOTA SSL base models, e.g., MAE and iBOT, taking an
explorative step towards sustainable SSL.

1 INTRODUCTION

Self-supervised learning (SSL) has achieved overwhelming success in unsupervised representation
learning, with astonishingly high performance in many downstream tasks like classification (Zhou
et al., 2022a;b), object detection, and segmentation (Bao et al., 2021; He et al., 2022). In SSL,
a pretext task is first built, e.g., instance discrimination task (He et al., 2020; Chen* et al., 2021)
or masked image modeling (MIM) (Bao et al., 2021; He et al., 2022), and then pseudo labels are
generated via the pretext task to train a network model without requiring manual labels. Though
successful, SSL is developing towards a direction of requiring increasingly large training costs,
e.g., 200 training epochs in MoCo (He et al., 2020) while 16,00 epochs in MAE (He et al., 2022)
to release its potential. Unfortunately, most researchers only have limited computational budgets
and often cannot afford to train large SSL models. Moreover, the pretrained non-SOTA SSL models
are rarely used in practice, since SOTA is updated frequently and a previous one quickly becomes
useless, wasting huge training resources. Thus, a sustainable SSL framework is much demanded.
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Figure 1: The concept of sustainable SSL.

Just like how human experience is enriched and passed
from one generation to the next in human society, we
try to let an SSL model inherit the knowledge from
a pretrained SSL base model to achieve superior rep-
resentation learning ability for “sustainable” learning
and also to improve learning efficiency than training
a new SSL model from scratch. Fig. 1 illustrates the
sustainable SSL for more clarity, in which we call the
new SSL model to be trained as the new model and the
pretrained SSL model as the base model. To surpass the base model, in sustainable SSL, the new
model exploits not only the implicit base model knowledge but also the absent knowledge in the
base model. Such a learning process follows a fully self-supervised manner and differs from the
self-training schemes (Xie et al., 2020; Yalniz et al., 2019) that require labels for supervised learn-
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ing. This process can be regarded as a special case of Knowledge Distillation (KD) (Hinton et al.,
2015; Gou et al., 2021), which targets at learning a more powerful new model based on the base
model in a self-supervised setting.
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Figure 2: Self-attention visualization.
Different colors denote attentions of dif-
ferent heads. Black means no attention.

In this work, we take an explorative step towards sus-
tainable SSL by efficiently learning from existing pre-
trained SSL models and surpassing them. In this work,
to achieve this challenging goal, we encourage the new
model to learn not only knowledge of the base model but
also more semantic-related new knowledge. We there-
fore choose a mask-reconstruction (He et al., 2022) SSL
scheme to train the new model, in which the base model
generates reconstruction targets from the full input im-
ages and the new model tries to predict the generated
targets from randomly masked image input. With this
pretext task, the new model is forced to learn the se-
mantics of the full input and its patch relations so that the new model can reason the desired full
information from an incomplete input. As illustrated by Fig. 2, the attentions of iBOT (Zhou et al.,
2022a) miss some semantic regions, e.g., ears, while TEC with iBOT as the base model captures all
semantics and well distinguishes all different components of an input image. Because of its more
powerful ability to capture comprehensive semantic, TEC helps achieve the challenging sustainable
SSL, and actually can provide rich and flexible semantics for downstream tasks.

However, different SSL base models could have various properties due to their various training tar-
gets and training strategies, e.g., iBOT models with more category semantics while MAE models
with more image details (He et al., 2022). So it is important to build high-qualified and compatible
reconstruction targets from the base model so that the new model learns these targets in a comple-
mentary manner. A good model target should reveal the semantic relations among patches, e.g., the
relation between car wheels and car body, so that new model can learn these general relation patterns
and adapts to downstream tasks. To this end, we propose to enhance the target quality of the base
model by using two complementary reconstruction targets: a) the patch-dim normalization which
normalizes base model targets along patch dimension to enhance the relations among input patches,
and b) patch attention maps with rich semantics to filter out possible noise and establish the cor-
relation between the whole image semantic and the patch semantic. For target compatibility, we
introduce conditional adapters into the new model so that new model predictions can be adaptable
to various base models with different properties. Given a base model target, adapters conditionally
active and adjust mid-level features of the new model to predict the target more effectively. These
adapters are discarded after pretraining but can serve parameter-efficient finetuning (Jia et al., 2022;
Chen et al., 2022b) if kept.
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Figure 3: Top1 accuracy on ImageNet-1k.
TEC models have the same color with their
base model.

We call the above method for sustainable SSL
as Target-Enhanced Conditional (TEC) mask-
reconstruction. As shown in Fig. 3, on ImageNet,
TEC without any extra training data improves the SSL
base model by a remarkable margin, e.g., MAE (He
et al., 2022) and iBOT (Zhou et al., 2022a). For
instance, taking iBOT with 1600 epochs as base
model, TEC with only 800 training epochs makes
1.0% improvement. Moreover, we also find that TEC
can significantly accelerate the SSL learning process
and saves training cost. For example, training TEC
for only 100 epochs with random initialization and
a 300-epochs-trained MAE base model outperforms
MAE trained with 1600 epochs. This work takes
one step closer to sustainable SSL, and we hope our
initial effort will inspire more works in the future to
sustainably improve SSL in a cost-friendly manner.
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Figure 4: The overall framework of the proposed TEC. The pretrained SSL base model in TEC
generates patch-relation enhanced reconstruction targets, i.e., patch-dim normalized features and
semantic attention maps. The new ViT encoder takes in masked image and the class token enhanced
by the input adapter, and then sequentially passes the generated features into encoder adapters and
the multi-target decoder to predict the targets given by base model.

