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Cross-modal Observation Hypothesis Inference
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ABSTRACT
Hypothesis inference, a sophisticated cognitive process that allows
humans to construct plausible explanations for incomplete observa-
tions, is paramount to our ability to make sense of the world around
us. Despite the universality of this skill, it remains under-explored
within the context of multi-modal AI, which necessitates analyzing
observation, recalling information in the mind, and generating ex-
planations. In this work, we propose the Cross-modal Observation
hypothesIs iNference task (COIN). Given a textual description of a
partially observed event, COIN strives to recall the most probable
event from the visual mind (video pool), and infer the subsequent
action flow connecting the visual mind event and the observed tex-
tural event. To advance the development of this field, we propose
a large-scale text-video dataset, Tex-COIN, that contains 39, 796
meticulously annotated hypothesis inference examples and auxiliary
commonsense knowledge (appearance, clothing, action, etc.) for key
video characters. Based on the proposed Tex-COIN dataset, we de-
sign a strong baseline, COINNet, which features two perspectives: 1)
aligning temporally displaced textual observations with target videos
via transformer-based multi-task learning, and 2) inferring the action
flow with non-parametric graph-based inference grounded in graph
theory. Extensive experiments on the Tex-COIN dataset validate the
effectiveness of our COINNet by significantly outperforming the
state-of-the-arts. The code is available 1, and the dataset will be
released for further exploration.

CCS CONCEPTS
• Computing methodologies → Natural language processing;
Computer vision.

KEYWORDS
Multi-modal Understanding, Hypothesis Inference

1 INTRODUCTION
Hypothesis inference aims at proposing the most probable hypothe-
ses to elucidate incomplete observation, which encapsulates a central
pillar of human cognitive abilities to understand our surroundings
[43]. This form of reasoning presents a dynamic interplay of memory
and inference, where the incomplete event observation triggers the
recall of historical visual events in memory, fostering the gradual
inference of a holistic hypothesis serving as the explanation. For

1https://anonymous.4open.science/r/COIN-F621/
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example, when we observe O: A burned boy is being treated in the
hospital. and visually recall that he previously cooked in an oven,
we can gradually infer a complete event chain as the explanation E:
the boy cooked in an oven → he was burned → he put down the
food → he cooled the wound → he hurriedly ran to the hospital.
Hypothesis inference, with its wide-ranging applications in human
existence, enables us to perform better than machines in high-level
reasoning and would be the most precious capacity for modern AI
(e.g., Judicial AI, Security AI). Yet, to the best of our knowledge,
its integration into the realm of multi-modal AI systems — systems
that strive to understand incomplete textual observations, visually
recall related events, and infer the comprehensive chain of events —
remains a frontier largely unexplored.

To facilitate the development in this AI field, we propose a
novel task, Cross-modal Observation hypothesIs iNference (COIN).
COIN draws its inspiration from the burgeoning advancements in
the field of causal reasoning within the NLP community [3, 14] and
further extends its reach into the multi-modal domain. The essence
of COIN lies in its ability to recall the inception of an event from
memory and infer a cohesive event flow that furnishes a robust ex-
planation for an incomplete observation. Specifically, considering
that 83% of the information memorized by the human brain is in the
continuous visual form [46], we integrate a video pool to simulate
human visual memory. The AI system we propose is tasked with not
only retrieving the target video that serves as the event chain’s start-
ing point but also inferring the subsequent action flow (subsequent
event inference) that emerges after this retrieved video event and
before the observed textural event. Examining and adopting ideas for
a relevant, well-established, yet distinct task, i.e. text-video retrieval,
provides a robust foundation for the development of this new field.
The COIN task introduces two key distinctive elements that lend it a
unique complexity: (1) Heterogeneous Alignment for Inference.
Information alignment is the foundation of solving the retrieval tasks
such as our COIN task and the text-video retrieval task. However, in
the context of the COIN task, the textual observations and the target
video do not align temporally, nor do they correspond to the same
event. Instead, they describe logically correlated events, creating a
challenging yet intriguing landscape for cross-modal information
alignment. The task complexity is further amplified when we con-
sider the need for extracting observation-related information (e.g.,
actions) in the video. (2) Action Flow Inference. There are rigorous
logical connections between actions in the action flow. An error
in the inference of any single action could potentially disrupt the
correctness of subsequent actions. Action flow inference necessitates
high fidelity in uncovering the relationships between actions and
accurately predicting each one.

