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Abstract

Transformer-based models generate hidden states that are difficult to interpret. In
this work, we aim to interpret these hidden states and control them at inference,
with a focus on motion forecasting. We leverage the phenomenon of neural col-
lapse and use linear probes to measure interpretable features in hidden states. Our
experiments reveal meaningful directions and distances between hidden states of
opposing features, which we use to fit control vectors for activation steering. Con-
sequently, our method enables controlling transformer-based motion forecasting
models with interpretable features, providing a unique interface to interact with
and understand these models.1

1 Introduction

Accurately predicting sequential data while maintaining interpretability is crucial for many real-world
applications. However, these two objectives often conflict, as achieving higher accuracy frequently
comes at the cost of lower interpretability. This trade-off is primarily linked to the representational
capacity of the underlying model: methods achieving higher accuracy tend to rely on the increased
complexity of their underlying models [20, 4]. This, in turn, renders them difficult to understand and
interpret in terms of semantically meaningful patterns.

Deep learning models employ loss functions that encourage the clustering of data samples based
on their patterns [28]. Together with regularizers that prevent overfitting, clusters become more
distinct over the course of training [15, 49]. We leverage this phenomenon to analyze the learned
representations of transformer-based models with respect to human-interpretable features during
training. Specifically, we use linear probing [1] to measure the degree to which these features are
embedded in hidden states. In this way, we identify that interpretable features are embedded in
the hidden states of transformer-based models. Building on these insights, we fit control vectors to
opposing features, enabling the control of forecasts at inference.

Our application focuses on recent transformer-based motion forecasting models [26, 52, 43]. They
process features of past motion sequences (i.e., past positions, orientation, acceleration, speed) and
environment context (i.e., map data and traffic light states), and transform them into future motion
sequences. Like other transformer models, they rely on learned representations of these features,
resulting in hidden states that are difficult to interpret and control.

The contributions of this work are:

• We leverage the phenomenon of neural collapse and use linear probes to measure interpretable
features in hidden states of recent motion transformers. Our analysis reveals that the collapse of
these hidden states creates meaningful directions and distances in the latent space.

∗Equal contribution. Corresponding author tas@fzi.de.
1Our implementation is available at https://github.com/kit-mrt/future-motion.
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• We exploit these latent space properties to fit control vectors for each interpretable feature. Our
control vectors enable adjusting motion forecasts of transformer models at inference.

2 Related Work

2.1 Natural language as an interface for model interaction and control

Linking learned representations to natural language has gained significant attention (e.g., [31, 2, 22]).
Broadly, approaches incorporating language in models can be categorized into four types.

Conditioning. Numerous works leverage natural language to condition generative models in diverse
tasks such as image synthesis [32, 51], video generation [8], and 3D modeling [41, 48].

Prompting. Some works use language as an interface to interact with models, enabling users to
request assistance or information. This includes obtaining explanations of underlying reasoning, and
human-centric descriptions of model behavior [10, 34].

Enriching. Another line of work leverages LLMs’ generalization abilities to enrich context embed-
dings, providing additional information for better prediction and planning [16].

Instructing. Natural language can be used to issue explicit commands for specific tasks, distinct from
conditioning [27, 9]. The main challenge is connecting the abstractions and generality of language
with environment-grounded actions [30].

In the appendix, we provide further examples of these language incorporation approaches in robotics
and self-driving applications. While these works align learned text representations with embeddings
of other modalities, they do not measure the degree to which interpretable features are embedded
within hidden states.

2.2 Methods for model interpretability and explainability

Latent space regularities. Mikolov et al. [25] show that consistent regularities naturally emerge from
the training process of word embeddings. This phenomenon, commonly referred to as the “word2vec
hypothesis”, suggests that learned embeddings capture both semantic and syntactic relationships
between words through consistent vector offsets in latent space. Many multimodal models, including
CLIP [31], use contrastive learning to align embeddings across different modalities and maximize
their cosine similarity. It should be emphasized that these works measure the similarity of embeddings
of all features per sample, rather than focusing on distinct features within the latent space.

Neural collapse. A recent line of work [28, 15, 49] introduces the term neural collapse to describe a
desirable learning behavior of deep neural networks for classification.2 It refers to the phenomenon
that learned top-layer representations form semantic clusters, which collapse to their means at the
end of training. In addition, the cluster means transform progressively into equidistant vectors when
centered around the global mean. Therefore, neural collapse facilitates classification tasks and is
considered a desirable learning behavior for both supervised [28] and self-supervised learning [7].