2 METHOD

2.1 OVERALL FRAMEWORK

An overall framework of the proposed target-enhanced conditional (TEC) mask-reconstruction
method is illustrated in Fig. 4. TEC follows (He et al., 2022; Bao et al., 2021) to use Vision
Transformer (ViT) (Dosovitskiy et al., 2020) for implementation. Under the mask-reconstruction
framework (He et al., 2022), as shown in Fig. 4, TEC consists of a new ViT encoder to be pre-
trained, conditional adapters for conditional pretraining, a multi-target decoder for reconstruction
targets prediction, an SSL pretrained ViT encoder as the base model, and a target-enhancing module
to construct patch-relation enhanced reconstruction targets from the base model. Specifically, the
base model is an SSL-pretrained ViT encoder (e.g., in MAE (He et al., 2022)) and is used to generate
the latent semantic of a full image. Then target-enhancing module enhances the latent semantic to
construct two complementary reconstruction targets as the supervision of the new model. The new
ViT encoder together with adapters takes in masked images, and generates adapted latent semantics
that are then fed into the multi-target decoder to predict the base model targets. After pretraining,
the new ViT encoder is kept for downstream tasks while other parts are removed. At below, we will
introduce the conditional pretraining aided by adapters in Section 2.2 which helps the new model
effectively predict base model targets, and elaborate on the target-enhancing module to generate
high-qualified base model targets in Section 2.3.

2.2 CONDITIONAL PRETRAINING

As aforementioned, base models often have different properties, e.g., more global category semantic
in iBOT while more local details in MAE. So the prediction of the new model should be compatible
with any given base model. To resolve a similar issue on vanilla image pixel reconstruction, the
works (Wang et al., 2022a; Dong et al., 2022; Gao et al., 2022) manually select certain features
from the mid-level layers of the encoder by trial and error to better align with the image pixel
target. However, it is almost impossible to manually select features from certain fixed layers that
are compatible with different base models because of their possible different properties. So to better
predict base model targets, the new model should have conditional adaptation ability regarding a
given SSL base model.

Given a fixed pretrained model, the parameter-efficient fine-tuning scheme introduces trainable extra
modules with a small number of parameters into this pretrained model for adapting it to downstream
tasks in both vision (Jia et al., 2022; Chen et al., 2022b) and NLP (Houlsby et al., 2019; Li & Liang,
2021; Liu et al., 2021) domains. For example, the prompting scheme (Li & Liang, 2021; Liu et al.,
2021; Jia et al., 2022) concatenates learnable input tokens, e.g., class token, with patch tokens to
activate certain semantic features of a fixed ViT model that are suitable for specific downstream
tasks. Also, inserting lightweight adapter modules (e.g., MLP (Houlsby et al., 2019; Chen et al.,
2022b) and residual blocks (Li et al., 2022b)) into a fixed model can modulate mid-level features of
the model to predict features required by the downstream task. Inspired by these parameter-efficient
fine-tuning schemes, we introduce the adaptation scheme into the pretraining stage to handle the
diversities of base models by equipping the new model with conditional adapters. Since our adapters
are only used for pretraining and will be removed during finetuning, they do not increase extra
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inference costs. Actually, Tab. 4 shows that keeping these adapters in the inference phase enhances
the parameter-efficient finetuning ability of the model. At below, we will introduce how to apply
adapters, i.e., input and encoder adapters, into the new model encoder.

Encoder adapter

FC MLP

C
A
T

Cls token
Input adapter
MLP T

′
T

Blocks

Zn Z
′
n

Figure 5: The input adapter
and encoder adapter.

Input adapter. For ViT networks, one often concatenates a class
token with the input patch tokens to learn the global semantics of
the whole input. Since the prompting scheme shows the adaption
ability of the class token, we propose to further enhance the feature
adaption ability of the class token by adding an input adapter. As
shown in Fig. 5, the input adapter which is implemented by a small
two-layer MLP layer enhances the representation ability of the class
token so that the class token can better activate features in the new
model according to the base model targets. Specifically, the class token T ∈ RC of the ViT is
processed by the MLP layer to obtain an enhanced class token T

′ ∈ RC :

T
′
= MLP(T ),

where C is the embedding dimension. During pretraining, T
′

is appended to the patch tokens.
MLP enhances the representation ability of T and enables the new model to better predict base
model targets. For inference, since MLP(T ) is shared by all input samples, one can compute it in
advance to get T

′
as the new class token, meaning no extra cost is brought by MLP(T ).

Encoder adapter. To modulate mid-level features in the new model so that it can adapt to the base
model targets, we apply a simple MLP with residual connection (Chen et al., 2022b) as our encoder
adapter in the pretraining phase. As we hope to remove adapters after pretraining for higher infer-
ence efficiency, we need to keep the encoder network topology unchanged after removing adapters.
So we put the input of adapters in the middle of the encoder and merge all adapter outputs at the
end of the encoder. As shown in Fig. 5, given features X = {Xi, i = 1, . . . , D} from each encoder
block where D is the encoder block number, we first uniformly divide them into N groups, in which
each group contains 3 blocks by default. Within the nth group, we merge features from all blocks:

Zn = FC(Concat(Xi, ..., Xj)).

Then we feed the feature Zn into an adapter and obtain an overall feature Ze:

Z
′

n = Zn +MLP(Zn), Ze =
∑N

n=1
Z

′

n, (1)

where MLP is a small MLP of two fully-connected layers. The adapted features are then fed into
the multi-target decoder to predict base model targets, which will be introduced in Section 2.3.

2.3 PATCH-RELATION ENHANCED RECONSTRUCTION TARGETS

To better exploit the knowledge of base models for sustainable SSL, our target-enhancing module
constructs two complementary targets with enhanced patch relations: 1) feature-level targets with
patch dimension normalization to strengthen the relations among patches; 2) semantic attention
maps to learn relations between semantic patches and other patches. The feature-level targets reveal
the semantics of certain patches, while attention maps focus more on relations among patch feature.
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Figure 6: The patch similarity dis-
tribution of MAE.