To promote the development of this field, we propose a new
large-scale dataset, Tex-COIN, towards the two distinctive char-
acteristics of the COIN task. The dataset consists of about 10, 000
carefully collected videos, with 39, 796 hypothesis inference samples
meticulously annotated by annotators with strong logical abilities.
Our Tex-COIN dataset contains the following targeted designs: (1)

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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burn          put down
cool           run to

The burned boy with a gray sweater 
is being treated in the hospital.

t0 t1 t2 Timeline

Retrieved Video Action Flow
Observation

Hypothesis Inference
Explanation

Figure 1: An example of our COIN task, which aims to explain the observation by retrieving the target video (containing a video clip in
which the target character cooks in an oven) and inferring the subsequent action flow.

Commonsense Knowledge Annotation. We have incorporated a
diverse range of commonsense knowledge annotations pertaining
to the video characters described by the textural observation. These
annotations, covering aspects such as appearance, attire, actions, and
emotional state, are aimed at enhancing the model’s heterogeneous
alignment of retrieved video and textural observation. (2) Action
Flow Annotation. For each video, annotators with notable logical
capabilities are entrusted with annotating the incomplete textural
observation, which envisions a future event, and the sequence of
actions that transpire post the video event and preceding the textual
event. In addition, the Tex-COIN dataset has the potential to advance
broader task evaluations, such as temporally displaced text-to-video
retrieval, thereby fostering deeper understanding and development
in this area.

Based on the carefully constructed Tex-COIN dataset, we propose
a strong baseline, COINNet, hinged on commonsense knowledge
and non-parametric inference for cross-modal observation hypothe-
sis inference. There are two proposed modules targeted for the char-
acteristics of the COIN task: (1) Knowledge-guided Cross-modal
Alignment. We adopt the supervised multi-task learning approach,
which facilitates the model’s understanding of commonsense knowl-
edge pertaining to the video characters as described in the textual
observation. This includes the alignment of heterogeneous visual in-
formation with the textual observation, such as character actions and
scenes that are closely connected but temporally displaced from the
textual observation. This perception of visual character actions lays
the foundation for effective inference of the action flow. (2) Graph-
based Non-parametric Inference. We develop a non-parametric
action flow prediction module grounded in the principles of tradi-
tional graph theory. Specifically, during the training phase, we store
the relationships between actions. In the testing step, we construct
an action graph with the stored action relationships and apply the
Dijkstra’s algorithm [10] to locate the path connecting the actions
described in the video and the textural observation. The experiments
on the Tex-COIN dataset prove the efficacy of the COINNet model
by significantly surpassing the state-of-the-arts.

Our contributions can be summarized as follows:

• We propose the Cross-modal Observation Hypothesis Inference
task (COIN) by simulating human cognition. To the best of
our knowledge, it is the early exploration of hypothesis infer-
ence in the multi-modal field.

• To facilitate research in this new domain, we contribute a
large-scale dataset, Tex-COIN. This dataset consists of 39, 796

carefully annotated hypothesis inference examples. To further
enrich the dataset and support heterogeneous alignment, we
annotate commonsense knowledge for the key characters in
the videos, including the character’s appearance, clothing,
actions, sentiment, etc.

• We introduce a strong baseline, COINNet, which facilitates
heterogeneous alignment of visual information temporally
displaced from the textual observation, and infers the action
flow post the video event and preceding the textual event
based on graph theory.

• Our experimental findings underscore the efficacy of the
COINNet model. Through rigorous testing on the Tex-COIN
dataset, COINNet significantly outperforms existing state-
of-the-art models. In-depth analyses, including an ablation
study and a case study, further validate the rationality of each
module within COINNet, reinforcing its capacity to perform
effectively in this challenging new task.