Hidden state activations. Transformers consist of attention blocks, followed by simple feed-forward
networks, whose hidden state activations are analyzed for interpretability. Elhage et al. [12] explore
two key hypotheses that describe how these activations capture meaningful structures: the linear
representation hypothesis [29] and the superposition hypothesis [3]. These hypotheses essentially
state that the neural networks represent features as directions in their activation space, and that
representations can be decomposed into independent features [12].

Control vectors. In natural language processing [56, 39, 42], control vectors allow targeted adjust-
ments to model outputs by steering hidden state activations without the need for fine-tuning or prompt
engineering. Control vectors are a set of vectors that capture the difference of hidden states from
opposing concepts or features [33]. This approach requires a well-structured latent space, where
samples are clustered according to classes or features (e.g., a high degree of neural collapse, see
Section 3.2).

2Neural collapse is not to be confused with representation collapse [17, 5], where learned representations
across all classes collapse to redundant or trivial solutions (e.g., zero vectors).
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3 Method
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Figure 1: Words in Motion. (a) We classify motion features in an interpretable way, as in natural
language. (b) We measure the degree to which these interpretable features are embedded in the
hidden states Hi of transformer models with linear probes. Furthermore, we use our discrete features
to fit interpretable control vectors Vi that allow for controlling motion forecasts at inference.

3.1 Motion feature classification using natural language

In contrast to natural language, where words naturally carry semantic meaning, motion lacks prede-
fined labels. Therefore, we identify human-interpretable motion features by quantizing them into
discrete subclasses as in natural language. Our classes of motion features are based on insights
from [35].

Initially, we classify motion direction using the cumulative sum of differences in yaw angles, assigning
it to either left, straight, or right. Additionally, we introduce a stationary class for stationary
objects, where direction lacks semantic significance. We define further classes for speed, dividing
the speed values into four intervals: high, moderate, low, and backwards. Lastly, we analyze the
change in acceleration by comparing the integral of speed over time to the projected displacement with
initial speed. Accordingly, we classify acceleration profiles as either accelerating, decelerating,
or constant (see Figure 1a). The threshold values used for classification are detailed in the appendix.

3.2 Neural collapse as a metric of interpretability

We propose to measure neural collapse as a metric of interpretability. Specifically, we focus on
interpreting hidden states (i.e., latent representations) and evaluate whether hidden states embed
human-interpretable features. We measure how close abstract hidden states are related to interpretable
semantics using linear probing accuracy [1].3 We train linear probes (i.e., linear classifiers detached
from the overall gradient computation) on top of hidden states (Hi in Figure 1). During training, we
track their accuracy in classifying our interpretable features on validation sets. Adapted to motion
forecasting, we choose the aforementioned motion features as interpretable semantics.

Besides linear probing accuracy, following Chen and He [11], we use the mean of the standard
deviation of the ℓ2-normalized embedding to measure representation collapse. Representation collapse
refers to an undesirable learning behaviour where learned embeddings collapse into redundant or
trivial representations [17, 5]. Redundant representations have a standard deviation close to zero. In
a way, representing the opposite of neural collapse. As shown in [11], rich representations have a
standard deviation close to 1/

√
dim, where dim is the hidden dimension.

3.3 Interpretable control vectors

We use interpretable features to build pairs of opposing features. For each pair, we build a dataset
and extract the corresponding hidden states. Afterwards, we compute the element-wise difference

3Ben-Shaul et al. [7] show that linear probing accuracy is consistent with the accuracy of nearest class center
classifiers, which are typically used to measure neural collapse.
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between the hidden states of opposing classes. Finally, we follow Zou et al. [56] and use principal
component analysis (PCA) with one component to reduce the computed differences to one scalar per
hidden dimension and to generate control vectors (Vi in Figure 1b). At inference, we scale the vectors
with a temperature parameter (τ in Figure 1b) to control the strength of the corresponding features.

4 Experimental Setup

4.1 Motion forecasting models

We study three recent transformer models for motion forecasting in self-driving vehicles. Wayformer
[26] and RedMotion [43] models employ attention-based scene encoders to learn agent-centric em-
beddings of past motion, map, and traffic light data. To efficiently process long token sequences,
Wayformer uses latent query attention [19] for subsampling, RedMotion lowers memory require-
ments via local-attention [6] and redundancy reduction. HPTR [52] models learn pairwise-relative
environment representations via kNN-based attention mechanisms. For Wayformer, we use the
implementation by Zhang et al. [52] and the early fusion configuration. Therefore we analyze the
hidden states generated by MLP-based input projectors for motion data, which consists of three layers.
For RedMotion, we use the publicly available implementation with a late fusion encoder for motion
data [43]. For HPTR, we use the implementation by Zhang et al. [52] and a custom hierarchical
fusion setup with a modality-specific encoder for past motion and a shared encoder for environment
context. Further details on fusion mechanisms, training setups, and hyperparameters are presented in
the appendix.