Patch-dim normalized feature-level targets. Given a base
model, we propose to normalize its target along the patch di-
mension to enhance the spatial patch relations. Specifically,
for an input, assume its base model target is Y ∈ RL×C where
L and C respectively denote patch number and channel di-
mension. Then we normalize Y along the patch dimension:

Yf = (Y − µL)/σL, (2)

where µL and σL are respectively mean and variance along
the patch dimension. For MIM, this patch-dim normalization can better enhance the spatial rela-
tions among tokens than the widely used feature normalization (Wei et al., 2022c;a; Baevski et al.,
2022) along channel dimension. This is because as observed in Fig. 6, when using MAE for pre-
training, the base model features of different patches actually have similar values and thus have high
similarity score, since they all reveal the global semantic of the image. This cannot well reveal the
spatial relations among these patches. As a result, the new model can easily reconstruct the feature
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target of masked patches due to their high similarity with visible patches, but does not well learn
spatial relations among patches. Normalization along channel dimension can hardly enhance the
patch relations as it only consider the mean and variance within a patch. Actually, channel-dim nor-
malization even enlarges the similarity among patches as revealed in Fig. 6. In contrast, patch-dim
normalization ensures values within each channel has a clear difference and enhances the possi-
ble inherent spatial relations among patches by obviously reducing the similarity among patches as
shown in Fig. 6. Moreover, Tab. 6(c) shows that our normalization can significantly improves the
new model performance. After normalization, following (He et al., 2022), the new model uses a
fully-connected layer followed by the decoder to generate Zf for predicting the base model target
Yf on masked patches:

Lfea = ∥M ◦ (Yf − Zf )∥22, (3)
where M is the mask matrix and ◦ denotes the element-wise product.
Semantic attention-level targets. Self-attention in pretrained ViT models has a powerful capability
of capturing semantic relations among patch tokens (Caron et al., 2021; Li et al., 2022c; Ziegler &
Asano, 2022). We then propose to utilize the self-attention map as a type of reconstruction target
for MIM to further enhance the semantic relation modeling capability of the new model. According
to previous investigations on the effects of self-attention map in KD (Wu et al., 2022; Wang et al.,
2022b), not all attention map contains useful semantic relations, and severe noisy attentions even
hinder student learning. Accordingly, it is necessary to select parts of attention maps to reduce the
possible severe noise and also help reduce training costs.

Here we utilize the base model class token that contains sufficient global semantics to select top
similar patch tokens, which filters out the possible noises. Specifically, given the attention maps
Ac ∈ RH×L between class token and patch tokens from the last ViT block in base model where
L and H respectively denote patch number and head number, we average the attention map Ac

along head dimension to obtain A
′

c ∈ R1×L. Then, as shown in Fig. 4, we select top-k patches
with the largest values in A

′

c, and then compute the attention map Ap ∈ RH×k×L among the top-k
patches and all patch tokens. Considering the importance of the class token, we further concatenate
attention maps between itself and selected Ap to obtain our final reconstruction targets, i.e., As ∈
RH×(k+1)×L. Note, when we compute As, a temperature τ is added before the Softmax operation
to adjust the attention sharpness. For the new model, we respectively use two fully-connected layers
to project its decoder output into two predictions Zq ∈ RL×C and Zk ∈ RL×C . We select the same
patches as in As from Zq to form Z

′

q ∈ Rk×C . Then we concatenate the class token cls in new
model with Z ′

q and compute the KQ attention map Za = Softmax([Z
′

q, cls]⊤Zk) ∈ RH×(k+1)×L.
Finally, we compute the predicted entropy loss between the prediction Za and the target As as

Latt = −As logZa. (4)

Multi-target decoder. Due to the different properties of two reconstruction targets, namely feature
target and attention target, one decoder in a new model for prediction is insufficient to handle them
simultaneously and often results in prediction conflict. But using separate decoders for each target
would increase the trainable parameters and thus slow down the training. To solve this issue, we
use a simple decoder adaptation scheme that constructs target-specific inputs and then feeds them
into a shared decoder. Specifically, we feed the output feature Ze (see Eqn. 1) of the new model
encoder into a fully-connected layer and then fill the masked tokens with a learnable mask token
to obtain Z

′

f . Then similarly, given Ze, we also use a fully-connected layer and a learnable mask
token to obtain Z

′

m. Next, we respectively feed Z
′

f and Z
′

m into a shared transformer-based decoder
for predicting the feature and attention map targets of the base model. Unlike the large semantic
gap between encoder output and vanilla image in MAE, the base model target has similar semantics
to the new model predictions. So a shallow 2-layer decoder is enough and better than the 8-layer
decoder used in MAE. This design also greatly reduces the training cost.

3 EXPERIMENTS
We evaluate our TEC on ImageNet-1k (Deng et al., 2009) by pretraining randomly initialized
ViT (Dosovitskiy et al., 2020) with a 16×16 patch size and 224×224 image resolution for 300/800
epochs via AdamW (Loshchilov & Hutter, 2017) of 4,096 batchsize. To ensure the improvement
is from TEC, we do not use any explicit/implicit extra training data and the base models that are
stronger than new model. Indeed, we respectively use iBOT (Zhou et al., 2022a) and MAE (He
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Table 1: Comparison with existing SSL methods under ImageNet-1k finetuning using ViT. † and
gray color mean the usage of implicit /explicit extra data. The pretraining epoch number of TEC
denotes the one from randomly initialized weights under the guidance of base models, and does not
include that of the base model. Compared results are obtained from their reported results.

Model Method Epoch Guidance Top1 acc.

