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ABSTRACT

Bayesian Additive Regression Trees (BART) are a powerful ensemble learning
technique for modeling nonlinear regression functions, which along with pre-
dictions also provide posterior uncertainty estimates unlike frequentist methods
designed for similar tasks, such as random forests. Although initially BART was
proposed for predicting only continuous and binary response variables, over the
years multiple extensions have emerged that are suitable for estimating a wider
class of response variables (e.g. categorical and count data) in a multitude of
application areas. In this paper we describe a Generalized framework for Bayesian
trees and their additive ensembles where the response variable comes from an
exponential family distribution and hence encompasses a majority of these variants
of BART. We derive sufficient conditions on the response distribution, under which
the posterior concentrates at a near minimax rate. Our results provide theoretical
justification for the empirical success of BART and its variants. In addition, the
sufficient conditions provide important insights into practical model specifications
such as the choice of link functions.

1 INTRODUCTION

Additive ensemble of Bayesian trees (Chipman et al., 1998; Denison et al., 1998), more popularly
known as Bayesian additive regression trees (BART) (Chipman et al., 2010) is a flexible semiparamet-
ric tool that has been extremely successful in numerous high dimensional classification and regression
tasks. Aided by efficient software implementations, (Sparapani et al. (2019), Bleich et al. (2014),
Pratola et al. (2014) and He et al. (2019)), BART has thrived in a wide range of application areas,
including causal inference (Hill, 2011; Hill & Su, 2013; Hahn et al., 2017), interaction detection (Du
& Linero, 2019), survival analysis (Sparapani et al., 2016), time series analysis (Taddy et al., 2011;
Deshpande et al., 2020) and variable selection (Bleich et al., 2014; Linero, 2018; Liu et al., 2018;
Liu & Rockova, 2020), to name a few. Even though BART was initially proposed for predicting
univariate continuous and binary response variables, due to its flexibility and impressive perfor-
mance, multiple extensions have emerged that are suitable for a wide variety of both univariate and
multivariate response variables (e.g. categorical and count data (Murray, 2021; ?), heteroscedastic
responses (Pratola et al., 2019; ?)) and / or the target regression surface is of a constrained nature
(e.g. monotone BART (Chipman et al., 2016), varying coefficient BART (Deshpande et al., 2020),
BART with targeted smoothing (Starling et al., 2020) etc.).

Despite a long history of empirical success, theoretical studies on Bayesian trees and forests is a
relatively new area of research. Recently emerging results along this line are geared towards providing
a theoretical perspective on why these models have been so successful in a wide range of applications.
Among the initial developments, Rockova & Saha (2019) and Rockova et al. (2020) demonstrated
that the posterior concentration rate of BART equals to the minimax rate up to a logarithmic factor
for various tree priors. Built on these findings, Rockova (2020) derived a semiparametric Bernstein
von-Mises theorem for the BART estimator. Extensions of BART, adapted to various special function
types have also been studied from a theoretical perspective: Linero & Yang (2017) studied a version of
BART suitable for smooth function estimation; Castillo & Rovcková (2021) conducted a multiscale
analysis of BART and Jeong & Rockova (2020) derived posterior concentration results for anisotropic
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functions. In this paper we study the posterior concentration rates of a generalized version of BART
suitable, thereby supplementing this newly emerging area of research.

We formulate a Generalized BART (G-BART) model that extends the existing theoretical develop-
ments in several directions. Firstly while existing results focus on Gaussian response variables, we
allow the response to come from an exponential family distribution. Hence G-BART can be regarded
as semiparametric extensions of the widely popular ‘Generalized Linear Models’ (GLM) (Nelder &
Wedderburn, 1972). Many prominent Bayesian CART and BART models used in practice (Denison
et al., 1998; Chipman et al., 2010; Murray, 2021), including the traditional BART model (Chipman
et al., 2010), can be viewed as a special case of this generalized extension. Therefore theoretical
properties of these conventional adaptations of BART can be studied as direct corollaries of analogous
properties for the G-BART model.

Secondly, existing results (Rockova et al., 2020; Rockova & Saha, 2019; Linero & Yang, 2017)
assume that the underlying regression function is Hölder continuous. However, given the efficacy of
BART models in a variety of complex applications, the assumption of Hölder continuity seems too
restrictive. In this paper we demonstrate that similar posterior optimality results can be obtained for
non-smooth functions as well, such as step functions and monotone functions, thus extending the
theoretical findings on BART beyond the assumption of Hölder continuity.

Finally, the BART model Chipman et al. (2010) approximate the regression functions through step
functions and assumes that these step heights come from a Gaussian distribution. All subsequent
theoretical and empirical developments have adopted this specification. In the G-BART setup we
assume that the distribution of these step heights belong to a broader family of distributions that
include both the Gaussian distribution and also some thicker tailed distributions like Laplace. We
demonstrate that the BART model maintains a near-minimax posterior concentration rate, if the step
heights come from any of the distributions belonging to this broader family, thus providing a wide
range of distributional choices without sacrificing fast posterior concentration.

The paper is organized as follows: Section 2 describes the generalized BART model, Section 3
discusses the notion of posterior concentration, followed by the main theoretical results in Section 4.
Broader implications of these results are described in Section 5. Finally, Section 6 concludes with a
discussion. Proofs of the main results are provided in the supplementary material.

1.1 OUR CONTRIBUTIONS

To summarize our previous discussion, we now briefly highlight our key contributions.

Response distribution: Existing theoretical results on BART focus on univariate Gaussian response
variables. In contrast, we assume that the response variable comes from a multivariate exponential
family distribution and derive sufficient conditions on the response density under which the posterior
concentrates at a near-minimax rate.

Step Size distribution: Instead of assigning a Gaussian distribution on the step-heights associated to
the BART model, we impose sufficient conditions on the cumulative distribution function that guar-
antee a near-optimal posterior concentration rate. The resulting family of distributions encompasses
the Gaussian distribution along with several thicker tailed distributions like Laplace, which is suitable
for modeling heterogeneous populations, thus widening modeling choices for empirical applications.

Types of functions: The objective of BART models is to estimate unknown functions that characterize
the relationship between the response and the covariates. Existing results on BART assume this
function to be Hölder continuous. We extend these results for non-continuous function spaces such
as monotone functions and step functions supported on an axes-paralleled partition. The results on
step functions in conjuction with the “simple function approximation theorem” (Stein & Shakarchi,
2009), can be useful for deriving posterior concentration rates for more general class of functions.