4.2 Linear probes

We add linear probes for our quantized motion features to each hidden state of all models (H [m]
i in

Figure 1, where m ∈ {0, 1, 2} is the module number and i is the token index). These classifiers are
learned during training using regular cross-entropy loss to classify speed, acceleration, direction,
and the agent classes from hidden states. We decouple this objective from the overall gradient
computation. Therefore, these classifiers do not contribute to the alignment of latent representations,
but exclusively measure the corresponding neural collapse into interpretable clusters.

4.3 Control vectors

Using our interpretable motion features (see Section 3.1), we build pairs of opposing features.
Specifically, we generate speed control vectors representing the transition from low to high speed,
acceleration control vectors representing the transition from decelerating to accelerating, and direc-
tion control vectors representing the transition from the left and right direction, and agent control
vectors representing the transition from pedestrian to vehicle (see Section 3.3). For each pair, we use
the hidden states H [m]

i from module m = 2 and the last token per motion sequence (with i = −1), as
it is closest to the start of the prediction.

5 Results

5.1 Extracting interpretable features for motion

Our approach relies on a well-structured latent space, where samples are clustered with respect to
classes of features. Before evaluating the clustering behaviour, we ensure that our features are not
highly correlated, as confirmed by the Spearman feature correlation analysis in the appendix. We
report linear probing accuracy for interpretable features during training on both datasets.

Figure 2 shows the linear probing accuracies for our interpretable motion features on the Argoverse 2
Forecasting (abbr. AV2F) dataset. The scores are computed on the validation split over the course of
training. All models achieve similar accuracy scores, while the Wayformer model achieves a slightly
higher acceleration and lower agent accuracies. Overall, high linear probing accuracies for all motion
features are achieved. This shows that all models likely exhibit neural collapse towards interpretable
motion features.
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Figure 2: Probing accuracies for RedMotion, Wayformer, and HPTR on the validation split of the
AV2F dataset.

0 1 2 3
0
2
4
6
8

1√
dim

Step ·104

std-ℓ2-norm ·10−2
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tion representation quality metric for
RedMotion, Wayformer, and HPTR.

The representation quality metric normalized standard devi-
ation of embeddings is shown in Figure 3. Both HPTR and
RedMotion learn to generate embeddings with a normalized
standard deviation close to the desired value of 1/

√
dim.

While the Wayformer model achieves lower scores in this
metric. This reflects differences between attention-based
and MLP-based motion encoders.

Figure 4 shows the linear probing accuracies for our inter-
pretable motion features on the Waymo Open Motion (abbr.
Waymo) dataset. Here, we report the scores for each of the

three hidden states Hi in the RedMotion model (i.e., after each module m in the motion encoder,
see Figure 1). Similar accuracy scores are reached for all features at all three hidden states. The
accuracies for the acceleration and speed features progressively improve, while the direction feature
reach a score of 80% early on. Compared to the direction scores on the AV2F dataset, the scores
on the Waymo dataset “jump” earlier. We hypothesize that this is linked to the shorter input motion
sequence on Waymo (1.1 s vs. 5 s), which limits the amount possible movements and thus simplifies
classifying direction. In contrast to the AV2F dataset, higher accuracies for the speed class are
achieved. Overall, the highest scores are reached for the agent features, alike on the AV2F dataset.
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Figure 4: Probing accuracies at module 0, module 1 and module 2 for acceleration, direction, and
speed on the validation split of the Waymo dataset.
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Figure 5: Linearity measures for control-
ling with our speed control vector along
with their calibration curves.

Additionally, we measure a class-distance normalized vari-
ance (CDNV) [15] value of 0.9499 on the Waymo dataset
and 2.4598 on the AV2F dataset for RedMotion. We hy-
pothesize that the higher CDNV value on AV2F is caused
by the longer past motion sequence (i.e., 5 s vs. 1.1 s on
Waymo), allowing for a greater range of potential move-
ments.

