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ABSTRACT

In representation learning on the graph-structured data, many popular GNNs may
fail to capture long-range dependencies, which leads to their performance degra-
dation. Furthermore, this weakness will be magnified when the concerned graph is
disassortative. To solve the above-mentioned issue, we propose a graph convolu-
tional network with structure learning (GCN-SL). The proposed GCN-SL contains
two improvements: corresponding to edges and node features, respectively. We
build a re-connected adjacency matrix by structure learning from the perspective
of edges. Specifically, the re-connected adjacency matrix is built by using a special
data preprocessing technique and similarity learning, and can be optimized direct-
ly along with GCN-SL parameters. In the aspect of node features, we propose
an efficient-spectral-clustering (ESC) and an ESC with anchors (ESC-ANCH) al-
gorithms. The two algorithms can efficiently aggregate feature representations
from similar nodes, no matter how far away these similar nodes are from the tar-
get node. Both of the two improvements can help GCN-SL capture long-range
dependencies, then make GCN-SL is capable of performing representation learn-
ing on both disassortative and assortative graphs. Experimental results on a wide
range of benchmark datasets illustrate that the proposed GCN-SL outperforms the
state-of-the-art GNN counterparts.

1 INTRODUCTION

Graph Neural Networks (GNNs) are powerful for representation learning on graphs with varieties
of applications ranging from knowledge graphs to financial networks (Xu et al., 2018; Gilmer et al.,
2017; Bronstein et al., 2017; Johnson, 2017; Chen et al., 2018a; Klicpera et al., 2019). In recent
years, GNNs have developed many artificial neural networks, e.g., Graph Convolutional Network
(GCN) (Kipf & Welling, 2017), Graph Attention Network (GAT) (Velikovi et al., 2017), Graph
Isomorphism Network (GIN) (Xu et al., 2019), and GraphSAGE (Hamilton et al., 2017b). For
GNNs, each node can iteratively update its feature representation via aggregating the ones of the
node itself and its neighbors (Kipf & Welling, 2017; Defferrard et al., 2016; Huang et al., 2018). The
neighbors are usually defined as the set of adjacent nodes in a graph, and a diversity of aggregation
functions can be adopted to GNNs, e.g., summation, maximum, and mean (Henaff et al., 2015; Pei
et al., 2020; Corso et al., 2020).

Convolutional neural networks (CNNs) have developed substantially in recent years and have
achieved significant success in a wide range of tasks (Li et al., 2020; Wang et al., 2021b). GCNs
are the generalizations of classical CNNs so as to handle graph data such as point could, molecu-
lar data, and social networks (Chen et al., 2018b). GCNs are the most attractive GNNs and have
been widely applied in a variety of scenarios (Hamilton et al., 2017a; Li et al., 2018). However,
one fundamental weakness of GCNs limits the representation ability of GCNs on graph-structured
data (Henaff et al., 2020; Zhu et al., 2020). That is GCNs may not capture long-range dependencies
in graphs, considering that GCNs update the feature representations of nodes via simply summing
the normalized feature representations from all one-hop neighbors (Velikovi et al., 2017; Pei et al.,
2020). Furthermore, this weakness will be magnified in disassortative graphs (Henaff et al., 2020;
Zhu et al., 2020).
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Homophily is a very important principle of many real-world graphs, whereby the linked nodes tend
to have similar features and belong to the same class (Zhu et al., 2020). For instance, papers are
more likely to cite papers from the same research area in citation networks, and friends tend to have
similar age or political beliefs in social networks (Velikovi et al., 2017; Kipf & Welling, 2017).
However, there are also settings about “opposites attract” in the real world, leading to graphs with
low homophily, i.e., the proximal nodes are usually from different classes and have dissimilar fea-
tures (Zhang & Zitnik, 2020; Zhu et al., 2019). For example, most people tend to chat with people
of the opposite gender in the dating website, and fraudsters are more prefer to contact accomplices
than other fraudsters in online gambling networks. The graphs under high homophily are called as
assortative graphs, and the graphs under low/medium level of homophily are called as disassortative
graphs. Most existing GNNs assume graphs are assortative, including GCNs, therefore they perfor-
m poorly on generalizing disassortative graphs even worse than the MLP (Hornik, 1991) that relies
only on the node features for classification (Pandit et al., 2007; Zhu et al., 2020).

To solve the above problem, recently some related approaches have been built (Pei et al., 2020; Zhao
et al., 2021; Zhu et al., 2020; Wang et al., 2021a), such as Geometric Graph Convolutional Network
(Geom-GCN) (Pei et al., 2020), and H2GCN (Zhu et al., 2020). Although Geom-GCN improves the
performance of representation learning of GCNs, the classification performance of Geom-GCN is
often unsatisfactory when the concerned datasets are disassortative graphs (Pei et al., 2020). H2GCN
improves the classification performance of GCN, while it is only able to aggregate information from
near nodes, resulting in lacking the ability for capturing the features from distant but similar nodes.
Nevertheless, it is notable that H2GCN still has a lot of room for improvement.

In this paper, we propose a novel GNN approach to solve the above-mentioned problem, referred
to as the graph convolutional network with structure learning (GCN-SL). Following the spectral
clustering (SC) method (Nie et al., 2011), a graph of data points is built according to the distances
of the data points in the feature space. Then, the data points are mapped into a new feature space
by cutting the graph. In this way, the data points connected closely are usually proximal in the
new feature space. Therefore, nodes can aggregate features from similar nodes if SC is employed
to process graph-structured data, contributing to that GCN can capture long-range dependencies. It
should be noted, the computational complexity of SC is greatly high for large-scale graphs. Hence,
we design an efficient-spectral-clustering(ESC) and an ESC with anchors (ESC-ANCH) algorithms
to efficiently extract SC features. Then, the extracted SC features combined with the original node
features as enhanced features (EF), and EF is utilized to train the proposed GCN-SL model.