In addition to the above, we also prove that specific model choices such as the choice of link functions
can influence the posterior concentration rate of the G-BART model. Thus the results discussed in this
paper can also provide useful insights into selecting link functions that provide faster concentration
rates of the posterior, possibly leading to better empirical performance.
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1.2 NOTATIONS:

For any two real numbers a and b, a ∨ b will denote the maximum of a and b. The notations ≳
and ≲ will stand for “greater than or equal to up to a constant” and “less than or equal to up to a
constant”, respectively. The symbol Pf will abbreviate

∫
fdP and P(n)

f =
∏n

i=1 Pi
f will denote

the n-fold product measure of the n independent observations, where the i-th observation comes
from the distribution P i

f . Let h(f, g) =
(∫

(
√
f −√

g)2dµ
)1/2

and K(f, g) =
∫
f log(f/g)dµ

denote the Hellinger distance and the Kullback-Leibler divergence, respectively between any two
non-negative densities f and g with respect to a measure µ. We define another discrepancy measure
V (f, g) =

∫
f (log(f/g))

2
dµ. Finally, for any set of real vectors X1, . . . ,Xn ∈ Rq of size

n, define the average discrepancy measures Hn(f, g) = 1
n

∑n
i=1 H (f(Xi), g(Xi)), Kn(f, g) =

1
n

∑n
i=1 K (f(Xi), g(Xi)) and Vn(f, g) =

1
n

∑n
i=1 V (f(Xi), g(Xi)), where f(θ) and g(θ) denote

the densities f and g with respect to parameter θ. Also, for any Lp norm ∥·∥p, define the average
norm ∥f − g∥p,n = 1

n

∑n
i=1 ∥f − g∥p.

2 THE GENERALIZED BART PRIOR

The BART method of Chipman et al. (2010) is a prominent example of Bayesian ensemble learning,
where individual shallow trees are entwined together into a forest, that is capable of estimating a
wide variety of nonlinear functions with exceptional accuracy, while simultaneously accounting for
different orders of interactions among the covariates. Building upon BART, we describe a generalized
model, where the response variable is assumed to come from an exponential family distribution. For
continuous Gaussian response variables, this generalized BART model reduces to the original BART
prior of (Chipman et al., 2010).

The data setup under consideration consists of Yi = (yi1, . . . , yip)
′ ∈ Rp, a set of p-dimensional

outputs, and Xi = (xi1, . . . , xiq)
′ ∈ [0, 1]q , a set of q dimensional inputs for 1 ≤ i ≤ n. We assume

Y follows some distribution in the exponential family with density of the following form:

Pf0(Y |X) = h(Y )g [f0(X)] exp
[
η (f0(X))

T
T (Y )

]
, (1)

where h : Rp → R, g : R → R, η : Rp → RJ , T : Rp → RJ for some integer J and f0 : Rq → RD,
for some integer D, are all real valued functions. Among these functions, h, g, η and T are usually
known depending on the nature of the response Y . The function f0, connecting the input X with the
output Y , is the only unknown function and estimating this function is the primary objective of the
G-BART estimator.

We assume that f0 is an unconstrained function, i.e. the range of f0 is the entire space RD for some
integer D. A suitable link function Ψ(·) is used to transform f0 to the natural parameter of the
distribution of Y , which is often constrained. For example, for the binary classification problem,
Y ∼ Bernoulli (p(X)). Here the natural parameter p(X) ∈ (0, 1) is restricted and hence we can
use Ψ(z) = 1

1+exp(−z) , the logistic function (or a probit function, as in Chipman et al. (2010)) to map
the unconstrained function f0(X) to the natural parameter p(X). There are usually several different
choices for the link function. As we will see in Section 5, the BART estimator might have different
posterior concentration rates depending on which link function is used to transform the function f0 to
the natural parameter of the response distribution.

The univariate regression and the two-class classification problem considered in the original BART
paper (Chipman et al., 2010) and many of its important extensions, such as the multi-class classifica-
tion and the log-linear BART (Murray, 2021) for categorical and count responses can be formulated
as special cases of equation 1. The specific forms of the functions h, g, η and T for continuous
regression and multi-class classification are given in Table 1.

Next a regression tree is used to reconstruct the unknown function f0 : Rq → RD via a mapping
fT ,β : [0, 1]q → RD so that fT ,β(X) ≈ f0(X) for X /∈ {Xi}ni=1. Each such mapping is essentially
a step function of the form

fT ,β(X) =

K∑
k=1

βkI(X ∈ Ωk) (2)
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Table 1: Univariate Regression (column 2) and Multi-class Classification (column 3), as special
cases of the Generalized BART model. Φ denotes the Softmax function and M(·) denotes the
Multinomial(1; ·) distribution. ({I{Y = i}}pi=1)

′ denotes the row vector where the i-th coordinate
equals to one if Y belongs to class i and zero otherwise.

Response (Y ) Continuous Categorical

Dist.(Y ) N
(
f0(X), σ2

)
M (Φ(f0(X)))

h(Y ) 1/
√
2πσ 1

g (f0(X)) exp
(
−f0(X)2/σ2

)
1

η (f0(X)) (f0(X), 1) f0(X)
T (Y )

(
2Y/σ2,−Y 2/σ2

)
({I{Y = i}}pi=1)

′

f0(X) Rq → R Rq → Rp−1

supported on a tree-shaped partition T = {Ωk}Kk=1 and specified by a vector of step heights
β = (β1, . . . , βK)′. The vector βk ∈ Rp represents the value of the expected response inside the
k-th cell of the partition Ωk.

Bayesian additive trees consist of an ensemble of multiple shallow trees, each of which is intended to
be a weak learner, geared towards addressing a slightly different aspect of the prediction problem.
These trees are then woven into an additive forest mapping of the form

fE,B(x) =

T∑
t=1

fTt,βt(x), (3)

where each fTt,βt
(x) is of the form equation 2, E = {T1, . . . ,TT } is an ensemble of T trees and

B = {β1, . . . ,βT }′ is a collection of jump sizes corresponding to the T trees.

Since each individual member of the approximating space is a step function of the form equation 3,
supported on a Bayesian additive forest, the prior distribution should include three components: (i) a
prior π(T ) on the number of trees T in the ensemble, (ii) a prior on individual tree partitions π(T )
and their collaboration within the ensemble and (iii) given a single tree partition T , a prior π(β | T )
has to be imposed on the individual step heights β.

In this paper we follow the recommendation by Chipman et al. (2010) and assume the number of
trees T to be fixed at a large value (e.g. T = 200 for regression and T = 50 for classification).
Alternatively, one can also assign a prior with higher dispersion, as in Rockova et al. (2020) and
Linero & Yang (2017) and replicate the steps of the proofs provided in the appendix with minor
modifications.

Given the total number of trees in the ensemble, individual trees are assumed to be independent and
identically distributed with some distribution π(T ). This reduces the prior on the ensemble to be of
the form

π(E,B) =

T∏
t=1

π(Tt)π(βt | Tt), (4)

where π(Tt) is the prior probability of a partition Tt, while π(βt | Tt) is the prior distribution over
the jump sizes. The specific forms of the priors π(T ) and π(β | T ) are described below.

