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Abstract

Vision-language models (VLMs) excel in se-001
mantic tasks but falter at a core human capa-002
bility: detecting hidden content in optical il-003
lusions or AI-generated images through per-004
ceptual adjustments like zooming. We intro-005
duce HC-Bench, a benchmark of 112 images006
with hidden text, objects, and illusions, reveal-007
ing that leading VLMs achieve near-zero accu-008
racy (0–5.36%)—even with explicit prompting.009
Humans resolve such ambiguities instinctively,010
yet VLMs fail due to an overreliance on high-011
level semantics. Strikingly, simply scaling im-012
ages to low resolutions (32–128 pixels) unlocks013
>99% accuracy by eliminating redundant visual014
noise. This exposes a critical architectural flaw:015
VLMs prioritize abstract reasoning over low-016
level visual operations crucial for real-world017
robustness. Our work urges a shift toward hy-018
brid models integrating multi-scale processing,019
bridging the gap between computational vision020
and human cognition for applications in medi-021
cal imaging, security, and beyond.022

1 Introduction023

Vision-language models (VLMs) have revolution-024

ized multimodal understanding, excelling at tasks025

like image captioning and visual reasoning. Al-026

though VLMs have been capable of many challeng-027

ing visual tasks, some seemingly simple vision-028

language tasks are impossible for them to solve.029

A critical gap persists: their inability to recog-030

nize visually hidden content—information embed-031

ded in images that requires human-like percep-032

tual adaptations such as zooming, squinting, or033

dynamic scaling to detect. This limitation becomes034

starkly apparent when analyzing optical illusions,035

AI-generated “double images,” or medical scans036

with subtle anomalies, where human observers in-037

stinctively adjust their visual processing to uncover038

obscured details.039

Current VLM architectures prioritize high-level040

semantic reasoning at the expense of low-level041

visual operations fundamental to human percep- 042

tion. While benchmarks like EXAMS-V (Das et al., 043

2024) test compositional reasoning, they neglect 044

perceptual adaptability—the ability to iteratively 045

refine visual analysis through multi-scale or con- 046

trast adjustments. This oversight masks a critical 047

weakness: VLMs universally fail to detect hidden 048

text or objects, even when explicitly prompted to 049

“zoom in” or “adjust contrast”, as shown in Figure 2. 050

The root cause lies in their reliance on static, high- 051

resolution embeddings that prioritize local texture 052

over global structure, burying hidden patterns un- 053

der redundant spatial features. 054

We address this gap through three contributions. 055

First, we introduce HC-Bench, the first benchmark 056

for hidden content recognition, comprising 112 057

synthetic images with embedded Latin/non-Latin 058

text and objects. Generated via Stable Diffusion 059

with ControlNet, these images preserve naturalistic 060

backgrounds while embedding content detectable 061

only through perceptual adjustments. Second, we 062

demonstrate universal failure across 11 state-of- 063

the-art VLMs (0–5.36% accuracy), revealing their 064

inability to simulate human-like visual refinement 065

via prompting or few-shot learning. Third, we iden- 066

tify a surprisingly effective solution: programmatic 067

image scaling to low resolutions (32–128 pixels), 068

which suppresses redundant features and achieves 069

>99% accuracy. Embedding analysis confirms that 070

scaling shifts attention from local textures to global 071

patterns, mirroring human perceptual strategies. 072

Our contributions are as follows: 073

• To the best of our knowledge, we intro- 074

duce the first benchmark for hidden content 075

recognition, addressing limitations in existing 076

datasets like EXAMS-V (Das et al., 2024) and 077

IllusionBench (Zhang et al., 2025). 078

• We empirically reveal the VLMs’ inability to 079

perform human-like perceptual adjustments, 080

exposing a foundational design flaw prioritiz- 081
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Figure 1: The illusional images in HC-Bench. Some of them contain hidden texts and others contain hidden image
within the obvious background scene.

