
SparseDiT: Token Sparsification for Efficient Diffusion
Transformer

Shuning Chang1 2 3 Pichao Wang2∗ Jiasheng Tang2 3 Fan Wang2 3 Yi Yang1

1Zhejiang University 2Damo Academy, Alibaba Group 3Hupan Lab
shuning.csn@alibaba-inc.com

Abstract

Diffusion Transformers (DiT) are renowned for their impressive generative perfor-
mance; however, they are significantly constrained by considerable computational
costs due to the quadratic complexity in self-attention and the extensive sampling
steps required. While advancements have been made in expediting the sampling pro-
cess, the underlying architectural inefficiencies within DiT remain underexplored.
We introduce SparseDiT, a novel framework that implements token sparsification
across spatial and temporal dimensions to enhance computational efficiency while
preserving generative quality. Spatially, SparseDiT employs a tri-segment archi-
tecture that allocates token density based on feature requirements at each layer:
Poolingformer in the bottom layers for efficient global feature extraction, Sparse-
Dense Token Modules (SDTM) in the middle layers to balance global context with
local detail, and dense tokens in the top layers to refine high-frequency details. Tem-
porally, SparseDiT dynamically modulates token density across denoising stages,
progressively increasing token count as finer details emerge in later timesteps.
This synergy between SparseDiT’s spatially adaptive architecture and its temporal
pruning strategy enables a unified framework that balances efficiency and fidelity
throughout the generation process. Our experiments demonstrate SparseDiT’s
effectiveness, achieving a 55% reduction in FLOPs and a 175% improvement in
inference speed on DiT-XL with similar FID score on 512×512 ImageNet, a 56%
reduction in FLOPs across video generation datasets, and a 69% improvement in
inference speed on PixArt-α on text-to-image generation task with a 0.24 FID score
decrease. SparseDiT provides a scalable solution for high-quality diffusion-based
generation compatible with sampling optimization techniques. Code is available at
https://github.com/changsn/SparseDiT.

1 Introduction

Diffusion models [18, 12, 43, 3] have emerged as powerful tools in visual generation, producing
photorealistic images and videos by gradually refining structured content from noise. Leveraging the
scalability of Transformers, Diffusion Transformer (DiT) models [41, 2] extend these capabilities to
more complex and detailed tasks [13, 62] and form the backbone of advanced generation frameworks
such as Sora [6]. Yet, despite their impressive generative capabilities, DiT models face significant
computational limitations that restrict their broader applicability, especially in scenarios where
efficiency is paramount.

The computational burden of DiT models arises mainly from the need for numerous sampling steps
in the denoising process and the quadratic complexity of Transformer structures with respect to the
number of tokens. Although recent research has focused on reducing this burden by accelerating the
sampling process through techniques such as ODE solvers [51, 30], flow-based methods [26, 28],

∗Work done at Alibaba Group, and now affiliated with Amazon.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/changsn/SparseDiT


(a)
(b)

Figure 1: (a) The attention maps in different self-attention layers. Zoom-in for better visibility. (b)
The normalized variances of attention maps in DiT-XL. Different curve lines represent different
sampling steps.

and knowledge distillation [53, 47, 32, 35, 63], these approaches often overlook the core architectural
inefficiencies of DiT itself. Unlike U-Net-based architectures [44], which mitigate complexity
through a contracting-expansive structure, DiT’s reliance on token-level self-attention incurs high
costs that scale with model size and token count. This bottleneck highlights a critical need for
DiT-specific innovations that manage token density intelligently, balancing efficiency and quality
without sacrificing generation fidelity.

To address this challenge, we examine the distribution of attention across DiT’s layers and sampling
steps, seeking to uncover structural patterns that could guide more efficient token management. As
illustrated in Figure 1a, attention maps reveal that tokens capture different levels of granularity
across layers: in the bottom layers, such as layer 0, attention maps approximately appear uniform
distribution, indicating a focus on broad, global features akin to global pooling. Meanwhile, middle
layers alternate in their attention, with certain layers (e.g., layer 6 and layer 26) capturing local details,
while others (e.g., layer 22) emphasize global structure. This observation is quantified in Figure 1b,
where the variance in attention scores highlights DiT’s consistent pattern of alternation between
global and local feature extraction across layers. In addition to spatial analysis, Figure 1b also reveals
insights across sampling steps. We observe that, while the pattern of alternation between global and
local focus remains stable, attention variance increases as the denoising process advances, indicating a
growing emphasis on local information at lower-noise stages. This analysis yields three core insights:
(1) the initial self-attention layers exhibit minimal variance, showing low discrepancy in feature
extraction across tokens; (2) DiT’s architecture inherently alternates between global and local feature
focus across layers, a pattern consistent across all sampling steps; and (3) as denoising progresses, the
model increasingly prioritizes local details, dynamically adapting to heightened demands for detail at
later stages.

Building on these insights, we propose SparseDiT, which reimagines token density management as a
dynamic process adapting across both spatial layers and temporal stages. Spatially, shallow layers
capture smooth, global features, making complex self-attention less efficient. Subsequent layers
alternate between high-frequency local details and low-frequency global information, where sparse
tokens efficiently capture global features, and dense tokens refine local details. Temporally, as denois-
ing advances, the need for local detail increases, motivating a dynamic token adjustment strategy.
This dual-layered adaptation integrates layer-wise token modulation—balancing efficiency and detail
within each sampling step—and a timestep-wise pruning strategy that adjusts token density dynami-
cally. Together, these spatial and temporal adaptations allow SparseDiT to achieve computational
efficiency without sacrificing high-fidelity detail, as reflected in SparseDiT’s architectural design and
pruning strategy, tailored to meet the unique spatial and temporal demands of the generation process.

SparseDiT Architecture: SparseDiT’s architecture employs a three-segment design that aligns
token density with the features each layer captures. In the bottom layers, we replace self-attention
with a poolingformer structure to capture broad global features through average pooling, reducing
computation while preserving essential structure. In the middle layers, SparseDiT introduces Sparse-
Dense Token Modules (SDTM), blending sparse tokens for global structure with dense tokens to
refine local details. This design enables SparseDiT to retain efficiency while maintaining stability and

2



(a) Architecture of SparseDiT.

(b) Timestep-wise pruning rate strategy.

Figure 2: Architecture of SparseDiT and timestep-wise pruning rate strategy. The architecture
consists of three segments: bottom, middle, and top. The bottom segment includes poolingformers
(PF). The middle segment comprises multiple sparse-dense token modules (SDTMs), where sparse
token generation transformers (“Sparse Gen") and dense token recovery transformers (“Dense Rec")
alternate to balance global and detailed information processing. The top segment contains standard
transformers (“Tr") for final processing. During the denoising process, we apply varying pruning
rates r at different stages (depicted as four stages).

detail. In the top layers, the model processes all tokens densely, focusing on high-frequency details
for refined output quality.