Following the research in Zhu et al. (2020), the nodes of the same class always possess similar
features, no matter whether the homophily of the concerned graph is high or low. For our approach, it
can build a re-connected graph related to the similarities between nodes, and the re-connected graph
is optimized jointly with the parameters of GCN-SL. Meanwhile, for dealing with the sparse initial
attributes of nodes, a special data preprocessing technique is applied to the original features of nodes.
And this data preprocessing technique can also overcome the over-fitting problem that GNNs with
structure learning module often face. Afterwards, the original adjacency matrix and the re-connected
adjacency matrix are respectively utilized to obtain multiple intermediate representations associated
with different rounds of aggregation. Then, we combine several key intermediate representations as
the new node embedding and use a learnable weighted vector to highlight the important dimensions
of the new node embedding. Finally, we set the result of this calculation as the final node embedding
for node classification.

Compared with other GNNs, the contributions of GCN-SL can be summarized as follows. 1) SC is
integrated into GNNs for capturing long-range dependencies on graphs, and an ESC and an ESC-
ANCH algorithms are proposed to efficiently implement SC on graph-structured data; 2) Our GCN-
SL can learn an optimized re-connected adjacency matrix that benefits the downstream prediction
task. 3) The special data preprocessing technique can not only help GCN-SL overcome the over-
fitting problem that most of GNNs with structure learning module face, but also benefits the genera-
tion of the re-connected adjacency matrix; 4) The GCN-SL proposes the improvements for handling
disassortative graphs from the aspects of node features and edges, respectively. Meanwhile, GCN-
SL combines the two improvements and makes them supplement each other.
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Figure 1: GCN-SL consists of three stages: (S1) re-connected graph, (S2) efficient spectral clus-
tering with anchors, and (S3) graph convolutional networks with structure learning. In (S1), we
construct a re-connected adjacency matrix A∗ via similarity learning, and the re-connected graph
can be gradually optimized with the training of the GCN-SL model. In (S2), ESC-ANCH generates
the SC features F. In (S3), we combine the original features X and SC features F as the enhanced
features H, and perform feature aggregation on H by using the A∗ and A, respectively. Further-
more, several key results of aggregation and the H are combined as the Hcb, and then A and A∗
are used for performing feature aggregation on H, respectively. Finally, a learnable weighted vector
w is used to highlight important dimensions of Hcb, which makes GCN-SL adapts to graphs with
various levels of homophily.

2 GCN-SL ARCHITECTURE

We present a novel GNN: GCN-SL for node classification of graph-structured data. Figure 1 shows
the pipeline of GCN-SL. The remainder of this section is organized as follows: subsection 2.2 gives
the construction details of the re-connected adjacency matrix, subsection 2.3 describes the proposed
ESC and ESC-ANCH approaches, subsection 2.4 describes the proposed GCN-SL in detail.

2.1 DEFINITION

Let G = (V, E) be an undirected graph, where V is the set of nodes or vertices, and E is the set
of edges. |V| = n is the number of nodes. vi ∈ V is a node and eij = (vi, vj) ∈ E is an edge
linking vi and vj . The neighborhood of a node vi is defined as Ni = {vj ∈ V|(vi, vj) ∈ E}. The
adjacency matrix A ∈ Rn×n with Aij = 1 if eij ∈ E and Aij = 0 if eij /∈ E . Let X ∈ Rn×d be
the node feature matrix with xi ∈ R1×d denoting the feature vector of node vi, and each node is
associated with a label yi. Given a multilayered network and the semantic labels ylab for a subset
of nodes Vlab ∈ V , where y ∈ ylab means one of the C predefined classes. GNNs learn the feature
representations of the nodes and graphs by exploiting the graph structure. Then the task of node
classification is to predict the label for each node without label vi ∈ V|vi /∈ Vlab according to the
feature representation of the corresponding node.

2.2 RE-CONNECTED GRAPH

Most existing GNNs are designed for assortative graphs, where the linked nodes usually possess
similar feature representation and belong to the same class. However, there are a large number of
disassortative graphs in the real world, where the linked nodes often possess dissimilar features and
belong to different classes. To sum up, in practical applications of GNNs, these GNNs designed
under the assumption of homophily are greatly inappropriate for the graphs under low/medium ho-
mophily.
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Fortunately, regardless of the homophily level of graphs, the nodes of the same class always possess
high similar features (Chen et al., 2020; Shanthamallu et al., 2020). In this paper, through structure
learning, our network can learn a re-connected adjacency matrix that is based on the similarities
between nodes and optimized along with the parameters of GCN-SL, which makes the GCN-SL can
capture information from more reliable nodes.

A good similarity metric function should be expressively powerful and learnable (Chen et al., 2020).
In this work, we set cosine similarity as the metric function to built the similarity matrix M ∈ Rn×n.
While the sparse initial attributes of nodes in adopted graphs usually result in an invalid similarity
matrix M. To overcome the weakness, we apply a special preprocessing to X. Specifically, we
randomly choose a feature dimension from X, and then a number greater than 0 is plus to the
chosen feature dimension. Since the original features of nodes are greatly sparse, and the values of
node features are range between {0, 1}. To ensure the construction of similarity matrix M, and not
affect the similarity of nodes too much, the above positive number is empirically set to 0.5 in all
graph-structured data. Meanwhile, Graph structure learning module enables GCN-SL to better fit
the downstream task, while it may be easier for the GCN-SL into over-fitting (Chen et al., 2020; Wu
et al., 2021). The introduction of additional features not only guarantees the construction of M, but
also helps GCN-SL to overcome the over-fitting problem.