ing semantics over basic visual processing.082

• We propose a scalable solution via preprocess-083

ing pipelines, demonstrating that low-level084

operations can bridge the gap between com-085

putational vision and human cognition.086

Our findings challenge the prevailing focus on087

semantic abstraction in VLM design. This study088

redefines VLM evaluation by emphasizing the im-089

portance of integrating low-level visual skills into090

multimodal architectures—a paradigm shift critical091

for real-world robustness in ambiguous scenarios.092

By linking encoder limitations to redundant fea-093

ture patterns, we provide actionable insights for094

improving VLM design.095

2 Related Work096

Our research intersects three critical domains: (1)097

architectural limitations of vision-language mod-098

els, (2) computational analysis of hidden content,099

and (3) multimodal benchmarking paradigms. We100

contextualize our contributions within these areas.101

2.1 Vision-Language Models102

Modern VLMs like CLIP (Radford et al., 2021),103

Flamingo (Alayrac et al., 2022), and BLIP-2 (Li et104

al., 2023) excel at semantic alignment between105

images and text, enabling tasks such as open-106

vocabulary detection and visual question answer-107

ing. However, their design prioritizes high-level108

reasoning over low-level visual processing. Recent 109

studies reveal critical gaps: texture bias and static 110

processing. VLMs inherit CNNs’ tendency to pri- 111

oritize local textures over global shapes (Geirhos 112

et al., 2022), hindering recognition of content re- 113

quiring spatial coherence (Yang et al., 2024). Un- 114

like humans, VLMs process images at fixed resolu- 115

tions without dynamic scaling (Dosovitskiy et al., 116

2021), limiting adaptability to multi-scale patterns. 117

Redundant Embeddings: High-resolution vision 118

encoders (e.g., ViT-L/14)1 produce spatially redun- 119

dant features that obscure subtle details (Liu et al., 120

2023; Vasu et al., 2024; Rao et al., 2024; Carvalho 121

and Martins, 2025), corroborating our findings in 122

Section 3.4. 123

While recent work explores hybrid architec- 124

tures (Chen et al., 2024; Qi et al., 2024; Li et al., 125

2025; Liao et al., 2025) and multi-task train- 126

ing (Rao et al., 2024; Wang et al., 2023; Ma et al., 127

2024), none address perceptual adaptability for hid- 128

den content detection. 129

2.2 Hidden Content and Perceptual Illusions 130

The study of hidden content spans cognitive sci- 131

ence and computational vision. Classic work on 132

perceptual grouping (Wertheimer, 1923) and figure- 133

ground segregation (Kanizsa et al., 1979) demon- 134

strates humans’ ability to resolve ambiguous stim- 135

uli through iterative adjustments (e.g., squinting). 136

1The model is available at https://huggingface.co/
openai/clip-vit-large-patch14
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Neuroimaging studies link this to feedback loops137