ViT-Base

Deit III (Touvron et al., 2022) 800 Supervised 83.8
DINO (Caron et al., 2021) 300 NA 82.8
MoCov3 (Chen* et al., 2021) 300 NA 83.2
MixMIM (Liu et al., 2022b) 300 RGB 83.2
MFM (Xie et al., 2022a) 300 Frequency 83.1
BEiT (Bao et al., 2021) 800 DALLE† 83.2
SplitMask (El-Nouby et al., 2021) 300 NA 83.6
ConMIM (Yi et al., 2022) 800 Momentum 83.7
SimMIM (Xie et al., 2022b) 800 RGB 83.8
SIM (Tao et al., 2022) 1600 Momentum 83.8
CAE (Chen et al., 2022c) 1600 DALLE† 83.9
MaskFeat (Wei et al., 2022a) 1600 HOG 84.0
LoMaR (Chen et al., 2022a) 1600 RGB 84.1
BootMAE (Dong et al., 2022) 800 RGB+Momentum 84.2
data2vec (Baevski et al., 2022) 800 Momentum 84.2
Mugs (Zhou et al., 2022b) 1600 NA 84.3
MVP (Wei et al., 2022b) 300 CLIP† 84.4
PeCo (Dong et al., 2021) 800 Perceptual codebook 84.5
CMAE (Huang et al., 2022) 1600 RGB 84.7
Ge2-AE (Liu et al., 2022a) 800 RGB+Frequency 84.8
FD-CLIP (Wei et al., 2022c) 300 CLIP† 84.9
MAE (He et al., 2022) 1600 RGB 83.6
FD-MAE (Wei et al., 2022c) 300 MAE 83.8+0.2

TEC 300 MAE 84.7+1.1

TEC 800 MAE 84.8+1.2

iBOT-ImageNet-22K - Momentum 84.4
iBOT (Zhou et al., 2022a) 1600 Momentum 84.1
SemMAE (Li et al., 2022a) 800 iBOT 84.5+0.4

TEC 300 iBOT 84.8+0.7

TEC 800 iBOT 85.1+1.0

ViT-Large MAE (He et al., 2022) 1600 RGB 85.9
TEC 300 MAE 86.5+0.6

Table 2: Semantic segmentation on ADE20k us-
ing Upernet and ViT-B.

Method Epoch mIoU

BEiT 800 47.1
PeCo 800 48.5
GE2-AE 800 48.9
CAE 1600 50.2
CMAE 1600 50.1

MAE 1600 48.1
TECMAE 800 49.9
iBOT 1600 50.0
TECiBOT 800 51.0

Table 3: Instance segmentation on COCO using
Cascade MaskRCNN and ViT-B.

Method APbbox APmask

Implementation from (Zhou et al., 2022a)
iBOT 51.2 44.2
TECiBOT 52.7 45.4

Implementation from (Li et al., 2022b)
MAE 54.0 46.7
TECMAE 54.6 47.2

et al., 2022) pretrained ViT model on ImageNet-1k as our base model. Base models are obtained
from their official publicly released versions. We use the same masking strategy in MAE, e.g., 75%
random masked ratio. See more training details in Appendix.

3.1 PERFORMANCE COMPARISON

3.1.1 COMPARISON ON IMAGENET
Finetuning on ImageNet-1k. Tab. 1 summarizes the finetuning performance on ImageNet-1k. One
can observe that with iBOT as base model, TEC surpasses the base model by 0.7% under 300 training
epochs from random initialization, and further makes 1.0% improvement for 800 epochs. Similarly,
TEC respectively brings 1.1% and 1.2% improvement over the MAE base model under 300/800
training epochs. These results show that thanks to the proposed target-enhanced conditional MIM
scheme, TEC actually can further improve the strong MIM-based methods, e.g., MAE and iBOT
used here. Besides, Tab. 1 also shows that under similar or even less training cost, TEC outperforms
other SOTA SSLs, including methods trained by implicitly extra data, e.g., MVP (Wei et al., 2022b)
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Table 4: Top1 accuracy on the ImageNet-1k
dataset under parameter-efficient finetuning.

Method Epoch Settings Top 1 acc.

MAE 1600 Linear probing 68.0

TECMAE 800
Linear probing 69.8

+Input adapter FT 72.6
+Encoder adapter FT 79.9

Table 5: Semi-supervised semantic segmenta-
tion on the ImageNet-S dataset.

Pretrain Method Epoch mIoUval

SSL
MAE 1600 38.3

TECMAE 800 42.9

SSL+FT
MAE 1600+100 61.0

TECMAE 800+100 62.0

and FD-CLIP (Wei et al., 2022c). More surprisingly, TEC with only ImageNet-1k data has an
improvement of 0.7% over iBOT trained on ImageNet-22k, indicating more effectiveness of TEC
pretraining over more training data. To the best of our knowledge, TEC sets a new SOTA 85.1% on
ViT-B when solely using ImageNet-1k, showing the potential of sustainable SSL learning. We also
investigate the scaling ability of TEC by using ViT-Large, and observe that TEC surpasses the MAE
pretrained base model by 0.6% with 300 epochs from random initialization.
Parameter-efficient finetuning on ImageNet-1k. Parameter-efficient finetuning methods, e.g., lin-
ear probing, aims to finetune a small amount of parameters for adapting to a downstream task. We
test TEC under the linear probing setting which only finetunes a linear classifier at the top of a frozen
pretrained model. Tab. 4 reports the classification accuracy of ViT-B on ImageNet-1k under linear
probing. TEC improves the MAE base model by 1.8%, showing more category-related semantic
information in the learned new model. Indeed, our input and encoder adapters used for pretraining
can also be used for parameter-efficient finetuning. Finetuning input adapter via prompting brings
a remarkable improvement of 4.6%, and finetuning both input and encoder adapters makes 11.9%
improvement over the MAE base model. This also shows the benefit of our proposed adapters.
Semantic segmentation on ImageNet-S. To test the pixel-level representation ability of TEC pre-
trained models, we conduct semantic segmentation finetuning on ImageNet-S (Gao et al., 2021)
which has pixel-level training labels on ImageNet. We use ViT-B as the segmentation model with-
out extra segmentation head, since the pretraining and finetuning data have no domain shift. Tab. 5
shows that TECMAE improves MAE base model by 4.6% on mIoU. When using supervised Ima-
geNet fully-finetuned pretraining, TECMAE achieves a gain of 1.0% over MAE.
3.1.2 TRANSFER LEARNING ON DOWNSTREAM TASKS
Here we investigate the transfer learning ability of TEC models on downstream tasks.
Semantic segmentation. For semantic segmentation on the ADE20k (Zhou et al., 2018) dataset, we
use Upernet (Xiao et al., 2018) with ViT-B as the segmentation model. Tab. 2 shows that TECiBOT

