
Unlocker: Disentangle the Deadlock of Learning from
Label-noisy and Long-tailed Data

Shu Chen1 , Hongjun Xu1 , Ruichi Zhang1 , Mengke Li2 , Yonggang Zhang3
Yang Lu1 ∗, Bo Han4 , Yiu-ming Cheung4 , Hanzi Wang1

1Key Laboratory of Multimedia Trusted Perception and Efficient Computing
Ministry of Education of China, Xiamen University

2College of Computer Science and Software Engineering, Shenzhen University
3Hong Kong University of Science and Technology

4Hong Kong Baptist University
{chenshu, xuhongjun}@stu.xmu.edu.cn, luyang@xmu.edu.cn, zhangyg@ust.hk

Abstract

In real world, the observed label distribution of a dataset often mismatches its true
distribution due to noisy labels. In this situation, noisy labels learning (NLL) meth-
ods directly integrated with long-tail learning (LTL) methods tend to fail due to a
dilemma: NLL methods normally rely on unbiased model predictions to recover
true distribution by selecting and correcting noisy labels; while LTL methods like
logit adjustment depends on true distributions to adjust biased predictions, leading
to a deadlock of mutual dependency defined in this paper. To address this, we
propose Unlocker, a bilevel optimization framework that integrates NLL methods
and LTL methods to iteratively disentangle this deadlock. The inner optimization
leverages NLL to train the model, incorporating LTL methods to fairly select and
correct noisy labels. The outer optimization adaptively determines an adjustment
strength, mitigating model bias from over- or under-adjustment. We also theoret-
ically prove that this bilevel optimization problem is convergent by transferring
the outer optimization target to an equivalent problem with a closed-form solution.
Extensive experiments on synthetic and real-world datasets demonstrate the effec-
tiveness of our method in alleviating model bias and handling long-tailed noisy
label data. Code is available at https://github.com/ChenShu248/Unlocker.

1 Introduction

Long-tailed noisy label learning (LTNLL) focuses on addressing the coexistence of long-tailed
distribution and noisy labels in datasets. Existing LTNLL methods [1, 2, 3, 4, 5, 6] are commonly
under the potential assumption that the observed long-tailed distribution based on the noisy labels is
consistent with the true distribution of the clean labels. However, empirical observations from real
world reveal that noisy labels can alter the original true distribution, leading to a deviation between
the observed distribution and the true underlying distribution of the dataset [7, 8, 9]. Due to the
diverse real-world noise patterns, the deviations of the distribution are various, typically including
three situations: consistent, relieve, and aggravate, as illustrated in Figure 1a.

When addressing this issue of distribution deviation, neither noisy label learning (NLL) nor long tail
learning (LTL) can be effective due to a deadlock dilemma of mutaul dependency. A mainstream in
NLL highly rely on the model prediction to select and correct noisy labels to recover clean labels
[10, 11, 12, 13, 14]. Yet in long-tailed scenarios, model predictions get biased towards head classes,

∗Corresponding Author: Yang Lu

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/ChenShu248/Unlocker

(a) Distribution deviation (b) Deadlock dilemma

Figure 1: (a) Three typical scenarios of distribution deviation between the observed distribution
and the true distribution. Consistent, relieve, and aggravate denote that the imbalance ratio (IR) of
the observed distribution is identical to, lower than, and higher than the IR of the true distribution,
respectively. (b) Deadlock between the noisy label learning (NLL) methods and the long-tail learning
(LTL) methods: NLL relies on the unbiased prediction to recover true distribution, while LTL requires
the true distribution to recalibrate the biased prediction, creating a circular dependency.

posing challenges for selecting and correcting noisy samples in tail classes [1, 8]. Logit adjustment
methods in LTL can recalibrate the biased predictions while relying on the true label distribution
[15, 16, 17, 18, 19]. Due to the true distribution deviation, these methods fail to perform accurate
adjustments. At this point, we can see a deadlock between NLL and LTL, as shown in Figure 1b.
NLL relies on the unbiased predictions to restore a true distribution by selecting and correcting.
Conversely, LTL can provide unbiased predictions but relies on a true distribution.

To disentangle the deadlock, we propose a novel method Unlocker based on the bilevel optimization
framework. The core idea is jointly estimating the true distribution of the training set and optimizing
an appropriate parameter τ for the adjusting strength. We define the inner problem as training a
model using NLL adjusted by LTL, and the outer problem as optimizing the τ based on the inner
problem’s solution. In this framework, model predictions are adjusted using both τ and the estimated
true distribution. This enables the model to better distinguish noisy labels. Improved noisy label
selection and correction enhance distribution estimation accuracy. Accurate distribution estimation
facilitates τ optimization, promoting model to reduce bias on the test set. This iterative process
continues until convergence, gradually breaking the deadlock. Our main contributions are as follows:

• We define a new and challenging long-tailed noisy label problem of the deviation between
the observed distribution based on noisy labels and the true distribution of the clean labels.

• We define a deadlock dilemma between the NLL and LTL, where their mutaul dependency
renders both methods ineffecvtive.

• We propose a novel method Unlocker which bases on the bilevel optimization to effectively
combine NLL and LTL by adaptively optimizing the adjustment strength.

2 Preliminaries

2.1 Noisy Label Selection

Noisy label learning has developed various methods to improve model performance by addressing
label noise. A mainstream is to select noisy label samples from clean ones and correct the noisy
labels [11, 12, 13, 14], which has been proven effective in noisy label learning tasks. Specifically,
the selection of noisy labels relies on logit-based metrics, which are designed to maximize the
discrimination between noisy and clean labels, enabling an efficient separation of the two subsets.
Based on these metrics, the original dataset D is partitioned into a clean subset Dclean and a noisy
subset Dnoisy. Then, the noisy labels in the Dnoisy are corrected by leveraging techniques such as
semi-supervised learning [20, 21]. The overall training objective is formulated as the total loss LNLL,
which is the sum of the clean loss Lclean computed onDclean and the noisy loss Lnoisy calculated on
Dnoisy . Conventionally, the cross-entropy loss is utilized for Lclean to ensure accurate classification
on reliable data. For Lnoisy, more robust loss functions are often applied to reduce the impact of
noise during training [22].

2

(a) (b) (c)

Figure 2: (a) Average prediction on CIFAR-10 test set of a NLL method DivideMix [11] adjusted by
the true distribution prior Ptrain(y). The training set is CIFAR-10 with imbalance ratio (IR) of 50 and
40% symmetric noise. The model is highly sensitive to the τ , making it prone to under-adjustment or
over-adjustment. (b) Test average predictions of models trained using logit adjustment (LA) across
different τ on a clean long-tailed CIFAR-10 dataset with IR of 50. As τ increases, the average
predictions transition from skewing toward head classes to uniformity and then to skew toward tail
classes. (c) Corresponding test accuracies and KL divergences (between test average predictions and
a uniform distribution) for varying τ . When τ = 2.0 or τ = 2.5, the trained model attains the highest
accuracy and ouputs the most uniform average predictions.

2.2 Logit Adjustment

Logit adjustment [17, 23, 19] is an effective technique for long-tailed learning. In a standard
classification with C classes, the class posterior follows Bayes’ theorem P(y|x) = P(x|y)P(y)

P(x) .
Since P(x) is constant across all classes, it can be omitted. Thus, cross-entropy training yields
Ptrain(y|x) ∝ P(x|y)Ptrain(y), where Ptrain(y) is the class prior in training datasets. For balanced
test datasets, a balanced prior Pbal(y) = 1

C is desired, leading to Pbal(y|x) ∝ P(x|y). Assuming
the likelihood P(x|y) is unchanged between the train and balanced datasets, we have the following
relationship:

Ptest(y|x) ∝
Ptrain(y|x)
Ptrain(y)

∝ softmax(θy(x)− logPtrain(y)), (1)

where θy(x) is the model’s logit for class y. To further improve flexibility, a temperature parameter τ
which modulates the adjustment intensity is introduced, leading to the general LA formulation:

arg max
y∈[C]

softmax(θy(x)− τ · logPtrain(y)). (2)

Typically, τ > 0 is used for post-hoc adjustment, while τ < 0 can be incorporated as logit adjustment
loss during training.

3 Unlocker: Breaking the Deadlock with Bilevel Optimization

3.1 Motivation

To break the deadlock, we first attempt to adjust the logits of a classical NLL method DivideMix [11]
using the true distribution prior Ptrain(y). Ideally, incorporating Ptrain(y)-based adjustments leads
to unbiased confidence across all classes, reflected by a uniform average prediction on the test set,
as depicted by the black line in Figure 2a. However, directly employing Ptrain(y) for LA results
in suboptimal model performance due to under-adjustment or over-adjustment [24]. Specifically,
as Ptrain(y) is the same, when the parameter τ = 0.5 (red line), the tail classes are over-adjusted,
causing the average prediction to skew towards the tail and damaging the head, as shown in Figure 2a.
Conversely, when τ = 0.1 (blue line), the adjustments are insufficient, remaining the predictions
biased towards the heads. Without an appropriate τ to modulate the adjusting strength, even with the
precise Ptrain(y), the model could not achieve an ideal unbiased state.