2.1 Prior on partitions

We consider two distinct prior distributions on the partitions π(T ) proposed by Chipman et al. (1998)
and Denison et al. (1998) respectively. The posterior concentration results discussed in Section 4 are
applicable to both these priors. Chipman et al. (1998) specifies the prior over trees implicitly as a tree
generating stochastic process, described as follows:

1. Start with a single leaf (a root node) encompassing the entire covariate space.
2. Split a terminal node, say Ω, with a probability

psplit(Ω) ∝ α−d(Ω) for some 0 < α < 1/2. (5)

4
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where d(Ω) is the depth of the node Ω in the tree architecture. This choice, motivated by
(Rockova & Saha, 2019) (see section ??).

3. If the node Ω splits, assign a splitting rule and create left and right children nodes. The
splitting rule consists of picking a split variable j uniformly from available directions
{1, . . . , p} and picking a split point c uniformly from available data values x1j , . . . , xnj .

A description of the prior proposed by Denison et al. (1998) is given in Section A.1 in the supplemen-
tary material.

2.2 Prior on step heights

We impose a broad class of priors on the step heights that incorporate the corresponding component
of the classical BART model as a special case. Given a tree partition Tt with Kt steps, Chipman et al.
(2010) considers identically distributed independent Gaussian jumps with mean 0 and variance σ2. In
the G-BART set-up we assume that the j-th step height of the t-th tree, βtj

i.i.d∼ Fβ , where Fβ is any
general distribution with the following property: for some constants C1, C2, C3 such that C1 > 0,
0 < C2 ≤ 2 and C3 > 0,

Fβ(∥β∥∞ ≤ t) ≳
(
e−C1t

C2
t
)p

for 0 < t ≤ 1 (6)

and
Fβ(∥β∥∞ ≥ t) ≲ e−C3t for t ≥ 1 (7)

where ∥·∥∞ represents the L∞ norm and Fβ(∥β∥∞ ≥ t) denotes the tail probability of the distribution
on the step heights β ∈ Rp. Both the multivariate Gaussian and the multivariate Laplace distribution
come from this family of distributions and so do any sub-Gaussian distributions. A proof of these
statements is provided in the appendix. We will see in Section 4.1 and Section 4.3 that these conditions
are sufficient to guarantee that the G-BART estimator has a near-optimal posterior concentration rate.

However we should note that the conditions equation 6-equation 7, although sufficient, are not
necessary conditions and distributional assumptions on the step sizes that do not satisfy these
conditions, might still guarantee a near-optimal posterior concentration rate. For such an example,
please refer to the ‘classification with Dirichlet step-heights’ in the supplementary material.

3 POSTERIOR CONCENTRATION

Posterior concentration statements are a prominent artifact in Bayesian nonparametrics, where the
primary motivation is to examine the quality of a Bayesian procedure, by studying the learning rate of
its posterior, i.e. the rate at which the posterior distribution, centralizes around the truth as the sample
size n → ∞. In empirical settings, posterior concentration results have often influenced the proposal
and fine-tuning of priors. Oftentimes seemingly unremarkable priors give rise to capricious outcomes,
specially in the infinite-dimensional parameter spaces, such as the one considered here (Cox (1993),
Diaconis & Freedman (1986)) and designing well-behaved priors turn out to be of utmost importance,
thus further reinstating the importance of posterior concentration statements.

The Bayesian approach proceeds by imposing a prior measure Π(·) on F , the set of all estimators of
f0. For the G-BART models this corresponds to the set of all step functions supported on an additive
ensemble of Bayesian trees. Given observed data Y (n) = (Y1, . . . , Yn)

′, the inference about f0 is
solely dependent on the posterior distribution

Π(A | Y (n)) =

∫
A

∏n
i=1 Πf (Yi | Xi)dΠ(f)∫ ∏n
i=1 Πf (Yi | Xi)dΠ(f)

∀A ∈ B

where B is a σ-field on F and where Πf (Yi |Xi) is the conditional likelihood function for the output
Yi, given the covariates Xi, under the parameterization f .

Ideally under a suitable prior, the posterior should put most of its probability mass around a small
neighborhood of the true function and as the sample size increases, the diameter of this neighborhood
should go to zero at a fast pace. Formally speaking, for a given sample size n, if we examine an
εn-neighborhood of the true function Aεn , for some εn → 0 and nε2n → ∞, we should expect

Π(Ac
εn | Y (n)) → 0 in P(n)

f0
-probability as n → ∞, (8)

5
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where Ac
εn denotes the complement of the neighborhood Aεn .

In the context of G-BART, given observed data Y (n) = (Y1, . . . ,Yn)
′, we are interested in evaluating

whether the posterior concentrates around the true likelihood P(n)
f0

=
∏n

i=1 P
i
f0

at a near-minimax
rate, where P i

f0
= Pf0(Yi |Xi) is of the form equation 1, for i = 1, . . . , n. Following the suggestions

of Ghosal et al. (2007), we look at the smallest Hn-neighborhoods around P(n)
f0

that contain the bulk
of the posterior probability. Specifically, for a diameter ε > 0 define

Aε = {f ∈ F : Hn(Pf , Pf0) ≤ ε} (9)

Theorem 4 of Ghosal et al. (2007) demonstrates that the statement equation 8 can be proved by
verifying three sufficient conditions. The first condition, henceforth referred to as the “entropy
condition” specifies that

sup
ε>εn

logN
(

ε
36 ;Fn ∩ Aε;Hn

)
≲ n ε2n, (C1)

where N(ε; Ω; d) denotes the ε-covering number of a set Ω for a semimetric d, i.e. the minimal
number of d-balls of radius ε needed to cover the set Ω and {Fn}n≥1 denotes an increasing sequence
of approximating sieves. The sequence of sieves used in this paper is described in the appendix.

The second condition requires that the prior puts enough mass around the true likelihood P(n)
f0

,
meaning that for a given sample size n ∈ N \ {0} and for some d > 2,

Π(f ∈ F : Kn(f, f0) ∨ Vn(f, f0) ≤ ε2n) ≳ e−dn ε2n , (C2)

where Kn and Vn are the Kullback-Leibler divergence and the variation, averaged over the observed
data points.

The final condition, referred to as the “prior decay rate condition” stipulates that the sequence of
sieves Fn ↑ F captures the entire parameter space with increasing accuracy, in the sense that the
complementary space F\Fn has negligible prior probability mass for large values of n.

Π(F\Fn) = o(e−(d+2)n ε2n) (C3)

The results of type equation 8 quantify not only the typical distance between a point estimator
(posterior mean/median) and the truth, but also the typical spread of the posterior around the truth
and hence are stronger than ‘posterior consistency’ statements. These results pave the way for further
uncertainty quantification statements such as semiparametric Bernstein-von Mises theorem (Castillo
et al., 2014).