in visual cortex (Lamme and Roelfsema, 2000).138

With the advancement of generative AI, AI-139

generated images with hidden content emerge. Dif-140

fusion models now embed text/objects impercepti-141

ble to humans without scaling (Rombach et al.,142

2022), raising concerns about adversarial mis-143

use (Zhu et al., 2024; Zeng et al., 2025; Gao144

et al., 2024; Duan et al., 2025). ControlNet (Zhang145

et al., 2023) enables precise spatial conditioning146

but has not been leveraged for perceptual evalua-147

tion. While IllusionBench (Zhang et al., 2025) tests148

geometric illusions, and SVO-Probes (Hendricks149

and Nematzadeh, 2021) evaluates spatial under-150

standing, neither addresses AI-generated hidden151

content requiring dynamic processing.152

2.3 Multimodal Benchmarking Gaps153

Existing benchmarks inadequately assess percep-154

tual adaptability. We can find the three preference155

of existing benchmarks: focusing on semantic tests,156

robustness and dynamic processing, respectively.157

VQA (Agrawal et al., 2016), GQA (Hudson and158

Manning, 2019), and TextVQA (Singh et al., 2019)159

emphasize textual or compositional reasoning, not160

low-level vision.161

ImageNet-C (Hendrycks and Dietterich, 2019)162

evaluates corruption resilience but not hidden con-163

tent. EXAMS-V (Das et al., 2024) focuses on fac-164

tual knowledge, not perceptual strategies.165

Fan et al. (2021) on multi-scale vision and166

Perugachi-Diaz et al. (2024) on neural compres-167

sion highlight the need for adaptive resolution but168

lacks task-specific benchmarks.169

HC-Bench fills this void by systematically eval-170

uating VLMs’ capacity to simulate human percep-171

tual adjustments—a prerequisite for robustness in172

real-world scenarios like medical imaging (subtle173

lesions) or security (steganographic content).174

2.4 Cognitive Basis of Vision175

Our work draws inspiration from theories of human176

vision perception. Some key theories are primary177

to both hidden content generation and recognition178

in our work. Marr’s primal sketch that early visual179

processing extracts edges and blobs (Marr, 1982).180

This is analogous to our low-resolution scaling’s181

emphasis on global structure. Predictive coding182

is also vital in human recognition. Humans iter-183

atively refine predictions through feedback (Rao184

and Ballard, 1999), which is a capability absent in185

Type Hidden Text Hidden Object
Normal 28 28
Rare 28 28

Table 1: The data distribution of HC-Bench.

feedforward VLMs. In perceptual learning, exper- 186

tise improves detection of hidden patterns through 187

reweighting visual features (Goldstone, 1998), sug- 188

gesting potential for VLM fine-tuning with our pro- 189

posed dataset HC-Bench. 190

3 Methodology 191

In this section, we introduce the dataset we con- 192

struct and the zoom-out method we propose to help 193

the models see the hidden content. The dataset is 194

not only for our experiments but also for facilitating 195

the future research in this topic. 196

3.1 Data Construction 197

We introduce HC-Bench, to the best of our knowl- 198

edge, the first benchmark dataset for evaluating 199

VLMs’ ability to recognize visually hidden content. 200

As shown in Figure 1, the dataset consists of 112 201

synthetic images divided into two categories: 202

Hidden text images (56 total). 28 Latin words : 203

Selected from 7 semantic categories (e.g., animals, 204

objects), varying in length and frequency. 28 non- 205

Latin words : Chinese characters and other scripts, 206

balanced for visual complexity. 207

Hidden object images (56 total). Seven object 208

classes (e.g., faces, animals, vehicles), with 8 in- 209

stances per class. Objects are subtly embedded into 210

naturalistic backgrounds (e.g., landscapes, urban 211

scenes). 212

We ensure the dataset is balanced to mitigate 213

potential biases and enhance the generalizability. 214

For each type of concepts, we pick common con- 215

cepts (e.g., words like Mars and dog and objects 216

like a cat and a bed) as half of the dataset and rel- 217

atively rare concepts (e.g., words like Wyvern and 218

saccharine and objects like Cologne cathedral and 219

a Tyrannosaurus) as the other half. The distribution 220

is balanced as in Table 1. 221

3.1.1 Implementation Details 222

To hide the target content, we need a background 223

scene that is irrelevant to what to hide. We use 224

Qwen3-235B-A22B2 to generate 112 diverse scene 225

2The model is available at https://chat.qwen.ai/ and
https://huggingface.co/Qwen/Qwen3-235B-A22B
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Can you see any texts within
this picture?

Question

I don’t see any written characters, logos, or water-
marks in this scene – it’s purely a piece of sci-fi 
concept art of a floating whale over a futuristic 
cityscape, without any visible text.

o4-mini

✘

Could there be texts “New York” inside this picture?

Question

I don’t see any hidden or overt lettering – there’s no 
“New York” (or any other text) embedded anywhere 
in that scene. It’s purely a text-free, futuristic city-
scape with a levitating whale.

o4-mini

✘

No. I don’t see any.
o4-mini

Is there any text hidden
within this image?

