
Under review as a conference paper at ICLR 2022

GIR FRAMEWORK: LEARNING GRAPH POSITIONAL
EMBEDDINGS WITH ANCHOR INDICATION AND PATH
ENCODING

Anonymous authors
Paper under double-blind review

ABSTRACT

The majority of existing graph neural networks (GNNs) following the message
passing neural network (MPNN) pattern have limited power in capturing position
information for a given node. To solve such problems, recent works exploit po-
sitioning nodes with selected anchors or the message passing destination, mostly
in a process that first explicitly assign distances information and then perform
message passing encoding. However, those existing two-stage models ignore po-
tentially useful interaction between intermediate results of the distance computing
and encoding stages to some extent, due to the model architecture designs. In this
work, we propose a novel framework which follows the anchor-based idea and
aims at conveying distance information implicitly along the MPNN message pass-
ing steps for encoding position information, node attributes, and graph structure
in a more flexible way. Specifically, we first leverage a simple anchor indication
strategy to enable the position-aware ability for well-designed MPNNs. Then, fol-
lowing this strategy, we propose the Graph Inference Representation (GIR) model,
which acts as a generalization of MPNNs with a more specific propagation path
design for position-aware scenarios. Meanwhile, we theoretically and empirically
explore the ability of the proposed framework to get position-aware embeddings,
and experimental results show that our proposed method generally outperforms
previous position-aware GNN methods.

1 INTRODUCTION

Graph, as an important data structure, is a powerful tool to represent ubiquitous relationships in
the real world. Learning vector representations for graph data, benefits many downstream tasks on
the graph such as node classification (Kipf & Welling, 2017) and link prediction (Zhang & Chen,
2018). Many graph representation learning methods have been proposed recently, among those,
Graph Neural Networks (GNNs), inheriting the merits of neural networks, have shown superior
performance and become a much popular choice.

Existing GNN models mainly follow the message passing neural network (MPNN) (Gilmer et al.,
2017) pattern, which stacks message passing layers that aggregate information from neighborhoods
and then update representations for each node. Typical MPNNs are limited by 1-Weisfeiler-Lehman
test (Xu et al., 2019), and lack of ability to capture the position information within the graph (You
et al., 2019), without distinguishable node/edge attributes, nodes in a different part of the graph with
topologically equivalent neighborhood structures or even with different substructures may be em-
bedded into the identical representation by typical MPNNs alone (You et al., 2019; Li et al., 2020),
as shown in figure 1 (b), A1 and B2 cannot be distinguished with MPNNs and no distinguishable
attributes (when ignoring colored anchor nodes).

Researchers have developed methods to alleviate this issue. Some earlier works adopt one-hot en-
codings as extended node attributes (Kipf & Welling, 2017). More recent methods utilize graph
distance information to get position-aware embeddings. Anchor-based GNNs (You et al., 2019; Liu
et al., 2019) select anchor nodes as positioning bases, and use position information related to anchors
to break the structural symmetry (Figure 1 (c)). Distance encoding (Li et al., 2020) utilizes distance
information to push typical MPNNs beyond the 1-Weisfeiler-Lehman test limitation (Figure 1 d).

1

Under review as a conference paper at ICLR 2022

1 2

(a) Input Graph (b) MPNN

(e) GIR Model(d) Distance Encoding(c) PGNN/AGNN

1 1

0 2 2 0 1 2

1

0 1 2

1 1

0 2 2 0 2 2

1

0 2 2

Figure 1: Comparison of position-aware GNN methods. (a) (Modified from (Li et al., 2020))Exam-
ple unattributed input graph, nodes start with the same letter (A, B or C) are structurally equivalent.
Nodes in a doubled circle (A1 and B1) are selected for demonstrating different position-aware GNN
methods; the colored node (C1) will be chosen as an anchor for anchor-based GNNs. (b-e) Different
position aware GNN methods: MPNN (with anchor labeling); PGNN/AGNN; Distance Encoding;
GIR model.

Those existing position-aware GNN methods mainly explicitly pre-compute the distance between
node pairs, utilizing them as node attributes or controlling of message passing steps, and then per-
form message passing encoding. Due to the design choices for what and how to utilize distance
information, those existing methods consider graph structure and attributes information encoded by
GNN propagation and position information in a relatively separate manner, potentially useful inter-
action between intermediate results of the distance computing and encoding stages may be ignored.

In this paper, we follow the anchor-based GNN strategy and aim at performing a more flexible inter-
action with graph structure, positioning and attribute information. With limited fixed anchor posi-
tioning base selected, abundant position information could be assigned, boosting the performance of
MPNNs in the position aware scenarios in a trackable way. Besides the explicit assigning strategy,
here we mainly focus on conveying position information implicitly, in order to retain the potential
possibility for more flexible usage of the graph data, as some information beyond pre-performed
graph algorithms (e.g. shortest path distance algorithm) may potentially useful to be captured. Our
motivation comes from the structural similarity between GNN message passing and distance relax-
ation process of the Bellman-Ford shortest path algorithm (Bellman, 1958), we show that with a
simple indication of anchors and appropriate design for message passing functions, MPNNs can
keep track of the shortest paths from anchors. Further, inspired by a relaxation order improved
variant of Bellman-Ford algorithm (Moore, 1959), we propose a generalized MPNN architecture,
termed Graph Inference Representation (GIR), as a more specialized model for the position-aware
scenario. The GIR model propagates messages from anchors along paths to each node, and outputs
of the k-th layer encode k-step representations related to anchors. On an unweighted graph with
no distinguishable node attributes, the proposed strategies provide natural ways to help break the
structural symmetry as the previous anchor-based GNNs could (Figure 1 (b&e)).