Timestep-Wise Pruning Rate Strategy: Complementing spatial adjustments, SparseDiT’s timestep-
wise pruning rate strategy adapts token density across denoising stages. In early stages, where broad,
low-frequency structures dominate, SparseDiT applies a high pruning rate, conserving resources. As
the process progresses and intricate details emerge, the pruning rate decreases, allowing for a gradual
increase in token density. This adjustment aligns computational effort with each stage’s complexity,
dynamically balancing efficiency and detail to optimize resources for high-fidelity output.

Our empirical results substantiate the effectiveness of SparseDiT’s integrated approach. SparseDiT
reduces the FLOPs of DiT-XL by 55% and improves inference speed by 175% on 512×512 Ima-
geNet [11] images, with only a increase of 0.09 in FID score [17]. On the Latte-XL dataset [34],
SparseDiT achieves a 56% reduction in FLOPs across standard video generation datasets, including
FaceForensics [45], SkyTimelapse [60], UCF101 [54], and Taichi-HD [50]. Additionally, on the
more challenging text-to-image generation task, we achieve a 69% improvement in inference speed
on PixArt-α with a 0.24 FID score reduction. These results demonstrate SparseDiT’s capability to
provide an efficient, high-quality architecture for diffusion-based generation, compatible with further
sampling optimization techniques for enhanced efficiency.

2 Related works

Efficient sampling process. This direction focuses on optimizing sampling steps in diffusion
models. Some approaches [51, 30, 1, 31] design new solvers to achieve faster sampling with fewer
steps. Consistency models (CMs) [53, 52, 32, 58, 21] are closely related to diffusion models, achieving
by distilling pre-trained diffusion models or training from scratch. These models learn a one-step
mapping between noise and data, and all the points of the sampling trajectory map to the same initial
data point. Flow-based [26, 28, 72, 13, 71] approaches straighten the transport trajectories among
different distributions and thereby realize efficient inference. Knowledge distillation are applied
by some methods [53, 47, 32, 35, 63] to reduce the sampling steps and match the output of the
combined conditional and unconditional models. Parallel sampling techniques [49, 70, 56] employ
Picard-Lindelöf iteration or Fourier neural operators for solving SDE/ODE.

Efficient model structure. Another avenue focuses on improving inference time within a single
model evaluation. Some methods attempt to compress the size of diffusion models via pruning [14]

3



(a) Standard DiT-XL. (b) Modifying first two attention in DiT-XL.

Figure 3: Comparison of images generated by the standard DiT-XL model and a modified DiT-XL
model where the first two attention maps are replaced with full-one matrices without fine-tuning.
Both sets of images exhibit similar visual quality.

or quantization [25, 48]. Spectral Diffusion [61] boosts structure design by incorporating frequency
dynamics and priors. OMS-DPM [27] proposes a model schedule that selects small models or large
models at specific sampling steps to balance generation quality and inference speed. Deepcache [33],
TokenCache [29], and DiTFastAttn[66] reuse or share similar features across sampling steps. The
early stopping mechanism in diffusion is explored in [24, 37, 55].

Most of the above methods are designed for general diffusion models. Recently, the Diffusion
Transformer (DiT) has emerged as a more potential backbone, surpassing the previously dominant
U-Net architectures. Unlike U-Net-based models, DiT’s inefficiency stems largely from the self-
attention mechanism. Limited research has specifically addressed the efficiency of DiT-based models.
Pu et al. [42] identifies the redundancies in the self-attention and adopts timestep dynamic mediator
tokens to compress attention complexity, achieving some performances but limited FLOPs reduction,
as this approach primarily reduces the number of keys and values rather than the overall tokens count.
In Vision transformers for classification task, numerous methods [59, 9, 15, 7, 4, 73, 36, 69, 67]
successfully removed redundant tokens to improve performance-efficiency trade-offs. ToMeSD [5]
is the first to explore token reduction in diffusion models. However, its performance on DiT was
suboptimal, as shown in [37, 68]. U-Net can be regarded as a sparse network due to its contracting
and expansive structure. EDT [10] applies a novel architecture similar to U-Net, while they still
have 1.4 FID score gap compared to its baseline model MDTv2 [16] via 2,000K iterations. These
findings indicate that directly transferring token reduction techniques from classification tasks or
reusing U-Net structures may be insufficient for DiT. Instead, a specialized token reduction strategy
is needed. DyDiT [68] and DiffCR [64] design dynamic networks to compress DiT from multiple
dimensions, such as token, layer, attention head, channel.

3 Method

We first introduce SparseDiT architecture in Section 3.1, followed by our timestep-wise pruning rate
strategy in Section 3.2. Finally, Section 3.3 details the initialization and fine-tuning of our network.

3.1 SparseDiT

Overview architecture. The SparseDiT architecture is illustrated in Figure 2a, where the trans-
former layers of DiT based model are divided into three groups: bottom, middle, and top. The bottom
layers leverage poolingformers to efficiently capture global features. The middle layers contain
multiple sparse-dense token modules (SDTM), which decouple the representation process into global
structure capture and local details enhancement using sparse and dense tokens, respectively. The top
layers retain the standard transformers, processing dense tokens to generate the final predictions at
each sampling step. The primary computational savings are achieved through sparse tokens, hence
the majority of transformer layers are located in the middle section to maximize efficiency.

Poolingformer in the bottom layers. As shown in the first subfigure in Figure 1a, attention
scores in the bottom layers exhibit a nearly uniform distribution, with each token evenly extracting
global features, akin to a global average pooling operator. To investigate further, we conducted
a toy experiment where the attention maps in the first two transformer layers were replaced with

4



matrices filled with a constant value (e.g., 1), without any fine-tuning. Figure 3 shows that, using
the same initial noise and random seed, the images generated by the original DiT-XL and the
modified DiT-XL are nearly identical, suggesting that complex self-attention calculations offer
limited additional information. Given that self-attention in the bottom layers captures global features,
we further question whether sparse tokens can be used in these layers. However, experiments (in
Table 6) demonstrated that applying sparse tokens in the bottom layers results in unstable training,
highlighting the necessity of retaining complete tokens in these layers.

Based on the above analysis, we adopt poolingformers to replace the original transformers. In
poolingformer, we remove queries and keys as attention maps are not computed. Instead, we perform
a global average pooling on the value V ∈ RN×C and integrate it into input tokens X , which can be
represented as

X = X + V̄ , (1)

where V̄ is the mean along the dimension of N , i.e., v̄ = 1
N

∑
V (v̄ ∈ R1×C), and then repeating N

times to shape N × C. The parameters from adaLN block are omitted in all the equations for brevity.
Our poolingformer can be viewed as a special case of the model in [65], behaving identically when
the pooling kernel size is equal to the input size.

Sparse-dense token module. We present the sparse-dense token module (SDTM) to generate
sparse and dense tokens processed by the corresponding transformer layers. The high-level idea is to
decouple global structure extraction and local detail extraction. Sparse tokens capture global structure
information and reduce computational cost, while dense tokens enhance local detail and stabilize
training. Sparse and dense tokens are converted to each other within SDTM.