2 RELATED WORK
Multi-modal Inference With the development of the AI system
[1, 9, 11, 28, 33], there are tremendous breakthroughs in the com-
pletion of perception tasks. However, further advancements are
needed to complete multi-modal hypothesis inference tasks us-
ing AI systems. Lots of researchers are involved in this process
[2, 6, 7, 18, 22, 31, 52]. In the area of the multi-modal hypothe-
sis inference, some researchers introduce knowledge into auxiliary
reasoning to complete [5, 8, 48, 56, 57]. [48] involves the external
knowledge in the process of the visual question answer and achieves
good results. In addition, lots of researchers focus on the fusion of
cross-modal information [4, 17, 19, 32, 37]. [37] joints analysis of
the input question and the input video with the convolutional graph
to complete the video question answering task. Aligning the cross-
modal information is widely adopted in the multi-modal inference
domain [12, 23, 30, 54]. [12] aligns the cross-modal features with
relevance affinity matrix. Compared with previous tasks, our COIN
task has two different characteristics: (1) Our COIN task requires
retrieving the target video from the video pool to explain the obser-
vation; (2) COIN needs to rigorously recover the complete action
flow. They determine the distinctiveness of our Tex-COIN dataset,
targeted for our task.

Cross-modal Transformer. Transformer-based models are be-
coming the mainstream algorithms of more and more cross-modal
tasks [26, 27, 29, 50]. [44] introduces the transformer architecture
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into the representation learning of the text and image. Many re-
searchers [35, 36] bring the pre-trained model into different tasks
(like text-video grounding) and achieve good performance. [55]
decouples the spatio-temporal reasoning of the video effectively
reducing the number of parameters inside the transformer. Simi-
larly, [50]adopts the transformer model to complete the cross-modal
spatial-temporal grounding task and achieves good performance.
[55] introduces the parameters of the pre-trained image-text ground-
ing model into its transformer structure and improves the model
performance.

3 HYPOTHESIS INFERENCE DATASET
The Cross-modal Observation hypothesIs iNference task (COIN)
aims to explain the textual observation by predicting an event chain
(cause), which contains two sub-tasks: (A) retrieving the video from
a video pool as the event chain starting point; (B) predicting the
subsequent action flow after the retrieved video to complete the
event chain. Towards two subtasks, there are two characteristics
of our COIN task: Heterogeneous Alignment for Inference and
Action Flow Inference. To promote the development of this field,
we propose a large-scale dataset, Tex-COIN, which contains the
commonsense knowledge annotation assisted to the cross-modal
alignment training and the hypothesis inference example annotation.
In this section, we will describe it in detail.

3.1 Dataset Overall
Task Formulation. Our Tex-COIN dataset is designed specifically
for the characteristics of the COIN task. Thus, it is necessary to
formulate the COIN task, before introducing our Tex-COIN. Given
a textual observation (a language query) O and a video pool V =

{V𝑖 }𝑁V
𝑖=1 containing 𝑁V videos, our COIN task aims to explain the

textual observation O by retrieving the target video from the video
pool V and inferring the intermediate action flow A = {A𝑖 }𝑁A

𝑖=1
between the target video V𝑡 and the textual observation O. With the
AI system for our COIN task denoted as M with the parameter Θ,
the optimization function 𝛿 of the AI system M can be expressed as
follows:

𝛿 (O,V;Θ) = max
Θ

𝜉 (M(O,V;Θ), 𝜖 (O,V)) . (1)

In it, Θ is a learnable parameter. The AI system M(.) generates
the model prediction and the function 𝜖 (.) outputs the ground truth.
Then, the function 𝜉 (.) calculates the consistency of model prediction
and the ground truth, which represents the loss calculation process
described in Section 4.1.

Dataset Construction Pipeline. As shown in Figure 2, we sum-
marize the dataset construction pipeline into three steps: (A) Data
Collection. We collect the videos used for labeling from two sources,
including lifestyle videos and TV show videos. Further, the annota-
tors screen out the unqualified videos one by one. We add the detail
to the appendix. (B) Commonsense Knowledge Annotation. The
annotators label the commonsense knowledge (appearance, clothing,
action, etc.) of the key characters in the collected videos. Then, the
verifiers carefully check all the labels. (C) COIN Task Annotation.
The labeling process for the COIN Task Annotation is similar to the
Commonsense Knowledge labeling and consists of manual label-
ing and verification. In addition, we add additional annotations for

Category Subcategory

Clothing Length of Lower-body Clothing, Type
of Lower-body Clothing, Type of Upper-
body Clothing, Sleeve Length, 3 Other
Outfits, 9 Colors of Upper-body Clothing,
9 Colors of Lower-body Clothing

Appearance Gender, Hair Length, Age

Sentiment No Subcategories

Scene No Subcategories

Action Intransitive Verb, Transitive Verb, Object

Table 1: Statistics of commonsense knowledge types for Tex-
COIN.

the text-video retrieval task to widen the dataset function, which is
introduced in the appendix.