Our contributions are summarized as follows:

1. We propose a general anchor labeling strategy, enabling MPNNs for mimicking the
Bellman-Ford algorithm and getting position-aware embeddings implicitly under anchor-
based GNN pattern and discuss theoretical implications and experimental realizations.

2. We propose the Graph Inference Representation (GIR) model that contains more special-
ized structure for learning position-aware embeddings.

3. Empirically, we evaluate the performance of proposed methods for tasks in position-aware
datasets, experimental results show that our position-aware GIRs achieve generally higher
performance.

2

Under review as a conference paper at ICLR 2022

The rest of the paper is organized as follows. Section 2 reviews related works. Section 3 introduces
notations and definitions, theoretical implications are discussed. Section 4 details the proposed GIR
framework. Section 5 presents the experiment and gives a discussion of the results. Finally, section 6
presents our conclusion.

2 RELATED WORKS

Our work follows the anchor-based GNN pattern from the position-aware GNN literature, with the
design inspired by the Bellman-Ford algorithm.

2.1 POSITION-AWARE GNNS

Position-aware GNNs leverage distance information in the message propagating encoding process.
Distance Encoding (Li et al., 2020) follows the MPNN propagation design and extends it with pre-
assigned graph distance from the propagation target to each node (Figure 1, (d)). For each message
propagation step on a target node v, only distance from v are utilized, potentially useful distance
from other nodes are not considered.

Anchor-based GNNs use selected anchor nodes as a positioning base, existing methods mainly fol-
low the two-stage pattern: select anchor nodes first, and then encode the information related to
anchors. Position-aware GNN (PGNN) (You et al., 2019) selects anchor node sets randomly before
running every forward of the model to get a low distortion embedding capturing global position
information, a PGNN layer directly propagates message from the selected anchor node set to each
target node, weighted by the pairwise distance. The random anchor selecting strategy of PGNNs
leads to unstable limitation, some more recent work uses fixed anchor nodes instead to overcome
this issue. AGNN (Liu et al., 2019) pre-selects fixed anchors by minimum point cover nodes al-
gorithm; GraphReach (Nishad et al., 2020) follows the fix anchor setting and adopts random walk
reachability estimations instead of the shortest path distance. Those methods adopt the strategy that
ignores graph structure when performing message propagation.

Our GIR framework follows the anchor-based GNN pattern and differs from previous works in
the position information encoding and utilizing strategy (depicted in figure 1). GIRs are capable
of encoding position information implicitly, taken intermediate results in computing shortest path
distance into consideration, and under specific settings, corresponding distances related to anchors
and the graph structure are utilized together.

2.2 BELLMAN-FORD ALGORITHM

The Bellman-Ford algorithm (Bellman, 1958) computes the shortest path distance from a single
source node to each node in a weighted digraph. For a graph G = (V, E), source node s, the
algorithm performs |V| − 1 relaxation iterations, maintaining the shortest path from s with at most
i edges in the i-th iteration. A relaxation step iterate over all edges, correct distance to better ones.
The relaxation of distance on i-th iteration and edge 〈u, v〉 with weight w is defined as,

distiv = min(disti−1v , disti−1u + w) i > 0 (1)

where dist0 is initialized as,

dist0v =

{
0 v = s
∞ otherwise

(2)

A variant of Bellman-Ford algorithm (Moore, 1959) notices that if the distance value of node v has
not been changed since its last relaxed, edges out of v are no need to perform relaxation.

Learning graph algorithm including the Bellman-Ford algorithm with MPNN has been experimented
in Velikovi et al. (2020), they show the effectiveness of adopting max-pooling as aggregator, and
propose to learn with intermediate results of graph algorithms. Our work goes further toward the
implication from the Bellman-Ford algorithm, and proposes a more specialized message passing
strategy beyond typical MPNN for this. In addition, experiment setting of Velikovi et al. (2020)
focus on a single specific source node, and in the experiment on synthetic datasets, we generalize
this to adapt the anchor-based GNN settings.

3

Under review as a conference paper at ICLR 2022

Table 1: Notations
Notation Description

G the input graph
V, E the node/edge set of G
vi the i-th node in G

X,Z the node attributes/representations of G
xi, zi the attribute/representation of vi
W the edge weights of G
N (v) in-neighborhoods of node v in G
A the anchor node set

Successors(G,S) successors of any node in source node set S ⊆ V
[a||b] concat vector a and b

3 PRELIMINARIES

3.1 NOTATIONS

A graph can be represented as G = (V, E), where V = {v1, · · · , vn} is the node set and E =
{〈vi, vj〉|vi, vj ∈ V} is the edge set. Nodes are augmented with the feature matrix X , which is
either input attributes if available or placeholders. Edges may augmented with the optional weights
W . In-neighborhoods of node v are represented as N (v). Notations are summarized in table 1.

3.2 POSITION-AWARE EMBEDDINGS

One goal of the anchor-based GNN model is to utilize anchors as bases to encode position-aware
information for each node. To capture this intuition, PGNNs (You et al., 2019) view embeddings
as position-aware if the shortest path distance between node pairs could be reconstructed from their
embeddings, which is hard for models with fixed anchors to satisfy. Here we define position-aware
embeddings related to anchors (Definition 1). Considering that the shorest path distance to a node
set has different definitions, such as the shorest path distance to all anchor nodes or to any node in
the anchor node set, or whether to focus on shorest path with limited hop. Here in the definition 1,
we focus on the limited hop shorest path distance (for the alignment with MPNN) to any node in
specific node sets, for retaining a high generality, and the union of those node sets need to be the
anchor node set, for consisting with the position-aware embeddings related to anchors definition.