4 MAIN RESULTS

In this section we describe our main theoretical findings, which describe the posterior concentration
rates of the generalized Bayesian trees and their additive ensembles (G-BART), when the true function
f0 connecting the response Y with the covariates X , is either (a) a step function (Theorem 4.1),
or (b) a monotone function (Theorem 4.3), or (c) a ν-Hölder continuous function with 0 < ν ≤ 1
(Theorem 4.4). We make two important assumptions:

Assumption 1: Let Y1, . . . ,Yn ∼ Pf , where Pf denotes a probability density function of the form
equation 1, such that, η(z) = z and there exists strictly increasing positive sequences {Cn

g }n≥1 and
{Cn

β }n≥1, such that ∣∣∣∣∇g(β)

g(β)

∣∣∣∣ ≤ Cn
g 1p, ∀β ∈ Bn =

{
β : ∥β∥∞ ≤ Cn

β

}
, (10)

where 1p = (1, . . . , 1) ∈ Rp denotes a p-dimensional vector of ones and ∇g denotes the vector of
partial derivatives. We assume {Cn

g } ∨ {Cn
β } ≲ nM for some M > 0. The significance is that the

function g(·) should not change too rapidly, and the higher the sample size the larger the rate of
change is allowed. The above assumption is satisfied by most distributions commonly used in the
regression and classification settings, as will be demonstrated in Section 5.
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Assumption 2: For a k-d tree partition, T̂ = {Ω̂k}, with K = 2ps-many leaves, the dataset
{X1, . . . ,Xn} satisfies the following condition: for any nonnegative integer s, there exists some
large enough constant M > 0 such that

max
1≤k≤K

diam(Ω̂k) < M

K∑
k=1

µ(Ωk)diam(Ω̂k), (11)

where µ(Ωk) = 1
n

∑n
i=1 I{Xi ∈ Ωk} denotes the proportion of observations in the cell Ωk and

diam(Ω̂k) = maxx,y∈Ωk
∥x− y∥2 denotes the spread of the cell Ωk with respect to the L2-norm.

4.1 RESULTS ON STEP-FUNCTIONS

Let us suppose f0 is a step function supported on an axes-paralleled partition {Ωk}K0

k=1. For any such
step function f0, we define the complexity of f0, as the smallest K such that there exists a partition
{Ωk}Kk=1 with K cells, for which the step function f(x) =

∑K
k=1 βkI{x ∈ Ωk} can approximate f0

without any error, for some step heights (β1, . . . , βK) ∈ RK . This complexity number, denoted by
Kf0 , depends on the true number of step K0, the diameter of the intervals {Ωk}K0

k=1, and the number
of covariates q. The actual minimax rate for approximating such piecewise-constant functions f0
with K0 > 2 pieces, is n−1/2

√
K0 log (n/K0) (Gao et al., 2017). The following theorem shows that

the posterior concentration rate of G-BART is almost equal to the minimax rate, except that K0 gets
replaced by Kf0 . The discrepancy is an unavoidable consequence of the fact that the true number
of steps K0 is unknown. Had this information been available, the G-BART estimator would have
attained the exact minimax rate.
Theorem 4.1. If we assume that the distribution of the step-sizes satisfies equation 6 and equation 7,
then under Assumptions 1 and 2 with q ≲

√
log n, the generalized BART estimator satisfies the

following property:

If f0 is a step-function, supported on an axes-paralleled partition, with complexity Kf0 ≲
√
n and

∥f0∥∞ ≲
√
log n, then with εn = n−1/2

√
Kf0 log

2γ (n/Kf0) and γ > 1/2,

Π
(
f ∈ F : Hn(Pf ,Pf0) > εn | Y (n)

)
→ 0,

in P(n)
f0

-probability, as n, q → ∞.

4.2 RESULTS ON MONOTONE FUNCTIONS

An important implication of Theorem 4.1 is that posterior concentration results on step functions can
potentially build the foundation for similar results on broader class of functions, aided by the “simple
function approximation theorem” (Stein & Shakarchi, 2009), which states that for any measurable
function f on E ⊆ Rq, there exists a sequence of step functions {fk} which converges point-wise
to f almost everywhere (Stein & Shakarchi, 2009). As a corollary to this theorem, we can derive
the following result on the set of all monotone functions. A function f0 : Rq → R is defined as
monotone increasing (or decreasing) if f0(x1) ≥ f0(x2) (or, f0(x1) ≤ f0(x2)) for all x1,x2 such
that every coordinate of x1 is greater than or equal to the corresponding coordinate of x2.
Lemma 4.2. Any monotone bounded function f0 can be approximated with arbitrary precision ε, by
a step function supported on a k-d tree partition with number of leaves Kf0(ε) ≥ ⌈1/ε⌉. We define
Kf0(ε) to be the complexity of the monotone function f0 with respect to ε > 0.

The complexity Kf0(ε) also depends on the dimension of the domain q as well as on the magnitude of
the true function ∥f0∥∞. This paves the way for deriving the posterior concentration rate of G-BART
when the true function f0(·) connecting the covariates X with a univariate response Y is a monotone
function. The minimax rate of estimation for such densities is n−1/(2+q) (Biau & Devroye, 2003).
The following theorem states that the posterior concentration rate of G-BART equals to this optimum
rate up to a logarithmic function, provided that the magnitude of the true function f0 is not “too
large”.
Theorem 4.3. If the distribution of the step-sizes satisfies equation 6 and equation 7, then under
Assumptions 1 and 2 with q ≲

√
log n, the generalized BART estimator satisfies the following

property:
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If the true function f0 : Rq → R is monotonic on every coordinate, with ∥f0∥∞ ≲
√
log n, then with

εn = n−1/(2+q)
√
log n,

Π
(
f ∈ F : Hn(Pf ,Pf0) > εn | Y (n)

)
→ 0,

in P(n)
f0

-probability, as n, q → ∞.

The above result demonstrates that the Generalized BART model adapts to monotonic patterns in the
true function f0, without any additional prior assumptions.