Initially, SDTM introduces a set of sparse tokens Xs ∈ RM×C , where M is the number of sparse
tokens, typically M ≪ N . These sparse tokens can be initialized by adaptively pooling the dense
tokens X . We define pruning rate r = 1 − M/N to represent the sparsity degree. To store the
structure information, we first reshape the dense tokens X ∈ RN×C into the latent shape. For
instance, if the input is an image, we reshape it into shape H × W × C, then pool it across the
spatial dimensions to shape H ′ ×W ′ × C, where H ′ ×W ′ = M . The intentions of spatial pooling
initialization are two-fold. First, the initial sparse tokens can be distributed uniformly in space and the
representation of each sparse token is associated with a specific spatial location, which is beneficial
for downstream tasks such as image editing [20]. Second, it can prevent the semantic tokens from
collapsing to one point in the following layers. Sparse token interact with full-size dense tokens via
an attention layer to integrate the global information:

Xs = Xs +MHA(Xs, X,X), (2)

where the triplet input of MHA are queries, keys, and values in turn.

The generated sparse tokens are fed into subsequent transformer layers, referred to as sparse trans-
formers. Since M ≪ N , our SDTM can substantially reduce computational cost.

Following this, we restore dense tokens from sparse tokens. First, we reshape the sparse tokens
Xs ∈ RM×C into structure shape H ′ ×W ′ × C and upsample it to the same shape as input dense
tokens X ∈ RH×W×C . We introduce two linear layers to combine upsampling sparse tokens with
dense tokens, which is represented as:

Xmerged = UpSample(Xs) ·W1 +X ·W2, (3)

where W1, W2 ∈ RC×C are the weights of two linear layers. Then, to further incorporate sparse
tokens, we utilize an attention layer to perform a reverse operation of the generation of sparse token
to produce the restored dense tokens, which is written as:

X = Xmerged +MHA(Xmerged, Xs, Xs). (4)

At the end of SDTM, several transformer layers, termed dense transformers, process full-size dense
tokens to enhance local details.

We cascade multiple SDTMs in our network. By repeating sparse and dense tokens, the network
effectively preserves both structural and detailed information, achieving substantial reductions in
computational cost while maintaining high-quality generation outputs.

5



Table 1: Comparison of performance between SparseDiT and DiT for class-conditional image
generation task on ImageNet.

Resolution Model FLOPs (G) Throughput (img/s) FID ↓ sFID ↓ IS ↑ Precision ↑ Recall ↑

256× 256
DiT-B 23.01 7.84 9.07 5.44 121.07 0.74 0.54

Ours (r ∈ [0.61, 0.86]) 14.34 (-38%) 13.2 (+68%) 8.23 6.20 134.30 0.74 0.54

256× 256
DiT-XL 118.64 1.58 2.27 4.60 278.24 0.83 0.57

Ours (r ∈ [0.44, 0.61]) 88.91 (-25%) 2.13 (+35%) 2.23 4.62 278.91 0.84 0.58
Ours (r ∈ [0.61, 0.86]) 68.05 (-43%) 2.95 (+87%) 2.38 4.82 276.39 0.82 0.58

512× 512
DiT-XL 525 0.249 3.04 5.02 240.82 0.84 0.54

Ours (r ∈ [0.61, 0.86]) 286 (-46%) 0.609 (+145%) 2.96 5.00 242.4 0.84 0.54
Ours (r ∈ [0.90, 0.96]) 235 (-55%) 0.685 (+175%) 3.13 5.41 236.56 0.83 0.52

(a) Images generated by DiT. (b) Images generated by SparseDiT (-43% FLOPs).

Figure 4: Generating images from DiT-XL and SparseDiT-XL with the same random seed.

3.2 Timestep-wise pruning rate

We have observed that the tokens display varying denoising behavior over sampling steps. They
generate the low-frequency global structure information in the early denoising stage and the high
frequency details in the late denoising stage. The token count requirement is progressively increase
along sampling steps. We exploit this by dynamically adjusting the pruning rate r across sampling
steps, increasing tokens as sampling progresses.

Given T sampling steps, we propose a sample-specific approach to dynamically adjust the pruning
rate r, thereby controlling the number of sparse tokens across the sampling steps. We define a
range for r, such that r ∈ [rmin, rmax]. Observing that generation quality is highly relative with the
later denoising stages (in Section 4.4), we hold r constant at rmin for the first T/4 sampling steps.
Subsequently, we adjust the pruning rate r linearly based on the current sampling step ti. The specific
formula for r is provided as follows:

r =

{
rmin, ti < T/4,
4T−4
3T rmin + 4−T

3T rmax, T/4 ≤ ti < T.
(5)

During training, we sample step ti and compute the corresponding r according to Eq. 5. However,
the input tokens should be the same to train the model in batch, and the randomness of the sampling
from T should also be maintained. To solve this contradiction, we modify the linear function of Eq. 5
when T/4 ≤ ti < T to a piecewise function. Normally, the model is trained by multiple GPUs. We
request ti sampled in a specific piece in each GPU. Therefore, in each iteration, it can achieve both
uniformly random sampling and batch training.

3.3 Initialization and fine-tuning

Our method fine-tunes pre-trained DiT models to improve efficiency. The processes of generating
sparse tokens and restoring dense tokens utilize off-the-shelf transformers, avoiding the need for
additional networks. During fine-tuning, the parameters of transformers in DiT-based model are
loaded into the corresponding transformers in our SparseDiT, with two exceptions: (1) queries and
keys are absent in Poolingformers, hence related parameters in pre-trained model are not required;
(2) the weights W1 and W2 in Eq. 3 are initialized by full zeros and identity matrix, receptively.

6



Table 2: FVD scores of SparseDiT-XL in class-conditional video generation task on four mainstream
video generation datasets. We do not find the official reference sets of these 4 dataset when we
compute FVD scores, hence we build the reference sets by ourselves and use the official checkpoint
to re-compute the FVD scores of Latte-XL in this table.

Model FLOPs (G) Throughput (clip/s) FaceForensic SkyTimelapse UCF101 Taichi-HD

Latte-XL* 1894 0.108 24.10 40.78 284.54 89.63
Ours (r ∈ [0.80, 0.93]) 828 (-56%) 0.228 (+111%) 24.51 39.02 288.90 84.13

4 Experiments

SparseDiT is applied in three representative DiT-based models, DiT [41], Latte [34], and PixArt-
α [8] for class-conditional image generation, class-conditional video generation, and text-to-image
generation, respectively.

Fine-tuning overhead. All training settings and hyperparameters follow their respective papers.
Fine-tuning requires approximately 6% of the time needed for training from scratch, e.g., 400K
iterations for DiT-XL fine-tuning.