To further investigate τ in modulating model bias, we eliminate the influence of noisy label and
implement a simple control variable experiment on a clean long-tailed dataset. We test different τ
of {1.0, 1.5, 2.0, 2.5, 3.0, 3.5} with the same Ptrain(y). As shown in Figure 2b, when τ = 1.0, the
tail classes are under-adjusted. As τ increasing, the test average predictions become more uniform.

3

Figure 3: The illustration of the proposed method Unlocker based on the bilevel optimization
framework, which iteratively disentangle the deadlock between the noisy label learning (NLL) and
long-tail learning (LTL). In epoch T , the inner optimization trains the model θ using NLL integrated
with logit adjustment in LTL. By adjusting logits as θ′T (x), it fairly selects and corrects noisy labels,
and trains θ. The outer optimization adaptively updates the adjusting strength parameter τ to modulate
model bias towards balance. An EMA strategy is introduced to stabilize the adjustments after the
whole optimizations completing. Parameters frozen during optimization are denoted by the snowflake
(no gradient flow), while trainable parameters are marked by fire.

When τ = 2.0 or τ = 2.5, the average predictions are closest to uniformity, and the model achieved
the highest test accuracy as depicted in Figure 2c. When further increasing τ , the model gets over-
adjusted, and the predictions skew towards the tail. This simple experiment demonstrates that an
appropriate τ is crucial for achieving unbiased model state and influences the test accuracy.

3.2 Bilevel Optimization

Based on the motivation, we propose Unlocker which utilizes the bilevel optimization framework to
iteratively disentangle the deadlock. The inner layer optimization trains model using NLL integrating
LA, and the outer layer optimizes a learnable parameter τ to regulate the strength of adjustments.
Through gradient coupling between layers, this framework maintains model capability against noisy
labels while dynamically calibrating class bias.

3.2.1 Inner Optimization

Given a long-tailed noisy label training set D = {(xi, yi)}Ni=1, the inner layer employs NLL methods
integrating LA to train model θ. At epoch T , for the noisy label selection, an adjustment αT (post-hoc)
is applied to the row logits θT (x) (gradient-free) to achieve fairer noise recognition, particularly
enhancing the recognition accuracy of the tail classes:

θ′T (x) = θT (x)− αT . (3)
Based on the adjusted logits θ′T (x), selecting metrics of NLL methods are computed to divide D into
Dclean and Dnoisy . For the noisy label correction for Dnoisy , we follow the method in [25] to apply
post-hoc adjustment on the generation of corrected labels. With Dclean and corrected Dnoisy, the
model training loss LNLL can be computed and the model θT updated at step t is given by:

θt+1 = θt − η∇θLNLL(θt), (4)
where η is the learning rate. Upon completing T epochs, the optimal inner parameters θ∗T+1 are fixed
as the inner solution for the outer optimization.

Before diving into the outer optimization, two critical components are required in addition to support
the outer object: (i) the construction of a balanced and clean subset Dbc, and (ii) the estimation of the
training set class prior π(y).

Construct Dbc. During the process of noisy label selection, we further filter the top q% of samples
with the highest confidence of clean as a high-purity clean subset. As the clean subset follows a
long-tail distribution, we apply over-sampling and form the final balanced clean subset Dbc.

4

Estimate π(y). As Ptrain(y) is unknown in our long-tailed noisy labels problem, we estimate
a proxy distribution prior π(y) to approximate it. After the correction for Dnoisy completing, we
estimate π(y) based on the labels of the Dclean and Dnoisy .

3.2.2 Outer Optimization

The outer optimizes a learnable parameter τ to dynamically regulate the adjusting strength to modulate
model bias towards balance. The core objective is to minimize the discrepancy between the model’s
class confidence and a uniform distribution. To measure model bias, we leverage the balanced clean
validation subset Dbc constructed in 3.2.1. Given the fixed inner parameters θ∗T+1, the model’s logits
on Dbc are θ∗T+1(x) (gradient-free), and the τT -regulated prediction distribution is:

P (y | x; τT) = softmax
(
θ∗T+1(x)− τT · log(π(y)

)
, (5)

where log(π) is the fixed class prior term estimated in Sec. 3.2.1. Averaging P (y | x; τT) over Dbc

yields the class-averaged prediction P̄ (τT) = Ex∼Dbc
P (y | x; τT), leading to the outer objective:

min
τ

KL
(
P̄ (τT) ∥ U

)
, Uc =

1

C
(∀c ∈ {1, . . . , C}), (6)

where U is a uniform prediction tensor, C is the number of classes. Minimizing this divergence
adapts τT to drive P̄ (τT) toward uniformity, forcing balanced class confidence on the test set. The
update of τT at step t is derived via gradient descent:

τt+1 = τt − ητ∇τKL
(
P̄ (τt) ∥ U

)
. (7)

After completing the optimization of τT , the adjustments are calculated as αT+1 = τT+1 · log π(y). To
ensure the stability of the adjustments during the training, especially when the π(y) fluctuates in the
early training, we adopt an Exponential Moving Average (EMA) strategy to update the adjustments.
At the T -th epoch, we update the adjustments as follows:

αT+1 = β · αT+1 + (1− β) · αT , (8)

where β is a hyperparameter that controls the decay rate of the EMA. αT+1 is then passes into epoch
T + 1 to adjust the inner-model training.

3.2.3 Training Overview

As illustrated in Figure 3, through the bilevel optimization, we effectively combine the NLL method
and LA to handle long-tailed noisy label training data, breaking the mutual dependency. First, in inner
optimization, we perform post-hoc logit adjustment on the selection of the NLL methods, enabling
a more fair selection of noisy labels in tail classes. Based on the selection results, we construct
a balanced clean subset Dbc and partition the training set into Dclean and Dnoisy. Next, we use
the NLL methods to correct the noisy labels in Dnoisy, and estimate the π(y). Then, the model is
trained and adjusted using the corrected labels. In outer optimization, the τ is optimized to minimize
the discrepancy between model preference and uniform distribution based on the Dbc. After the
optimization of τ is completed, we update the adjustments through EMA to ensure the stability of the
training. The detailed pseudocode of the training process can be found in the Appendix A.1.

3.3 Theoretical Analysis

In this section, we establish the convergence of our bilevel optimization framework by deriving
a closed-form approximation for the outer optimization of τ . Specifically, we first prove that the
outer objective is differentiable and exists a global minimum. Then, leveraging the uniform target
distribution, we show that the optimal τ can be approximated via least-squares minimization, reducing
the bi-level problem to a normal optimization. This reduction guarantees the convergence of our
method. The detailed processes of proof are provided in the Appendix A.2.
Theorem 1 (Differentiability and Gradient Descent Applicability for Outer Optimization). Under
the assumptions that θ∗(x) is continuously differentiable with respect to τ and πc(y) > 0 for all
classes c ∈ {1, 2, . . . , C}, the outer objective function J(τ) = KL

(
P̄ (τ) ∥ U

)
is continuously

differentiable with respect to τ . The gradient descent update rule taut+1 = τt − ητ∇τJ(τt) ensures
that J(τ) decreases monotonically along the negative gradient direction.

5

Based on the Theorem 1, we can further prove the existence of a global minimum.
Lemma 1 (KL Divergence Bounds). By the definition of KL divergence, the objective function
J(τ) = KL(P̄ (τ)∥U) establishes the following lower bound and upper bound:

0 ≤ J(τ) = logC −H(P̄ (τ)) ≤ logC.

Theorem 2 (Existence of Global Minimum). Given the continuity of J(τ) and its lower bound
J(τ) ≥ 0 and upper bound limτ→±∞ J(τ) = logC in Lemma 1, and limτ→±∞ J(τ) = logC,
there exists at least one global minimum point τ∗ ∈ R.

In summary, the objective function J(τ) is bounded and has a global minimum, providing a theoretical
guarantee for the optimization process. Leveraging the uniform prior U , we derive a closed-form
approximation for τ via least-squares minimization of the residual function.
Proposition 1 (Least-Squares Closed-Form Solution). Define µc =

1
N

∑
x θc(x), the least-squares

closed-form solution for τ is:

τLS =

∑
c(log πc(y)− log π1)(µc − µ1)∑

c(log πc(y)− log π1)2
. (9)

This τLS reduces the bi-level optimization problem to a single-level optimization, establishing the
theoretical convergence guarantee for our framework.

4 Experiments

4.1 Experimental Setup

Datasets. We conduct simulated experiments on CIFAR-10/100[26], including three cases: con-
sistent, relieve, and aggravate which we summarize in Figure 1a . CIFAR-10/100 contains 50,000
training images and 10,000 test images of size 32 × 32 pixels, where CIFAR-10 contains 10 classes
and CIFAR-100 contains 100 classes. To simulate all scenarios, we first construct a long-tailed dataset
with an imbalance ratio (IR) by exponential decay. IR = Nmax/Nmin represents the ratio of the
number of samples of the majority class to the number of samples of the minority class.