The similarity between a pair of nodes can be represented as:

Mij = cos (xiQ,xjQ) (1)

where Q ∈ Rd×p is a learnable weighted matrix. Afterwards, we can obtain the similarity matrix
M, the M is symmetric and the elements in M range between [−1, 1].

Since a fully connected graph is very computational and might introduce noise, the re-connected
adjacency matrix is supposed to be sparse (Chen et al., 2020). Meanwhile, the re-connected adja-
cency matrix is also expected to be nonnegative and connected. To obtain a non-negative, sparse,
and connected adjacency matrix A∗ from M, we use both the KNN and the minimum-threshold
methods. Specifically, we first define a positive integer r and a non-negative threshold ε. Then, we
retain those elements in M which are greater than ε or belong to the set of r largest elements in the
corresponding row, and we set the other elements to zero. That is A∗ij = Mij if Mij > ε or Mij

belong to the set of r largest elements in Mi ∈ Rn, and A∗ij = 0 if else. By this way, we obtain the
re-connected adjacency matrix A∗. In this paper, the r is uniformly set to 2 for convenience, and
the threshold ε needs to be searched.

2.3 EFFICIENT SPECTRAL CLUSTERING WITH ANCHORS

In graph-structured data, a large number of nodes of the same class possess similar features but are
far apart from each other (Henaff et al., 2020). However, GCN simply aggregates the information
from first or higher-order neighbors, and the depth of GCN is usually limited (Rong et al., 2020).
Obviously, the information from distant but similar nodes is always ignored in GCN. Meanwhile,
SC can divide nodes according to the affinities between nodes (Nie et al., 2011). Specifically, the
closely connected and similar nodes are more likely to be proximal in new feature space, and vice
versa (Nie et al., 2011). Thus, it is very appropriate for combining GCN with SC to extract the
features of distant but similar nodes.

Following Nie et al. (2011), the object of performing SC is to generate the cluster assignment ma-
trix F. F can only be calculated by eigenvalue decomposition on the normalized similar matrix
Ŝ = D−1/2SD−1/2, which takes O(n2c) time complexity, where Ŝ ∈ Rn×n, n and c are the
the numbers of nodes and clusters, respectively. For some large-scale graphs, the computational
complexity is an unbearable burden.

In order to overcome this problem, we propose the efficient-spectral-clustering (ESC) method to
efficiently perform SC. In the proposed ESC, instead of the S is calculated by equation 16, we
employ inner product to construct affinity matrix S = XXT , and S ∈ Rn×n. Thus, the normalized
similar matrix Ŝ in the ESC method can be represented as:

Ŝ = D−1/2
s XXTD−1/2

s

= (D−1/2
s X)(D−1/2

s X)T .
(2)
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Then, we define P = D
−1/2
s X, thus Ŝ = PPT, where P ∈ Rn×d. The singular value decomposi-

tion (SVD) of P can be represent as follows:

P = UΣVT (3)

where U ∈ Rn×n, Σ ∈ Rn×d and V ∈ Rd×d are left singular vector matrix, singular value matrix,
and right singular vector matrix, respectively. In addition, U and V meet UTU = I and VTV = I.
Thus, Ŝ can be represented as:

Ŝ = UΣVT
(
UΣVT

)T
= UΣVTVΣTUT

= UΣΣTUT

(4)

where ΣΣT ∈ Rn×n is a diagonal matrix and the diagonal elements correspond to the eigenvalues
of Ŝ. Meanwhile, the eigenvalues of Ŝ are equal to the eigenvalues squared of P. Therefore, the left
singular vector matrix of P can be used to build the eigenvectors of Ŝ.

Hence, we can easily obtain the cluster assignment matrix F by performing a SVD on P. Specif-
ically, the F is constructed by the column vectors from U, and the column vectors selected are
corresponding to the c largest eigenvalues in Σ. The computational complexity of SVD performed
on P ∈ Rn×d (O = ndc) is much lower, compared with directly performing eigenvalue decompo-
sition on Ŝ ∈ Rn×n (O = nnc).

Since the dimension d of nodes’ original features are usually high in many graph-structured data,
the efficiency of the ESC method still needs to be boosted. Thus, we propose the ESC-ANCH.
Specifically, we first randomly selectm nodes from the set of nodesX as the set of anchor nodes X′,
where m << n and m < d. Then, we calculate the node-anchor similar matrix R ∈ Rn×m, and the
chosen similarity metric function is cosine. Here, R is employed as the new feature representations
of nodes. Thus, in ESC-ANCH, P is redefined as P = D

−1/2
s R, where Ds is the degree matrix of

S = RRT and P ∈ Rn×m. Thus, the ESC-ANCH only takes O(nmc) time complexity to perform
the singular value decomposition of P, which performs more efficiently than SC and ESC. In this
paper, we default to use ESC-ANCH to obtain SC features.

2.4 GRAPH CONVOLUTIONAL NETWORKS WITH STRUCTURE LEARNING

We first utilize the original features X and the SC features F to construct the EF. The first layer of
the proposed GCN-SL is represented as:

H = ReLU
(
XW0

X + FW0
F

2

)
(5)

where W0
X ∈ Rd×q and W0

F ∈ Rc×q are trainable weight matrix of the first layer. Meanwhile, we
can also use the concatenation to combine X and F.