Definition 1 (Position-aware Embeddings). For A ⊆ P(A),
⋃

A = A, where P(A) is the power
set of node set A, the node embedding Z = {zi = f(vi)|∀vi ∈ V}, where f is a graph encoder that
maps a node to its embedding, is k-hop A -position-aware if there exists functions {gA′(·)|∀A′ ∈ A }
such that gA′(zi) = dsp(vi,A′), where dsp(vi,A′) is the k-hop shortest path distance between node
vi and any node in the node set A′ in the graph G. If all elements in A are singleton, brakets of sets
inner A could be omitted.

As examples for definition 1, we could reconstruct k-hop shorest path distance from any node in the
anchor set A from k-hop {A}-position-aware embeddings, and k-hop shorest path distances from all
anchor nodes from k-hop A-position-aware embeddings, these two settings will be discussed most
commonly in following sections.

3.3 INDICATABILITY

Here we discuss the theoretical implicitly of our GIR framework design. We begin with our mo-
tivation of mimicking the Bellman-Ford algorithm with MPNNs, the concept of indicatability is
introduced as an effective tool for the design of the GIR framework.

A natural idea for an MPNN to mimic the Bellman-Ford algorithm is to perform neural relaxation
functions and enable the capability of keeping track of the intermediate limited hop shortest path
distances. The motivation of mimicking the Bellman-Ford algorithm and getting position-aware
embeddings implies the capability for reconstructing k-hop shortest path distance from k-th layer.

4

Under review as a conference paper at ICLR 2022

To capture this intuition, we introduce the concept of indicatability that implies the existence and
constructibility of functions that reconstruct specific information related to a node set from a vector
representation.
Definition 2 (Indicatability). For A′ ⊆ A, the function set f is A′-indicatable over function f if
there exists a constructable function fA′ such that for all vi ∈ A, fA′(zi) = f(vi,A′).

The indicatability (Definition 2) is defined over a pre-defined function f that maps a node vi and
a node set A′ to a real value (e.g. the multi-souce shortest path distance function), which could
be mimicked by a neural network module that takes zi, the embedding of vi as input and could
generate outputs include f(zi,A′), as the target neural network module f is capable for mimicking
f over A′, we say that f is A′-indicatable over f . Moreover, the k-hop A -position-aware definition
(Definition 1) can be restated as the existence of f-dist with A′-indicatability over k-hop limited
multi-souce shorest path distance function, for all A′ ∈ A .

3.4 NEURAL BELLMAN-FORD WITH MPNNS

Here we show that a well-designed and parameterized MPNN is capable for representing the process
of updating the existence of an A′-indicatable f-distk−1 for Zk−1 to A′-indicatable f-distk over Zk

in the k-th layer, the mentioned corresponding functions are directly implemented or implicitly
mimicked by well-learned parameterized multi-layer perceptrons (MLP), and the effectiveness is
guaranteed by the inductive proof of the Bellman-Ford algorithm and the universal approximation
theorem (Hornik, 1991).

Firstly, a well-learned MLP is expected to reconstruct (k-1)-hop limited shortest path distances from
the inputs of k-th layer, with the existence of A′-indicatable f-distk−1, which can be written as,

[distk−1A′]vi = f-distk−1A′ (zk−1i) (3)

then, considering the aggregate and update pattern of MPNNs, we expect an MPNN layer performed
on node v to mimic a relaxation iteration on v. Deriving from the Bellman-Ford relaxation function
(Equation 1), the expected function for an MPNN layer to mimic could be,

[distkA′]v = min({min([distk−1A′]v, [dist
k−1
A′]u +We=〈u,v〉)|∀u ∈ N (v)}) (4)

or equivalently,

[distkA′]v = min([distk−1A′]v,min({[distk−1A′]u +We=〈u,v〉|∀u ∈ N (v)})) (5)

where the binary min function is expected to be mimicked by well-learned MLPs before pooling in
the aggregator or the update function, while the min function over the set is expected to be mimicked
by a well-learned parameterized sequential encoder like Recurrent Neural Networks (RNNs) or more
commonly used max-pooling. A simple ordering of {distkA′ |∀A′ ∈ A} as part of output Zk would
maintain the existence of A′-indicatable f-distk.

There remains an issue of initialization. For the first layer, there is no natural existence of A′-
indicatable f-dist0, as in the Bellman-Ford algorithm, the distance value of source nodes is initialized
as 0, while others∞. We would expect the updated distance value used in the min functions to be
an enough large value, but it is not a natural way to explicitly assign it as node attributes, and
we instead adopt a simple anchor indication strategy, or the f-ind with A′-indicatability, where
f-indA′(xi) indicates whether the node vi is in A′. And the expected function for the first MPNN
layer to mimic, corresponding with equation 4 and 5, would be,

[dist1A′]v = min({We=〈u,v〉|u ∈ N (v) ∧ f-indA′(xu)}) (6)

3.5 PROBLEM DEFINITION

The GIR framework is designed for node representation learning tasks, paying special attention to
the capacity for getting position-aware embeddings. As a general encode for node representation
learning, GIR takes graph G = (V, E) with node attributes X and optional edge weights W as
inputs, and embed nodes into d-dimensional vectors, represented as Z ∈ R|V|×d. The node repre-
sentations are normally used in downstream tasks like node classification and link prediction.