Before generating label noise, due to the real-world noise patterns are complex and diverse, we
systematically explore the effects of existing noise addition methods on the imbalance ratio of the
long-tailed dataset. The detailed analysis results refer to the Appendix A.4. We find that the joint
noise hardly changes the original long-tailed distribution in the case of low imbalance ratio, the
symmetry noise alleviates the imbalance ratio, and the t2h noise aggravates. Based on these findings,
we introduce the joint noise to the clean long-tailed dataset to simulate the consistent case, use the
symmetry noise to simulate the relieve case, and inject the t2h noise to simulate the aggravate case.
The detailed noise addition methods refer to the Appendix A.3. In the following experiments, the
imbalance rate is selected in {10, 50, 100}, and the noise rate η which describes the proportion of
label noise in the training dataset is set to {0.4, 0.6}.
We also evaluate the performance of our method on real-world datasets, including Red Mini-
ImageNet [27], Clothing1M [28] and WebVision-50 [29]. Red Mini-ImageNet contains 100 classes
with 50,000 training images and 5,000 testing images, annotated via controlled noise protocols.
Clothing1M contains 1 million training images obtained from online shopping websites, with 50k,
14k, and 10k images split into clean labels for training, validation, and testing across 14 classes.
WebVision consists of 2.4 million images from Google and Flickr, sharing the same 1,000 categories
as ImageNet, and includes 50,000 human-annotated validation and test images. Following the experi-
mental setting of [11], we use the first 50-class subset (WebVision-50) for training and evaluate on
both WebVision validation set and ILSVRC12 validation set for the same 50 classes.

Baselines. We compare our method with the following four categories of methods: (1) Noisy label
learning (NLL) methods: including DivideMix [11], UNICON [12] and DPC [14]. (2) NLL methods
with post-hoc LA based on real distribution (NLL+LA post-hoc). (3) NLL methods with LA based on
real distribution during training (NLL+LA). (4) Long-tailed noisy label learning methods (LTNLL),
including RoLT [1], TABASCO [8] and DaSC [4]. We select the baseline NLL methods to combine
with our method. Additionally, for real-world dataset, we further include baselines: MentorNet [30],
Co-teaching [10], HAR [31], UCL [2], RCAL [3], GSS [5].

6

Table 1: Test accuracy (%) comparison of different methods on the CIFAR-100 dataset under varying
imbalance ratios (IR), noise types and noise rates η, involving three scenarios of true distribution
shifts. * denotes results from the original papers. Green numbers indicate improvements of our
method combined with the NLL method over the original NLL method. Boldface represents the best
performance in each case.

Dataset CIFAR-100

Types consistent relieve aggravate

IR 10 50 100 10 50

η joint.40% joint.60% sym.40% sym.60% sym.40% sym.60% t2h.40% t2h.60% t2h.40% t2h.60%

RoLT [1] 32.57 21.44 22.68 14.76 23.51∗ 16.61∗ 32.65 22.12 20.28 14.08
TABASCO [8] 55.31 45.40 40.91 31.28 36.91∗ 26.25∗ 45.37 43.60 32.18 17.53
DaSC [4] 58.06 45.64 41.96 32.17 36.40 29.59 55.67 39.93 34.03 13.47

DivideMix [11] 68.96 62.54 50.75 39.56 45.13 37.15 63.24 65.76 51.53 48.68
DivideMix+LA (post-hoc) 68.53 62.74 32.37 17.53 23.63 11.89 70.18 68.95 52.41 52.68
DivideMix+LA 68.53 63.87 16.30 5.31 7.31 2.51 68.67 63.94 46.56 42.93
DivideMix+Unlocker 71.95 68.97 60.38 53.34 54.26 45.07 72.20 69.05 62.59 58.07
vs. DivideMix ↑2.99 ↑6.43 ↑9.63 ↑16.98 ↑9.13 ↑7.92 ↑8.96 ↑3.29 ↑11.06 ↑9.39

UNICON [12] 63.63 62.42 52.16 44.53 46.82 39.83 60.37 58.61 49.60 40.53
UNICON+LA (post-hoc) 67.15 63.13 53.18 45.27 46.84 40.44 65.41 58.81 50.32 42.78
UNICON+LA 62.39 61.40 8.53 50.19 2.75 1.80 67.58 58.64 55.94 41.67
UNICON+Unlocker 69.11 65.53 54.83 52.95 48.38 44.87 65.97 60.49 56.18 44.70
vs. UNICON ↑5.48 ↑3.11 ↑2.67 ↑8.42 ↑1.56 ↑5.04 ↑5.60 ↑1.88 ↑6.58 ↑4.17

DPC [14] 70.81 54.91 44.66 34.84 39.43 23.71 70.03 11.32 36.73 1.04
DPC+LA (post-hoc) 69.97 55.13 39.77 30.88 39.59 21.62 70.05 22.85 40.67 2.44
DPC+LA 70.01 50.24 18.16 5.37 5.33 2.38 69.88 61.76 28.36 3.21
DPC+Unlocker 71.86 66.78 57.19 50.01 50.18 45.31 72.09 65.78 55.34 49.92
vs. DPC ↑1.05 ↑11.84 ↑12.53 ↑15.17 ↑10.75 ↑21.60 ↑2.06 ↑54.46 ↑18.61 ↑48.88

Table 2: Top 1 and Top 5 test accuracy on We-
bvision and ImageNet validation sets. The best
results are bolded. The experimental results of
other methods are from [5].

Test WebVision ILSVRC12

Top-1 Top-5 Top-1 Top-5

Standard 62.5 80.8 58.50 81.8
Co-teaching [10] 63.58 85.20 61.48 84.70
MentorNet [30] 63.00 81.40 57.80 79.92
HAR [31] 75.5 90.7 70.3 90.0
RoLT+ [1] 77.64 92.44 74.64 92.48
RCAL [3] 76.24 92.83 73.60 93.16
GSS [5] 83.64 95.86 74.17 95.22

DivideMix+Unlocker 83.79 96.55 73.21 96.37

Table 3: Test accuracy (%) on Red-Mini-
Imagenet dataset. The best results are bolded.
The experimental results of other methods are
from [5].

IR 10 100

η 20% 40% 20% 40%

ERM 40.42 31.46 30.88 31.46
DivideMix [11] 48.76 48.96 33.00 34.72
UNICON [12] 40.18 41.64 31.86 31.12
HAR [31] 46.61 38.71 32.60 31.30
ULC [2] 48.12 47.06 34.24 34.84
TABASCO [8] 50.20 49.68 37.20 37.12
GSS [5] 52.33 50.91 40.25 36.58

DivideMix+Unlocker 53.29 51.48 41.51 37.14

Implementation Details. To ensure a fair comparison with existing methods, we keep the training
configurations consistent with the baseline NLL methods. Specifically, we employ the 18-layer
ResNet as the backbone architecture. The mini-batch size is fixed at 256. All models are optimized
using SGD with a momentum of 0.9. A random seed of 123 is used across all experiments to ensure
reproducibility. For NLL methods combined with LA in baselines, the τ is set to 1.0. For our
proposed method Unlocker, the learnable parameter τ is initialized to 1.0 and optimized using SGD
with a momentum of 0.9. The initial learning rate for τ is set to 0.1, which is adjusted to 0.01 at the
150-th epoch. The β in EMA to update adjustments is set to 0.9. All experiments are executed on a
GeForce RTX 3090 GPU using the PyTorch 1.8.0 framework to maintain hardware consistency.

4.2 Results on Simulated Scenarios

We conduct a comprehensive performance comparison across three scenarios of the distribution
deviations in Table 1. Our method combines with the NLL methods (NLL+Unlocker) demonstrates
superiority over the LTNLL methods under all three conditions. Regarding NLL methods, integrating
Unlocker yields substantial accuracy improvements. On CIFAR-100, the combination achieves
performance boosts ranging from 1.05% to 54.46%. In contrast, NLL methods directly combined

7

Table 4: Test accuracy (%) comparison of different methods on the Clothing1M dataset The best
results are in bold. The experimental results of other methods are from [5].

Methods CE MentorNet [30] Co-teaching [10] DivideMix [11] ULC [2] RCAL+ [3] GSS [5] DivideMix+Unlocker
Accuracy 65.42 67.25 67.94 74.76 74.87 74.97 75.83 76.94

(a) (b)

Figure 4: Bias comparison of different models trained on CIFAR-100 (IR=100, sym.40%) (a) KL
divergence between the average predictions on CIFAR-100 test set and a uniform prediction during
training. (b) The average predictions in the last epoch on CIFAR-100 test set.