H = ReLU
(
XW0

X‖FW0
F

)
(6)

where ‖ represents the concatenation of features. Here, we call the EF as EFav if average methd is
adopted, and call EF as EFcc if concatenation method is adopted. After the first layer is constructed,
we use A∗ generated from subsection 2.2 to aggregate features of nodes to obtain the intermediate
representations:

H
(1)
A∗

= Â∗H (7)

where Â∗ is the row normalized A∗. Similarly, we use the original adjacency matrix A to obtain
the intermediate representations H(k)

A of nodes.

H
(k)
A = ÂH

(k−1)
A (8)

where k = 1, 2, . . . ,K, K represents the times of feature aggregation, H(0)
A = H, and Â is the

normalized A with self-loop. After K rounds of feature aggregation, we combine several most key
intermediate representations as a new node embedding, the formula can be written as:

Hcb = COMBINE(H,H
(K−1)
A ,H

(K)
A ,H

(1)
A∗

) (9)
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Table 1: Summary of the datasets utilized in our experiments.

Dataset Cora Citeseer Pubmed Squirrel Chameleon Cornell Texas Wisconsin
Hom.ratio h 0.81 0.74 0.8 0.22 0.23 0.3 0.11 0.21
# Nodes 2708 3327 19717 5201 2277 183 183 251
# Edges 5429 4732 44338 198493 31421 295 309 499
# Features 1433 3703 500 2089 2325 1703 1703 1703
# Classes 7 6 3 5 5 5 5 5

where COMBINE is set as concatenation so as to make full use of these intermediate represen-
tations. For assortative graphs, H(K−1)

A and H
(K)
A are sufficient for representing embeddings of

nodes. This can be proved by GCN (Kipf & Welling, 2017) and GAT (Velikovi et al., 2017). In
addition, H(1)

A∗
can be treated as the supplement to H

(K−1)
A and H

(K)
A . For disassortative graphs,

H and H
(1)
A∗

can also perform well on learning feature representation. Afterwards, we generate a
learnable weight vector w that has the same dimension as Hcb. Then we take the Hadamard product
between w and Hcb to obtain the final feature representations of nodes,

Hfinal = ReLU(w �Hcb). (10)

The purpose of equation 10 is highlight the important dimensions of Hcb. Then, nodes are classified
by the following way:

Z = softmax
(
HfinalW1

)
(11)

where W1 is trainable weighted matrix of the last layer. We then calculate the cross-entropy error
over all labeled nodes:

Lpred = −
∑

i∈Ylab

C∑
j=1

Yij lnZij (12)

where Ylab is the set of node indices that have labels.

In this paper, the proposed GCN-SL with EFcc is called as GCN-SLcc, and similarly, the GCN-SL
with EFav is named as GCN-SLav . A pseudocode of the proposed GCN-SL is given in Algorithm 1.

3 EXPERIMENTAL RESULTS

In the experimental section, to validate the merit of GCN-SL, we compare GCN-SL with some
state-of-the-art GNNs on transductive node classification tasks. Meanwhile, the experiments are
performed on several benchmark datasets with different homophily. Before presenting the detailed
evaluation, we first describe the graph data sets considered in this paper and briefly discuss the
employed baseline techniques.

3.1 DATASETS

In simulations, we adopt eight open graph datasets to validate the proposed GCN-SL, including
three citation networks, three WebKB networks, and two Wikipedia networks.

The citation networks are standard citation network benchmark datasets, involving Cora, Citeseer,
and Pubmed datasets (Sen et al., 2008; Namata et al., 2012; Yang et al., 2019). In these datasets,
nodes correspond to papers and edges correspond to citations. Node features represent the bag-of-
words representation of the paper, and the label of each node is the academic topics of the paper.

The sub-networks of the WebKB networks cover Cornell, Texas, and Wisconsin datasets. They
are collected from various universities’ computer science departments (Pei et al., 2020). In these
datasets, nodes correspond to webpages, and edges represent hyperlinks between webpages. Node
features denote the bag-of-words representation of webpages. These webpages can be divided into
5 classes.

Wikipedia networks are page-page networks about specific topics in Wikipedia, e.g., Chameleon and
Squirrel data. Nodes correspond to pages, and edges correspond to the mutual links between pages.
Node features represent some informative nouns in Wikipedia pages. These nodes are classified into
four categories according to the amount of their average traffic.
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In all datasets, we randomly split nodes per class into 48%, 32%, and 20% for training, validation,
and testing. The experimental results are the mean and standard deviation of ten runs. Testing is
performed when validation losses achieve the minimum on each run. An overview summary of the
characteristics of all datasets is shown in Table 1.

The level of homophily of graphs is one of the most important characteristics of graphs, so it is
significant for us to analyze and employ graphs. For describing the homophily level of a graph,
we utilize the edge homophily ratio h = |{(u,v):(u,v)∈E∧yu=yv}|

|E| , where E donate the set of edges,
yv and yu represent the label of node v and u, respectively . The h is the fraction of edges in a
graph which linked nodes that have the same class label (i.e., intra-class edges). This definition is
proposed in Zhu et al. (2020). Obviously, graphs have strong homophily when h is high (h → 1),
and graphs have weak homophily when h is low (h → 0). The h of each graph is listed in Table 1.
From the homophily ratios of all adopted graphs, we can observe that all the citation networks are
graphs under high homophily (i.e., assortative graphs), and all the WebKB networks and Wikipedia
networks are graphs under low homophily (i.e., disassortative graphs).