4.3 RESULTS ON HÖLDER CONTINUOUS FUNCTIONS

This section describes the posterior concentration results on G-BART when the true function f0
connecting X with Y is a ν-Hölder continuous function with 0 < ν ≤ 1. Rockova et al. (2020) and
Rockova & Saha (2019) proved that the posterior concentration rates of the BART model (under
the priors of Denison et al. (1998) and Chipman et al. (2010) respectively) are equal to n−α/(2α+q),
the minimax rate of estimation for such functions (Stone, 1982), except for a logarithmic factor.
These results can be derived as direct corollaries of the following theorem for G-BART, when Y is a
univariate continuous response and the step-sizes are assumed to follow a Gaussian distribution.
Theorem 4.4. If we assume that the distribution of the step-sizes satisfies equation 6 and equation 7,
then under Assumptions 1 and 2 with q ≲

√
log n, the generalized BART estimator satisfies the

following property:

If f0 is a ν-Hölder continuous function with 0 < ν ≤ 1, where ∥f0∥∞ ≲
√
log n, then with

εn = n−α/(2α+q)
√
log n,

Π
(
f ∈ F : Hn(Pf ,Pf0) > εn | Y (n)

)
→ 0,

in P(n)
f0

-probability, as n, q → ∞.
Interestingly, the posterior concentration rates derived in Theorems 4.1-4.4, do not depend on the
number of trees T in the generalized BART ensemble. In other words the concentration rate is
equally valid for a single tree (i.e. T = 1), as well as for tree ensembles (i.e. T > 1), when the
true regression function f0 is ν-Hölder continuous with 0 < ν ≤ 1. However as has been seen
in multiple empirical applications (Chipman et al., 2010), Bayesian forests consisting of multiple
trees provide superior out-of-sample predictive performance, compared to a single tree, the reason
being that multiple weak tree learners, when woven together into a forest, can accommodate a wider
class of partitions, as opposed to a single tree. This can be reinforced by theoretical results, such
as Theorem 6.1 of Rockova et al. (2020). When the true function f0 is of the form f0 =

∑T0

t=1 f
t
0,

where f t
0 is a νt-Hölder continuous function, with 0 ≤ νt ≤ 1, a forest with multiple trees have

a posterior concentration rate equal to ε2n =
∑T0

t=1 n
−2νt/(2νt+p) logn, provided T0 ≲ n, whereas

single regression trees fail to recognize the additive nature of the true function and attain a slower
concentration rate. A similar result is presented in Theorem 4 of Linero & Yang (2017), under a
kernel-smoothed version of the BART prior.

5 IMPLICATIONS

The primary significance of Theorems 4.1, 4.3 and 4.4 is that these results provide a frequentist
theoretical justification for superior empirical performance of generalized Bayesian trees and forests,
claiming that the posterior concentrates around the truth at a near-optimal learning rate. As demon-
strated below, we can show that the original BART model (Chipman et al., 2010), along with some of
its commonly used variants (such as BART for multi-class classification and regression on count data)
have near-optimal posterior concentration rates, as direct corollaries of Theorems 4.1 - 4.4. Another
consequence of these results is that (see Section A.5 of the supplementary material), they show that
the posterior distribution on the number of leaves in a generalized Bayesian tree does not exceed the
optimal number of splits by more than a constant multiple and hence are resilient to overfitting.

Continuous Regression: For a (multivariate) continuous regression, assume that the response
Y | X ∼ Np(µ(X),Σ), for some positive definite Σ. The function g(f0(X)) = g(µ) =

8
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e−µTΣ−1µ/2 satisfies equation 10 with Bn = [−n, n]p and Cn
g = nλ(Σ), where λ(Σ) denotes

the maximum eigenvalue of Σ. Hence from Theorems 4.1, 4.3 and 4.4, we can conclude that for
continuous regression, the G-BART estimator has a near-minimax posterior concentration rate, pro-
vided that the true function f0 connecting the input X with the output Y is either a step function, a
monotone function or a ν-Hölder continuous function with 0 < ν ≤ 1.

Classification with Gaussian Step Heights: For a p-class classification the response Y can be
written as a p dimensional binary vector that has 1 at the l-th coordinate if Y belongs to category
l ∈ {1, . . . , p} and 0 elsewhere. We can assume Y | X ∼ Multinomial(1;π(X)) for some π :
Rq ∈ (0, 1)p such that π′1p = 1. The unrestricted function f0(X) can be transformed to the natural
parameter π(X) by a logistic (softmax) or an inverse-probit link function (Chipman et al., 2010)
denoted by Ψ(·), so that π(X) = Ψ(f0(X)). In either case, the function g(f0(X)) = 1 trivially
satisfies condition equation 10. Hence from Theorem 4.1 and Theorem 4.4, we can conclude that the
BART model for multi-class classification has a near-minimax posterior concentration rate.

For the same multi-class classification problem with p classes described above, an alternative prior
specification is recommended by Denison et al. (1998). Althogh this prior violates condition equa-
tion 6, we can show that this estimator has a near-optimal posterior concentration rate (proof in
supplementary material). This demonstrates that the assumptions we make in Section 4 are merely
sufficient but not necessary conditions for proving that the generalized Bayesian tree estimator has a
near-minimax posterior concentration rate.

Count Regression: For count response variable, Y ∼ Poisson [λ(X)] with λ(X) > 0. There are
several choices for the link function Ψ(·) to map the unconstrained function f0(X) to the constrained
parameter λ(X). The posterior concentration rate of the Generalized Bayesian tree estimator might
differ depending on which link function is used. For example, if we use Ψ(z) = log (1 + exp(z)),
the softplus link function, then g(f0(X)) = 1/(1 + exp (f0(X)), trivially satisfies condition
equation 10 and we can conclude that the generalized tree estimator has a near-minimax concen-
tration rate from Theorems 4.1, 4.3 and 4.4. In contrast, if we use Ψ(z) = exp(z) as the link
function, then g(f0(X)) = exp (− exp(f0(X))) does not satisfy the condition equation 10, when
the true function f0 is a ν-Hölder continuous function. Therefore we cannot apply Theorem 4.4
anymore to imply that the generalized tree estimator has a near-optimal rate of posterior concen-
tration. When f0 is a step function with complexity Kf0 , the condition equation 10 is satisfied
with Bn = [−Kf0 logn,Kf0 log n] and Cn

g = nKf0 . The posterior concentration rate becomes

εn = n− 1−α
2

√
Kf0 log

2η(n/Kf0) under the assumption Kf0 ≲ nα for some 0 < α < 1. This is

slower than the near-optimal concentration rate n− 1
2

√
Kf0 log

2η(n/Kf0), if we use the softplus
link function, instead. This demonstrates the need for choosing suitable link functions in empirical
applications.