5

Under review as a conference paper at ICLR 2022

(a) Input Graph (b) Message Propagating Paths

Figure 2: (a) Example input graph, colored nodes are chosen as anchors. (b) Message propagating
edges for each layer in a 2-layer GIR model, Colored nodes highlight propagating source nodes.

4 METHODOLOGY

Here we proposed the GIR framework, acting as an extension of MPNNs to get position-aware
embeddings. The GIR framework is based on the f-ind idea (Section 3.4) and a further specialization
on the propagation paths, which we will introduce first, the overall design of the GIR framework will
be elaborated then, finally, we take a discussion about using GIR as a general graph encoder.

4.1 GIR MODEL: MORE SPECIFIC PROPAGATION PATHS

Motivated by the relaxation order improved variant of the Bellman-Ford algorithm (Moore, 1959),
we consider designing an MPNN architecture with more specific propagation paths. As the condition
of whether to relax is dependent not only on the graph structure, we loose this condition to whether
a node is reached by the breadth-first search from the source nodes. Under these considerations,
we propose the Graph Inference Representation (GIR) model, which acts as a generalization of
MPNNs, propagating messages from anchors along breath first search paths (Figure 2). The GIR
model would be degraded to an MPNN or a non-graph encoder if selecting all nodes or no node for
the anchor set.

There is a general consideration in MPNNs that how to deal with nodes without in-edge in the
propagation step, and a common workaround is adding a self-loop to the input graph. In the GIR
model, this becomes a more important issue as we additionally introduced this situation for nodes
with the important role (anchor nodes that without other anchor nodes as a neighborhood). We take
zero vector as a message if no in-neighborhood exists. In fact, considering a graph with only the
same placeholders as node attributes and no node has zero in-degree, whatever the structure of the
propagation tree is, all nodes are embedded identically. Adopting zero vector as dummy message is
a simple but effective strategy for guaranteeing the existence of f-ind with {A}-indicatability, thus
a k-layer GIR with an anchor set A is k-hop {A}-position-aware.

4.2 THE GIR FRAMEWORK

Having discussed the design choices for MPNNs and the propagating path variated GIR model, here
we summarize the working process of the whole proposed framework for getting position-aware
embeddings (Algorithm 1), building blocks are elaborated as follows.

Anchor Selection (Algorithm 1, line 1) The intuition behind anchor-based GNNs is that some
nodes perform a more important role in the graph for the specific task (Liu et al., 2019; Xu et al.,
2020). Specifing influential anchor node set is a highly data depent task, and it is a important
research topic in the network analysis. We adopt degree centrality, the conceptually simplest choice,
as a starting point. Also, the high interaction of degree centrality suggests an effective coverage
through k-step message passing, and we heuristically believe it to be a promising choice for acting
as positioning base. Concretely, we adopt degree centrality based GA-MPCA algorithm used in
AGNN (Liu et al., 2019) as a default choice. For data or tasks with more heuristic, other choices
may be adopted. For example, for web page networks, PageRank (Page et al., 1999) may be a more
capable choice, and for networks constructed by snowball sampling (Goodman, 1961), seed nodes
may be directly marked as anchor.

6

Under review as a conference paper at ICLR 2022

Algorithm 1 The GIR framework.
Input: Graph G = (V, E); Node input attributes {xv,∀v ∈ V}; Edge weights W (optional)
Parameter: Number of layers L; Anchor selection function SelectAnchor; Anchor indicatabil-
ity mark function IndicatableMark; Message functions M ; Neighborhood aggregator functions
AGGR; Node update functions U .
Output: A-position-aware embedding {zv,∀v ∈ V}

1: A← SelectAnchor(G)
2: h0

v ← [xv||IndicatableMark(v,A)],∀v ∈ V
3: BFS ← A
4: for l← 1 to L do
5: for v in V do
6: src← a node set with lower bound N (v) ∩BFS and upper bound N (v)
7: mv ← AGGRl

u∈srcM
l(hl−1

u , hl−1
v ,We=〈u,v〉)

8: hl
v ← U l(hl−1

v ,mv)
9: end for

10: BFS ← Successors(G, BFS)
11: end for
12: z ← hL

13: return z

Anchor Indication (Algorithm 1, line 2) Assigning extend node attributes for guaranteeing the
existence of f-ind with A′-indicatability for all A′ ∈ A for a desired A -position-aware capability.
Here we introduce two simple strategies as the realization of f-inds, and note that those are optional
for using the GIR model (Section 4.1) if only {A}-position-aware capability is expected.

• Anchor Labeling: ({A}-position-aware) Assigning one for anchor nodes as an extended
attribute, and zero for others. It guarantees the existence of f-ind with A-indicatability, by
checking whether the extended attribute is one.

• Anchor ID Labeling: (A-position-aware) Assigning one-hot labeling for anchors as ex-
tend attribute and zeros for others. For all anchor node a ∈ A, the existence of f-ind with
{a}-indicatability is guaranteed by indexing the ID of a in the extended attributes. This
strategy is similar to the node one-hot labeling trick but introducing much fewer input di-
mensions. Note that the anchor ID labeling is not capable of inductive settings, for it is
sensible to the order of anchor nodes.