3.2 EXPERIMENTAL SETUP

For comparison, we use six state-of-the-art node classification algorithms including MLP (Hornik,
1991), GCN (Kipf & Welling, 2017), GAT (Velikovi et al., 2017), MixHop (AbuElHaija et al.,
2019), Geom-GCN (Pei et al., 2020), and H2GCN (Zhu et al., 2020). For H2GCN, we consider
two variants: H2GCN-1 and H2GCN-2 according to the furthest distance of neighbor nodes. In the
above six models, all hyper-parameters are set according to Zhu et al. (2020). For the proposed
GCN-SL, we perform a hyper-parameter search on the validation set. We utilize RELU as the
activation function. All models are trained to minimize cross-entropy on the training nodes. Adam
optimizer is employed for all models (Kingma & Ba, 2015).

3.3 EFFECTIVENESS VERIFICATION FOR RE-CONNECTED ADJACENCY MATRIX

(a) Original graph (b) Neighbors in original
graph

(c) Re-connected graph (d) Neighbors in re-
connected graph

Figure 2: Visualization of the graph structures. The graph-structured data is a real-world graph,
namely the Wisconsin network, where color indicates the labels of nodes. The original graph is
shown in (a) and the re-connected graph learned by GCN-SLcc is shown in (c). We fade the remain-
ing nodes and edges to emphasize the neighbors of selected node in (b) and (d).

Table 2: Node classification accuracies (%) of GCN-SLcc and GCN-SLav .

Dataset A A∗ Cora Citeseer Pubmed Squirrel Chamele. Cornell Texas Wiscons.
– – 74.7±1.9 72.1±1.8 87.1±1.4 29.4±2.9 49.4±2.9 82.6±5.5 82.3±3.9 86.5±2.1

GCN-SLcc X – 89.4±0.4 77.6±1.5 88.5±1.1 37.1±3.2 57.5±2.8 76.6±8.6 81.2±6.2 81.8±5.3
X X 88.8±1.3 77.3±1.5 89.7±1.2 43.5±3.1 61.4±3.2 86.3±5.1 87.6±6.2 88.6±4.8
– – 75.2±2.7 71.7±2.7 86.9±0.6 30.2±1.4 48.7±3.1 82.4±5.9 82.1±4.8 86.2±2.2

GCN-SLav X – 88.7±0.6 77±1.5 89.9±0.8 35.6±3.0 55.9±3.7 76.8±5.9 81.9±3.2 84±6.0
X X 89.1±1.1 77±2.1 89.5±0.8 43.4±2.2 60.4±1.2 84.2±6.3 87.4±5.9 87.1±4.2

To examine the graph structure changes brought by GCN-SL intuitively, we visualize the original
graph and the re-connected graph of the Wisconsin network by using Gephi tool in Figure 2. Mean-
while, we elect one specific node, and highlight the changes of its neighborhood in Figure 2(b) and
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(a) (b) (c)

Figure 3: Ablation study about SC features on the proposed GCN-SL, w/o denotes without.

2(d). As shown in Figure 2, the original graph is relatively chaotic, and there exist lots of Inter-
class connections. After applying our proposed graph structure learning method, the structure of the
re-connected graph is much crisp, and the fraction of intra-class edges can reach 90%. This was a
huge step forward. Thus the graph structure learning module can significantly improve the graph
structure.

Afterwards, we explore the impact of the A∗ on the accuracy of the proposed GCN-SL by using
the ablation study. Table 2 gives the accuracies of GCN-SL in all adopted graphs, and the best re-
sults are bolded. We can see that the original adjacency matrix A is very important for GCN-SLav

and GCN-SLcc in citation networks. However, the impact of A is very limited and even bad in
the WebKB networks. This is because citation networks are assortative graphs, while WebKB net-
works are disassortative graphs. It is difficult for GCN-SL to aggregate useful information by only
using A in graphs with low homophily. By contrast, the introduction of A∗ is greatly helpful for
the performance of GCN-SL in WebKB networks, and it does not hurt the performance of GCN-
SL in citation networks. Meanwhile, the adoption of A∗ is also helpful for GCN-SL in Wikipedia
networks. This is owing to the re-connected graphs are constructed by similarity learning and opti-
mized as the model is optimized. Thus, the re-connected graphs are more reliable than the original
graph in disassortative benchmarks.

3.4 EFFECT OF SC FEATURES ON ACCURACY

In this experiment, we explore the impact of SC features on the node classification accuracy of
GCN-SL. The SC features are extracted by the proposed ESC-ANCH method. In this work, we
still use the ablation study. The classification accuracies of GCN-SLcc, GCN-SLav , and GCN-SL
without SC features are shown in Figure 3, where all graph datasets are adopted. As can be seen,
GCN-SLcc and GCN-SLav get better performance than GCN-SL without SC features. This owning
to the SC features not only reflect the ego-embedding of nodes but also the features of similar nodes.

As a further insight, we focus on the running times of the original SC, the proposed ESC and ESC-
ANCH in all adopted graph datasets. Table 3 records the results of the running times, and the
proposed methods and the best results are bolded. From Table 3, we can see that ESC, and ESC-
ANCH are much more efficient than SC. Meanwhile, ESC-ANCH is faster than ESC due to the
introduction of anchor nodes. Specifically, ESC-ANCH only takes 1.2 s in Cora dataset, which is
47 times faster than original SC method. In Squirrel networks, ESC-ANCH takes 1.1 s, which is 90
times faster than original SC method. ESC-ANCH takes about half as long as original SC in WebKB
networks. Having said all of the above, ESC-ANCH is a very efficient SC method.

Table 3: Running Time (Seconds) of SC, ESC and ESC-ANCH, on all graph datasets (OM Error).