Question

✘ No.
o4-mini

Do you see 
Colosseum?

Question

✘

Is there any text hidden
within this image?

Question

No. I don’t see any.
o4-mini

✘

Is a cat hidden 
in this image?

Question

No.
o4-mini

✘

Figure 2: As one of the best state-of-the-art VLMs, O4-MINI is incapable in recognizing the hidden texts within
images even when we prompt directly with the correct answers.

descriptions (e.g., a bustling city street at sunset or226

a serene mountain lake).227

With these background scenes descriptions, we228

can hide the target content into the scene when229

synthesizing the image. All images were gen-230

erated using the diffusion model Stable Diffu-231

sion v1.53 (Rombach et al., 2022) with a special-232

ized ControlNet (Zhang et al., 2023) module (con-233

trol_v1p_sd15_qrcode_monster4) to ensure precise234

integration of hidden content. We employ DPM++235

3M SDE (Lu et al., 2023) as the sampling method.236

We set the ControlNet weight in the range from 1.2237

to 1.4, since weights < 1.2 resulted in hidden con-238

tent that is imperceptible for humans; weights > 1.4239

caused unnatural artifacts. The synthetic images240

are set to be with a resolution that either height or241

width is in the range of 512–1440 pixels (maintain-242

ing the aspect ratio).243

The entire generation process is employed on244

one NVIDIA RTX A6000 card with 48 GB VRAM.245

3.2 Evaluation Protocol246

As shown in Figure 2, we should ask VLMs with247

direct questions and then hint them with correct248

answers if direct questions do not obtain positive249

responses.250

3The model is available ar https://huggingface.co/
stable-diffusion-v1-5/stable-diffusion-v1-5

4The model is available at https://huggingface.co/
monster-labs/control_v1p_sd15_qrcode_monster

Direct questions. We first ask direct questions to 251

VLMs. For hidden text cases, we ask: 252

Direct Question for Hidden Text

What is within this image? Is
there any text hidden within
this image?

253

For hidden object cases, we ask: 254

Direct Question for Hidden Object

What is within this image? Is there any
other content hidden within this image?

255

Follow-up hints. We also provide follow-up 256

hints for the VLMs if the direct questions cannot 257

get the answer we want. For hidden text cases, we 258

hint the model with: 259

Follow-up Hint for Hidden Text
Whether there is [hidden text] within this image?

260

For hidden object cases, we hint: 261

Follow-up Hint for Hidden Object

Whether there is [hidden figure or silhouette]
within this image?

262

The [hidden text] is the correct answer 263

text (e.g., “POLO”) and [hidden figure or 264

silhouette] is the brief description of the hidden 265

object (e.g., “a cat silhouette”). 266
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People are in a city park surrounded by plants and 
buildings, or there might be something else?

Zoom-in and zoom-out adjust the size of the 
image without changing the aspect ratio.

ZOOM OUT

Squinting
decreases
the brightness.

SQUINT

Figure 3: Two methods to help humans recognize the hidden content within the image: zoom out the image to a
sight from a distance and squint to observe the image to reduce the brightness to highlight the hidden content.

Prompt engineering attempts. We should try ex-267

plicit instructions for perceptual adjustments. For268

example, accompanied with the direct questions,269

we prompt the VLMs with this:270

Prompt Engineering Template
Adjust contrast or brightness to examine the image macro-
scopically. Zoom in or out to identify layered details.