4.1 Class-conditional image generation
Experimental setting. We conduct our experiments on ImageNet-1k [11] at resolutions of 256×256
and 512×512, following the protocol established in DiT. For DiT-XL, the model consists of 2, 24, and
2 transformers in the bottom, middle, and top segments, respectively. The middle segment includes
4 sparse-dense token modules, which comprise 1 sparse token generation transformer, 3 sparse
transformers, 1 dense token recovery transformer, and 1 dense transformer. For DiT-B, the bottom,
middle, and top segments contain 1, 10, and 1 transformer layers, respectively. The middle segment
consists of 2 sparse-dense token modules, including 1 sparse token generation transformer, 2 sparse
transformers, 1 dense token recovery transformer, and 1 dense transformer. As poolingformers and
sparse transformers can interfere with the function of position embedding, we reintroduce sine-cosine
position embedding at each stage of dense token generation. For DiT-XL, we use the checkpoint from
the official DiT repository, while for DiT-B, we utilize the checkpoint provided by [40]. Following
prior works, we sample 50,000 images to compute the Fréchet Inception Distance (FID) [17] using
the ADM TensorFlow evaluation suite [12], along with the Inception Score (IS) [46], sFID [38], and
Precision-Recall metrics [23]. Classifier-free guidance [19] (CFG) is set to 1.5 for evaluation and 4.0
for visualization. Throughput is evaluated with a batch size of 128 on an Nvidia A100 GPU.

Main results. The results of our approach on the class-conditional image generation task using
ImageNet are presented in Table 1. We evaluate our method on two model sizes, DiT-B and DiT-XL,
and at two resolutions, 256× 256 and 512× 512. At pruning rates r ∈ [0.61, 0.86], SparseDiT-XL
achieves a 43% reduction in FLOPs and an 87% improvement in inference speed, with only a 0.11
increase in FID score. This indicates significant redundancy within DiT, as using only about 25%
tokens in specific layers maintains similar performance levels. By increasing the token count, we
observe slight improvements over baseline performance with 145% improvement in throughput. The
impact of our approach is even more pronounced at a resolution of 512× 512. With a higher pruning
rate than the 256× 256 resolution, our method yields a superior performance-efficiency trade-off.
By pruning over 90% of the tokens, we achieve a 55% reduction in FLOPs and a 175% increase
in throughput, with only a 0.09 increase in FID score. When reducing the pruning rate further, our
results slightly surpass the baseline, delivering a 145% throughput improvement. ToMeSD [5] is the
first approach to reduce tokens. However, it applies token merging and recovery at every layer in a
generic manner, resulting in a significant performance drop. For example, with a 0.1 merging rate on
DiT-XL, ToMeSD achieves an FID score of 14.74, which is substantially worse than our result. A
detailed comparison between other methods and our method is provided in Appendix A.1.

From 256× 256 to 512× 512, FLOPs increase by only 4.4 times, whereas the speed declines by a
factor of 6.3, demonstrating that the primary speed bottleneck in DiT architecture is the number of
tokens. Our method effectively reduces token count, resulting in significant gains, particularly for
high-resolution content generation. For example, we achieve a 55% reduction in FLOPs at 512× 512
while enhancing speed by 175%. Compared to other methods, our real-world speed improvements
far exceed those achieved with similar reductions in FLOPs.

7



Table 3: Text-to-image generation on SAM dataset. r ∈ [0.61, 0.86].

Model FLOPs (G) Throughput(img/s) FID ↓
PixArt-α 148.73 0.414 4.53

Ours 91.62 (-38%) 0.701 (+69%) 4.29

Visualization results. To further validate the effectiveness of our method, we visualize some
samples generated from SparseDiT-XL at a 256× 256 resolution with a pruning rate r ∈ [0.61, 0.86]
(-43% FLOPs) and compare them with DiT-XL in Figure 4. Each cell in the same position corresponds
to images generated from the same random seed and class. Since our model is fine-tuned from the
pre-trained DiT, the overall styles and structures of the two subfigures are similar. The images
generated by SparseDiT still retain rich high-frequency details. Furthermore, SparseDiT images
demonstrate more precise structure, as evidenced by the accurate depiction of the “golden retriever’s”
nose and the “macaw’s” eyes, which appear misplacement or missing in the images generated by
DiT-XL. We provide samples at a resolution of 512× 512 in Appendix.

4.2 Class-conditional video generation
Experimental settings. We conduct experiments at a resolution of 256 × 256 on four public
datasets: FaceForensics [45], SkyTimelapse [60], UCF101 [54], and Taichi-HD [50]. Latte comprises
two distinct types of transformer blocks: spatial transformers, which focus on capturing spatial
information, and temporal transformers, which capture temporal information. To accommodate this
separation of spatial and temporal feature extraction, we adjust our model’s schedule within the
sparse-dense token module. Specifically, we employ two transformers to prune spatial tokens and
temporal tokens separately. The sparse tokens are then processed by two sparse transformers, and
finally two transformers are used to recover the temporal and spatial tokens. Dense transformers are
discarded in this setup. All other model configurations are the same as in DiT, and we follow the
original training settings and hyperparameters used for Latte. To evaluate performance, we sample
2,048 videos, each consisting of 16 frames, and measure the Fréchet Video Distance (FVD) [57].
Throughput is measured using a batch size of 2 clips on an Nvidia A100 GPU.

Main results. Table 2 presents the main results of our approach. Leveraging the additional temporal
dimension in video data allows for a higher pruning rate. Our method achieves a 56% reduction
in FLOPs while maintaining a competitive FVD score compared to the baseline, demonstrating its
effectiveness in video generation tasks.

4.3 Text-to-image generation
Experiment setting. We further assess the effectiveness of our method on text-to-image generation,
which presents a greater challenge compared to class-conditional image generation. We adopt
PixArt-α [8], a text-to-image generation model built based on DiT as the base model. Our model is
initialized using the official PixArt-α checkpoint pre-trained on SAM dataset [22] containing 10M
images. We further fine-tune it with our method on a subset of SAM dataset including 1M images.
In PixArt-α, the transformer architecture includes two types of attention layers: a self-attention
layer and a cross-attention layer, which integrates textual information. We apply our method to the
self-attention layers to either reduce or recover tokens.

For evaluation, we randomly select text prompts from SAM dataset and adopt 100-step IDDPM
solver [39] to sample 30,000 images, with the FID score serving as the evaluation metric. Throughput
is evaluated with a batch size of 128 on an Nvidia A100 GPU.

Main results. As shown in Table 3, our SparseDiT achieves an FID score comparable to the original
PixArT-α with significantly accelerating the generation, showing that our method is effective for
text-to-image generation task.

Visualization results. We visualize some samples of our method and compare them with original
PixArt-α in Figure 5. The classifier-free guidance is set to 4.5. The results demonstrate that our
method effectively maintains both image quality and semantic fidelity.

4.4 Ablation study

All the following ablation experiments of SparseDiT-XL are conducted on ImageNet at a 256× 256
resolution.

8



(a) Images generated by PixArt-α (b) Images generated by SparseDiT
Figure 5: Generating images from PixArt-α (a) and SparseDiT (b). The captions in the same positions
are identical. They are provided in Appendix A.3.

Table 4: Performance evaluation on different
numbers of SDTMs. “NAN" indicates loss nan.