(a) (b) (c)

Figure 5: (a) The estimated training set distribution at the last epoch on CIFAR-100 with an imbalance
ratio (IR) of 10 and t2h.60%. (b) The convergence trajectory of the parameter τ during training.
(c) The KL divergence between the average predictions on the balanced clean subset Dbc and the
CIFAR-100 test set. (b) and (c) are conducted on CIFAR-100 with IR=100 and sym.40%.

with true-distribution-based LA (both post-hoc and training-time LA) often suffer from the problem
of over-adjustment, causing training collapse where predictions concentrate on a single class. Our
method adaptively adjusts the parameter τ during training, effectively alleviating the issues of over-
or under-adjustment. This mechanism enables a collaboration with NLL methods, jointly addressing
the challenges of long-tailed noisy labels data. As a result, our method achieves the best performance
among all methods, showing its robust adaptability to varying imbalance ratios and noise types. The
results of the comparison experiment on CIFAR-10 are presented in the Appendix A.5.

4.3 Results on Real-world Datasets

We performed comparative experiments on three real-world datasets to validate the robustness of
our method in practical setting. As shown in Table 2, DivideMix+Unlocker achieves 83.79% Top-1
and 96.55% Top-5 accuracy on the WebVision-50 validation set, outperforming all baselines. On the
ILSVRC12 validation set, it achieves the highest 96.37% Top-5 accuracy and competitive 73.21%
Top-1 accuracy. For Red-Mini-Imagenet, as shown in Table 3, our method attains 53.29% accuracy
under IR=10 and η=20%, outperforming SOTA (52.33%) and improving upon DivideMix by 4.5%.
Under conditions (IR=100, η=40%), it maintains 36.37% accuracy. On Clothing1M, as shown
in Table Table 4, our method outperforms other methods by achieving 76.94% accuracy. These
experiments fully verified the ability of our method in real-world long-tailed noisy label scenarios,
enabling NLL methods to achieve a more uniform state against long-tail bias.

4.4 Effectiveness Study and Discussions

Average Prediction Analysis. To validate the effectiveness of our method in reducing models bias
to achieve a more uniform state, we conduct experiments by training the models of different methods
on CIFAR-100 training set with IF = 100 and η = sym.40%, and outputting models’ average
predictions on the CIFAR-100 test set. In Figure 4a, during training, the KL divergence between the

8

test average prediction of the DivideMix and the uniform prediction stabilizes at a relatively high
value, as depicted by the orange line. This means the model’s average prediction is still far away
from uniform, indicating persistent bias of the model. In contrast, by combining with our method
Unlocker, the KL divergence down to approximately 0.08, signifying that the model’s test average
predictions approach uniformity and the model gets more unbiased. Figure 4b demonstrates the
average prediction in the last epoch of the different model. As the orange bars showing, the test
average predictions of the DivideMix skew toward head classes, neglecting tail classes. Conversely,
our method’s prediction (blue bars) distributes evenly across classes. These results collectively
validate that our method effectively mitigates long-tailed impact and promotes balancer model state.

Effectiveness of Distribution Estimation. To verify the effectiveness of the distribution estimation
module in our method, we conduct experiments on CIFAR-100 with IR = 10 and t2h.60%. As shown
in the Figure 5a, the red line denotes the true distribution of the training set, the orange line represents
the observed distribution based on noisy labels, and the blue line is the training set distribution
estimated by our method. Notably, the imbalance ratio of the observed distribution is significantly
higher than that of the true distribution, indicating that noisy labels aggravate the imbalance ratio of
the true distribution. Our method estimates the distribution (blue line) that closely aligns with the true
distribution (red line), demonstrating its capability to accurately capture the training set distribution.

Convergence of τ . We demonstrate the convergence of the parameter τ for our method trained on
the CIFAR-100 dataset with IR = 100 and sym.40%. As shown in the Figure 5b, our method achieves
the stable convergence of the parameter τ . Specifically, the optimization of τ starts after the warm-up
of 30 epochs. In the first 100 epochs, the value of τ decreases rapidly. After 100 epochs, the descent
rate slows down, and it converges to a value near 0.48 around 150 epochs.

Effectiveness of Dbc. The balanced clean subset Dbc serves as a validation set to measure the
model bias. Thus it is critical that Dbc can reflect the model’s class confidence. To validate this, we
conduct experiments on CIFAR-100 with IR = 100 and sym.40%, tracking the average predictions
of the model on Dbc and the test set at each epoch, By computing their KL divergence, as shown in
the Figure 5c, the discrepancy remains at a relatively low level of approximately 0.12. While there
are slight fluctuations, they are in an acceptable small range. This result indicates that the average
predictions on Dbc closely align with those on the test set, demonstrating that Dbc reflects model bias.

5 Related Work

Long-tailed and noisy label learning faces challenges in distinguishing clean samples from noisy
ones in tail classes. RoLT [1] proposes a prototype-based noise detection method using class
centroid distances to select noisy samples. ULC [2] combines class-specific noise modeling with
uncertainty quantification to account for cognitive and incidental uncertainties. TABASCO [8]
employs a weighted JS divergence and adaptive centroid distance to distinguish. These methods
often integrate semi-supervised learning to refine predictions after noise detection. HAR [31] applies
heteroscedastic adaptive regularization to high-uncertainty and low-density data points. RCAL [3]
leverages unsupervised contrastive learning to eliminate noisy samples and restore representation
distributions, enhancing model generalization. Detailed related work on long-tail learning and noisy
label learning individually is provided in the Appendix A.6.

6 Conclusion

In this paper, we address the challenging problem of long-tailed noisy label learning where the
observed distribution based on noisy label deviates from the true distribution. When addressing this
issue, a deadlock dilemma between noisy label learning (NLL) and long tail learning (LTL) arises.
To disentangle the deadlock and tackle the long-tailed noisy label problem, we propose Unlocker,
a bilevel optimization framework that iteratively optimizes an adjustment strength parameter τ to
effectively combine the NLL methods and LTL methods. Extensive experiments on synthetic and
real-world datasets demonstrate that Unlocker significantly outperforms SOTA methods. However,
our method has limitations: (i) potential impurity of Dbc, and (ii) approximation errors in distribution
estimation. Our future research will focus on address these limitations.

9

Acknowledgements

This study was supported in part by the National Natural Science Foundation of China under Grants
62376233, 62306181 and 62376235; in part by the Natural Science Foundation of Fujian Province
under Grant 2024J09001; in part by the RGC Young Collaborative Research Grant C2005-24Y; in part
by the NSFC / Research Grants Council (RGC) Joint Research Scheme under Grant N_HKBU214/21;
in part by the General Research Fund of RGC under the Grants 12201323 and 12200725; in part by
the RGC Senior Research Fellow Scheme under the Grant SRFS2324-2S02; and in part by Xiaomi
Young Talents Program. YGZ was funded by Inno HK Generative AI R&D Center.

References
[1] Tong Wei, Jiang-Xin Shi, Wei-Wei Tu, and Yu-Feng Li. Robust long-tailed learning under label

noise. arXiv preprint arXiv:2108.11569, 2021.

[2] Yingsong Huang, Bing Bai, Shengwei Zhao, Kun Bai, and Fei Wang. Uncertainty-aware
learning against label noise on imbalanced datasets. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, pages 6960–6969, 2022.

[3] Manyi Zhang, Xuyang Zhao, Jun Yao, Chun Yuan, and Weiran Huang. When noisy labels meet
long tail dilemmas: A representation calibration method. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 15890–15900, 2023.

[4] Jae Soon Baik, In Young Yoon, Kun Hoon Kim, and Jun Won Choi. Distribution-aware robust
learning from long-tailed data with noisy labels. In Proceedings of the European Conference on
Computer Vision, pages 160–177. Springer, 2024.

[5] Yuan Wang, Yakun Chang, Ying Qin, Yao Zhao, and Shikui Wei. Unbiased sample selection and
label improvement for mitigating noisy labels in class-imbalanced datasets. IEEE Transactions
on Circuits and Systems for Video Technology, 2025.

[6] Zhuo Li, He Zhao, Anningzhe Gao, Dandan Guo, Tsung-Hui Chang, and Xiang Wan. Prototype-
oriented clean subset extraction for noisy long-tailed classification. IEEE Transactions on
Circuits and Systems for Video Technology, 2025.

[7] Jiaheng Wei, Zhaowei Zhu, Hao Cheng, Tongliang Liu, Gang Niu, and Yang Liu. Learning
with noisy labels revisited: A study using real-world human annotations. arXiv preprint
arXiv:2110.12088, 2021.

[8] Yang Lu, Yiliang Zhang, Bo Han, Yiu-ming Cheung, and Hanzi Wang. Label-noise learning
with intrinsically long-tailed data. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 1369–1378, 2023.

[9] MingCai Chen, Yuntao Du, Wenyu Jiang, Baoming Zhang, Shuai Feng, Yi Xin, and Chongjun
Wang. Robust logit adjustment for learning with long-tailed noisy data. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 39, pages 15830–15838, 2025.