271

We should try to help the VLMs finish the work272

only by prompting.273

Few-shot learning. Paired examples of origi-274

nal images, preprocessed versions (e.g., scaled or275

downsampled), and ground-truth answers should276

be input to the model to help it learn to understand277

and reproduce this process.278

3.3 Image Preprocessing Solutions279

Like the cases shown in Figure 2, the zero-shot280

prompting with both direct questions and follow-up281

hints fails to recognize hidden content. Therefore,282

we try preprocessing the image by scaling it like283

zooming out or adjusting their brightness or con-284

trast like squint. As shown in Figure 3, the two285

methods can help humans find the hidden content.286

Zoom out. We implemented a preprocessing287

pipeline to simulate human-like perceptual adjust-288

ments. For zoom-out operation, the input image are289

automatically resized to a lower resolution pixels290

(preserving the aspect ratio). The resized image is291

sent to the model with the original prompt to help292

the VLM have a zoomed-out view.293

Squint. The squint method is also tested. We294

keep the original image size and try different bright-295

ness and contrast adjustments. Moreover, we296

also try this enhancement on the image: Step 1. 297

Grayscale + Canny edge detection: Highlight struc- 298

tural lines. Step 2. HSV color segmentation: Iso- 299

late specific color regions. Step 3. Histogram 300

equalization: Improve contrast. The imaging result 301

is provided for the model to help realize squinting 302

automatically. 303

Our target is that the scaled images should be 304

fed directly into VLMs without additional prompts. 305

Therefore, we integrate the zoom-out and squint 306

methods to the tested VLMs. 307

3.4 Embedding Redundancy 308

We analyze vision encoder outputs for most models 309

to understand failure modes. To quantify feature 310

redundancy in high-resolution embeddings, we ex- 311

tract vision encoder outputs (e.g., ViT-L/14) for 312

both original and scaled-down images. Redun- 313

dancy is measured through token repetition rate 314

analysis which calculates the proportion of embed- 315

ding tokens with cosine similarity >0.95 across spa- 316

tial positions, indicating near-identical feature pat- 317

terns. The attention map analysis on query tokens 318

(e.g., “[HIDDEN_TEXT]”) using cross-attention lay- 319

ers shows that the attention across redundant re- 320

gions (e.g., textures) in high-resolution images 321

masks the activation on hidden content. 322

This methodology rigorously isolates VLMs’ 323

limitations in low-level visual processing and 324

demonstrates how simple preprocessing can bridge 325

the gap between computational vision and human- 326

like perception. 327
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Model
Zero-Shot Direct Zero-Shot Hinted Zero-Shot Prompt Few-Shot w/ zoom-out

Text (%) Object (%) Text (%) Object (%) Text (%) Object (%) Text (%) Object (%) Text (%) Object (%)

O4-MINI 0 0 0 0 0 0 0 0 100.0+100.0 100.0+100.0
GEMINI 2.5 PRO 0 0 0 0 0 0 0 0 100.0+100.0 100.0+100.0
GROK 3 0 5.36 0 8.93 0 5.36 0 5.36 98.21+98.21 100.0+91.07
MISTRAL 0 0 0 10.71 0 0 0 5.36 96.43+96.43 100.0+89.29
CLAUDE 3.7 SONNET 0 0 1.78 3.57 0 0 0 0 98.21+96.43 100.0+96.43
LLAVA-V1.5-7B 0 0 0 0 0 0 0 0 91.07+91.07 98.21+98.21
DOUBAO-1.5-THINKING-VISION-PRO 0 0 0 0 0 0 0 0 96.43+96.43 98.21+98.21
KIMI-VL-A3B-THINKING 0 0 0 0 0 0 0 0 94.64+94.64 91.07+91.07
QWEN2-VL-7B-INSTRUCT 1.78 3.57 3.57 3.57 1.78 3.57 1.78 3.57 100.0+96.43 96.43+92.86
QWEN2-VL-72B-INSTRUCT 1.78 1.78 5.36 3.57 1.78 3.57 1.78 3.57 100.0+94.64 100.0+96.43
DEEPSEEK-VL2 0 0 0 0 0 0 0 0 92.86+92.86 94.64+94.64

Table 2: The recognition accuracy across different VLMs with four methods mentioned in Section 3.2 and zoom-out
method mentioned in Section 3.3. All tested VLMs can be deemed to be incapable of recognizing the hidden content
in the image. However, with the help of zoom-out method, each tested VLM obtains a nearly 100% success rate.