Message Propagation (Algorithm 1, line 3–12) For the propagation paths, the GIR model (Sec-
tion 4.1) gives a limitation for determining neighborhoods in the MPNN message-passing steps
(tracked as BFS in algorithm 1), and we take this limitation as lower bound in the whole frame-
work. The message functions M are preferred to be a parameterized encoder over node represen-
tations and optional edge weight, and the update functions M are preferred to be a parameterized
encoder over node message and representations, we commonly choose MLP as the parameterized
encoders. Max-pooling is the most preferred choice for the aggregator AGGR.

4.3 GIR AS GENERAL GRAPH ENCODER

Although the starting point of GIR is to learn embeddings that are aware of position information
measured by shorest path distance, design choices of GIR encourage it to be a general graph encoder
with potential to be used for wider range of areas, here we discuss some related considerations.

Firstly, when using GIR model with a subset of nodes as anchor, information loss of graph structure
would be occured. We suggest to apply GIR model on multiple anchor set and concatenate for out-
puts (named GIR-MIX), a mixture of GIR model and MPNN (GIR with all nodes as anchor) would
be helpful for more general cases. Moreover, the mixture of models with A1,A2, · · ·An-position-
aware capability would be (∩ni=1Ai)-position-aware. Then for the issue of inductive setting, consid-
ering the components of GIR framework, common anchor selection methods with a general strategy
are inductive, and the message passing is also inductive. And for the indication labeling strategy,
only anchor labeling (which implies {A}-position-aware) is inductive, order aware strategies like

7

Under review as a conference paper at ICLR 2022

Table 2: Results on synthetic datasets. Bold font highlights the best results.
{A}-weighted {A}-unweighted A-weighted A-unweighted

mean last mean last mean last mean last

MPNN 3.4 3.6 0.6 0.7 4.0 4.0 0.5 0.5

MPNN + anchor labeling 0.1 0.1 0.0 0.0 3.5 3.5 0.5 0.5
GIR 0.2 0.2 0.0 0.0 3.5 3.5 0.5 0.5

w/ mean aggregator 0.9 1.1 0.1 0.0 3.6 3.6 0.4 0.5

MPNN + anchor ID labeling — — — — 2.7 3.0 0.1 0.1
GIR + anchor ID labeling — — — — 2.5 2.7 0.1 0.1

w/ mean aggregator — — — — 2.9 3.1 0.1 0.1
GIR-MIX — — — — 2.3 2.4 0.1 0.1

anchor ID labeling will be failed in inductive settings. If more position aware capability needed,
particularly, GIR-MIX provide an inductive ability with pairwise tasks, which is same as in PGNN.

The time complexity of our default anchor selecting method is O(|V|2) (Liu et al., 2019), and O(|E|)
for commonly used adjacency list representation of graph. For the message propagation, we compute
the total propagation edges, including message from self-loop. For a K layer vanilla MPNN, the
time complexity is O(K|E|+K|V|), and for a K layer GIR model, let D represents the maximum
of node out-degrees, we take the upper bound with D that leads to O(|A|DK + K|V|), and it is
strictly lower than or in the worst case equal to MPNN.

5 EXPERIMENTS

In this section, we first take experiments on a synthetic dataset to validate the effectiveness of the
GIR framework for getting position-aware embeddings, then we demonstrate the performance of
GIRs on real world datasets used in position-aware GNN literature.

Datasets & Experimental Setup Based on our position-aware definition (Definition 1), we con-
struct four synthetic datasets, with {A}/A-position-aware information need on weighted/unweighted
graphs, and following Velikovi et al. (2020), limited hop shortest path distances are predicted on
each layer. We also take real-world datasets from previous position-aware GNN literature (You
et al., 2019; Li et al., 2020). Those datasets with too few scales or in an inductive setting are filtered
out. The graphs in these datasets are unattributed, the graph structure makes the major contribution
to the tasks, and previous works have demonstrated the effectiveness of position information in those
tasks, here we set node input attributes to ones as placeholders for a more fair comparison. More
details of the datasets and eperimental setup are in Appendix A.1.

We choose baselines from MPNNs and anchor-based methods literature. The MPNN baseline uses
a linear transformation for message and update functions, which keep the same as in our proposed
models in the GIR framework. We take PGNN, AGNN and Distance Encoding (DE) as position
aware GNN baselines, among those, PGNN and AGNN are anchor based methods, and the AGNN
with fixed anchor is most related to our experiment setting. We take experiments for the GIR frame-
work variants over: (1) MPNN or GIR message passing; (2) anchor labeling ({A}-position-aware)
or anchor ID labeling (A-position-aware) anchorindication strategies; (3) max-pooling and mean
aggregator; (4) GIR-MIX over all anchor node (A-position-aware). Explicily assigning distances
and optional intermediate-hop distances in the anchor based setting are also experimented, and for
synthetic datasets, those methods with explicit distance assigning are not evaluated.