[10] Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor Tsang, and Masashi
Sugiyama. Co-teaching: Robust training of deep neural networks with extremely noisy labels.
Advances in Neural Information Processing Systems, 31, 2018.

[11] Junnan Li, Richard Socher, and Steven CH Hoi. Dividemix: Learning with noisy labels as
semi-supervised learning. arXiv preprint arXiv:2002.07394, 2020.

[12] Nazmul Karim, Mamshad Nayeem Rizve, Nazanin Rahnavard, Ajmal Mian, and Mubarak
Shah. Unicon: Combating label noise through uniform selection and contrastive learning. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
9676–9686, 2022.

[13] Yifan Li, Hu Han, Shiguang Shan, and Xilin Chen. Disc: Learning from noisy labels via dynamic
instance-specific selection and correction. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 24070–24079, 2023.

10

[14] Chen-Chen Zong, Ye-Wen Wang, Ming-Kun Xie, and Sheng-Jun Huang. Dirichlet-based
prediction calibration for learning with noisy labels. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 38, pages 17254–17262, 2024.

[15] Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, and Tengyu Ma. Learning imbalanced
datasets with label-distribution-aware margin loss. Advances in Neural Information Processing
Systems, 32, 2019.

[16] Jiawei Ren, Cunjun Yu, Xiao Ma, Haiyu Zhao, Shuai Yi, et al. Balanced meta-softmax for long-
tailed visual recognition. Advances in Neural Information Processing Systems, 33:4175–4186,
2020.

[17] Aditya Krishna Menon, Sadeep Jayasumana, Ankit Singh Rawat, Himanshu Jain, Andreas
Veit, and Sanjiv Kumar. Long-tail learning via logit adjustment. In Proceedings of the 9th
International Conference on Learning Representations, 2021.

[18] Mengke Li, Yiu-ming Cheung, and Yang Lu. Long-tailed visual recognition via gaussian
clouded logit adjustment. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 6929–6938, 2022.

[19] Fan Zhang, Wei Qin, Weijieying Ren, Lei Wang, Zetong Chen, and Richang Hong. Gradient-
aware logit adjustment loss for long-tailed classifier. In ICASSP 2024-2024 IEEE International
Conference on Acoustics, Speech and Signal Processing, pages 3190–3194. IEEE, 2024.

[20] David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital Oliver, and Colin A
Raffel. Mixmatch: A holistic approach to semi-supervised learning. Advances in Neural
Information Processing Systems, 32, 2019.

[21] Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang, Colin A Raf-
fel, Ekin Dogus Cubuk, Alexey Kurakin, and Chun-Liang Li. Fixmatch: Simplifying semi-
supervised learning with consistency and confidence. Advances in Neural Information Process-
ing Systems, 33:596–608, 2020.

[22] Zhilu Zhang and Mert Sabuncu. Generalized cross entropy loss for training deep neural networks
with noisy labels. Advances in Neural Information Processing Systems, 31, 2018.

[23] Youngkyu Hong, Seungju Han, Kwanghee Choi, Seokjun Seo, Beomsu Kim, and Buru Chang.
Disentangling label distribution for long-tailed visual recognition. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 6626–6636, 2021.

[24] Feng Hong, Jiangchao Yao, Zhihan Zhou, Ya Zhang, and Yanfeng Wang. Long-tailed partial
label learning via dynamic rebalancing. arXiv preprint arXiv:2302.05080, 2023.

[25] Tong Wei and Kai Gan. Towards realistic long-tailed semi-supervised learning: Consistency is
all you need. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3469–3478, 2023.

[26] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[27] Lu Jiang, Di Huang, Mason Liu, and Weilong Yang. Beyond synthetic noise: Deep learning on
controlled noisy labels. In Proceedings of the International Conference on Machine Learning,
pages 4804–4815. PMLR, 2020.

[28] Tong Xiao, Tian Xia, Yi Yang, Chang Huang, and Xiaogang Wang. Learning from massive
noisy labeled data for image classification. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2691–2699, 2015.

[29] Wen Li, Limin Wang, Wei Li, Eirikur Agustsson, and Luc Van Gool. Webvision database:
Visual learning and understanding from web data. arXiv preprint arXiv:1708.02862, 2017.

[30] Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, and Li Fei-Fei. Mentornet: Learning
data-driven curriculum for very deep neural networks on corrupted labels. In Proceedings of
the International Conference on Machine Learning, pages 2304–2313. PMLR, 2018.

11

[31] Kaidi Cao, Yining Chen, Junwei Lu, Nikos Arechiga, Adrien Gaidon, and Tengyu Ma. Het-
eroskedastic and imbalanced deep learning with adaptive regularization. arXiv preprint
arXiv:2006.15766, 2020.

[32] Pierre Baldi and Peter J Sadowski. Understanding dropout. In Advances in Neural Information
Processing Systems, volume 26, 2013.

[33] Chen Shu, Mengke Li, Yiqun Zhang, Yang Lu, Bo Han, Yiu-ming Cheung, and Hanzi Wang.
Classifying long-tailed and label-noise data via disentangling and unlearning. arXiv preprint
arXiv:2503.11414, 2025.

[34] Yu Yao, Tongliang Liu, Bo Han, Mingming Gong, Jiankang Deng, Gang Niu, and Masashi
Sugiyama. Dual t: Reducing estimation error for transition matrix in label-noise learning.
Advances in Neural Information Processing Systems, 33:7260–7271, 2020.

[35] Xuefeng Li, Tongliang Liu, Bo Han, Gang Niu, and Masashi Sugiyama. Provably end-to-end
label-noise learning without anchor points. In Proceedings of the International Conference on
Machine Learning, pages 6403–6413. PMLR, 2021.

[36] De Cheng, Tongliang Liu, Yixiong Ning, Nannan Wang, Bo Han, Gang Niu, Xinbo Gao,
and Masashi Sugiyama. Instance-dependent label-noise learning with manifold-regularized
transition matrix estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 16630–16639, 2022.

[37] LIN Yong, Renjie Pi, Weizhong Zhang, Xiaobo Xia, Jiahui Gao, Xiao Zhou, Tongliang Liu,
and Bo Han. A holistic view of label noise transition matrix in deep learning and beyond. In
The 11th International Conference on Learning Representations, 2022.

[38] Rui Zhao, Bin Shi, Jianfei Ruan, Tianze Pan, and Bo Dong. Estimating noisy class posterior
with part-level labels for noisy label learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 22809–22819, 2024.

[39] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. Smote:
synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16:321–
357, 2002.

[40] Andrew Estabrooks, Taeho Jo, and Nathalie Japkowicz. A multiple resampling method for
learning from imbalanced data sets. Computational Intelligence, 20(1):18–36, 2004.

[41] Xu-Ying Liu, Jianxin Wu, and Zhi-Hua Zhou. Exploratory undersampling for class-imbalance
learning. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 39(2):539–
550, 2008.

[42] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
object detection. In Proceedings of the IEEE International Conference on Computer Vision,
pages 2980–2988, 2017.

[43] Seulki Park, Jongin Lim, Younghan Jeon, and Jin Young Choi. Influence-balanced loss for
imbalanced visual classification. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 735–744, 2021.

[44] Jiaan Luo, Feng Hong, Jiangchao Yao, Bo Han, Ya Zhang, and Yanfeng Wang. Revive re-
weighting in imbalanced learning by density ratio estimation. Advances in Neural Information
Processing Systems, 37:79909–79934, 2024.

[45] Boyan Zhou, Quan Cui, Xiu-Shen Wei, and Zhao-Min Chen. Bbn: Bilateral-branch network
with cumulative learning for long-tailed visual recognition. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 9719–9728, 2020.

[46] Jun Li, Zichang Tan, Jun Wan, Zhen Lei, and Guodong Guo. Nested collaborative learning
for long-tailed visual recognition. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 6949–6958, 2022.

12

[47] Yan Jin, Mengke Li, Yang Lu, Yiu-ming Cheung, and Hanzi Wang. Long-tailed visual recog-
nition via self-heterogeneous integration with knowledge excavation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 23695–23704, 2023.

[48] Zhe Zhao, HaiBin Wen, Zikang Wang, Pengkun Wang, Fanfu Wang, Song Lai, Qingfu Zhang,
and Yang Wang. Breaking long-tailed learning bottlenecks: A controllable paradigm with
hypernetwork-generated diverse experts. Advances in Neural Information Processing Systems,
37:7493–7520, 2024.

[49] Zhe Zhao, Pengkun Wang, HaiBin Wen, JingXin Han, Zhenkun Wang, Qingfu Zhang, and Yang
Wang. Balancing model efficiency and performance: Adaptive pruner for long-tailed data. In
Proceedings of the 42nd International Conference on Machine Learning, 2025.

[50] Bingyi Kang, Saining Xie, Marcus Rohrbach, Zhicheng Yan, Albert Gordo, Jiashi Feng, and
Yannis Kalantidis. Decoupling representation and classifier for long-tailed recognition. arXiv
preprint arXiv:1910.09217, 2019.