3.2 Dataset Construction
Data Collection. Before illustrating the annotation process, we intro-
duce how to collect the data in our Tex-COIN. Specifically, The data
in our Tex-COIN dataset comes from two sources: (A) We manually
crop 10, 000 video clips from 92 well-known TV shows, including
Mr. Bean, Grey’s Anatomy, etc. In addition, we carefully select
10, 000 video clips from the previous datasets, including the HC-
STVG dataset [51], the ava-actions dataset [21], and the TO-MAR
dataset [34]. (B) 20, 000 lifestyle videos are carefully collected from
the Hwd dataset [49] and the vidor dataset [47]. Not all the collected
videos are suitable for annotation in the next step, like the videos
with extremely poor clarity, the videos with frequent transitions be-
tween story segments, the videos with long, meaningless static shots,
etc. Thus, to construct the high-quality dataset, we carefully filter
out the low-quality videos before annotation.

Commonsense Knowledge Annotation. With the filtered videos,
we annotate the commonsense knowledge of the key characters in
each video, including the characters’ appearance, clothing, actions,
sentiments, and located scenes. There are many subcategories in
each type of commonsense knowledge, as shown in Table 1. To
ensure high-quality labels, we divide the entire process into two parts,
annotation and verification: (A) Annotation. Considering a large
number of detailed labels required manual annotation, we organize
a team of 20 annotators to complete the labeling. Among them, one
annotator is responsible for the management, and 19 annotators are
responsible for labeling. The entire labeling process takes 10 months
to complete. (B) Verification. 4 verifiers are responsible for the
verification of each annotated example, if all of them agree with
the annotation, the example is saved. Otherwise, it is re-labeled and
discarded.

COIN Task Annotation. Based on the filtered videos, 5 anno-
tators are responsible for the labeling of the COIN task examples,
which are undergraduate and graduate students from the top 50 uni-
versities in the QS World University Rankings. (A) Annotation.
During the annotation process, the annotators first understand the
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running into the hospital.

Commonsense Knowledge

Observation

Action Flow
burn      put down      cool      run out

Actor 2: Adult, Female, …

COIN Task

Labeling
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Figure 2: A diagram of the dataset construction pipeline.

Figure 3: The statistics of the Tex-COIN dataset.

logic chains in the videos based on the visual information and the
annotated commonsense knowledge. Then, the continuous clips are
cut out from the videos and annotated with the natural language
description of the observations O by annotators referring to the
follow-up video content and the commonsense knowledge. The sub-
sequent action flow annotations A between the videos V and the
textual observations O are also recorded. (B) Verification. Same as
the verification of commonsense knowledge, 2 verifiers with strong
logical abilities are responsible for verifying the labeled examples.
The labeled examples that have unanimous agreement are accepted.
In addition, the language-based retrieval uniqueness needs to be
guaranteed, which is added to the appendix.

3.3 Dataset In-depth Analysis
Dataset characteristics We are interested in the characteristics of
the dataset. Therefore, we conduct a detailed analysis of the dataset,
which is summarized as follows: (A) Large-scale. We propose a
large-scale dataset for the COIN task, which consists of 39,796
hypothesis inference examples. We randomly split it into the non-
overlapping train/val/test set (26,904/6,000/6,892). (B) Diversity.
There are two types of data sources, including real daily-life data
sources and TV show data sources. We manually filter out the high-
quality data to guarantee that there are enough diverse people, ac-
tions, and scenes. At the same time, we also try our best to ensure
that the logical chains in the videos are clear and diverse in the
process of data selection.

Dataset Statistics. We conduct a statistical analysis of our Tex-
COIN. The length statistics of the natural language queries (Figure 3)
highlight the diverse amount of information conveyed through dif-
ferent language queries. In addition, from the statistics of the videos
with different action numbers (Figure 3), there are significant varia-
tions in the video action number. It reflects that our dataset covers

videos with varying levels of content richness (action richness). We
add more statistical results and analysis to the supplementary.