No. of SDTMs 1 2 3 4
FID ↓ NAN 3.86 2.51 2.38
FLOPs 68.74 67.00 69.97 68.05

Table 5: Combination our method with efficient
samplers. The numbers represent FID scores.

Model 250-DDPM 25-DDIM 5-RFlow
DiT-XL 2.27 2.89 43.40

Ours 2.38 3.31 43.69

The number of SDTMs. The alternation between sparse and dense tokens is a key factor con-
tributing to the success of our method. Sparse tokens capture global structures, while dense tokens
capture detailed information. In SparseDiT, we adopt four SDTMs by default. Table 4 shows the
effect of using different numbers of SDTMs. To isolate the impact of SDTM count, we maintain the
same FLOPs across models by adjusting the number of sparse and dense transformers while varying
only the number of SDTMs. In configurations with only one SDTM, the model is modified into a
U-shaped architecture. The results indicate that fewer SDTMs reduce interactions between global
and local information, resulting in weaker performance. Furthermore, reducing SparseDiT to a U-Net
structure compromises training stability, leading to a collapse. We do not experiment with more than
four SDTMs, as increasing SDTM count beyond four offers diminishing returns in FLOP reduction.

Combination with efficient samplers. Our SparseDiT is a model compression method that can be
seamlessly integrated with efficient samplers, such as DDIM [51] and Rectified Flow (RFlow) [28].
Note that the RFlow variant of DiT was trained by us via 2,000K iterations. As shown in Table 5,
when our method is combined with the 25-step DDIM and 5-step Rectified Flow samplers, it achieves
approximately 18.7× and 93.4× improvements in inference speed, respectively, compared to the
standard 250-step DDPM. Notably, our method does not introduce a significant performance gap
relative to the baseline, demonstrating that it can be effectively combined with efficient samplers.

The number of poolingformers. In Table 6, we examine the impact of varying the number of
poolingformers in the model. We keep the total number of transformers in the bottom and top segments
constant across configurations. When using three poolingformers, performance declines substantially
due to the global average pooling operator’s limited ability to adaptively capture information. For
configurations with one or two poolingformers, the models achieve same results. The poolingformer
is more efficient and consume fewer parameters than the standard transformer; therefore, we default
to using 2 poolingformers. Reducing the poolingformer count to zero results in training instability,
suggesting that maintaining full-size tokens in the initial layers is crucial. This finding aligns with
the observations in Figure 1b: in DiT, the first two attention maps exhibit a uniform distribution,
allowing us to replace them with poolingformers, but further replacement disrupts information flow
and reduces performance.

The effectiveness of timestep-wise pruning rate. To evaluate the effectiveness of the timestep-wise
pruning rate strategy, we conduct ablation experiments, as shown in Table 7. In these experiments,
we maintain the same number of FLOPs while varying the number of tokens along timesteps, either
using a constant token count or dynamically adjusting the token count. The results demonstrate
that dynamically tuning the pruning rate significantly improves performance. Additionally, Table 7
highlights an observation: the performance of the dynamic pruning strategy is particularly relative

Table 6: Performance evaluation on different numbers
of poolingformers. “NAN" indicates loss nan during

training.
No. of Poolingformers 0 1 2 3
No. of trans in top seg. 4 3 2 1

FID ↓ NAN 2.38 2.38 2.56
FLOPs 69.56 68.80 68.05 67.29

Table 7: Comparison of FID scores
with and without timestep-wise pruning

rate strategy.
FLOPs (G) No. of Tokens Dynamic FID ↓

∼ 68
8× 8 2.48

6× 6 ∼ 10× 10 ✓ 2.38

∼ 61
6× 6 2.63

4× 4 ∼ 8× 8 ✓ 2.50

9



with the token count of the later stages of denoising. For instance, the configuration with token counts
ranging from 4 × 4 to 8 × 8 only shows a 0.02 FID score increase compared to the configuration
with a constant 8× 8 token count.

5 Conclusion

Limitations. The primary limitation of our method arises from the manually pre-defined its struc-
ture, containing the number of layers in each module and the number of sparse tokens.

In this paper, we introduce SparseDiT, a novel approach to enhancing the efficiency of DiT by
leveraging token sparsity. By incorporating SDTM and a timestep-wise pruning rate in a strategically
layered manner, SparseDiT significantly reduces computational complexity while preserving high-
generation quality. Experimental results show substantial FLOP reductions with minimal performance
degradation, demonstrating SparseDiT’s effectiveness across multiple DiT-based models and datasets.
This work marks a step forward in developing scalable and efficient diffusion models for high-
resolution content generation, expanding the practical applications of DiT-based architectures.

References
[1] F. Bao, C. Li, J. Zhu, and B. Zhang. Analytic-DPM: an analytic estimate of the optimal reverse variance in

diffusion probabilistic models. In International Conference on Learning Representations, 2022.

[2] F. Bao, S. Nie, K. Xue, Y. Cao, C. Li, H. Su, and J. Zhu. All are worth words: A vit backbone for diffusion
models. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
22669–22679, 2023.

[3] A. Blattmann, T. Dockhorn, S. Kulal, D. Mendelevitch, M. Kilian, D. Lorenz, Y. Levi, Z. English, V. Voleti,
A. Letts, et al. Stable video diffusion: Scaling latent video diffusion models to large datasets. arXiv
preprint arXiv:2311.15127, 2023.

[4] D. Bolya, C.-Y. Fu, X. Dai, P. Zhang, C. Feichtenhofer, and J. Hoffman. Token merging: Your ViT but
faster. In International Conference on Learning Representations, 2023.

[5] D. Bolya and J. Hoffman. Token merging for fast stable diffusion. CVPR Workshop on Efficient Deep
Learning for Computer Vision, 2023.

[6] T. Brooks, B. Peebles, C. Holmes, W. DePue, Y. Guo, L. Jing, D. Schnurr, J. Taylor, T. Luhman, E. Luhman,
et al. Video generation models as world simulators, 2024.

[7] S. Chang, P. Wang, M. Lin, F. Wang, D. J. Zhang, R. Jin, and M. Z. Shou. Making vision transformers
efficient from a token sparsification view. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 6195–6205, 2023.

[8] J. Chen, J. Yu, C. Ge, L. Yao, E. Xie, Y. Wu, Z. Wang, J. Kwok, P. Luo, H. Lu, and Z. Li. Pixart-α: Fast
training of diffusion transformer for photorealistic text-to-image synthesis, 2023.

[9] T. Chen, Y. Cheng, Z. Gan, L. Yuan, L. Zhang, and Z. Wang. Chasing sparsity in vision transformers: An
end-to-end exploration. Advances in Neural Information Processing Systems, 34:19974–19988, 2021.

[10] X. Chen, N. Liu, Y. Zhu, F. Feng, and J. Tang. Edt: An efficient diffusion transformer framework inspired
by human-like sketching. arXiv preprint arXiv:2410.23788, 2024.

[11] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and pattern recognition, pages 248–255. Ieee,
2009.