4 Experiments328

In this section, we present the performance of the329

zoom-out method integrated in VLMs. We conduct330

experiments by providing the VLM with each im-331

age in HC-Bench and direct questions and follow-332

up hints if the direct questions cannot pass the test333

as described in Section 3.2. The comparison results334

validate the significant enhancement of zoom-out335

and demonstrate that we find the way to let the336

models zoom.337

4.1 Experimental Setup338

The experiments are conducted on the constructed339

dataset HC-Bench as described in Section 3.1.340

We evaluate our proposed HC-Bench dataset341

on 11 state-of-the-art vision-language models342

(VLMs): o4-mini,5 Gemini 2.5 Pro,6 Grok 3,7343

Mistral,8 Claude 3.7 Sonnet,9 LLaVA-v1.5-7B,10344

Doubao-1.5-thinking-vision-pro,11 Kimi-VL-A3B-345

Thinking,12 Qwen2-VL-7B-Instruct,13 Qwen2-VL-346

72B-Instruct,14 and DeepSeek-VL2.15347

5The model is available at https://openai.com/index/
introducing-o3-and-o4-mini/

6The model is available at https://deepmind.google/
technologies/gemini/pro/

7The model is available at https://grok3ai.net/
8The model is available at https://chat.mistral.ai/

chat
9The model is available at https://www.anthropic.

com/claude/sonnet
10The model is available at https://huggingface.co/

liuhaotian/llava-v1.5-7b
11The model is available at https://www.volcengine.

com/
12The model is available at https://huggingface.co/

moonshotai/Kimi-VL-A3B-Thinking
13The model is available at https://huggingface.co/

Qwen/Qwen2-VL-7B-Instruct
14The model is available at https://huggingface.co/

Qwen/Qwen2-VL-72B-Instruct
15The model is available at https://huggingface.co/

deepseek-ai/deepseek-vl2

Accuracy (%) for recognizing hidden text (exact 348

match) and objects (category-level correctness) is 349

calculated. Human evaluators manually verify re- 350

sponses to avoid ambiguities (e.g., partial matches 351

or synonyms). We define the correct answer of the 352

text cases should exactly match the hidden word(s), 353

but the object cases are deemed to take the recogni- 354

tion of the general category (e.g., “face” sufficed, 355

no need for specific identity), considering that the 356

knowledge across different models varies and our 357

expectation is to check if the model can see any 358

hidden content. 359

All experiments are run on one NVIDIA A6000 360

GPU (48GB VRAM). 361

4.2 Evaluation 362

According to the evaluation method in Section 3.2, 363

we test all the eleven models with direct questions, 364

hints after failing the direct question, prompt engi- 365

neering and few-shot learning. The experimental 366

results are in Table 2. Like the cases shown in Fig- 367

ure 2, the results validate that all these methods lead 368

to catastrophic failures. Moreover, the prompt en- 369

gineering for macroscopic view and few-shot learn- 370

ing method both hardly help VLMs. They even 371

present worse performance than the hint method in 372

zero-shot prompting. 373

4.3 Image Preprocessing Evaluation 374

In some cases, we find zoom-out method is effec- 375

tive to help recognize the hidden content. We test 376

some VLMs with different zoom-out scales and 377

find the obvious sensitive range for VLMs to recog- 378

nize the hidden information. As shown in Table 3, 379

we find the best resolution is always in 32–128 pix- 380

els (keep the aspect ratio). Possible reason could 381

be that higher resolutions reintroduce redundancy 382

and lower resolutions degraded visibility. 383
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Model 8–32 32–128 128–512 512+
CLAUDE 3.7 SONNET ✓ ✓ ✗ ✗

GEMINI 2.5 PRO ✗ ✓ ✗ ✗

KIMI-VL-A3B-THINKING ✗ ✓ ✗ ✗

QWEN2-VL-7B-INSTRUCT ✓ ✓ ✗ ✗

QWEN2-VL-72B-INSTRUCT ✓ ✓ ✗ ✗

Table 3: For one typical image containing text New York
as shown in Figure 2, we test some models ability to
recognize the hidden text by zooming out to different
scales. We can find the range of the resolution from
32× 32 to 128× 128 (keep the aspect ratio) is the best
zooming scale range.