[51] Mengke Li, HU Zhikai, Yang Lu, Weichao Lan, Yiu-ming Cheung, and Hui Huang. Feature fu-
sion from head to tail for long-tailed visual recognition. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 38, pages 13581–13589, 2024.

[52] Pengkun Wang, Zhe Zhao, HaiBin Wen, Fanfu Wang, Binwu Wang, Qingfu Zhang, and Yang
Wang. Llm-autoda: Large language model-driven automatic data augmentation for long-tailed
problems. Advances in Neural Information Processing Systems, 37:64915–64941, 2024.

[53] Binwu Wang, Pengkun Wang, Wei Xu, Xu Wang, Yudong Zhang, Kun Wang, and Yang Wang.
Kill two birds with one stone: Rethinking data augmentation for deep long-tailed learning. In
The 12th International Conference on Learning Representations, 2024.

[54] Tianjiao Zhang, Huangjie Zheng, Jiangchao Yao, Xiangfeng Wang, Mingyuan Zhou, Ya Zhang,
and Yanfeng Wang. Long-tailed diffusion models with oriented calibration. In Proceedings of
the 12th International Conference on Learning Representations, 2024.

[55] Zhe Zhao, Pengkun Wang, HaiBin Wen, Wei Xu, Song Lai, Qingfu Zhang, and Yang Wang.
Two fists, one heart: Multi-objective optimization based strategy fusion for long-tailed learning.
In Proceedings of the International Conference on Machine Learning, 2024.

[56] Jiaan Luo, Feng Hong, Qiang Hu, Xiaofeng Cao, Feng Liu, and Jiangchao Yao. Long-tailed
recognition with model rebalancing. arXiv preprint arXiv:2510.08177, 2025.

13

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the problem of the deadlock between
NLL and LTL, the proposed bilevel optimization framework Unlocker, and its effectiveness
on synthetic/real datasets, which aligns with the experimental results in Section 5.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The conclusion mentions limitations: reliance on uniform test distribution
assumption, potential impurity of Dbc affecting τ optimization, and room for improving
π(y) estimation.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

14

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Theorem 1 in Section 4.4 provides assumptions and a detailed proof via
equivalence transformation to a convex problem with a closed-form solution.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide details on each parameter in the datasets, baselines, and implemen-
tations in our experimental setup.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

15

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The experimental code is available and the data sources are publicly accessible.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Details including dataset split (IR=10/50/100, noise type: joint/sym/t2h),
baseline (NLL, LTNLL) and optimizer (SGD) are described in Section 5.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: We do not report error bars or statistical tests.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Experiments used a GeForce RTX 3090 GPU with PyTorch 1.8.0.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We conduct the research project following NeurIPS Code of Ethics faithfully.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The work does not seem to raise any (negative) societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

17

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our method does not involve data or models that might lead to intended misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: Datasets (CIFAR, Clothing1M, WebVision) and baselines (DivideMix, UNI-
CON) are cited with their original licenses.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

18

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We provide pseudocode and parameters to facilitate reproduction.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human subjects research is conducted.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

19

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLM was not a component of this study
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

A Appendix / Supplemental Material

A.1 Detailed Training Process

The following is the process of our proposed method Unlocker, which leverages a bilevel optimiza-
tion framework. Within each epoch, the inner optimization employs NLL methods with LA to train
model, while the outer loop optimizes the learnable parameter τ to dynamically scale the strength of
LA. This process adaptively tunes τ to integrate NLL methods and LA, iteratively disentangling the
NLL-LTL deadlock and enhancing model robustness against long-tailed noisy label data.

Algorithm 1 Detailed training process of Unlocker

Input: Training data D = {(xi, yi)}Ni=1, Number of epochs Nepoch, NLL algorithm A, learning
ratesητ , EMA decay β
Output: Trained model θ, Optimized τ
Initialize: Model Parameters θ0, Learnable Parameter τ0 ← 1.0, Class Prior π(y) ←
EstimatePrior(D), adjustments α← τ0 · log(π(y))
for epoch = T from 1 to Nepoch do

// Inner Optimization
for k = 1 to K do
Dk ← GetBatch(D, k)
Inference Mode: θ′T ← θT (Dk)− αT ▷ Post-hoc logit adjustment

end for
Dclean,Dnoisy,Dbc ← A(θ′T) ▷ Select noisy labels according to A
Dnoisy ← A(θ′T ,Dnoisy) ▷ Correct noisy labels according to A
π(y)← EstimatePrior(Dclean,Dnoisy) ▷ Estimate class prior of D
for k = 1 to K do
Dk ← GetBatch(D, k)

θ′T ←
{
θT + αT , if Dk ⊂ Dclean

θT , otherwise
▷ logit adjustment

LNLL ← A(θ′T (x),Dk) ▷ Compute model loss according to A
θk+1 ← θk − η∇θLNLL(θk) ▷ Update model

end for
// Outer Optimization
for k = 1 to B do
Dk ← GetBatch(Dbc, k)
Inference Mode: θT+1(Dk)
θ′T+1(Dk)← θT+1(Dk)− τk · log π(y) ▷ Post-hoc logit adjustment
Lτ ← KL

(
Ex∼Dk

softmax(θ′T+1(Dk)) ∥ U
)

▷ Compute outer loss according to Eq. 6
τk+1 = τk − ητ∇τLτ (τk) ▷ Optimize τ

end for
αT+1 ← τT+1 · log(π(y)) ▷ Compute adjustments
αT+1 ← β · αT+1 + (1− β) · αT ▷ EMA update for adjustments

end for
return θ, τ

A.2 Theoretical Proof

Proof of Theorem 1. We prove the differentiability of the outer optimization with the following steps:
Step 1: Objective Function Expansion Substituting P̄ (τT) = Ex∼Dbc

P (y | x; τT) into the KL

21

divergence J(τ) = KL
(
P̄ (τ) ∥ U

)
, Uc =

1
C , we get:

J(τ) = KL
(
P̄ (τ) ∥ U

)
=

C∑
c=1

P̄c(τ) log
P̄c(τ)

Uc

=

C∑
c=1

[Ex∼Dbc
P (y = c | x; τ)] log Ex∼Dbc

P (y = c | x; τ)
1/C

=

C∑
c=1

[Ex∼Dbc
P (y = c | x; τ)] (log [Ex∼Dbc

P (y = c | x; τ)] + logC)

= Ex∼Dbc

C∑
c=1

P (y = c | x; τ) log [Ex′∼Dbc
P (y = c | x′; τ)] + logC

= Ex∼Dbc

C∑
c=1

Pc logPc + logC, (10)

where Pc = P (y = c | x; τ) denotes the conditional probability that a sample x belongs to class c
under the adjusting of τ .

Step 2: Gradient Derivation Taking the derivative of (10) with respect to τ using the chain rule:

∇τJ (τ) = Ex∼Dbc

C∑
c=1

∂Pc

∂τ
(logPc + 1) . (11)

Given the component logPc+1 = θc(x)−τ ·log πc(y)−log
∑C

k=1 e
θk(x)−τ ·log πk+1 is differentiable

in τ , we focus on analyzing the differentiability of ∂Pc

∂τ . For the softmax function Pc = ezc∑C
k=1 ezk

with zc = θc(x)− τ · log πc(y), we derive ∂Pc

∂τ as follows:

∂Pc

∂τ
=

∂

∂τ

(
ezc∑C
k=1 e

zk

)

=
∂ezc

∂τ ·
∑C

k=1 e
zk − ezc · ∂

∂τ

∑C
k=1 e

zk(∑C
k=1 e

zk

)2
=

ezc · ∂zc∂τ ·
∑C

k=1 e
zk − ezc ·

∑C
k=1 e

zk · ∂zk∂τ(∑C
k=1 e

zk

)2
=

ezc∑C
k=1 e

zk
·

∂zc
∂τ ·

∑C
k=1 e

zk −
∑C

k=1 e
zk · ∂zk∂τ∑C

k=1 e
zk

= Pc ·

(
∂zc
∂τ
−

C∑
k=1

ezk∑C
k=1 e

zk
· ∂zk
∂τ

)

= Pc ·

(
∂zc
∂τ
−

C∑
k=1

Pk ·
∂zk
∂τ

)
. (12)

Differentiate zc = θc(x) − τ · log πc(y) with respect to τ , we have ∂zc
∂τ = − log πc(y) and ∂zk

∂τ =

− log πk. Substituting ∂zc
∂τ and ∂zk

∂τ into (12), we have:

22

∂Pc

∂τ
= Pc ·

(
− log πc(y)−

C∑
k=1

Pk · (− log πk)

)

= Pc ·

(
− log πc(y) +

C∑
k=1

Pk log πk

)
. (13)

Given the continuous differentiability of Pc and the the constancy of πc(y), the gradient ∂Pc

∂τ exists
and is differentiable. Substituting (13) back into (11), the gradient ∇τJ(τ) is thus continuously
differentiable, and simplified to:

∇τJ(τ) = Ex∼Dbc

C∑
c=1

Pc

(
− log πc(y) +

C∑
k=1

Pk log πk

)
(logPc + 1) . (14)

Thus, by the differentiability of J (τ), gradient descent guarantee convergence to a local minimum.