[12] P. Dhariwal and A. Nichol. Diffusion models beat gans on image synthesis. Advances in neural information
processing systems, 34:8780–8794, 2021.

[13] P. Esser, S. Kulal, A. Blattmann, R. Entezari, J. Müller, H. Saini, Y. Levi, D. Lorenz, A. Sauer, F. Boesel,
et al. Scaling rectified flow transformers for high-resolution image synthesis. In Forty-first International
Conference on Machine Learning, 2024.

[14] G. Fang, X. Ma, and X. Wang. Structural pruning for diffusion models. In Advances in Neural Information
Processing Systems, 2023.

10



[15] M. Fayyaz, S. A. Koohpayegani, F. R. Jafari, S. Sengupta, H. R. V. Joze, E. Sommerlade, H. Pirsiavash, and
J. Gall. Adaptive token sampling for efficient vision transformers. In European Conference on Computer
Vision, pages 396–414. Springer, 2022.

[16] S. Gao, P. Zhou, M.-M. Cheng, and S. Yan. Mdtv2: Masked diffusion transformer is a strong image
synthesizer. arXiv preprint arXiv:2303.14389, 2023.

[17] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. Gans trained by a two time-scale
update rule converge to a local nash equilibrium. Advances in neural information processing systems, 30,
2017.

[18] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. Advances in neural information
processing systems, 33:6840–6851, 2020.

[19] J. Ho and T. Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598, 2022.

[20] Y. Huang, J. Huang, Y. Liu, M. Yan, J. Lv, J. Liu, W. Xiong, H. Zhang, S. Chen, and L. Cao. Diffusion
model-based image editing: A survey. arXiv preprint arXiv:2402.17525, 2024.

[21] D. Kim, C.-H. Lai, W.-H. Liao, N. Murata, Y. Takida, T. Uesaka, Y. He, Y. Mitsufuji, and S. Ermon.
Consistency trajectory models: Learning probability flow ODE trajectory of diffusion. In The Twelfth
International Conference on Learning Representations, 2024.

[22] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C. Berg,
W.-Y. Lo, et al. Segment anything. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 4015–4026, 2023.

[23] T. Kynkäänniemi, T. Karras, S. Laine, J. Lehtinen, and T. Aila. Improved precision and recall metric for
assessing generative models. Advances in neural information processing systems, 32, 2019.

[24] L. Li, H. Li, X. Zheng, J. Wu, X. Xiao, R. Wang, M. Zheng, X. Pan, F. Chao, and R. Ji. Autodiffusion:
Training-free optimization of time steps and architectures for automated diffusion model acceleration. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 7105–7114, 2023.

[25] X. Li, Y. Liu, L. Lian, H. Yang, Z. Dong, D. Kang, S. Zhang, and K. Keutzer. Q-diffusion: Quantizing
diffusion models. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
17535–17545, 2023.

[26] Y. Lipman, R. T. Chen, H. Ben-Hamu, M. Nickel, and M. Le. Flow matching for generative modeling.
arXiv preprint arXiv:2210.02747, 2022.

[27] E. Liu, X. Ning, Z. Lin, H. Yang, and Y. Wang. OMS-DPM: Optimizing the model schedule for diffusion
probabilistic models. In Proceedings of the 40th International Conference on Machine Learning, pages
21915–21936. PMLR, 2023.

[28] X. Liu, C. Gong, and Q. Liu. Flow straight and fast: Learning to generate and transfer data with rectified
flow. arXiv preprint arXiv:2209.03003, 2022.

[29] J. Lou, W. Luo, Y. Liu, B. Li, X. Ding, W. Hu, J. Cao, Y. Li, and C. Ma. Token caching for diffusion
transformer acceleration. arXiv preprint arXiv:2409.18523, 2024.

[30] C. Lu, Y. Zhou, F. Bao, J. Chen, C. Li, and J. Zhu. Dpm-solver: A fast ode solver for diffusion probabilistic
model sampling in around 10 steps. Advances in Neural Information Processing Systems, 35:5775–5787,
2022.

[31] C. Lu, Y. Zhou, F. Bao, J. Chen, C. Li, and J. Zhu. Dpm-solver++: Fast solver for guided sampling of
diffusion probabilistic models. arXiv preprint arXiv:2211.01095, 2022.

[32] S. Luo, Y. Tan, L. Huang, J. Li, and H. Zhao. Latent consistency models: Synthesizing high-resolution
images with few-step inference, 2023.

[33] X. Ma, G. Fang, and X. Wang. Deepcache: Accelerating diffusion models for free. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 15762–15772, 2024.

[34] X. Ma, Y. Wang, G. Jia, X. Chen, Z. Liu, Y.-F. Li, C. Chen, and Y. Qiao. Latte: Latent diffusion transformer
for video generation. arXiv preprint arXiv:2401.03048, 2024.

[35] C. Meng, R. Rombach, R. Gao, D. Kingma, S. Ermon, J. Ho, and T. Salimans. On distillation of
guided diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 14297–14306, 2023.

11



[36] L. Meng, H. Li, B.-C. Chen, S. Lan, Z. Wu, Y.-G. Jiang, and S.-N. Lim. Adavit: Adaptive vision
transformers for efficient image recognition. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 12309–12318, 2022.

[37] T. Moon, M. Choi, E. Yun, J. Yoon, G. Lee, and J. Lee. Early exiting for accelerated inference in diffusion
models. In ICML 2023 Workshop on Structured Probabilistic Inference {\&} Generative Modeling, 2023.

[38] C. Nash, J. Menick, S. Dieleman, and P. W. Battaglia. Generating images with sparse representations.
arXiv preprint arXiv:2103.03841, 2021.

[39] A. Q. Nichol and P. Dhariwal. Improved denoising diffusion probabilistic models. In International
conference on machine learning, pages 8162–8171. PMLR, 2021.

[40] Z. Pan, B. Zhuang, D.-A. Huang, W. Nie, Z. Yu, C. Xiao, J. Cai, and A. Anandkumar. T-stitch: Accelerating
sampling in pre-trained diffusion models with trajectory stitching. arXiv preprint arXiv:2402.14167, 2024.

[41] W. Peebles and S. Xie. Scalable diffusion models with transformers. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 4195–4205, 2023.

[42] Y. Pu, Z. Xia, J. Guo, D. Han, Q. Li, D. Li, Y. Yuan, J. Li, Y. Han, S. Song, et al. Efficient diffusion
transformer with step-wise dynamic attention mediators. arXiv preprint arXiv:2408.05710, 2024.

[43] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image synthesis with
latent diffusion models. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 10684–10695, 2022.

[44] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation.
In Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international
conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18, pages 234–241. Springer,
2015.

[45] A. Rössler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies, and M. Nießner. Faceforensics: A large-scale
video dataset for forgery detection in human faces. arXiv preprint arXiv:1803.09179, 2018.

[46] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. Improved techniques for
training gans. Advances in neural information processing systems, 29, 2016.