Figure 5 presents the calibration curve and linearity mea-
sures for controlling with our speed control vector. We
evaluate control temperatures in the interval τ ∈ [−50, 50].
We use the Pearson correlation coefficient, the coefficient
of determination (R2), and the straightness index (S-idx)
as linearity measures. Higher linearity implies improved
controllability. These plots reinforce the observation that
control vectors enable linear controls, highlighting their
suitability for control in forecasting tasks.
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5.2 Controlling motion forecasts at inference

Figure 6 shows a qualitative example from the AV2F dataset. Subfigure (a) shows the default (i.e.,
non-controlled) top-1 (i.e., most likely) motion forecast. In subfigure (b) and (c), we apply our
acceleration control vector with τ = −20 and τ = 100, respectively.

(a) Default motion forecast (b) Enforced strong deceleration (c) Enforced acceleration

Figure 6: Controlling a vehicle at an intersection. In subfigure (b) and (c), we apply our acceleration
control vector with τ = −20 and τ = 100. The focal agent is highlighted in orange, dynamic agents
are blue, and static agents are grey. Lanes are black lines and road markings are white lines.

Figure 7 shows qualitative results on the Waymo dataset. In subfigure (b) and (c), we apply our speed
control vector to de- and increase the driven speed of a vehicle. Both controls affect the future speed
analogously, while increasing the speed also changes the route to fit the given environment context.

(a) Default motion forecast (b) Speed controlled τ = −32 (c) Speed controlled τ = 100

Figure 7: Controlling a vehicle before a predicted right turn. In subfigure (b) and (c), we apply
our speed control vector to de- and increase the driven speed of a vehicle. Both controls affect the
future speed analogously, while increasing the speed also changes the route to fit the context.

6 Conclusion

We analyze “words in motion” by examining the representations associated with motion features
in transformer models. First, we quantize motion features into discrete subclasses as in natural
language. Our experiments on large-scale motion datasets include models with varying environment
representations and fusion mechanisms. Furthermore, we analyze the hidden states of attention and
MLP-based motion encoders. Specifically, we show that neural collapse towards human-interpretable
classes of features occurs in recent motion transformers. Building on these insights, we fit control
vectors to opposing features, and control forecasts at inference.

Our findings not only improve the practical applicability of recent motion transformer models, but
also enable interpreting and manipulating internal representations of transformer models. Possible
applications in self-driving vehicles include applying control vectors to motion planning and adjusting
planned trajectories, whenever required. Future work can explore using features from other modalities
by incorporating both static and dynamic scene elements.
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A Appendix

A.1 Additional qualitative results

Figure 8 shows a qualitative example for our direction control from the Argoverse 2 Forecasting
dataset. The left control leads to accelerated future motion, which is consistent with the common
driving style of slowing down in front of a curve and accelerating again when exiting the curve. A
strong right control makes the focal agent stationary. We hypothesize that it cancels out the actually
driven left turn, resulting in a virtually stationary past.

(a) Default motion forecast (b) Left control τ = 10 (c) Right control τ = 100

Figure 8: Controlling a left turning vehicle. In subfigure (b) and (c), we apply our left-direction
control vector and right-direction control vector. The focal agent is highlighted in orange, dynamic
agents are blue, and static agents are grey. Lanes are black lines and road markings are white lines.

A.2 Natural language as a modality in robotics and self-driving

We provide examples illustrating how natural language is utilized as a modality in robotics and
autonomous driving, building upon the general approaches introduced in the main body of the text.

Conditioning. Tan et al. [40], Zhong et al. [54] generate dynamic traffic scenes based on user-
specified descriptions expressed in natural language.

Prompting. Kuo et al. [21] generate linguistic descriptions of predicted trajectories during decoding,
capturing essential information about future maneuvers and interactions. More recent works employ
large language models (LLMs) to analyze driving environments in a human-like manner, providing
explanations of driving actions and the underlying reasoning [50, 14, 38, 45]. This offers a human-
centric description of the driving environment and the model’s decision-making capabilities.

Enriching. Zheng et al. [53] integrate the enriched context information of LLMs into motion
forecasting models. Wang et al. [44] use LLMs for data augmentation to improve out-of-distribution
generalization. Others use pre-trained LLMs for better generalization during decision-making
[24, 46, 36].

Instructing. Shridhar et al. [37] enable robotic control through language-based instruction. Zitkovich
et al. [55] incorporate web knowledge, enriching vision-language-action models for more generalized
task performance. Huang et al. [18] demonstrate the use of instructions to guide task execution in
self-driving, with experiments in simulation environments.