Proof of Lemma 1. We establish the bounds of J(τ) as follows. We first expand the outer optimiza-
tion function according to the definition of KL divergence:

J(τ) = KL
(
P̄ (τ)∥U

)
=

C∑
c=1

P̄c(τ) log

(
P̄c(τ)

Uc

)

=

C∑
c=1

P̄c(τ) log

(
P̄c(τ)

1
C

)

=

C∑
c=1

P̄c(τ) log
(
P̄c(τ) · C

)
=

C∑
c=1

P̄c(τ)
[
log P̄c(τ) + logC

]
=

C∑
c=1

P̄c(τ) log P̄c(τ) + logC ·
C∑

c=1

P̄c(τ). (15)

Note that
∑C

c=1 P̄c(τ) = 1 (since P̄ (τ) is a probability distribution) in the second term. The first
term is the negative entropy

∑C
c=1 P̄c(τ) log P̄c(τ) = −H

(
P̄ (τ)

)
of P̄ (τ). Thus, we obtain:

J(τ) = logC −H
(
P̄ (τ)

)
. (16)

Lower Bound The entropy H
(
P̄ (τ)

)
is maximized when P̄ (τ) is uniform, achieving H

(
P̄ (τ)

)
=

logC. Therefore:

J(τ) = logC −H
(
P̄ (τ)

)
≥ logC − logC = 0. (17)

Equality holds if and only if P̄ (τ) = U . Thus, the lower bound of J(τ) is 0.

Upper Bound The entropy H
(
P̄ (τ)

)
≥ 0 for any probability distribution P̄ (τ). Therefore:

J(τ) = logC −H
(
P̄ (τ)

)
≤ logC − 0 = logC. (18)

Equality holds when P̄ (τ) is a degenerate distribution (i.e., one class has probability 1 and others 0).

Combining these results, we conclude:

0 ≤ J(τ) ≤ logC. (19)

23

Proof of Theorem 2. We prove the existence of the global minimum point from the perspectives of
continuity, lower boundedness and upper asymptotic convergence. Given that we have proven the
continuity of J(τ) in Theorem1, we focus on proving the lower boundedness and upper asymptotic
convergence of J(τ).
Lower Boundedness By Lemma 1, J(τ) = logC −H(P̄ (τ)) ≥ 0 for all τ ∈ R.

Upper Asymptotic Convergence As τ → +∞, let c∗ = argminy log π(y). Then, −τ · log π(c∗)
dominates, making:

lim
τ→+∞

P (y = c | x; τ) = lim
τ→+∞

eθc(x)−τ ·log π(c)∑C
k=1 e

θk(x)−τ ·log π(k)
=

{
1, ifc = c∗,

0, otherwise.
(20)

Consequently, P̄ (τ)→ δc∗ , a Dirac-delta distribution as follows:

lim
τ→+∞

P̄c(τ) = lim
τ→+∞

Ex∼Dbc
P (y = c | x; τ)

= Ex∼Dbc
lim

τ→+∞
P (y = c | x; τ)

=

{
1, ifc = c∗,

0, otherwise.
(21)

Substituting P̄ (τ) into H(P̄ (τ)), we obtain:

lim
P̄ (τ)→δc∗

H(P̄ (τ)) = − lim
P̄ (τ)→δc∗

C∑
c=1

P̄c(τ) log P̄c(τ)

= −
C∑

c=1

lim
P̄c(τ)→δc∗

P̄c(τ) log P̄c(τ). (22)

For the components in 22, when c = c∗, limP̄c∗ (τ)→1 P̄c∗(τ) log P̄c∗(τ) = 0. When c ̸= c∗,
limτ→+∞ P̄c(τ) = 0, limP̄c(τ)→0 P̄c(τ) log P̄c(τ) = 0. Therefore, the addition result of the compo-
nents is limP̄ (τ)→δc∗

H(P̄ (τ)) = 0. Substituting H(P̄ (τ))→ 0 into J(τ):

lim
τ→+∞

J(τ) = logC −H(P̄ (τ)) = logC − 0 = logC. (23)

As τ → −∞, define c∗ = argmaxy log π(y). Similarly, we have:

lim
τ→−∞

J(τ) = logC. (24)

Proof of Proposition 1. The KL divergence KL(P̄ (τ) ∥ U) is minimized when P̄ (τ) = U , as the
KL divergence is non-negative and zero at exact matching. This requires solving:

Ex∼DbcP (x, θ; τ) = Ex∼Dbc softmax (θ(x)− τ · log π(y)) = U, Uc =
1

C
(∀c ∈ {1, . . . , C}).

(25)
Leveraging the normalized weighted geometric mean approximation [32], 25 can be approximated
as:

Ex∼Dbc softmax (θ(x)− τ · log π(y)) ≈ softmax(Ex∼Dbc [θ(x)− τ · log π(y)])
= softmax(Ex∼Dbc [θ(x)]− τ · log π(y)) ≈ U. (26)

Considering the i-th component in 26, we have:

softmax(Ex∼Dbc [θc(x)]− τ · log π(c)) ≈ 1

C
. (27)

Taking the log of both sides, we obtain:

Ex∼Dbc [θc(x)]− τ · log π(c) = logK, ∀c, (28)

24

where K =
∑C

j=1(exp(Ex∼Dbc [θj(x)]−τ log πj(y)))
C denotes a constant. Choosing class c = 1 as a

reference, we subtract the equation for c = 1 from that of class c:

Ex∼Dbc [θc(x)]− Ex∼Dbc [θ1(x)] = τ · (log π(c)− log π(1)). (29)

Define the residual 29 rc = Ex∼Dbc [θc(x)] − Ex∼Dbc [θ1(x)] − τ · (log π(c) − log π(1)), the least-
squares objective is:

min
τ

C∑
c=1

r2c = min
τ

C∑
c=1

(Ex∼Dbc [θc(x)]− Ex∼Dbc [θ1(x)]− τ (log π(c)− log π(1)))
2
. (30)

To derive the closed-form solution for τ , we define the objective function f(τ) =
∑C

c=1(µc − µ1 −
τ(log π(c)− log π(1)))2 with µc = Ex∼Dbc [θc(x)],∀c. Using the chain rule, we differentiate f(τ)
with respect to τ :

∂f(τ)

∂τ
=

C∑
c=1

2(µc − µ1 − τ(log π(c)− log π(1))) · ∂

∂τ
[µc − µ1 − τ(log π(c)− log π(1))]

=

C∑
c=1

2(µc − µ1 − τ(log π(c)− log π(1))) · (−(log π(c)− log π(1)))

= −2
C∑

c=1

(µc − µ1 − τ(log π(c)− log π(1)))(log π(c)− log π(1)). (31)

Setting the Derivative to Zero, we obtain:

−2
C∑

c=1

(µc − µ1 − τ(log π(c)− log π(1)))(log π(c)− log π(1)) = 0

C∑
c=1

(µc − µ1)(log π(c)− log π(1))− τ

C∑
c=1

(log π(c)− log π(1))2 = 0. (32)

Rearranging terms to solve for τ :

τ

C∑
c=1

(log π(c)− log π(1))2 =

C∑
c=1

(µc − µ1)(log π(c)− log π(1))

τLS =

∑C
c=1(µc − µ1)(log π(c)− log π(1))∑C

c=1(log π(c)− log π(1))2
, (33)

where τLS is the final closed-form solution for τ .

A.3 Methods of Label Noise Addition

Sym. Symmetric noise (Sym) means that for each sample label, we randomly replace it with one of
the other classes with a fixed probability η. For a C-class classification task, given a noise rate η, the
original label y is uniformly changed to other classes except y with the probability η. Specific noise
transition matrix: elements on the diagonal are 1− η, elements on the off-diagonal are η/(C − 1).

Asym. Asymmetric noise (Asym) simulates the real-world label noise structure. It selects “easily
confused” class pairs (such as dog↔ wolf) and specifies the transition probability, while the rest
remain unchanged. Labels are only replaced between similar classes, and are not randomly mislabeled
as other classes. The process of label flipping is related to the quantity of each class. With the noise
rate denoted as η, we establish the following definitions:Tij(x) = P [Ỹ = j|Y = i, x] = 1− η when
i = j. Conversely, Tij(x) = P [Ỹ = j|Y = i, x] =

nj

n−ni
η. Here, Y and Ỹ represent the random

variables for clean labels and noisy labels, respectively.