[47] T. Salimans and J. Ho. Progressive distillation for fast sampling of diffusion models. arXiv preprint
arXiv:2202.00512, 2022.

[48] Y. Shang, Z. Yuan, B. Xie, B. Wu, and Y. Yan. Post-training quantization on diffusion models. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 1972–1981,
2023.

[49] A. Shih, S. Belkhale, S. Ermon, D. Sadigh, and N. Anari. Parallel sampling of diffusion models. Advances
in Neural Information Processing Systems, 36, 2024.

[50] A. Siarohin, S. Lathuilière, S. Tulyakov, E. Ricci, and N. Sebe. First order motion model for image
animation. Advances in neural information processing systems, 32, 2019.

[51] J. Song, C. Meng, and S. Ermon. Denoising diffusion implicit models. arXiv preprint arXiv:2010.02502,
2020.

[52] Y. Song and P. Dhariwal. Improved techniques for training consistency models. arXiv preprint
arXiv:2310.14189, 2023.

[53] Y. Song, P. Dhariwal, M. Chen, and I. Sutskever. Consistency models. arXiv preprint arXiv:2303.01469,
2023.

[54] K. Soomro, A. R. Zamir, and M. Shah. A dataset of 101 human action classes from videos in the wild.
Center for Research in Computer Vision, 2(11):1–7, 2012.

[55] S. Tang, Y. Wang, C. Ding, Y. Liang, Y. Li, and D. Xu. Deediff: Dynamic uncertainty-aware early exiting
for accelerating diffusion model generation. arXiv preprint arXiv:2309.17074, 2023.

[56] Z. Tang, J. Tang, H. Luo, F. Wang, and T.-H. Chang. Accelerating parallel sampling of diffusion models.
In Forty-first International Conference on Machine Learning, 2024.

[57] T. Unterthiner, S. Van Steenkiste, K. Kurach, R. Marinier, M. Michalski, and S. Gelly. Towards accurate
generative models of video: A new metric & challenges. arXiv preprint arXiv:1812.01717, 2018.

12



[58] F.-Y. Wang, Z. Huang, A. W. Bergman, D. Shen, P. Gao, M. Lingelbach, K. Sun, W. Bian, G. Song, Y. Liu,
et al. Phased consistency model. arXiv preprint arXiv:2405.18407, 2024.

[59] Y. Wang, R. Huang, S. Song, Z. Huang, and G. Huang. Not all images are worth 16x16 words: Dynamic
transformers for efficient image recognition. Advances in neural information processing systems, 34:11960–
11973, 2021.

[60] W. Xiong, W. Luo, L. Ma, W. Liu, and J. Luo. Learning to generate time-lapse videos using multi-stage
dynamic generative adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 2364–2373, 2018.

[61] X. Yang, D. Zhou, J. Feng, and X. Wang. Diffusion probabilistic model made slim. In Proceedings of the
IEEE/CVF Conference on computer vision and pattern recognition, pages 22552–22562, 2023.

[62] Z. Yang, J. Teng, W. Zheng, M. Ding, S. Huang, J. Xu, Y. Yang, W. Hong, X. Zhang, G. Feng, et al.
Cogvideox: Text-to-video diffusion models with an expert transformer. arXiv preprint arXiv:2408.06072,
2024.

[63] T. Yin, M. Gharbi, R. Zhang, E. Shechtman, F. Durand, W. T. Freeman, and T. Park. One-step diffusion
with distribution matching distillation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 6613–6623, 2024.

[64] H. You, C. Barnes, Y. Zhou, Y. Kang, Z. Du, W. Zhou, L. Zhang, Y. Nitzan, X. Liu, Z. Lin, E. Shechtman,
S. Amirghodsi, and Y. C. Lin. Layer-and timestep-adaptive differentiable token compression ratios for
efficient diffusion transformers. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2025.

[65] W. Yu, M. Luo, P. Zhou, C. Si, Y. Zhou, X. Wang, J. Feng, and S. Yan. Metaformer is actually what you
need for vision. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 10819–10829, 2022.

[66] Z. Yuan, H. Zhang, L. Pu, X. Ning, L. Zhang, T. Zhao, S. Yan, G. Dai, and Y. Wang. Ditfastattn: Attention
compression for diffusion transformer models. Advances in Neural Information Processing Systems,
37:1196–1219, 2025.

[67] W. Zhao, Y. Han, J. Tang, Z. Li, Y. Song, K. Wang, Z. Wang, and Y. You. A stitch in time saves nine:
Small vlm is a precise guidance for accelerating large vlms. In Proceedings of the Computer Vision and
Pattern Recognition Conference, pages 19814–19824, 2025.

[68] W. Zhao, Y. Han, J. Tang, K. Wang, Y. Song, G. Huang, F. Wang, and Y. You. Dynamic diffusion
transformer. arXiv preprint arXiv:2410.03456, 2024.

[69] W. Zhao, J. Tang, Y. Han, Y. Song, K. Wang, G. Huang, F. Wang, and Y. You. Dynamic tuning towards
parameter and inference efficiency for vit adaptation. Advances in Neural Information Processing Systems,
37:114765–114796, 2024.

[70] H. Zheng, W. Nie, A. Vahdat, K. Azizzadenesheli, and A. Anandkumar. Fast sampling of diffusion models
via operator learning. In International conference on machine learning, pages 42390–42402. PMLR, 2023.

[71] Y. Zhu, X. Liu, and Q. Liu. Slimflow: Training smaller one-step diffusion models with rectified flow. In
European Conference on Computer Vision, pages 342–359. Springer, 2025.

[72] Y. Zhu, W. Zhao, A. Li, Y. Tang, J. Zhou, and J. Lu. Flowie: Efficient image enhancement via rectified
flow. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
13–22, 2024.

[73] Z. Zong, K. Li, G. Song, Y. Wang, Y. Qiao, B. Leng, and Y. Liu. Self-slimmed vision transformer. In
European Conference on Computer Vision, pages 432–448. Springer, 2022.

13



NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All the methods and experiments are served for claims in the abstract and
introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

14



Justification: We discuss them in Conclusion.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All assumptions are provided.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All the key information is provided to reproduce the results. The codes will be
released soon. All the experiment settings are the same as the original models.

Guidelines:

15



• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code will be released soon.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the experiment settings are the same as the original models.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: This paper does not include statistical significance.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All key details are provided in the Experiment section and the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.

17



• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have checked it.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss potential societal impacts in the text.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: We discuss safeguards in the Appendix.
Guidelines:

• The answer NA means that the paper poses no such risks.

18

https://neurips.cc/public/EthicsGuidelines


• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have cited the original paper that produced the code package and datasets
and their licenses.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: his paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.

19

paperswithcode.com/datasets


Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM


A Appendix

A.1 Comparison with other methods

Comparison with ToMeSD. Recent studies [37, 68] have evaluated ToMeSD [5] on DiT models
and reported significant performance drops, which are much lower than those achieved by our method.
Our approach is fundamentally different from ToMeSD. While ToMeSD reduces and recovers tokens
generically at every layer, our method specifically analyzes the local-global relationships unique to
DiT models. Based on these insights, we strategically reduce and recover tokens. We have evaluated
ToMeSD on DiT and compared it with our method, as shown in Table 8.