surpasses the iBOT base model by 1.0% mIoU, and TECMAE achieves a 1.8% improvement over its
MAE base model. Thus, TEC pretrained models show greater transfer learning abilities on semantic
segmentation compared to their base models. Also, TEC shows remarkable advantages over strong
competitors with fewer pretraining epochs. For example, it outperforms MAE, CAE (Chen et al.,
2022c), and CMAE (Huang et al., 2022) by 2.9%, 0.8%, and 0.9%, achieving new SOTA.
Instance segmentation. For instance segmentation on COCO (Lin et al., 2014), for fairness, we
apply the Cascade MaskRCNN (Cai & Vasconcelos, 2019) implemented by iBOT (Zhou et al.,
2022a) and ViTDet (Li et al., 2022b) for TEC with iBOT/MAE base models. Tab. 3 shows that with
the implementation from iBOT, TEC surpasses the iBOT base model by 1.5% on box AP and 1.2%
on mask AP; and when using the implementation from ViTDet, TEC also achieves a gain of 0.6%
on box AP and 0.5% on mask AP, indicating stable improvements of TEC.

3.2 ABLATION AND ANALYSIS
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Figure 7: The average proportion of
encoder adapters contributing to the
encoder output Ze.

We give the ablation study and analysis of our TEC. By de-
fault, models are pretrained with 300 epochs and evaluated
with the finetuning on ImageNet-1k.
Conditional pretraining. The conditional adapters aid the
SSL pretraining under different base models. Tab. 6(a) shows
adapters stably improve the performance by 0.4% and 0.2%
when using MAE and iBOT as base models. To observe the
adaptation difference to base models, we show the average
proportion of encoder adapters contributing to the encoder
output in Fig. 7, i.e., Z

′

n/Ze in Eqn. 1. iBOT base model requires adapters to provide more features
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Table 6: Ablation study on ImageNet-1K fully finetuning setting using ViT-B.
(a) Ablation study of proposed modules.

Patch-norm. feature Semantic attention Adapters MAE base iBOT base
Base model performance 83.6% 84.1%

✓ 84.2% 84.5%
✓ ✓ 84.3% 84.7%
✓ ✓ 84.6% 84.7%
✓ ✓ ✓ 84.7% 84.8%

(b) Effect of adapters.

Top1 acc.
MAE base 83.6
No adapter 84.2
+ input adapter 84.3
+ encoder adapter 84.6

(c) Patch-norm features.

Top1 acc.
MAE base 83.6
NA 83.9
Feature dim. 83.9
Patch dim. 84.2

(d) Init. with base model pretrain.

Top1 acc.

iBOT base 84.1
Load 84.4
Not load 84.8

(e) TEC accelerates MAE training.

Epoch Top1 acc.
MAE 1600 83.6
TECMAE1600ep 300 84.7+1.1

MAE 300 82.9
TECMAE300ep 100 83.9+1.0
TECMAE300ep 300 84.3+1.4

(f) Effect of semantic-related patch attention.

Top1 acc.
iBOT base 84.1
No attention 84.5
Cls token only 84.5
All attention 84.6
Attention select 84.7

from deeper layers, while MAE base model makes adapters focus more on shallow layers, which is
constant with their properties, i.e., iBOT base model has more high-level category semantics while
MAE model has more low-level image details.
Feature normalization on different dimensions. We normalize target features on the patch dimen-
sion to stress the relative relations among patches, which differs from existing methods that nor-
malize features on the channel dimension. In Tab. 6(c), normalizing on patch dimension achieves a
0.3% gain than channel-dim normalization. In contrast, the channel-dim normalization has no effect
compared to the unnormalized version. Channel-dim normalization emphasizes the feature differ-
ence in channels. Instead, our patch-dim normalization stresses the relations among patches, which
is compatible with the patch prediction in the MIM scheme. Tab. 6(a) shows training with patch-dim
normalized feature has the 0.6%/0.4% gain over MAE/iBOT base models, showing its robustness
over base models.
Semantic-related attention. The KQ attention maps naturally contain the semantic relations among
patches and thus are used as the base model targets with enhanced patch-relation properties. Tab. 6(a)
shows that using attention maps further improves the models trained with patch-dim normalization.
Tab. 6(f) compares the effects of different types of attention maps. Only using the attention maps of
the class token has no improvement, while the attention of semantic-related patches brings a 0.2%
gain over the baseline. Therefore, it is the relation among patches that helps the MIM training.
Compared to using all attention maps, using the selected semantic-related attention maps brings a
larger gain by reducing the noise.
Accelerating the training process of base models. By default, we use the fully pretrained SSL
models as base models. To verify if TEC can improve an unconverged SSL model, we use a 300-
epoch MAE pretrained ViT-B as the base model and train TEC with 100/300 epoch from random
initialization. As shown in Tab. 6(e), the 300-epoch pretrained MAE gives a 82.9% Top.1 accu-
racy. In comparison, TECMAE300ep achieves 84.3%/83.9% with 300/100 epochs, surpassing the
300-epoch MAE base models with 1.4%/1.0%. Notably, TECMAE300ep even outperforms the 1600-
epoch pretrained MAE by 0.3% with only 100 epoch training, showing TEC can significantly ac-
celerate the training process of the base model. Still, the TECMAE1600ep taught with 1600-epoch
MAE base model further improves the TECMAE300ep by 0.4%, indicating our sustainable learning
scheme relies on good base models to achieve better performance.
Initializing new model with base model weights or not. The new models in the TEC framework
are trained from random initialization. Tab. 6(d) compares the new model performance with/without
loading the pretrained weights of the base model. The randomly initialized new model outperforms
the model loaded with pretrained base model weights by 0.4%. We assume that randomly initialized
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new models avoid the local minima of the base model, and the new model learns a different weight
distribution from the base model.