6 DISCUSSION

In this paper we have examined a general framework for Bayesian Additive Regression Tree Models
that encapsulates various conventional BART models adapted to a wide range of regression and
classification tasks. We demonstrated that these models have a near-minimax posterior concentration
rate for a wide range of functions, thus corroborating the empirical success of BART and its variants,
from a theoretical perspective. These results also build the foundation for uncertainty quantification
statements for a wide variety of BART models, opening up interesting avenue for future research.
The theoretical results also substantiate the scope of a wider variety of distributions on approximating
step-heights, that can prove advantageous for applications where the response distribution has a
thicker tail. These theoretical findings also provide strong motivation for exploring novel application
areas for flexible BART-like models. It is worth noting that our results are based on a modified
version of the original BART prior Chipman et al. (1998). The reason behind this modification is that
the original prior does not decay at a fast enough rate. However, since we examine only sufficient (but
not necessary) conditions for optimal posterior concentration, our results do not guarantee that the
original prior is inherently worse than the modified prior. The original BART prior will be examined
in future work. We did not provide any empirical examples as these have been studied using existing
BART software packages (e.g. BART in R and PyMC-BART in Python).
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A APPENDIX

A.1 BAYESIAN CART PRIOR BY DENISON ET AL. (1998)

We describe the Bayesian CART prior proposed by Denison et al. (1998). The prior on individual
Bayesian trees is assigned conditional on the number of terminal nodes/ leaves K and all prior
probability is concentrated on the set of all valid tree partitions, as defined below (Definition 3.1 of
Rockova et al. (2020)):
Definition A.1. Denote by Ω = {Ω}Kk=1, a partition of [0, 1]p, We say that Ω is valid if

µ(Ωk) ≥
C

n
∀k = 1, . . . ,K (12)

for some C ∈ N \ {0}.

Valid partitions have non-empty cells, where the allocation does not need to be balanced. Now the
prior on tree partitions is specified as follows:

1. The number of leaves in a tree K follows a Poisson distribution with parameter λ > 0

P (K) =
λK

(eλ − 1)K!
, k = 1, 2, . . . (13)

2. Given the number of leaves K, a tree is chosen uniformly at random from the set of all
available valid tree-partitions with K leaves. Number of valid tree partitions is given by

∆(VK) =
qK−1n!

(n−K + 1)!
(14)

This is a slightly modified version of the original prior proposed by Denison et al. (1998).
This modified version was used by Rockova et al. (2020) to derive posterior concentration
rates for the BART estimator under this prior.

3. At each node, the splitting rule consists of picking a split variable j uniformly at random
from the available directions {1, . . . , q} and picking a split point c, also uniformly at random
from the available data values x1j , . . . , xnj .

A.2 PRELIMINARY RESULTS WITH PROOF

Lemma A.2. The multivariate Gaussian Np(0, Ip) and the multivariate Laplace Lp(0, Ip) distribu-
tion belong to the general family of distributions with CDF Fβ that has the following property: For
some C1 > 0, 0 < C2 ≤ 2 and C3 > 0 and any t > 0,

Fβ(∥β∥∞ ≤ t) ≳
(
e−C1t

C2
t
)p

for t > 0 (15)

Fβ(∥β∥∞ ≥ t) ≲ e−C3t for t ≥ 1 (16)

Proof. If Fβ = Np(0, Ip), then for any t > 0,

Fβ(∥β∥∞ ≤ t) ≳

(
e−t2/2

∫ t

−t

dβ

)p

≳ e−pt2/2tp

For t ≥ 1

Fβ(∥β∥∞ ≥ t) ≲

(
e−t2/42

∫ ∞

t

e−z2/4dz

)p

≲ e−C3t

If Fβ = Lp(0, Ip), then for any t > 0,

Fβ(∥β∥∞ ≤ t) ≳

(
e−t

∫ t

−t

dβ

)p

≳ e−pttp

Also, for any t ≥ 0,

Fβ(∥β∥∞ ≥ t) =
e−pt

2
< e−pt

1
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Lemma A.3. Let f and f0 denote step functions of the form f(X) =
∑K

k=1 βkI(X ∈ Ωk) and
f0(X) =

∑K
k=1 β

0
kI(X ∈ Ωk) respectively, on a tree-shaped partition {Ωk}Kk=1. Let Pf and Pf0

denote two probability densities belonging to an Exponential family distribution of the form

Pf (Y |X) = h(Y )g [f(X)] exp
[
η (f(X))

T
T (Y )

]
, (17)

with parameters f and f0 respectively. If
∣∣∣∇T g(β)

g(β)

∣∣∣ ≤ Cn
g 1p, for some positive sequence {Cn

g }n≥1,
then

Kn(Pf , Pf0) ∨ Vn(Pf , Pf0) ≲ Cn
g

K∑
k=1

∥∥βk − β0
k

∥∥
1

(18)

Hn(Pf , Pf0) ≲ Cn
g

K∑
k=1

∥∥βk − β0
k

∥∥
1

(19)

Proof. Denoting fi = f(Xi) and fi0 = f0(Xi), we can write

Kn(Pf , Pf0)

=
1

n

n∑
i=1

g(fi)

∫
h(Y ) exp (fiT (Y )) [log

g(fi)

g(fi0)

+ exp
[
(fi − fi0)

TT (Y )
]
]dY

=
1

n

n∑
i=1

[
log

g(fi)

g(fi0)
+ (fi − fi0)

TE [T (Y )]

]

=

K∑
k=1

µ(Ωk)

[
log

g(βk)

g(β0
k)

− ∇T g(βk)

g(βk)

(
βk − β0

k

)]
By triangle inequality and Taylor series approximation of log∇g(βk) about β0

k , we get

Kn(Pf , Pf0) ≲ sup

∣∣∣∣∇T g(·)
g(·)

∣∣∣∣ K∑
k=1

∥∥βk − β0
k

∥∥
1

= Cn
g

K∑
k=1

∥∥βk − β0
k

∥∥
1
,

Similar technique works for Vn(Pf , Pf0)

Also, Since Hellinger metric is bounded from above by Kullback-Leibler divergence, Hn satisfies,

Hn(Pf , Pf0) ≲ Cn
g

K∑
k=1

∥∥βk − β0
k

∥∥
1

Lemma A.4. Any bounded monotone function f0 can be approximated with arbitrary precision εn,
by a step function supported on a k-d tree partition with K̂ ≥ ⌈1/ϵn⌉ leaves.

Proof. Without loss of generality, assume 0 ≤ f0(·) ≤ 1. Partition interval [0, 1] by 0 = y0 < y1 <
· · · < yk < · · · < yK−1 < yK = 1, with K = ⌈1/ϵn⌉. Then | yk − yk−1 | < εn and we can
approximate f0(X) by the step function:

f(X) =

K∑
k=1

ykI{X ∈ Ωk}

, where Ωk = f−1[yk−1, yk].
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If f is monotone, Ωk =
∏q

j=1{xj ∈ Ij}, where Ij is an interval and xj denotes the j-th coordinate
of X ∈ Rq .

Since any step function supported on an axis-paralleled partition has an equivalent step function
supported on a k-d tree, we can approximate the axis paralleled partition {Ωk}Kk=1 by a recursive
binary tree partition {Ω̂k}K̂k=1 with number of leaves K̂ ≥ K.