Method Cora Citeseer Pubmed Squirrel Chameleon Cornell Texas Wisconsin
SC 58.1 63.2 OM 98.5 29.3 1.7 1.7 1.8
ESC 1.7 4.6 2.0 2.5 2.2 1.8 1.8 1.9
ESC-ANCH 1.2 0.98 1.4 1.1 0.96 0.96 0.83 0.89

3.5 COMPARISON AMONG DIFFERENT GNNS

In Figure 4, we implement three multi-layer GCNs and three GCN-SLcc-K on Cora, where K is the
number of rounds in the aggregation stage. In this experiment, K is set as 3, 4, and 5, respectively.
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(a) (b) (c)

Figure 4: Performance of Multi-layer GCNs and the proposed GCN-SLcc on Cora. GCN-SLcc-3, 4,
5 represent the GCN-SLcc with different rounds of aggregation K respectively (i.e., K equal to 3,
4, and 5).

Table 4: Classification accuracies (%) of the MLP, GCN, GAT, Geom-GCN*, MixHop, H2GCN and
the proposed GCN-SL.

Method Cora Citeseer Pubmed Squirrel Chameleon Cornell Texas Wisconsin
MLP 74.8±2.2 72.4±2.2 86.7±0.4 29.7±1.8 46.4±2.5 81.1±6.4 81.9±4.8 85.3±3.6
GCN 87.3±1.3 76.7±1.6 87.4±0.7 36.9±1.3 59.0±4.7 57.0±4.7 59.5±5.2 59.8±7
GAT 82.7±1.8 75.5±1.7 84.7±0.4 30.6±2.1 54.7±2.0 58.9±3.3 58.4±4.5 55.3±8.7
Geom-GCN* 85.3 78.0 90.1 38.1 60.9 60.8 67.6 64.1
MixHop 87.6±0.9 76.3±1.3 85.3±0.6 43.8±1.5 60.5±2.5 73.5±6.3 77.8±7.7 75.9±4.9
H2GCN-1 86.9±1.4 77.1±1.6 89.4±0.3 36.4±1.9 57.1±1.6 82.2±4.8 84.9±6.8 86.7±4.7
H2GCN-2 87.8±1.4 76.9±1.7 89.6±0.3 37.9±2.0 59.4±2.0 82.2±6.0 82.2±5.3 86.3±4.2
GCN-SLcc 89.4±1.3 77.6±1.5 89.7±1.2 43.5±3.1 61.4±3.2 86.3±5.1 87.6±6.2 88.6±4.8
GCN-SLav 89.1±1.1 77±2.1 89.9±0.8 43.4±2.2 60.4±1.2 84.2±6.3 87.4±5.9 87.1±4.2

Figure 4 implies that the performance of multi-layer GCNs gets worse as the depth increases. The
main reason can be owed to over-fitting and over-smoothing. Meanwhile, GCN-SLcc performs well
and do not suffer from over-fitting and over-smoothing as the depth increases. Obviously, the GCN-
SLcc-5 aggregates the same features from original neighbors as 5-layer GCN. This shows that the
reason for the performance degradation of multi-layer GCN is not over-smoothing but over-fitting
as the depth increases. In addition, this also shows that GCN-SL can be immune to over-fitting no
matter how many node features are aggregated.

Table 4 gives classification results per benchmark, the proposed GNNs and best results are bolded.
From the table 4, we can observe that all GNN models can achieve a satisfactory result in citation
networks. However, some GNN models perform even worse than MLP in WebKB networks and
Wikipedia networks, such as GCN, GAT, Geom-GCN, and MixHop. The main reason for this phe-
nomenon is that these GNN models aggregate useless information from wrong neighborhoods, and
these GNN models do not separate ego-embedding and useless neighbor-embedding. By contrast,
H2GCN and GCN-SL can achieve good classification results no matter which graph is adopted.
Meanwhile, the results of GCN-SLcc and GCN-SLav are relatively better than H2GCN. This is
mainly due to the introduction of the re-connected graph in GCN-SLcc and GCN-SLav . In addition,
the introduction of SC features can improve the ego-embedding of nodes by clustering similar nodes
together.

4 CONCLUSION

In this paper, we propose an effective GNN approach, referred to as GCN-SL. Compared with other
GNNs, our research includes three main contributions: 1) From the aspect of node features, SC is
integrated into GNNs for capturing long-range dependencies on graphs, and we propose an ESC-
ANCH algorithm for dealing with large-scale graph-structured data; 2) From the aspect of edges,
the proposed GCN-SL can learn a high quality re-connected adjacency matrix by using similarity
learning and special data preprocessing technique; 3) GCN-SL is appropriate for all levels of ho-
mophily by combining multiple key node intermediate representations. Experimental results have
illustrated the proposed GCN-SL is superior to other existing counterparts.
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A APPENDIX

A.1 THE DEFINE OF NOTATIONS

Unless particularly specified, the notations employed in this paper are illustrated in Table 5.

Table 5: Commonly Used Notations
Notations Descriptions
� Hadamard product.
‖ Concatenation.
G A graph.
V The set of edges in graph.
vi A node vi ∈ V .
Ni The neighbors of a node vi.
A The graph adjacency matrix.
D The degree matrix of A, Dii =

∑
j Ai,j .

Â The normalized adjacency matrix with self-loop.
A∗ The re-connected adjacency matrix.
Â∗ The row normalized re-connected adjacency matrix.
S The similar matrix of a graph.
Ds The degree matrix of S, DSii =

∑
j Si,j .

Ls The Laplacian matrix of S, LS = DS − S.
Ŝ The normalized similar matrix.
n The number of nodes, n = |V|.
m The number of anchor nodes.
d The dimension of a node feature vector.
c The dimension of the SC feature of a node.
C The number of node labels.

X ∈ Rn×d The node feature matrix.
xi ∈ Rd The feature vector of the node vi.