Results and analysis For synthetic datasets, we report the mean absolute error (MAE) for mean
outputs of every layer (mean) and on the last layer (last) in table 2. Considering that the aver-
age label value for these datasets (Table 4 in Appendix), the performance of the GIR framework
with corresponding position-aware capability is quite promising. Models using mean aggregator
are generally inferior to the corresponding max-pooling models, which supports max-pooling to
be a preferred aggregator. Variants using GIR propagation get outperformed results in A-position-
aware datasets but inferior in {A}-position-aware datasets. We owe the outperformed results to the

8

Under review as a conference paper at ICLR 2022

Table 3: Results on the position-aware real-world datasets, measured in test ROC AUC (in %)
for link prediction (-lp) and node pair classification (-npc) task, and in test accuracy (in %) for
node classification (-nc) task. N highlights the improvement over the strong baseline DE, Bold font
highlights top-3 results, * highlights the best results.

email-npc europe-nc usa-nc ce-link ns-link pb-link

PGNN 53.3 54.2 58.8 79.4 94.9 88.6
AGNN 89.6N 52.4 61.4 84.9 89.7 93.4
DE 87.5 58.4 64.2 90.0 99.4* 95.0

MPNN 50.0 25.4 25.2 50.0 50.0 50.0
w/ final distances 99.7N 50.0 72.4N 91.5N* 90.1 95.1N

w/ all distances 99.8N* 61.0N* 71.5N 87.7 88.2 95.4N*

MPNN + anchor labeling 51.0 26.4 25.4 52.7 79.3 65.2
GIR 50.1 25.3 26.7 55.3 81.1 63.4

MPNN + anchor ID labeling 99.8N* 52.2 66.0N 89.6 85.9 95.3N

w/ final distances 99.8N* 50.6 72.5N 91.3N 90.0 95.2N

GIR + anchor ID labeling 99.8N* 56.7 67.6N 89.9 89.9 95.1N

w/ final distances 99.7N 53.3 76.0N* 91.3N 91.2 95.3N

more specific propagation paths in GIR models, thus more easily to learn the expected functions in
the relatively complicated cases, while in the {A}-position-aware datasets, both {A}-position-aware
models archives nearly perfect results, and the higher capacity of MPNN leads to a slight superiority.

Results of experiments on real-world datasets are reported in table 3, where the DE record the best
performance of DE variants reported in the original paper (Li et al., 2020) for datasets except Email.
We only keep part of the results for highlighting some key aspects, full results and more analysis are
in Appendix A.3. Results show that with the same input feature, the MPNN baseline fails to distin-
guish different nodes. Explicitly assigning anchor based distances on MPNN improve performance
by a large margin, and generally outperform or compete position-aware baselines, this demonstrates
the effectiveness of the more flexible distance information interaction. Note that although accessing
distance information to all anchor nodes, using this strategy alone is not A-position-aware, as with
no correspondence with anchor node ids. Anchor ID labeling provide slight improvement to this,
and the GIR propagation strategy push the improvement further. And without explicit distance as-
signing, with {A}-position-aware modeling ability, MPNNs with anchor labeling and vanilla GIRs
generally get higher results, yet inferior to models with more powerful position-aware capability,
and variants with GIR propagation perform generally better, these results suggest the effectiveness
of the anchor indication and the further GIR propagation strategy.

In Europe-nc, the substantial improvement is got with all distance assigning, that suggests the ef-
fectiveness of intermediate limited hop distance information on the dataset, and in this case, GIR
with anchor ID labeling outperforms those explicit final distance assigning variants, this suggest the
potential advantage of the implicit learning strategy, as the information need by applying discrete
graph algorithm may not clear in real-world scenarios. We ascribe the performence drop for as-
signing intermediate distance on other datasets to the information redundant. Moreover, we note
that GIR framework performs inferior on Ns-link, and we ascribe it to the sparsity of NS dataset,
unreachable nodes from anchors on the input graph will be not benefited from the GIR framework,
and previous position-aware methods with special propagation strategy get relatively higher results.

6 CONCLUSION AND FUTURE WORK

We propose the GIR (Graph Inference Representation) framework, following the anchor-based GNN
pattern and aims at conveying distance information implicitly along the MPNN message-passing
steps. Theoretical implications and experimental results show the effectiveness of proposed strate-
gies, and considerations for more general usages of GIR framework are discussed. Our empirical
evaluations are taken on the synthetic datasets and relatively small scale real-world position-aware
datasets used in the previous position-aware GNN literature, we leave the potential usage of GIR on
larger scale scenarios for future work.

9

Under review as a conference paper at ICLR 2022

REFERENCES

Robert Ackland et al. Mapping the us political blogosphere: Are conservative bloggers more promi-
nent? In BlogTalk Downunder 2005 Conference, Sydney, 2005.

R. Bellman. On a routing problem. Quarterly of Applied Mathematics, 16:87–90, 1958.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International Conference on Machine Learning, pp.
1263–1272. PMLR, 2017.

L. A. Goodman. Snowball sampling. Annals of Mathematical Statistics, 32(1):148–170, 1961.

Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks, 4
(2):251–257, 1991.

M. Kaiser. Nonoptimal component placement, but short processing paths, due to long-distance
projections in neural systems. PLOS Computational Biology, 2, 2006.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In International Conference on Learning Representations (ICLR), 2017.

Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph evolution: Densification and shrinking
diameters. ACM transactions on Knowledge Discovery from Data (TKDD), 1(1):2–es, 2007.

Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding: Design provably
more powerful neural networks for graph representation learning. Advances in Neural Information
Processing Systems, 33, 2020.

Chao Liu, Xinchuan Li, Dongyang Zhao, Shaolong Guo, Xiaojun Kang, Lijun Dong, and Hong Yao.
A-gnn: Anchors-aware graph neural networks for node embedding. In International Conference
on Heterogeneous Networking for Quality, Reliability, Security and Robustness, pp. 141–153.
Springer, 2019.

E. F. Moore. The shortest path through a maze. In Proc. of the International Symposium on the
Theory of Switching, 1959.

Mark EJ Newman. Finding community structure in networks using the eigenvectors of matrices.
Physical review E, 74(3):036104, 2006.