25

(a) sym.20% (b) sym.40% (c) sym.60%

(d) asym.20% (e) asym.40% (f) asym.40%

(g) joint.20% (h) joint.40% (i) joint.60%

(j) t2h.20% (k) t2h.40% (l) t2h.60%

(m) ins.20% (n) ins.40% (o) ins.60%

Figure 6: Changes in the imbalance ratio (IR) of observed distributions (orange line) under different
noise types with varying noise ratios, in comparison to the fixed IR of the true distritbuion (blue line).
Symmetric (sym) and instance-dependent (ins) noise alleviate IR, while asymmetric noise (asym)
may reverse the long-tail pattern. Joint noise preserves IR at low imbalance. Tail-to-head noise (t2h)
exacerbates IR compared to the original distribution.

Joint. The Joint noise [5] label is generated by the noise transfer matrix, which represents the
probability of the clean label flipping to the noise label. Let Y represent the clean label variable,
Ȳ represent the noise label, X represent the instance feature, and the transfer matrix T (X = x) is

26

defined as Tij(X) = P(Ỹ = j|Y = i,X = x). Specifically, given the noise ratio η ∈ [0, 1], it is
defined as follows:

Tij(X) = P
[
Ỹ = j | Y = i,X = x

]
=

{
1− η i = j
ηNj

N−Ni
otherwise

(34)

Here, N denote the total number of training examples and Nj is the frequency of class j. It combines
the class prior information in the dataset to set the transition probability, which is more in line with
the situation in real-world scenarios where samples are easily mislabeled as frequent classes.

T2H. Tail-to-Head noise (T2H) [33] refers to the phenomenon that in the long-tail data distribution,
the tail class samples tend to be mislabeled as the head class samples. The generation of T2H noise
mainly includes two steps: separating transferable and non-transferable samples; randomly selecting
tail class samples and assigning head class labels to them. We define a transition matrix T ∈ RC×C ,
where each element Tt,h = P (yi = h|ỹi = t) represents the probability that an instance with the
true class t is mis-labeled as class h. In the context of T2H noise, the samples from the tail class t
have a relatively high probability of being mis-labeled as the head class h, i.e., Tt,h > Tt,t′ (where t′
denotes a rarer tail class with fewer samples than t). Meanwhile, the probability that a sample from
the head class h is mislabeled as the tail class t is very low, Th,t ≈ 0. Through this transition matrix,
the T2H noise is quantitatively defined from a probabilistic perspective.

IDN. Instance-dependent noise (IDN) [13] is closely related to the characteristics of each instance
and its class label. It is generated by setting a random noise rate for each instance, which follows a
truncated Gaussian distribution, and the noise rate of each class is also randomly set. In this noise
model, the probability of label flipping varies for each specific instance. Taking the CIFAR-10/100
datasets as examples, when generating instance-dependent noise, for a given clean sample set and a
set noise rate η, a random noise rate is set for each instance one by one according to the truncated
gaussian distribution, thereby realizing the generation of instance-dependent noise.

A.4 Analysis of the Effects of Different Noise Additions Methods on Long-tailed distribution

We systematically investigate the impact of existing noise addition methods on the imbalance ratio
(IR) of true distribution when applied to clean long-tailed datasets. The results are presented in
the Figure 6. Sym noise alleviates the long-tail problem because the samples of the head category
are evenly distributed to other classes, indirectly balancing the data distribution. Baesd on this
finding, we choose symmetric noise to simulate relieve scenario. Asym noise induces a reverse
long-tail which means that some tail classes surge in count because head-class samples are frequently
mislabeled as them. However, the reverse long-tail scenario is impractical. Therefore, we opt
not to use asymmetric noise in our experimental setup. Joint noise usually refers to the existence
of some correlation between the noisy label and the long-tailed distribution. In some cases like
long-tailed distribution with low IR, joint noise maintains the original long-tailed structure, keeping
the imbalance ratio unchanged. However, in other cases, it may either exacerbate or alleviate the
IR, which is uncontrollable. Thus, we only select joint noise to construct consistent scenarios for
long-tailed distribution with low IR. T2H noise significantly aggravates the long-tail problem, and
the number of tail-class samples is further reduced, causing the model to be biased towards the head
classes. We choose t2h noise to construct simulated aggravate scenarios. IDN noise, like symmetric
noise, alleviates IR after adding noise.

A.5 Results on Simulated Scenarios Based on CIFAR-10

We conduct experiments using the NLL method DPC on CIFAR-10 to evaluate the performance
of our method under scenarios with varying imbalance ratios (IR=10, 50, 100), noise types (joint,
sym, t2h), and noise rates (η=40%, 60%). As shown in Table 5, DPC combined with Unlocker
(DPC+Unlocker) achieves SOTA test accuracies across all the scenarios, outperforming baselines
DPC and DPC with direct LA integration. In the consistent scenarios, DPC+Unlocker achieves
accuracies of 93.71% and 90.93%, yielding improvements of 0.18% and 5.30% over the original
DPC (93.53%, 85.63%) respectively In the relieve scenarios where tail-class clean sample selection is
particularly challenging, DPC+Unlocker reaches significant improvements over DPC, ranging from
11.06% to 19.87%, validating its effectiveness in mitigating long-tail induced model bias and restoring
the original NLL performance. Under aggravate scenarios, DPC+Unlocker maintains stable gains

27

Table 5: Test accuracy (%) comparison of methods on the CIFAR-10 dataset under varying imbal-
ance ratios (IR), noise types and noise rates η, involving three scenarios of true distribution shifts.
Green numbers indicate improvements over the original NLL method. Boldface represents the best
performance in each case.

dataset CIFAR-10

types consistent relieve aggravate

IR 10 50 100 10 50

η joint 40% joint 60% sym 40% sym 60% sym 40% sym 60% t2h 40% t2h 60% t2h 40% t2h 60%

DPC [14] 93.53 85.63 78.33 57.90 60.07 45.39 93.13 72.10 74.29 70.81
DPC+LA (post-hoc) 92.74 85.31 78.93 58.05 62.40 40.08 83.82 76.21 75.93 61.12
DPC+LA 88.31 81.53 75.60 45.77 30.94 36.50 91.27 83.11 61.75 48.40
DPC+LA+Unlocker 93.71 90.93 89.39 72.86 73.15 65.26 93.76 92.05 88.67 83.35
vs. DPC ↑0.18 ↑5.30 ↑11.06 ↑14.96 ↑13.08 ↑19.87 ↑0.63 ↑19.95 ↑14.38 ↑12.54

over of 1.04% to 19.95% DPC. These results highlight efficacy of Unlocker in disentangling the
NLL-LTL deadlock and enhancing model robustness against long-tailed noisy label data.

A.6 Related Work

Noisy Label Learning (NL). Noisy label learning focuses on tackling the challenge of inaccurate
supervised label in datasets. It mainly evolves along two directions: noisy label detection and
correction, and robust noise label learning. The former mainstream typically uses a two-step process:
selecting noisy labels via metrics such as loss or divergence, and then correcting them through
techniques like semi-supervision learning [10, 11, 12, 13, 14]. By directly selecting and filtering
out noisy labels, these methods have demonstrated efficiency in both experimental and real-world
scenarios. Robust noisy label learning mitigates noise by adjusting loss functions via regularization
or noisy transiton matrix [34, 35, 36, 37, 38] to disregard or reduce noise impact.

Long-tailed Learning (LT). Long-tailed learning is aimed to improve the accuracy of tail classes
caused by skewed datasets distributions. Re-sampling is a classic method, which directly balances
the distribution through reducing samples of head or augmenting samples of tail [39, 40, 41]. Re-
weighting enhances the focus of the model on tail classes by adjusting the sample weights in the loss
function [42, 23, 43, 44]. Ensembling learning improves model performance by aggregating multiple
networks within a multi-expert framework [45, 46, 47, 48, 49]. The two-stage decoupling strategy
achieves a rebalancing of decision boundaries through the fine-tuning of classifiers [50, 18, 51].
Logit Adjustment (LA) corrects biased logits by adding an offset term to the model’s logit [15, 16,
17, 18, 19]. Extensive empirical studies have substantiated the efficacy of the LA. Moreover, data
augmentation is an an effective way to alleviate the scarcity of tail classes by generating tail samples
[52, 53, 54]. Besides, recent work such as strategy fusion tailored for multi-objective optimization
(MOO) [55] and model parameter space rebalancing [56] also shows promise in balancing model.

28

	Introduction
	Preliminaries
	Noisy Label Selection
	Logit Adjustment

	Unlocker: Breaking the Deadlock with Bilevel Optimization
	Motivation
	Bilevel Optimization
	Inner Optimization
	Outer Optimization
	Training Overview

	Theoretical Analysis

	Experiments
	Experimental Setup
	Results on Simulated Scenarios
	Results on Real-world Datasets
	Effectiveness Study and Discussions

	Related Work
	Conclusion
	Appendix / Supplemental Material
	Detailed Training Process
	Theoretical Proof
	Methods of Label Noise Addition
	Analysis of the Effects of Different Noise Additions Methods on Long-tailed distribution
	Results on Simulated Scenarios Based on CIFAR-10
	Related Work