Model B-32; C+32 B-64; C+64 B-128; C+64 Enhance
CLAUDE 3.7 SONNET ✗ ✗ ✗ ✗

GEMINI 2.5 PRO ✗ ✗ ✗ ✗

KIMI-VL-A3B-THINKING ✗ ✗ ✗ ✗

QWEN2-VL-7B-INSTRUCT ✗ ✗ ✗ ✓

QWEN2-VL-72B-INSTRUCT ✗ ✗ ✗ ✗

Table 4: For one typical image containing text New York
as shown in Figure 2, we test some models ability to rec-
ognize the hidden text by squinting. B-32; C+32 stands
for brightness lowered by 32 and contrast enhanced by
32. No specific brightness, contrast or enhancement
configuration can help the models.

Unlike the zoom-out method, we fail to obtain384

a good result with many squint configuration at-385

tempts. According to the method described in386

Section 3.3, we check some models with different387

brightness/contrast settings and the enhancement.388

As shown in Table 4, almost all the attempts fail.389

Sadly, squint cannot help VLMs recognize the hid-390

den content.391

Based on the experimental results and analysis392

above, we choose to conduct experiments to rig-393

orously test the zoom-out method in the optimal394

range 32–128 pixels.395

We employ the integration of our zoom-out396

method on all the tested VLMs and compare the397

results with the best results we obtained among398

methods of direct questions, hinted, prompt engi-399

neering and few-shot prompting, on all the 112400

cases in HC-Bench.401

According to the results in Table 2, we can find402

some remarkable patterns.403

Universal failure of baseline methods. All404

VLMs achieve near-zero accuracy (0–5.36%) on405

hidden text/object recognition under zero-shot,406

hinted, or few-shot settings. Explicit instructions407

(e.g., “zoom in/out to examine layered details”)408

yield no improvement, highlighting VLMs’ inabil-409

ity to simulate perceptual adjustments.410

Dramatic improvement with zoom-out. Scal- 411

ing images to low resolutions (32–128 pixels) 412

achieves 91.07–100% accuracy across models. 413

Larger models (e.g., O4-MINI, GEMINI 2.5 PRO 414

and QWEN2-VL-72B-INSTRUCT) reach perfect 415

scores of 100% on both text and object cases, while 416

smaller models (e.g., KIMI-VL-A3B-THINKING 417

and LLAVA-V1.5-7B) still exceed 90% accuracy 418

overall. Non-Latin text recognition (e.g., Chinese) 419

improves proportionally, suggesting scaling gener- 420

alizes across scripts. 421

Text vs. Object recognition. Hidden text cases 422

have explicit character patterns amplified by scal- 423

ing, while hidden object cases have category-level 424

ambiguity (e.g., distinguishing Tyrannosaurus or 425

dinosaurs resembled to other animals). Some mod- 426

els have a better performance in text cases while the 427

others are better at object cases. A possible reason 428

could be that different models have different pref- 429

erence in training data. As an overall pattern, the 430

models cannot recognize either type of the hidden 431

content without zoom-out. 432

Failure case analysis. Rare errors (1.79–8.93%) 433

occur due to two restricts. Severe artifacts: over- 434

scaling merges critical details (e.g., thin strokes 435

in Chinese characters). Ambiguous object silhou- 436

ettes: rare categories (e.g., Cologne Cathedral) lack 437

distinct low-resolution patterns. Also, encoder lim- 438

itations matter. Smaller VLMs (e.g., LLaVA-7B) 439

struggle with extreme downsampling due to limited 440

receptive fields. 441

4.4 Embedding Redundancy Analysis 442

High-resolution images (512–1440 pixels) are with 443

embedding tensors contained about 1000 repeated 444

tokens which indicates redundant spatial patterns. 445

Scaled low-resolution images (32–128 pixels) are 446

with a redundancy reduced to about 10 repeated 447

tokens, aligning with successful detection. 448

In Figure 4, we visualize the 32-pixel scaled 449

image, 128-pixel scaled image and 1024-pixel orig- 450

inal image. We can find the clear patterns. The re- 451

dundant features within the original image keep the 452

VLMs from recognizing the hidden content. Atten- 453

tion maps reveals that high-resolution embeddings 454

focused excessively on background detailed infor- 455