Sunil Nishad, Shubhangi Agarwal, Arnab Bhattacharya, and Sayan Ranu. GraphReach: Position-
Aware Graph Neural Networks using Reachability Estimations. arXiv:2008.09657 [cs, stat],
September 2020. URL http://arxiv.org/abs/2008.09657. arXiv: 2008.09657.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank citation ranking:
Bringing order to the web. Technical report, 1999.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Petar Velikovi, Rex Ying, Matilde Padovano, Raia Hadsell, and Charles Blundell. Neural execution
of graph algorithms. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=SkgKO0EtvS.

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma,
Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang Li, and Zheng Zhang.
Deep graph library: A graph-centric, highly-performant package for graph neural networks. arXiv
preprint arXiv:1909.01315, 2019.

Chunyan Xu, Zhen Cui, Xiaobin Hong, Tong Zhang, Jian Yang, and Wei Liu. Graph inference learn-
ing for semi-supervised classification. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=r1evOhEKvH.

10

http://arxiv.org/abs/2008.09657
https://openreview.net/forum?id=SkgKO0EtvS
https://openreview.net/forum?id=r1evOhEKvH

Under review as a conference paper at ICLR 2022

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=ryGs6iA5Km.

Jiaxuan You, Rex Ying, and Jure Leskovec. Position-aware graph neural networks. In International
Conference on Machine Learning, pp. 7134–7143. PMLR, 2019.

M Zhang and Y Chen. Link prediction based on graph neural networks. In Proceedings of the 32nd
International Conference on Neural Information Processing Systems, pp. 5171–5181, 2018.

11

https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km

Under review as a conference paper at ICLR 2022

Table 4: Details of synthetic position-aware datasets.
Dataset |G| |V| avg. |E| weighted position-aware setting avg. label |A| layers

dist 200 100, 200 907.2 ! {A}-position-aware 8.1 5 3
dist-u 200 100, 200 907.2 % {A}-position-aware 1.6 5 3
dist-a 1 2000 20000 ! A-position-aware 17.9 20 4
dist-au 1 2000 20000 % A-position-aware 3.3 20 4

Table 5: Details of position-aware real-world datasets.
Dataset |V| |E| |A| Cite

Email 1005 25571 50 Leskovec et al. (2007)
Europe 399 5995 20 Ackland et al. (2005)
USA 1190 13599 50 Ackland et al. (2005)
C.ele 297 2148 20 Kaiser (2006)
NS 1461 2742 50 Newman (2006)
PB 1222 16714 50 Ackland et al. (2005)

A EXPERIMENT DETAILS

A.1 DATASETS & EXPERIMENTAL SETUP

We first detail the construction of synthetic datasets. For {A}-position-aware setting, we generate
160 graphs with 100 nodes each for training, 20/20 graphs with 200 nodes each as valid/test set,
and for A-position-aware setting, as anchor ID labeling strategy is not inductive, we generate one
graph with 2000 nodes, train/valid/test sets are randomly split by 6:2:2. In the weighted setting, we
assign edge weights as a uniformly sampled integer from 2 to 10, and in the unweighted setting,
the distance between every connected node pair would be 1. Details of those synthetic datasets are
listed in table 4.

For real-world datasets, following Li et al. (2020), we split train/valid/test sets by 8:1:1. Details of
those real-world datasets are listed in table 5.

For each dataset, we report the test set performance at the best model with the valid set, and the final
results are reported over 20 runs with different random seeds on 5 generated synthetic data samples
or on the randomly split dataset for real-world datasets to keep consistent with DE baseline.

A.2 IMPLEMENTATION DETAILS

Our implementation is based on Deep Graph Library (DGL) (Wang et al., 2019), with Py-
Torch (Paszke et al., 2017) backend. For synthetic datasets, we use Adam optimizer for training,
hyperparameters are set heuristically, listed in table 4. For real-world datasets, we mainly follow the
hyperparameters settings in Li et al. (2020), with learning rate tuning in 1e-3 and 1e-4; hidden size
set to 100; dropout set to 0.2; using 3 layer models for all datasets; the number of anchors are set
heuristically according to the scale of each dataset and is also restricted by the GA-MPCA anchor
selecting algorithm, listed in table 5.

A.3 MORE RESULTS AND ANALYSIS

We note the full experiment results of real-world datasets (Table 6) and take some complementary
analysis here.

We first note some key aspects for highlighting the improvements of GIR framework in table 7.
We note the improvement of using explicit distance assigning on MPNN in (Table 7, 1-2), which
highlights the effectiveness of distance information. Table 7, 3-4 lists the improvements of the
GIR framework with different position-aware settings, settings with explicit distance assigning are
not considered here for more clear comparison. The improvements of GIR propagation strategy
are highlighted in table 7, 5-6, the comparisons are taken on MPNN with same position-aware

12

Under review as a conference paper at ICLR 2022

Table 6: Full results on the position-aware real-world datasets, measured in test ROC AUC (in %)
for link prediction (-lp) and node pair classification (-npc) task, and in test accuracy (in %) for
node classification (-nc) task. N highlights the improvement over the strong baseline DE, Bold font
highlights top-5 results, * highlights the best results.