4 RELATED WORKS

Self-supervised learning. Self-supervised learning enables representation pretraining without hu-
man annotation by training with pretext tasks, e.g., instance discrimination task (ID) and masked
image modeling task (MIM). ID learn high category-related representations by pulling close rep-
resentations from multiple views of one image Chen et al. (2020); Grill et al. (2020); Chen & He
(2021); Zbontar et al. (2021); Caron et al. (2020). Extracting representations from multi-view re-
quires larger training cost than supervised training. MIM learns semantics by reconstructing the
information of masked patches from unmasked parts, which learns more spatial semantic details
than ID. Due to the incomplete input, MIM usually requires longer training epochs than ID to con-
verge. (Huang et al., 2022; Wang et al., 2022a) explore combining the advantages of MIM and ID
to further improve performance. Recently, (Kong & Zhang, 2022) reveals both MIM and ID learn
occlusion-invariant features. We observe a trend that these SSL methods require increasingly large
computing costs to achieve SOTA, which hinders the development of new SSL methods. To remedy
this, we explore sustainable SSL by learning from pretrained SSL models.
Masked image modeling on various targets. The reconstruction targets guide the MIM learning on
different semantic spaces. MIM has explored various reconstruction targets, e.g., RGB pixels and to-
kenizers. To make images similar to the discretized language in NLP (Devlin et al., 2018), Beit (Bao
et al., 2021) utilizes the DALLE pretrained tokenizer (Ramesh et al., 2021) as the prediction target.
CAE (Chen et al., 2022c) further decouples this pretext task prediction with the encoder. MAE and
SimMIM (Xie et al., 2022b) show using RGB images as targets achieves competitive fully finetun-
ing performance. MaskFeat (Wei et al., 2022a) reveals hand-designed HOG feature (Dalal & Triggs,
2005) is an effective target form. Ge2-AE (Liu et al., 2022a) and MFM (Xie et al., 2022a) find the
image frequency domain can be complementary to RGB image targets. The perceptual codebook
in PeCo (Dong et al., 2021) helps the model learn semantic information. The online momentum
network (He et al., 2020) is used by iBOT and data2vec (Baevski et al., 2022) to provide updated
prediction targets. BootMAE (Dong et al., 2022) takes advantage of RGB images and online net-
work targets. (Yang et al., 2022) enhances the distillation from a large teacher model to a compact
student model with the masking scheme. MVP (Wei et al., 2022b) introduces rich semantics learned
from vision-language pretraining using the CLIP pretrained model (Ramesh et al., 2021) as the tar-
get. Unlike these works that stress the unique properties of a specific reconstruction target, we show
that all SSL pretrained models can serve as good base models with the help of target-enhancement
in TEC. The adapters and target-enhancing scheme in TEC enables the good adaptability to various
base model targets.
Self-supervised knowledge distillation. The sustainable SSL can be regarded as a special case of
the self-supervised knowledge distillation as they both learn from SSL pretrained models. Reversed
KD (Yuan et al., 2020) shows a weak teacher model can benefit the student in the supervised setting.
ClusterFit (Yan et al., 2020) conducts training on the clustered pseudo-labels to reduce the overfitting
to the pretext tasks. SEED (Fang et al., 2021) distillates knowledge from large SSL models to small
models with contrastive loss. (Navaneet et al., 2022) uses MLP heads for feature regression to distill
large SSL teachers to compact student models. (Xu et al., 2021) groups instances with teacher
models and transfers the instance-relation knowledge to student models. As an exception, (Wei
et al., 2022c) shows feature distillation improves contrastive-based SSL models but brings marginal
gain over the SOTA MAE (He et al., 2022) model. Our sustainable SSL focuses on the new model
outperforming the base model in a self-supervised manner. We show in Appendix that our TEC
method is advantageous over several SOTA self-supervised distillation methods.
5 CONCLUSION
This work explores sustainable self-supervised learning by learning from pretrained SSL models.
We propose a target-enhanced conditional mask-reconstruction learning scheme to learn from and
surpass existing SSL models. The adapters help to adapt the new model to various base models
during pretraining and can also serve as parameter-efficient finetuning modules. We utilize the mask-
reconstruction scheme as the basis for surpassing base models, and we construct prediction targets
with enhanced patch-level relations to aid the MIM pretraining. Our method further improves the
strong MIM pretrained methods, e.g., MAE and iBOT, proving the feasibility of sustainable learning.
This work takes an initial step towards sustainable SSL, and we will explore a more general multi-
round sustainable SSL framework in the future.
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A APPENDIX

Towards general sustainable SSL. This work aims to take one step towards sustainable SSL based
on existing pretrained SSL models. To make more steps towards sustainable SSL, we use the TEC
pretrained models as the base model for a new round of TEC pretraining. Tab. 7 shows that the
second-round TEC trained with the first-round TEC base model achieves 85.2%. The possible reason
for the smaller improvement in the second round is caused by the limited network capacity or two
rounds of TEC pretraining learns similar knowledge.