A.3 PROOF OF MAIN RESULTS

In this section we prove Theorem 4.1 and Theorem 4.3. Most steps in the proofs are identical and
hence for simplicity we describe the common steps of the proofs together and mark the steps that are
different by the corresponding theorem number. We need to prove three conditions: entropy condition
(C1), prior concentration condition (C2) and prior decay rate condition (C3). The steps of the proofs
for each of these conditions are described below.

A.3.1 ENTROPY CONDITION

Define
Fn = {fT ,β(X) of the form equation 2 with K = kn and ∥β∥∞ ≤ Cn

β },

where kn ∝ nε2n/ logn and Cn
β is defined in Assumption 1.

Since ∥z∥1 ≤ Kp ∥z∥∞ for any z ∈ RKp, by the bound equation 19 and by definition of Fn, we
can write

N
(εn
36

,Fn, Hn

)
≲

kn∑
K=1

N

(
εn

36Cn
g Kp

, {β : ∥β∥∞ ≤ Cn
β }, ∥·∥∞

)

≲
kn∑

K=1

(
36Cn

βC
n
g Kq

εn

)Kq

Therefore the LHS of (C1) can be bounded from above by

(kn + 1)p
[
log 36 + log(Cn

βC
n
g ) + log kn + log p− log εn

]
Since Cn

βC
n
g ≲ nM for some M > 0, ignoring smaller terms, proving condition (C1) reduces to

proving

(kn + 1)p logn ≲ nε2n (20)

Theorem 4.1: When f0 is a step function with complexity Kf0 we can prove equation 20 by

replacing εn = n−1/2
√
Kf0 log

2η(n/Kf0) and kn ∝ nε2n
p log(n/Kf0

) = Kf0 log
2θ−1(n/Kf0) for

some θ > 1/2.

Theorem 4.3: When f0l is a ν-Hölder continuous function with 0 < ν ≤ 1 for all l = 1, . . . , p,
replacing εn = n−ν/(2ν+q)

√
log n and kn ∝ nε2n

logn = nq/(2ν+q) proves equation 20.

A.3.2 PRIOR CONCENTRATION CONDITION

Let f̃0 =
(
fT ,B0

1
(x), . . . , fT ,B0

q−1
(x)

)
denote the projection of f0 onto a balanced k-d tree partition

with an leaves, where an is chosen so that
∥∥∥f0 − f̃0

∥∥∥
2,n

< εn/2.

Theorem 4.1: If f0 is a step function, an = Kf0

Theorem 4.3: If f0 is a ν-Hölder continuous function, an is chosen by the following lemma, which
is analogous to Lemma 3.2 of Rockova et al. (2020).
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Lemma A.5. Denote f = {fl}pl=1 and assume fl ∈ Hνl where νl ≤ 1 for all l = 1, . . . , p and X is
regular. Then there exists tree structured step functions f̂ = {fT ,Bl

}pl=1 ∈ FK for some given tree
partition T with K ∈ N leaves such that for some constant C > 0,∥∥∥f̂ − f

∥∥∥
2,n

≤ Cd

p∑
l=1

(
1

Kνl/q
∥fl∥Hνl

)
≤ C

q

Kν/q

p∑
l=1

(∥fl∥Hνl ) ,

where ν = minpl=1 νl.

As a corollary, replacing C0 = C (
∑p

l=1 ∥fl∥Hν ), an satisfies(
2C0q

εn

)q/ν

≤ an ≤
(
2C0q

εn

)q/ν

+ 1 (21)

Using equation 18 and by triangle inequality, we can bound the LHS of (C2) from below by

Cπ(an)Π

(
β ∈ Ban

n :
∥∥β − β0

∥∥
1
≤ ϵ2n

2Cn
g

)
For the prior by Chipman et al. (2010), C = 1 and π(an) ≳ e−an log an (by Corollary 5.2 of Rockova
& Saha (2019)).

For the prior by Denison et al. (1998), C = 1
| Fan | > (andn)

−an > e−an log an (by Lemma 3.1 of
Rockova et al. (2020)) and π(an) ≳ e−an log an (by proof of Theorem 4.1 of Rockova et al. (2020)).

Thus for both priors Cπ(an) ≳ e−2an log an .

Next we bound Π
(
β ∈ Ban

n :
∥∥β − β0

∥∥
1
≤ ϵ2n

2Cn
g

)
, up to a constant, from below by

Π

(
β : ∥β∥∞ ≤ Cn

β ,
∥∥β − β0

∥∥
∞ ≤ ϵ2n

2anqCn
g

)
Since Cn

g and Cn
β both are increasing with n, for sufficiently large n, the above expression is bounded

below by

Π

(
β :

∥∥β − β0
∥∥
∞ ≤ ε2n

2anpCn
g

)

≳e
−C1anp

(
∥β0∥∞+

ε2n
2anpCn

g

)C

2

(
∥β0∥∞ +

ε2n
2anpCn

g

)anp

Since ε2n → 0 and both an and Cn
g are both increasing with n, assuming ∥f0∥∞ ≲

√
log n, the above

bound reduces to

e−C1anp logC2/2 n ∥β0∥anp/2
∞ ≳ log

[
−C1anp log

C2/2 n
]

We can prove e−an logn ≳ e−nε2n for Theorem 4.1 and Theorem 4.3 separately by replacing appro-
priate values of εn. Since C2 ≤ 2, this would complete the proof.

A.3.3 PRIOR DECAY RATE CONDITION

Theorem 4.1: When f0 is a step-function with complexity Kf0 ,

Π(F \ Fn) ≤ Π(F \
kn⋃

K=1

FK) + Π(
⋃

K≤kn

{f ∈ FK : ∥β∥∞ > Cn
β })

≤ Π(
⋃

K>kn

FK) + e−Kf0
logn/2

= Π(
⋃

K>kn

FK) + o(e−nε2n)

The last line is due to the fact Cn
β ≳ Kf0 log n when f0 is a step-function with complexity Kf0 .
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Theorem 4.3: When f0 is a ν-Hölder continuous function, the LHS of condition (C3) can be
bounded from above by

Π(F \ Fn) ≤ Π(F \
kn⋃

K=1

FK) + Π(
⋃

K≤kn

{f ∈ FK : ∥β∥∞ > Cn
β })

≤ Π(
⋃

K>kn

FK) +

kn∑
K=1

Π({β : ∥β∥∞ > Cn
β })

≤ Π(
⋃

K>kn

FK) +

kn∑
K=1

e−Cn
β , by condition equation 7

≤ Π(
⋃

K>kn

FK) + kne
−Cn

β

= Π(
⋃

K>kn

FK) + o(e−nε2n)

The last line is due to the fact Cn
β ≳ n, when f0 is a ν-Hölder continuous functions.

Therefore it is enough to show that

Π(
⋃

K>kn

FK) ≲ e−nε2n

This condition is satisfied for both priors under consideration. This follows from section 8.3 of
Rockova et al. (2020) for the prior by Denison et al. (1998) and from Corollary 5.2 of Rockova &
Saha (2019) for the prior by Chipman et al. (2010).