Comparison with DyDiT. DyDiT [68] represents the current state-of-the-art approach for enhanc-
ing the efficiency of Diffusion Transformers (DiTs). In contrast to our method, which emphasizes
token reduction, DyDiT implements pruning across tokens, attention heads, and channels. A compar-
ative analysis of our method against DyDiT, as detailed in Table 9 using ImageNet 512×512 images,
illustrates a substantial advantage in computational efficiency for our approach. Specifically, our
method achieves a 46% reduction in FLOPs, markedly surpassing DyDiT’s 29% reduction, coupled
with a 145% increase in inference speed, significantly outperforming the 31% improvement achieved
by DyDiT. The only trade-off is a minor increase in the Fréchet Inception Distance (FID), where
our method’s FID is 0.08 higher than that of DyDiT. Nevertheless, this difference in FID is nearly
imperceptible to human observers in practical applications.

Comparison with TokenCache. We compare our method with TokenCache [29] in Table 9. We
adopt the standard DiT baseline 2.27, while TokenCache applies a baseline 2.24. TokenCache
achieves a 32% speed gain with a slight FID increase. Our approach attains an 87% speed gain with a
smaller FID increase, demonstrating superior efficiency and performance.

Comparison with Ditfastattn. We compare our method with Ditfastattn [66] in Table 9. We
adopt the standard DiT baseline 3.04, while Ditfastattn applies a baseline 3.16. Ditfastattn shows a
substantial FID increase for speed gain, while our method results in better speed and less FID.

A.2 Training form scratch

We train our SparseDiT from scratch, reaching 400K training iterations. We compare our result with
original DiT paper in Table 4. The results (cfg=1.0) are in Table 10.

A.3 Captions in Figure 5

Column 1: The image depicts a beach scene with a large body of water, such as a lake or ocean, and a
sandy shoreline. The beach is filled with people, including a group of people swimming in the water.

Column 2: The image depicts a beautiful outdoor dining area with a large number of tables and chairs
arranged in a row, overlooking a picturesque lake. The tables are covered with white tablecloths, and
there are several umbrellas providing shade for the guests. The scene is set in a lush green field, with
a large building in the background, possibly a hotel or a restaurant. The tables are arranged in a way
that allows for an unobstructed view of the lake, creating a serene and relaxing atmosphere for the
diners. The image has a stylish and elegant feel, with the attention to detail in the table arrangement
and the choice of location contributing to a memorable dining experience.

Column 3: The image depicts a busy city street at night, with a group of people standing outside a
restaurant and a bar. The scene is set in a European city, and the atmosphere is lively and bustling.

Column 4: The image features a vintage-style train, parked on a track surrounded by trees and grass.
The train appears to be an old-fashioned steam engine, which is a type of locomotive powered by
steam. The train is positioned in a park-like setting, with a tree-lined path nearby. The scene is set in
a sunny day, creating a pleasant atmosphere. The image has a nostalgic and historical feel, evoking a
sense of the past and the charm of old-time trains.

21



Table 8: Comparison of our method with ToMeSD on DiT models.

Model Method FID Speed-up

DiT-B ToMeSD 29.24 +20%
Ours 8.23 +68%

DiT-XL ToMeSD 14.74 +66%
Ours 2.38 +87%

Table 9: Comparison of our method with DyDiT on DiT models.

Model Resolution Method FLOPs FID IS Speed-up

DiT-XL 512× 512
DyDiT 375 (-29%) 2.88(-0.16) - +31%

Ditfastattn - 4.52(+1.36) 180.34 +98%
Ours 286 (-46%) 2.96(-0.08) 242.4 +145%

DiT-XL 256× 256
TokenCache 72.25(-39%) 2.37 (+0.13) 262.00 +32%

Ours 68.05(-43%) 2.38 (+0.11) 276.39 +87%

A.4 Additional visualization

We provide additional visualizations at a resolution of 512× 512 on SparseDiT-XL from Figure 6 to
Figure 17. The class labels, including “arctic wolf", “volcano", “cliff drop-off", “balloon", “sulphur-
crested cockatoo", “lion", “otter", “coral reef", “macaw", “red panda", "“husky", and “panda",
correspond to the same cases presented in DiT. Readers can compare our results with those of DiT.
Our samples demonstrate comparable image quality and fidelity. The classifier-free guidance scale is
set to 4.0, and all samples shown here are uncurated.

22



Table 10: Comparison of our method with ToMeSD on DiT models.

Method FID Flops Interations

DiT-XL 19.47 118.64 400K
Ours (from scratch) 15.11 68.05 400K

Figure 6: Uncurated 512× 512 SparseDiT-XL samples.
Classifier-free guidance scale = 4.0
Class label = “arctic wolf" (270)

Figure 7: Uncurated 512× 512 SparseDiT-XL samples.
Classifier-free guidance scale = 4.0
Class label = “volcano" (980)

23



Figure 8: Uncurated 512× 512 SparseDiT-XL samples.
Classifier-free guidance scale = 4.0
Class label = “husky" (250)

Figure 9: Uncurated 512× 512 SparseDiT-XL samples.
Classifier-free guidance scale = 4.0
Class label = “sulphur-crested cockatoo" (89)

24



Figure 10: Uncurated 512× 512 SparseDiT-XL samples.
Classifier-free guidance scale = 4.0
Class label = “cliff drop-off" (972)

Figure 11: Uncurated 512× 512 SparseDiT-XL samples.
Classifier-free guidance scale = 4.0
Class label = “balloon" (417)

25



Figure 12: Uncurated 512× 512 SparseDiT-XL samples.
Classifier-free guidance scale = 4.0
Class label = “lion" (291)

Figure 13: Uncurated 512× 512 SparseDiT-XL samples.
Classifier-free guidance scale = 4.0
Class label = “otter" (360)

26



Figure 14: Uncurated 512× 512 SparseDiT-XL samples.
Classifier-free guidance scale = 4.0
Class label = “red panda" (387)

Figure 15: Uncurated 512× 512 SparseDiT-XL samples.
Classifier-free guidance scale = 4.0
Class label = “panda" (388)

27



Figure 16: Uncurated 512× 512 SparseDiT-XL samples.
Classifier-free guidance scale = 4.0
Class label = “coral reef" (973)

Figure 17: Uncurated 512× 512 SparseDiT-XL samples.
Classifier-free guidance scale = 4.0
Class label = “macaw" (88)

28


	Introduction
	Related works
	Method
	SparseDiT
	Timestep-wise pruning rate
	Initialization and fine-tuning

	Experiments
	Class-conditional image generation
	Class-conditional video generation
	Text-to-image generation
	Ablation study

	Conclusion
	Appendix
	Comparison with other methods
	Training form scratch
	Captions in Figure 5
	Additional visualization