R ∈ Rn×m The node-anchor similar matrix.
P ∈ Rn×m The processed node-anchor similar matrix.

U,Σ,V
left singular vector matrix, singular value matrix,

and right singular vector matrix of P, respectively .
F ∈ Rn×c The node SC feature matrix.
fi ∈ Rc The SC feature vector of the node vi.

H The enhanced node hidden feature matrix.
Hcb The combined node hidden feature matrix.

Hfinal The final node hidden feature matrix.
Z ∈ Rn×r The probability distribution of nodes.

Q,W0
X ,W0

F ,w,W1 Learnable model parameters
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A.2 RELATED WORK

A.2.1 GCN

Following the work in Kipf & Welling (2017), GCN updates node features via adopting an isotropic
averaging operation over the feature representations of one-hop neighbors. Let h`

j be the feature
representation of node vj in the l-th GCN layer, and we have

h`+1
i = ReLU

∑
j∈Ni

1√
degidegj

h`
jW

`

 (13)

whereNi represents the set of one-hop neighbors of nodes vi, W` is a learnable weight matrix, and
ReLU is employed as the activation function. Note that degi and degj are the in-degrees of nodes
vi and vj , respectively. Furthermore, the forward model of a 2-layer GCN can be represented as:

Z = f(X,A) = softmax
(
ÂReLU

(
ÂXW0

)
W1

)
, (14)

where X ∈ Rn×d is the feature matrix of nodes and is also the input of the first GCN layer, and
A ∈ Rn×n is the adjacency matrix. n and d represent the number and feature dimension of nodes,
respectively. The adjacency matrix with self-loop is Ã = A + I, where I ∈ Rn×n is an identity
matrix. Here, Ã can be normalized by Â = D̃−1/2ÃD̃−1/2, and the normalized adjacency matrix
Â is employed for aggregating the feature representation of neighbors, where D̃ is the degree matrix
of Ã. Each element Âi,j is defined as:

Âi,j =

{
1√

degidegj

nodes i, j are one− hop neighbors

0 otherwise.
(15)

A.2.2 SPECTRAL CLUSTERING

Spectral clustering (SC) is an advanced algorithm evolved from graph theory, has attracted much
attention (Nie et al., 2011). Compared with most traditional clustering methods, the implementation
of SC is much simpler (Nie et al., 2011). It is remarkable that, for SC, a weighted graph is utilized
to partition the dataset. Assume that X = {xi}ni=1 represents a dataset. The task of clustering is
to segment X into c clusters. The cluster assignment matrix is denoted as F = [f1, f2, . . . , fn]

T ∈
Rn×c, where fi ∈ Rc×1(1 ≤ i ≤ n) is the cluster assignment vector for the pattern xi. From another
perspective, fi can be considered as the feature representation of xi in the c-dimensional feature
space. SC contains different types, while our work focuses on the SC with k-way normalized cut due
to considering the overall performance of the algorithm, where the related concepts are explained
in Yu & Shi (2003).

Let G = {X ,S} be an undirected weighted graph, where X denotes the set of nodes, and S ∈ Rn×n

denotes affinity matrix, and n is the number of nodes in G. Note that S is a symmetric matrix, and
each element Si,j represents the affinity of a pair of nodes in G. The most common way to built S is
full connection method. Following the description in Nie et al. (2011), Si,j can be represented as:

Sij = exp

(
−‖xi − xj‖2

2σ2

)
, i, j = 1, 2, . . . , n (16)

where xi and xj represent the features of node vi and node vj in X , respectively, and σ can control
the degree of similarity between nodes. Then, the Laplacian matrix L is defined as Ls = Ds −
S, where degree matrix Ds is a diagonal matrix, and the diagonal element is denoted as Dsii =∑

j Sij ,∀i. The objective function of SC with normalized cut is

min
FTF=I

tr
(
FTD−1/2

s LsD
−1/2
s F

)
(17)

where F ∈ Rn×c is the clustering indicator matrix, and the objective function can be rewritten as:

max
FTF=I

tr
(
FTD−1/2

s SD−1/2
s F

)
. (18)
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Figure 5: Flowchart of the graph structure learning. The graph-structured data is a real-world graph,
namely the Texas network, where color indicates the labels of nodes. Through data preprocess-
ing and similarity learning, we obtain a re-connected graph. The re-connected graph is optimized
together with the parameters of GCN-SL. Finally, we can obtain a re-connected graph with high
homophily.

The optimal solution F of objective function is constructed by the eigenvectors corresponding to the
c largest eigenvalues of Ŝ = D

−1/2
s SD

−1/2
s . In general, F can be not only considered as the result

of clustering of nodes, but also regarded as the new feature matrix of nodes, in which node has c
feature elements (Nie et al., 2011).

A.3 THE PROPOSED GSN-SL

A.3.1 THE CONSTRUCTION OF RE-CONNECTED ADJACENCY MATRIX

We describe the construction of re-connected adjacency matrix in Figure 5. Through structure learn-
ing, the proposed GCN-SL can learn a re-connected adjacency matrix. The new adjacency matrix is
based on the similarities between nodes and can be optimized along with the parameters of GCN-SL.
which makes the GCN-SL can capture information from more reliable nodes.

A.3.2 PSEUDOCODE OF GCN-SL

A pseudocode of the proposed GCN-SL is given in Algorithm 1. In addition to the original adjacency
matrix and node features, the re-connected adjacency matrix and SC feature are also employed to
generate the embedding of node. Consequently, GCN-SL can capture long-range dependencies
better than GCN.