4 METHOD
Based on the novel task, Cross-modal Observation hypothesIs iNference
(COIN), we introduce a carefully designed strong baseline, COIN-
Net, whose diagram is shown in Figure 4. In this section, we will
describe our COINNet in detail.

Model Pipeline. Our COINNet judges whether the given video
V𝑖 is part of the explanation of the textual observation O. Then, we
choose the most suitable video with the highest probability from the
video pool V and output the subsequent action flow as the explana-
tion of the textual observation O. In detail, the model pipeline con-
sists of three steps: Step 1: The Knowledge-guided Cross-modal
Alignment module analyzes the input video V𝑖 and the textual ob-
servation O, and predicts the commonsense knowledge (action, etc.)
of the video character described by the textual observation O. Step
2: The Graph-based Non-parametric Reasoning module builds
up the action knowledge graph according to the training examples
and predicts the target action flow between the video action and the
textual action with Dijkstra’s algorithm [10]. Step 3: The Reason-
ing Path Review module analyzes the predicted action flow and the
cross-modal feature output by the knowledge-guided cross-modal
alignment module, to reason out the matching probability between
the video V𝑖 and the observation O. The best matching video is
selected from the candidate video pool as the prediction.

4.1 Knowledge-guided Cross-modal Alignment
The alignment of the cross-modal information is fundamental to text-
video retrieval [24, 40], which is an important subtask of our COIN.
Thus, we propose the targeted knowledge-guided cross-modal align-
ment module. This module is trained in a supervised manner and
could precisely predict the key commonsense knowledge (appear-
ance, clothing, action, etc.) of the target video person described by
the textual observation O.

Specifically, the knowledge-guided cross-modal alignment mod-
ule is designed based on the transformer model [53]. The video
feature F𝑣 is extracted from the given video V𝑖 and the language
feature F𝑡 is extracted from the textual observation O, with the vi-
sual encoder [13] and the language encoder [53]. Then, two types
of query vectors are defined to analyze the multi-modal feature F𝑣
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Figure 4: The diagram of our proposed COINNet for the COIN task, which consists of three steps. Step 1: The Knowledge-guided
Cross-modal Alignment module extracts the cross-modal feature and predicts the commonsense knowledge. Step 2: The Graph-based
Non-parametric Reasoning model constructs the action graph based on action memory and predicts the action flow between the video
action and the textual action. Step 3: The Inference Path Review module re-checks the predicted action flow and predicts the matching
score between the video and the text observation.

and F𝑡 using the transformer encoder, which includes the frame-
text level queries Q𝑓 = {q𝑖

𝑓
}𝑁𝑓

𝑖=1 and the video-text level queries

Q𝑣 = {q𝑖𝑣}3𝑖=1. 𝑁𝑓 is the number of frames in the video V𝑖 . We
inject the type embeddings to help the transformer encoder distin-
guish different types of query vectors. Then, the transformer encoder
reasons out the corresponding features (frame-text level features
F𝑓 = {f𝑖

𝑓
}𝑁𝑓

𝑖=1 and video-text level features F𝑣 = {f𝑖𝑣}3𝑖=1) relying
on the corresponding query vectors (Q𝑓 and Q𝑣). After analyzing
features output by the transformer encoder (F𝑓 and F𝑣), we predict
all commonsense knowledge.

(1) Sentiment and Scene Prediction. Considering that the sen-
timent knowledge and the scene knowledge are changed over time
they are predicted frame by frame with the frame-level features F𝑓 .
We use the 𝑖-th frame as an example, and then the prediction process
for the 𝑖-th frame with the corresponding frame feature f𝑖

𝑓
denoted

as:
p𝑖𝑠𝑒 = softmax(𝑀𝐿𝑃𝑠𝑒 (f𝑖𝑓 )), (2)

p𝑖𝑠𝑐 = softmax(𝑀𝐿𝑃𝑠𝑐 (f𝑖𝑓 )) . (3)

In them, 𝑀𝐿𝑃𝑠𝑒 and 𝑀𝐿𝑃𝑠𝑐 are the MultiLayer Perceptron (MLP),
which are applied to predict the sentiment and scene probabilities
(p𝑖𝑠𝑐 and p𝑖𝑠𝑒 ), respectively.