Training cost comparison. Accelerating the training of a larger language model with the help
of a smaller pretrained model (Qin et al., 2021; Chen et al., 2021) has been proven possible in the
NLP field. We follow them to add the FLOPs, training time, and parameters comparison as shown
in Tab. 8. TEC requires shorter training time to achieve better performance than the base models.
For example, TEC outperforms iBOT/MAE by 0.7%/1.1% Top 1 accuracy with only 7%/20% train-
ing time. TEC has a similar number of parameters with MAE, because the shallow decoder saves
parameters while adapters increase parameters. Both TEC and MAE have a larger number of param-
eters compared to iBOT due to the extra decoder. But benefiting from the decoder, they only process
the visible patches in the encoder, thus requiring a smaller training cost than iBOT. As only a part of
the model requires gradients in some SSL methods, e.g. the base model in TEC and online model in
iBOT, which requires no backward cost to compute gradients, we compare the FLOPs for network
parts with/without gradients. Benefiting from only processing the unmasked patches in the encoder
and the shallow two-layer decoder, TEC requires smaller training FLOPs with gradients than iBOT
and MAE. The extra FLOPs (FLOPs without gradients) of the base model in TEC are smaller than
the online network in iBOT because no extra head is needed for the base model in TEC. Compared
to MAE, the extra FLOPs of the base model can be partly balanced by the smaller FLOPs with
gradients in TEC. Therefore, TEC has a similar training time with MAE for each training iteration.

Comparison on parameter-efficient finetuning. Tab. 9 reports the accuracy of 1) learning prob-
ing and 2) adapter finetuning which only finetunes the adapter and the linear classifier for parameter-
efficient finetuning. One can observe that 1) the linear probing performance of TEC relies on the
base model, and 2) adapter finetuning significantly improves the performance. Indeed, most MIM-
based models, e.g. BEIT and MAE, have much lower linear probing performance, since they do
not use the global semantic learning loss, e.g. clustering loss or InforNCE instance discriminative
loss. This also explains the lower performance of TEC compared with the global semantic learning
methods, e.g. iBOT. But by finetuning the adaptors and also linear classifier, TEC improves iBOT
with a remarkable margin of 3.9%. This is because as shown in Fig. 2, iBOT focuses more on dis-
tinguishing the patches related to global semantics and ignores the semantics of other patches, while
TEC can group the patches into several semantic groups and further identify the semantics of each
group. In this way, finetuning adapters help activate the semantic groups that are related to global
semantics required by the downstream tasks, thus improving the model’s discriminability on global
semantics and showing good parameter-efficient finetuning performance.

Detailed schematic diagrams. We show more detailed schematic diagrams of conditional
adapters in Fig. 10 and attention selection in Fig. 11 for a better understanding of these modules.

Comparison with self-supervised distillation methods. We compare several recently proposed
self-supervised distillation methods on the fully finetuning performance on ImageNet. Tab. 10 shows
the remarkable improvement of TEC over other self-supervised distillation methods. For using MAE
ViT-B as the base model, TEC outperforms FD by a noticeable gain of 0.9%. When comparing with
MaskFeat which also applies the MIM scheme, TEC has a gain of 0.6% when using MoCov3 ViT-B
as the base model.

Table 7: Towards general sustainable SSL using the TEC as the new base model.
Model Base Epoch Top1 acc.

iBOT - 1600 84.1
TECiBOT iBOT 800 85.1
TEC TECiBOT 800 85.2
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Table 8: Training cost comparison.
Method Epoch Time (8xA100) FLOPs (with grad) FLOPs (no grad) Parameters Top 1 acc.

VIT-B - - 17.6G - 86.6M -
iBOT 1600 361h 19.2G 19.2G 96.3M 84.1
TECiBOT 300 25h 8.3G 17.6G 118.6M 84.8
MAE 1600 125h 9.8G 0G 111.9M 83.6
TECMAE 300 25h 8.3G 17.6G 118.6M 84.7

Table 9: Top1 accuracy on the ImageNet-1k dataset under linear probing (LP), adapter finetuning
(Adapter FT), and fully finetuning (Fully FT).

Method Epoch Settings Top 1 acc. Fully FT Top 1 acc.

BEiT 800 LP 56.7 83.2
SimMIM 800 LP 56.7 83.8
BootMAE 800 LP 66.1 84.2
CAE 800 LP 68.6 83.8
SemMAE 800 LP 68.7 84.5
CMAE 800 LP 73.9 84.7
Ge2-AE 800 LP 75.3 84.8

MAE 1600 LP 68.0 83.6
TECMAE 800 LP 69.8 84.7
TECMAE 800 Adapter FT 79.9 84.7

iBOT 1600 LP 79.8 84.1
TECiBOT 800 LP 78.0 84.8
TECiBOT 800 Adapter FT 81.9 85.1

Visualization of patch-dim normalized feature-level targets and semantic attention-level tar-
gets. We visualize the selected semantic attention-level targets from the iBOT base model in Fig. 8.
The averaged attention maps of the class token (A

′

c) mostly focus on the high-semantic objects, thus
making the selected patches belong to the high-semantic objects. The attention maps of selected
patches contain the semantic relation between high-semantic objects and other regions. Different
patches have some unique attention parts that differ from other patches. The attention maps of these
selected patches focus on similar semantic objects but are complementary in some parts, which ex-
plains why using attention maps of selected patches is better than only using class token attention
maps as shown in Tab. 6(f). We show the visualization of patch-dim normalized feature-level targets
of iBOT base model in Fig. 9. Patch-dim normalized features are more distinguishable compared
to the original and channel-dim normalized features. The spatial relation among feature patches is
more clearly shown by the patch-dim normalization.

Pretraining settings on ImageNet-1k. We use the standard ViT network implemented in MAE.
We give the pretraining settings in Tab. 11, which follows the pretraining settings in MAE. Due to
the different properties of SSL base models, we set different parameters of semantic-related attention
for MAE and iBOT base models, as shown in Tab. 12.

Inspired by (Baevski et al., 2022), we utilize the average output features of last two blocks of the
base model as the feature target. We measure the CKA similarity (Kornblith et al., 2019) of each
mid-layer block to the output of the last block, and we observe the high feature similarity of last two
blocks.