A.4 EXPERIMENT

A.4.1 DEVICE INFORMATION

We implement the proposed GCN-SL with deep learning library PyTorch. All experiments are
conducted on a Linux server with a GPU (NVIDIA GeForce RTX 2080 Ti). The Python and PyTorch
versions are 3.8.10 and 1.9.0, respectively.
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Algorithm 1 GCN-SL
Input: X: feature matrix of nodes, Ylab: label matrix of nodes with labels, A: original adjacency
matrix, Q,W0

X ,W
0
F ,W

1: trainable weighted matrixs, w: trainable weighted vector.
Output: Z: probability distribution of nodes.
1. F← X in 2.3.
2. X← {X, Data preprocessing}.
3. A∗ ← {X,Q} in 2.2.
4. H ←

{
X,F,W0

X ,W
0
F

}
in the way of average in Eq. 5, or in the way of concatenation in

Eq. 6.
5. H(1)

A∗
← {H,A∗} in Eq. 7.

repeat (initialize k to 1)
6. Update H

(k)
A ←

{
H

(k−1)
A ,A

}
, H(0)

A = H in Eq. 8, k = k + 1.
until k = K

7. Hcb ←
{
H,H

(K−1)
A ,H

(K)
A ,H

(1)
A∗

}
in Eq. 9.

8. Hfinal ←
{
Hcb,w

}
in Eq. 10

9. Z←
{
Hfinal,W1

}
in Eq. 11.

10. Lpred ← LOSS (Zlab,Ylab) in Eq. 12.
11. Back-propagate Lpred to update model weights.

Figure 6: Comparisons of homophily ratio h on networks, including the original graphs, initialized
graphs and the re-connected graphs.

A.4.2 THE HOMOPHILY RATIO h OF RE-CONNECTED ADJACENCY MATRIXES

In this experiment, we use the homophily ratios h to examine the correctness of the re-connected
adjacency matrix A∗. High h means high correctness, and low h means low correctness. Figure 6
shows the h of the original graph, initialized graph, and the re-connected graphs in all graphs. The
initialized graph is generated by GCN-SL before training, and the re-connected graphs are learned
by NLGNN and GCN-SL, respectively. We can observe that the h of the re-connected graphs is
much higher than the original graph and initialized graphs, especially for WebKB networks and
Wikipedia networks. This is mainly because the re-connected graphs are not only related to the
similarity between nodes but also can be optimized along with the parameters of the GNN model.
Meanwhile, we can also see that the h of the re-connected graphs learned by GCN-SL are always
higher than the NLGNN. This is because the similarity metric function chosen by NLGNN is the
inner product, which is not powerful enough to represent the similarities between nodes. Meanwhile,
the special data preprocessing technique utilized in GCN-SL can relieve the over-fitting problem,
and the technique is also greatly useful for structure learning. In addition, compared with NLGNN,
the ability of representation learning of the proposed GCN-SL is more capable, and thus GCN-SL
can offer more help to the learning of the re-connected graph.

A.4.3 THE DESCRIPTION OF HYPERPARAMETERS

The description per each hyper-parameter that need to be searched and the corresponding range of
values tried are provided in Table 6. Table 7 summarizes the values of all hyper-parameters, and the
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node classification accuracies of GCN-SL on different datasets. The random seed is set as 42 for all
experiments.

Table 6: Hyper-parameter descriptions and range of values tried

Hyper-para. Descriptions Range of values tried
lr Learning rate. 0.01, 0.02, . . . , 0.05
wd Weight decay. 5e-3, 5e-4, . . . , 5e-6
d Dropout rate. 0.1, 0.2, . . . , 0.9
ε Non-negative threshold in similarity learning. 0.8, 0.85, . . . , 0.95
m Number of anchor nodes. 100, 200, . . . , 700
c Dimension of SC features. 10, 15, . . . , 80
q Output dimension of learnable weighted matrix W0

X and W0
F . 16, 32, 48

K The number of rounds in the original neighborhood aggregation stage. 1, 2, . . . , 5
p Output dimension of learnable weighted matrix Q. 16, 32, 48

Table 7: The hyper-parameters of best accuracy for GCN-SL on all datasets.

Dataset Accuracy Hyper-parametersGCN-SLcc GCN-SLav

Cora 89.4±1.3 89.1±1.1 lr:0.04, wd:5e-4, d:0.5, ε:0.9, m:700, c:75, q:32, K:4, p:16, seed = 42
Citeseer 77.6±1.5 77.0±2.1 lr:0.02, wd:5e-4, d:0.5, ε:0.95, m:500, c:30, q:32, K:3, p:16, seed = 42
Pubmed 89.7±1.2 89.9±0.8 lr:0.02, wd:5e-4, d:0.5, ε:0.95, m:500, c:25, q:32, K:2, p:16, seed = 42
Squirrel 43.5±3.1 43.4±2.2 lr:0.03, wd:5e-4, d:0.6, ε:0.85, m:400, c:15, q:32, K:2, p:16, seed = 42

Chameleon 61.4±3.2 60.4±1.2 lr:0.02, wd:5e-4, d:0.6, ε:0.95, m:200, c:15, q:32, K:3, p:16, seed = 42
Cornell 86.3±5.1 84.2±6.3 lr:0.01, wd:5e-4, d:0.3, ε:0.85, m:100, c:15, q:48, K:1, p:16, seed = 42
Texas 87.6±6.2 87.4±5.9 lr:0.01, wd:5e-4, d:0.3, ε:0.85, m:100, c:35, q:32, K:1, p:16, seed = 42

Wisconsin 88.6±4.8 87.1±4.2 lr:0.01, wd:5e-4, d:0.3, ε:0.85, m:100, c:20, q:32, K:1, p:16, seed = 42
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