mation, masking hidden content. Downsampled 456

images shift attention to global structures, expos- 457

ing hidden elements within the image. 458

Therefore, if we do not resize the image from 459

a direct imaging degree but find and trim the rele- 460
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Figure 4: The visualization of the embeddings of the input prompts with the image. In the conditions of the left one
(6 consecutive image tokens as in the consecutive yellow region in the heatmap) and center one (10 consecutive
image tokens), VLMs can recognize the hidden content. In the condition of the right one (666 consecutive image
tokens), VLMs cannot find the hidden content. This demonstrates the redundant repeated information of the image
is the key to obstruct finding the hidden content.

vant redundant part in embeddings, it is possible to461

integrate a general vision operation to VLMs.462

4.5 Discussion463

Our results confirm that VLMs inherently lack464

perceptual adaptability but can achieve human-465

level performance with programmatic scaling. This466

aligns with the findings: high-resolution embed-467

dings prioritize local textures over global structures,468

while scaling suppresses redundancy to expose hid-469

den content. Notably, zoom-out is model-agnostic,470

requiring no architectural changes or fine-tuning,471

which underscores its practicality for real-world472

deployment.473

The success of low-level preprocessing chal-474

lenges the prevailing focus on high-level seman-475

tic reasoning in VLM design. Future architectures476

should integrate multi-scale feature fusion or dy-477

namic resolution sampling to emulate human-like478

visual processing. HC-Bench provides a critical479

benchmark for evaluating such advancements.480

VLMs can have a visual ability like humans (e.g.,481

zoom out to find the hidden content). It is natural482

to explore if VLMs have more human-like visual483

ability (e.g., rotate and crop the image) and even484

a better versatility of visual ability than human485

(e.g., invert image color, map the panoramic image486

to a stereoscopic view). We look forward to the487

future research to explore if versatile vision tools488

can be integrated within VLMs. Using agents is a489

prevalent method, but we should move our eyes on490

this direction for a while if we want a faster and491

more secured VLM.492

5 Conclusion 493

This work reveals a critical limitation in vision- 494

language models (VLMs). Current VLMs strug- 495

gle to detect hidden content requiring human-like 496

perceptual adjustments, as shown by their near- 497

zero performance on our HC-Bench benchmark. 498

This failure stems from prioritizing high-level se- 499

mantics over low-level visual processing. Simple 500

image scaling (32–128 pixels) resolves this limi- 501

tation, achieving >99% accuracy by reducing re- 502

dundant features in high-resolution embeddings. 503

Our work exposes a critical flaw in VLM design 504

and urges integration of multi-scale processing to 505

bridge computational vision with human perceptual 506

adaptability, advancing robustness in real-world 507

vision-language applications. 508

Limitations 509

While our method demonstrates significant im- 510

provements, key limitations remain: HC-Bench’s 511

synthetic images may not fully capture real-world 512

hidden content complexity, such as natural lighting 513

or occlusion. The efficacy of programmatic scal- 514

ing is resolution-dependent, potentially failing for 515

ultra-fine patterns or requiring dynamic multi-scale 516

sampling. Static downsampling neglects human- 517

like dynamic adjustments (e.g., iterative zoom- 518

contrast combinations), and rare scripts/categories 519

may require specialized scaling thresholds. Com- 520

putational costs for high-resolution preprocessing 521

and energy trade-offs in scaling also warrant op- 522

timization. Finally, manual evaluation introduces 523

subjectivity in object categorization, highlighting 524

the need for automated metrics. 525
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