email-npc europe-nc usa-nc ce-link ns-link pb-link

1 PGNN 53.3 54.2 58.8 79.4 94.9 88.6
2 AGNN 89.6N 52.4 61.4 84.9 89.7 93.4
3 DE 87.5 58.4 64.2 90.0 99.4* 95.0

4 MPNN 50.0 25.4 25.2 50.0 50.0 50.0
5 w/ final distances 99.7N 50.0 72.4N 91.5N 90.1 95.1N

6 w/ all distances 99.8N 61.0N 71.5N 87.7 88.2 95.4N

7 MPNN + anchor labeling 51.0 26.4 25.4 52.7 79.3 65.2
8 w/ mean aggregator 72.6 52.7 52.6 84.8 79.5 92.3
9 w/ final distances 99.7N 50.3 72.2N 91.6N* 90.0 95.1N

10 w/ all distances 99.8N 61.0N 70.5N 87.6 87.9 95.5N*
11 GIR 50.1 25.3 26.7 55.3 81.1 63.4
12 w/ mean aggregator 50.3 27.9 32.4 55.9 80.3 60.4
13 w/ final distances 99.7N 52.2 74.7N 91.3N 91.2 95.3N

14 w/ all distances 99.8N 59.9N 74.1N 87.9 90.0 95.5N*

15 MPNN + anchor ID labeling 99.8N 52.2 66.0N 89.6 85.9 95.3N

16 w/ mean aggregator 99.6N 51.4 66.1N 89.0 67.0 94.7
17 w/ final distances 99.8N 50.6 72.5N 91.3N 90.0 95.2N

18 w/ all distances 99.8N 62.1N* 70.2N 87.8 88.2 95.5N*
19 GIR + anchor ID labeling 99.8N 56.7 67.6N 89.9 89.9 95.1N

20 w/ mean aggregator 99.9N 51.2 66.3N 89.9 89.6 95.3N

21 w/ final distances 99.7N 53.3 76.0N* 91.3N 91.2 95.3N

22 w/ all distances 99.8N 59.2N 74.7N 88.1 90.0 95.5N*
23 MPNN + node one-hot labeling 100.0N* 48.5 61.3 87.9 91.8 93.7
24 GIR + node one-hot labeling 100.0N* 59.5N 68.6N 88.4 86.6 94.1
25 GIR-MIX 65.6 27.9 35.4 81.3 86.3 84.6

Table 7: Highlights for key aspects of the results on real-world datasets (Table 6). Average improve-
ment of the aspects on every datasets are noted (in %), references of comparisons are noted with the
line number in table 6.

variants references email
-npc

europe
-nc

usa
-nc

ce
-link

ns
-link

pb
-link

1 MPNN w/ final distances 5→4 99.4 96.8 187.3 83.0 80.2 90.2
2 MPNN w/ all distances 6→4 99.6 140.2 183.7 75.4 76.4 90.8

3 {A}-position-aware 7→4,11→4 1.1 1.7 3.3 8.0 60.4 28.6
4 A-position-aware 15→4,19→4 99.6 114.4 165.1 79.5 75.8 90.4

5 GIR (w/o distance assigning) 11→7,19→15 -0.9 2.2 3.8 2.6 3.5 -1.5
6 GIR (w/ distance assigning) 13→9,14→10,

21→17,22→18
-0.0 0.7 5.0 0.0 1.8 0.0

7 w/ final distances 17→15,21→19 -0.0 -4.5 11.1 1.7 3.1 0.0
8 w/ all distances 18→15,22→19 0.0 11.7 8.4 -2.0 1.4 0.3
9 A-position-aware

over distance assigning
17→5,18→6,
21→5,22→6

0.0 1.7 1.9 0.0 0.8 0.1

setting, settings of using explicit distance assigningare considered separately. The implicit encoding
strategy, while has the capability of learning distances, due to the hardness of learning, assigning
distance information explicitly would still be helpful. We note the improvement of explicit distance
assigning over A-position-aware GIRs in table 7, 7-8. And the results show that the strategies for
A-position-aware GIR would still be helpful with distance assigned (Table 7, 9).

13

Under review as a conference paper at ICLR 2022

For the choice of aggregator, we take max-pooling as the default following our starting point of
mimicking Bellman-Ford algorithm, and the experiments on synthetic datasets support this, but
it is not absolute for real-world cases as the information need may not clear. Results show that
the mean aggregator (Table 6, 8,12,16,20) gets improvement on those {A}-position-aware models
(MPNN+anchor labeling and GIR), and for A-position-aware models with anchor ID labeling, the
need for more accurate distance information suggests the max-pooling aggregator.

The node one-hot labeling (Table 6, 23-24) provide a V-position-aware capability to MPNN, besides
the efficiency issue, results show a performance decline compared with using anchor ID labeling,
this demonstrates the effectiveness of the important node selection strategy. Moreover, the GIR
propagation with node one-hot labeling combine the merits of both, and gets a relatively promising
result.

For GIR-MIX (Table 6, 25), with A-position-aware, performs only superior to {A}-position-aware
models, and largely inferior to models with anchor ID labeling, we ascribe it to the extremely limited
propagation path, though effective in the synthetic datasets, GIR-MIX for every single nodes may
not be an effective general graph encoder.

14

	Introduction
	Related Works
	Position-aware GNNs
	Bellman-Ford Algorithm

	Preliminaries
	Notations
	Position-aware embeddings
	Indicatability
	Neural Bellman-Ford with MPNNs
	Problem Definition

	Methodology
	GIR Model: More Specific Propagation Paths
	The GIR framework
	GIR as General Graph Encoder

	Experiments
	Conclusion and future work
	Experiment Details
	Datasets & Experimental Setup
	Implementation Details
	More Results and Analysis