A.4 CLASSIFICATION WITH DIRICHLET STEP HEIGHTS

For a multi-class classification problem with p classes, where the response variable Y is a categorical
random variable with p categories, Y can be written as a p dimensional binary vector that has 1 at
the l-th coordinate if Y belongs to category l ∈ {1, . . . , p} and 0 elsewhere. G-BART assumes

Y |X ∼ Multinomial(1,f0(X)), (22)

where f0 = (f01, . . . , f0p)
′
: Rq → (0, 1)p is a constrained function with f0(X)′1p = 1 for any

X ∈ Rq . Each f0l(·) can be approximated by a step function of the form

fT ,P (x) =

K∑
k=1

PkI(x ∈ Ωk) (23)

on a tree-partition {Ωk}Kk=1. Denison et al. (1998) assumes

Pk = (Pk1, . . . , Pkp)
i.i.d∼ Dirichlet(α1, . . . , αp), (24)

where αl > 0, ∀l ∈ {1, . . . , p}.

Theorem A.6. If we assume that the distribution of the step-sizes satisfies equation 24, then under
Assumptions 1 & 2 described in section 4 of the manuscript, the Bayesian Tree estimator satisfies the
following property,:

(i) If f0 is ν-Hölder continuous with 0 < ν ≤ 1 where ∥f0∥∞ ≲ log1/2 n, then with εn =

n−α/(2α+p) log1/2 n, and

(ii) If f0 is step-function with complexity Kf0 ≲
√
n, then with εn =

n−1/2
√
Kf0p log

2ν (n/Kf0p)n,

Π
(
f ∈ F : Hn(Pf ,Pf0) > Mn εn | Y (n)

)
→ 0,

5
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for any Mn → ∞ in P(n)
f0

-probability, as n, p → ∞.

The above statement is true for both tree priors considered in this paper: the prior by Denison et al.
(1998) and a modified version of the prior by Chipman et al. (1998) with psplit(Ωt) = αd(Ωt) for
some 1/n ≤ α < 1/2.

Proof. We need to prove three conditions: entropy condition (C1), prior concentration condition (C2)
and prior decay rate condition (C3). Among these (C1) and (C3) can be proved by the same technique
as in section A.3. Therefore we will only prove Condition (C3) here. We need to show, for some
c > 0

Π
(
f ∈ F : max{Kn(f, f0), Vn(f, f0)} ≤ ε2n

)
≳ e−cnε2n (25)

Let f̃0 =
(
fT ,P 0

1
(x), . . . , fT ,P 0

q
(x)

)
denote the projection of f0 onto a balanced k-d tree partition T

with an leaves, where an is chosen so that
∥∥∥f0 − f̃0

∥∥∥
2,n

< εn/2. If f0 is a step function, an = Kf0 .

If f0 is a ν-Hölder continuous function, an is chosen by Lemma 3.2 of Rockova et al. (2020), where
replacing C0 = C (

∑p
l=1 ∥fl∥Hν ) we get(

2C0q

εn

)q/ν

≤ an ≤
(
2C0q

εn

)q/ν

+ 1 (26)

fT ,P 0
l
(x) is of the form equation 23 for some tree topology T with an leaves and P 0

l = {P 0
kl}

an

k=1

for l = 1, . . . , p. We assume there exists some δ0 > 0 such that min f0l > δ0 for all l = 1, . . . , q.
This implies P 0

lk > δ0 for all l = 1, . . . q and all k = 1, . . . ,K. Therefore by equation 18, we can
bound the LHS of equation 25 from above by

Cπ(an)Π
(
P ∈ [0, 1]anp :

∥∥P − P 0
∥∥
1
≤ δ0ε

2
n/2

)
For the prior by Chipman et al. (1998), C = 1 and for the prior by Denison et al. (1998), C =

1
| Fan | > (andn)

−an > e−an log an (by Lemma 3.1 of Rockova et al. (2020)). By Corollary 5.2
of Rockova & Saha (2019) for the prior by Chipman et al. (1998) and by proof of Theorem 4.1 of
Rockova et al. (2020) for the prior by Denison et al. (1998), we can show π(an) ≥ e−an log an . Thus
for both priors,

Cπ(an) > e−2an log an (27)
Since Pk ∼ Dirichlet(α1, . . . , αp) for all k = 1, . . . ,K and P 0

lk > δ0, for all l = 1, . . . , p and all
k = 1, . . . ,K, we can bound Π

(
P ∈ [0, 1]anq :

∥∥P − P 0
∥∥
1
≤ δ0ϵ

2
n/2

)
from above by

Π

(
P ∈ [0, 1]anp :

∥∥P − P 0
∥∥
∞ ≤ δ0ϵ

2
n

2anp

)
≳ Cα(

δ0ϵ
2
n

anp
)anp, (28)

where Cα is a constant that depends on the Dirichlet parameters α = (α1, . . . , αq). Combining
equation 27 and equation 28 completes the proof.

PROOF OF THEOREM 4.3

The first step is to find an approximating step-function f̂0 by Lemma 4.2, such that ∥f0 − f̂0∥2,n <

εn/2. The rest of the proof follows by retracing the steps as in the proof of Theorem 4.4 given above.

A.5 PARSIMONY OF G-BART

The following statements support the empirical observation that generalized Bayesian trees are
resilient to overfitting. The proofs of (i), (ii) and (iii) follow from Lemma 1 of Ghosal et al. (2007), in
conjunction with the proofs of Theorems 4.1, 4.3 and 4.4 respectively.

(i) Under the assumptions of Theorem 4.1 we have Π
(
K ≳ Kf0 | Y (n)

)
→ 0 in P(n)

f0
-probability, as

n, q → ∞.

(ii) Under the assumptions of Theorem 4.3 we have Π
(
K ≳ nq/(2+q) | Y (n)

)
→ 0 in P(n)

f0
-

probability, as n, q → ∞.

(iii) Under the assumptions of Theorem 4.4 we have Π
(
K ≳ nq/(2ν+q) | Y (n)

)
→ 0 in P(n)

f0
-

probability, as n, q → ∞.

6


	Introduction
	Our contributions
	Notations:

	The Generalized BART Prior
	Prior on partitions
	Prior on step heights

	Posterior Concentration
	Main Results
	Results on Step-Functions
	Results on Monotone Functions
	Results on Hölder Continuous Functions

	Implications
	Discussion
	Appendix
	Bayesian CART Prior by Denison et al. (1998)
	Preliminary Results with Proof
	Proof of Main Results
	Entropy Condition
	Prior Concentration Condition
	Prior Decay Rate Condition

	Classification with Dirichlet Step Heights
	Parsimony of G-BART