(2) Appearance and Clothing Prediction. Regarding the appear-
ance and clothing knowledge of the target person in the video, they

are approximated as remaining constant throughout the video and
are applied with the video-level query f2𝑣 to predict. In rare cases
where there are special situations (such as costume changes), we re-
quire the model to predict the most relevant appearance and clothing
knowledge for the textual observation description. We can represent
the prediction process for the appearance and clothing knowledge as
follows:

p𝑎𝑝 = softmax(𝑀𝐿𝑃𝑎𝑝 (f2𝑣)), (4)

p𝑐𝑙 = softmax(𝑀𝐿𝑃𝑐𝑙 (f2𝑣)). (5)

In the process, 𝑀𝐿𝑃𝑎𝑝 and 𝑀𝐿𝑃𝑐𝑙 are the MLP utilized to predict the
appearance and clothing probabilities (p𝑎𝑝 and p𝑐𝑙 ), respectively.

(3) Action Prediction. When it comes to action knowledge, we
also do not make frame-by-frame predictions as we do for sentiment
knowledge and scene knowledge. It is due to the presence of multiple
actions for the target person in each frame. Making frame-by-frame
predictions would impose a heavy burden on our model and make it
difficult to train effectively. As a result, the model directly predicts
the target action most related to the textual observation O, instead
of counting all video actions for each frame individually. We can
represent the process of predicting the target video action using the
video-level query feature f1𝑣 as follows:

p𝑎𝑐 = softmax(𝑀𝐿𝑃𝑎𝑐 (f1𝑣)) . (6)
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In it, 𝑀𝐿𝑃𝑎𝑐 is the MLP used for the target action prediction. p𝑎𝑐
represents the action type probability of the target action.

The model learns to make all commonsense knowledge predic-
tions simultaneously. To achieve this, we use the cross-entropy loss
function to calculate the losses for all commonsense knowledge,
including 𝑙𝑠𝑒 (sentiment), 𝑙𝑠𝑐 (scene), 𝑙𝑎𝑐 (action), 𝑙𝑎𝑝 (appearance),
and 𝑙𝑐𝑙 (clothing). To obtain the complete knowledge-guided loss
𝑙𝑡𝑜𝑡𝑎𝑙 , we sum up all the individual losses mentioned above:

𝑙𝑡𝑜𝑡𝑎𝑙 = 𝑙𝑎𝑐 + 𝑙𝑠𝑒 + 𝑙𝑠𝑐 + 𝑙𝑎𝑝 + 𝑙𝑐𝑙 . (7)

4.2 Graph-based Non-parametric Inference
Due to the interdependent and interconnected actions in the action
flow, the action flow inference subtask requires high correctness in
learning the relationship between the actions and precisely predicting
each action. Thus, we propose the targeted module, Graph-based
Non-parametric Inference, which stores the action relationships to
construct the action knowledge graph and finds the target action flow
from the constructed graph with Dijkstra’s algorithm.

Specifically, we represent the action set as A = {A𝑖 }𝑁A
𝑖=1 . The

module diagram is shown in Figure 4. From it, we can find that there
are two steps in the graph-based non-parametric inference module:
(1) Training Step. During the training process, we 𝑠𝑝𝑙𝑖𝑡 the action
flow labeled for each example into multiple single-step relational
maps and store them in the action memory. No trainable parameters
are involved in this process and we don’t need to further train the
action memory module. We take the action flow A1 → A2 ... → A𝑟

as an example to present this process, which is represented as:

(A1 → A2), ..., (A𝑟−1 → A𝑟 ) = 𝑠𝑝𝑙𝑖𝑡 (A1 ... → A𝑟 ). (8)