Table 10: Comparison with self-supervised distillation methods.
Method Base Arch Epoch Top 1 acc.

MAE - ViT-B 1600 83.6
FDMAE MAE-ViT-B ViT-B 300 83.8
TECMAE MAE-ViT-B ViT-B 300 84.7

MoCov3 - ViT-B 300 83.2
MaskFeatMoCov3 MoCov3-ViT-B ViT-B 300 83.9
TECMoCov3 MoCov3-ViT-B ViT-B 300 84.5
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Image A
′

c Multi-head attention maps of class token, top-3 patch, and top-9 patch.

Figure 8: Visualization of the selected semantic attention-level targets from the iBOT base model.

Fully finetuning settings on ImageNet-1k. We give the fully finetuning settings on ImageNet-1k
in Tab. 13. We observe that TECs trained with different base models may have different properties.
Since these base models have different finetuning layer decay values, we set different layer decay
values for TECs trained with different base models.

Parameter-efficient finetuning settings on ImageNet-1k. Following MAE, the linear probing
settings are shown in Tab. 14. For parameter-efficient finetuning with the input adapter, we use the
same training settings as used by the liner probing in Tab. 14. When finetuning with the encoder
adapters, we use the same training settings as used by the fully finetuning in Tab. 13 due to more
parameters are contained in encoder adapters.

Semi-supervised semantic segmentation finetuning on ImageNet-S. We give the training set-
tings of semi-supervised semantic segmentation finetuning on ImageNet-S in Tab. 15. We set
different learning rates and layer decay weights for models initialized with pretrained weights
with/without fully finetuning.

Downstream task settings. For semantic segmentation on ADE20K, we use the MMSegmenta-
tion (Contributors, 2020) implementation of Upernet. The training configurations follow the MAE
training configurations in MMSegmentation. Specifically, the models are trained for 160k iterations
with the batch-size of 16 on 8 GPUs. The AdamW optimizer is used with the initial learning rate
of 1e-4, weight decay of 0.05, 1,500 warmup iterations, and poly learning rate decay schedule. The
ViT-B with 16×16 patch size is used as the backbone. The image size is set to 512×512 and the
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Figure 9: Visualization of patch-dim normalized feature-level targets from the iBOT base model.
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Figure 10: The details of adapters for conditional pretraining.

default data augmentation in MMSegmentation is utilized, i.e., random crop, random flip, and photo
metric distortion. A layer decay rate of 0.65 is utilized for the ViT backbone.

For instance segmentation on COCO using Cascade MaskRCNN and ViT-B, we follow the training
configurations of iBOT and ViTDet for TECiBOT and TECMAE. The ViT-B with 16×16 patch size
is used as the backbone. TECiBOT follows the training strategy of iBOT using the MMDetection
implementation. We train the model with the 3× schedule using the batch-size of 16 on 8 GPUs.
The AdamW optimizer is used with the initial learning rate of 1e-4, weight decay of 0.05, and layer
decay of 0.65. The learning rate is multiplied by 0.1 at the 27th and 33rd epoch. We train the model
with 512×512 image size. The random flip and random resize crop augmentation is applied. For
TECMAE, we use the ViTDet implementation of Cascade MaskRCNN. The model is trained with
100 epoch with the batch-size of 64 on 32 GPUs. The AdamW optimizer is used with the initial
learning rate of 1e-4, weight decay of 0.1, and layer decay of 0.6. The learning rate is multiplied
by 0.1 at 89th and 96th epoch. The input image size is 1024 × 1024. The random flip and random
resize crop augmentation is applied.
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Figure 11: The details of the semantic attention map selection.

Table 11: Pretraining settings.
Configuration Value

Optimizer AdamW
Base learning rate 1.5e-4
Weight decay 0.05
Optimizer momentum β1, β2=0.9, 0.95
Batch size 4096
Learning rate schedule Cosine decay
Warmup epochs 40
Augmentation RandomResizedCrop

Table 12: Parameters of semantic-related attention.
Base model τ k

MAE (ViT-Base) 1.8 15
MAE (ViT-Large) 1.4 15
iBOT (ViT-Base) 1.0 9

Table 13: Settings of fully finetuning and parameter-efficient finetuning with encoder adapters.
Configuration Value

Optimizer AdamW
Base learning rate 5e-4 (B), 1e-3(L)
Min learning rate 1e-6 (B), 1e-5(L)
Weight decay 0.05
Optimizer momentum β1, β2=0.9, 0.999
Layer-wise lr decay 0.55 (MAE-B), 0.65 (iBOT-B), 0.65 (MAE-L)
Batch size 1024
Learning rate schedule Cosine decay
Warmup epochs 20 (B), 5 (L)
Training epochs 100 (B), 50 (L)
Augmentation RandAug (9, 0.5)
Label smoothing 0.1
Mixup 0.8
Cutmix 1.0
Drop path 0.1
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Table 14: Settings of linear probing and parameter-efficient finetuning with the input adapter.
Configuration Value

Optimizer LARS
Base learning rate 0.1
Weight decay 0
Optimizer momentum 0.9
Batch size 16384
Learning rate schedule Cosine decay
Warmup epochs 10
Training epochs 90
Augmentation RandomResizedCrop

Table 15: Settings of semantic segmentation finetuning on ImageNet-S.
Configuration Value

Optimizer AdamW
Base learning rate 5e-4 (SSL), 1e-4 (SSL+FT)
Weight decay 0.05
Optimizer momentum β1, β2=0.9, 0.999
Layer-wise lr decay 0.60 (SSL), 0.45 (SSL+FT)
Batch size 256
Learning rate schedule Cosine decay
Warmup epochs 5
Training epochs 100
Augmentation RandomResizedCrop
Drop path 0.1
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