Although these works create a language interfaces to interact with the underlying model, in contrast to
our work, they do not measure the degree to which human-interpretable motion features are embedded
within hidden states.

A.3 Parameters for classifying motion features

We classify motion trajectories with a sum less than 15◦ degrees as straight. When the cumulative
angle exceeds this threshold, a positive value indicates right direction, while a negative value –
exceeding the threshold in absolute terms – indicates a left direction. We classify speeds between
25 kmh−1 and 50 kmh−1 as moderate, speeds above this range as high, those below as low, and
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negative speeds as backwards. For acceleration, we classify trajectories as decelerating, if the
integral of speed over time to projected displacement with initial speed is less than 0.9 times. If
this ratio is greater than 1.1 times, we classify them as accelerating. For all other values, we
classify the trajectories as having constant speed. We determine all threshold values by analyzing
the distribution of the dataset.

Figure 9 presents the distribution of motion subclasses across the datasets. Both datasets predom-
inantly capture low-speed scenarios, with 62% of Waymo instances and 53% of AV2F instances
falling into this category. Furthermore, a notable difference lies in the proportion of stationary
vehicles, with AV2F exhibiting a significantly higher percentage (51%) compared to Waymo (28%).
The Waymo dataset predominantly features vehicles with constant acceleration (65%) and traveling
straight (49%), while the AV2F dataset showcases a higher proportion of accelerating instances (52%).
Additionally, AV2F stands out with a much larger proportion of instances involving backward motion
(24%) compared to Waymo (4%). This disparity in motion characteristics highlights that the two
datasets capture different driving environments and scenarios, with Waymo potentially focusing on
highway or structured urban driving, while AV2F encompasses more diverse traffic situations.

A.4 Training details and hyperparameters

We provide Wayformer and HPTR models with the nearest 512 map polylines, and RedMotion model
with the nearest 128 map polylines. All models process a maximum of 48 surrounding traffic agents
as environment context. For the AV2F dataset, we use past motion sequences with 50 timesteps
(representing 5 s) as input. For the Waymo dataset, we use past motion sequences with 11 steps
(representing 1.1 s) as input. As the main loss, we use a common combination of loss terms for motion
forecasting. Following Zhang et al. [52], we use the unweighted sum of the negative log-likelihood
loss for positions, cross-entropy for confidences, the cosine loss for the heading angle, and the Huber
loss for velocities as the motion loss. We use AdamW [23] in its default configuration as optimizer
and set the initial learning rate to 2 × 10−4. All models have a hidden dimension of 128 and are
configured to forecast k = 6 motion modes per agent. As post-processing, we do not perform
trajectory aggregation, but follow Zhang et al. [52] and modify only the predicted confidences of
redundant forecasts.

A.5 Motion forecasting metrics

Following [47, 13], we use the average displacement error (minADE), the final displacement error
(minFDE), and their respective Brier variants, which account for the predicted confidences. Fur-
thermore, we compute the miss rate, and overlap rate to evaluate motion forecasts. All metrics are
computed using the minimum mode for k = 6 modes. Accordingly, the metrics for the mode closest
to the ground truth are measured.
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Figure 9: Distributions of our motion features for the Argoverse 2 Forecasting and the Waymo Open
Motion datasets. All numbers are percentages.
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A.6 Feature correlation
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Figure 10: Heatmap representing Spearman correlation between feature cluster means for the
Waymo Open Motion dataset. The values in the matrix indicate pairwise distances between clusters,
normalized by the largest distance.
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Figure 11: Heatmap representing Spearman correlation between feature cluster means for the
Argoverse 2 Forecasting dataset. The values in the matrix indicate pairwise distances between
clusters, normalized by the largest distance.
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A.7 Early, hierarchical and late fusion in motion encoders

We define fusion types for motion transformers based on the information processed in the first
attention layers within a model. In early fusion, the first attention layers process motion data of the
modeled agent, other agents, and environment context. In hierarchical fusion, the first attention layers
process motion data of the modeled agent, and other agents. In late fusion, the first attention layers
exclusively process motion data of the modeled agent.

A.8 Title origin

The title of our work “words in motion“ is inspired by our quantization method using natural language
and a common notion in the computer architecture literature. In computer architecture, a word is
a natural unit of data for a processing unit (e.g., CPU or GPU). In our work, words are classes of
motion features, which are embedded in the hidden states of motion sequences processed by motion
forecasting models.
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