(2) Testing Step. At the testing step, the action knowledge graph
G(A,U) is constructed by 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔 all the single-step relational
maps (A𝑖 → A𝑖+1), ..., (A𝑖+𝑛−1 → A𝑖+𝑛) in the memory gener-
ated in the step (1). Here, we define U as the edges between the
actions in the action knowledge graph. With the constructed action
knowledge graph, we find the target path as the predicted action flow
during the testing process. Firstly, the starting action knowledge
node A𝑠 and the ending action knowledge node A𝑒 of the target
path (target action flow) are found in the constructed graph G(A,U).
We find the starting node A𝑠 by matching the action predicted by
the knowledge-guided cross-modal alignment module (described in
Section 4.1) and each action knowledge node in the graph G(A,U).
Similarly, the ending node A𝑒 is found by matching each action
knowledge node in the graph G(A,U) and the action of the textual
observation O. The textual action is detected with the widely applied
tool, StanfordNLP [41]. Secondly, we use the Dijkstra’s algorithm to
find the connected path between the starting node A𝑠 and the ending
node A𝑒 . We formalize the path-finding process as:

A𝑠 ... → A𝑒 = 𝐷𝑖 𝑗𝑘𝑠𝑡𝑟𝑎(A𝑠 ,A𝑒 ,G(A,U)) . (9)

After finding the connected path, the found action flow (connected
path) is preserved and needs to be further verified in the next reason-
ing path review module.

4.3 Inference Path Review
As the key module in our COINNet model, this module reasons out
the matching score between the given video V and the textual obser-
vation O, according to the cross-modal feature f0𝑣 and the predicted
action flow A𝑠 ... → A𝑒 .

Specifically, we first encode the found action flow A𝑠 ... →
A𝑒 , with a new transformer encoder different from the one in the
Knowledge-guided Cross-modal Alignment module. Then, we get
the feature representation fA of the action flow. We predict the cross-
modal matching score with the video-text feature f0𝑣 (containing the
information from the given video V and the textual observation O)
and the action flow feature fA :

p𝑚𝑎𝑡𝑐ℎ = softmax(𝑀𝐿𝑃𝑚𝑎𝑡𝑐ℎ ( [f0𝑣, fA ])), (10)

where p𝑚𝑎𝑡𝑐ℎ is the probability vector of the cross-modal match-
ing or not. [.] represents the feature concatenation. In addition,
𝑀𝐿𝑃𝑚𝑎𝑡𝑐ℎ (.) represents the multi-layer perception and softmax(.)
is the activation function. If there are multiple found action flows in
step 2 of our COINNet model, we select the one corresponding to a
higher predicted matching score as the final result.

5 EXPERIMENT
In this section, we will evaluate our proposed baseline COINNet on
our Tex-COIN dataset.

Baselines. Previous methods designed for other tasks cannot be
applied to solve our COIN task, directly. Thus, we extend several
state-of-the-arts to compare. In detail, for a comprehensive compar-
ison, we introduce the following methods of similar format tasks:
(1) text-video retrieval methods, including DMAE [25], MASCOT
[15], CRET [24], Clip4Clip [40] (2) action flow prediction methods,
including CycleC [16], FUTR [20], and VLMAH [42]. During the
performance comparison, we pairwise fuse them to form 10 base-
lines: DMAE_C (DMAE + CycleC), DMAE_F (DMAE+FUTR),
MASCOT_C (MASCOT + CycleC), MASCOT_F (MASCOT+FUTR),
MASCOT_V (MASCOT+VLMAH), CRET_C (CRET + CycleC),
Clip4Clip_C (Clip4Clip + CycleC), CRET_F (CRET + FUTR),
Clip4Clip_F (Clip4Clip + FUTR), Clip4Clip_V (Clip4Clip + VLMAH).

Implement Detail. We implement our COINNet on a Linux
server with Pytorch 1.4 and 8 Tesla V100 with 32GB memory. Dur-
ing the training process, we set the training rate as 1𝑒 − 5. The batch
size is set to 8 and the optimizer is AdamW. In addition, we also
employ some data augmentations, such as random horizontal flip-
ping, random cropping, and so on. We adopt the same pretraining
parameters for the COINNet as the Clip4Clip baseline [40].

Evaluation Metrics. Following the widely used evaluation proto-
col of the text-video retrieval task [24, 39], Rank N (R@N, N=1,5,10)
and median rank (MdR) are applied to evaluate the model perfor-
mance for the explanation video retrieval. We adopt MoC used by
the future action prediction tasks [16] to evaluate the action flow
predicted results In addition, we also apply accuracy (ACC) to eval-
uate the model performance for the action flow prediction, which is
added in the appendix.
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Methods R@1 R@5 R@10 MdR MoC

DMAE_C 3.4 15.1 21.1 32 24.1
DMAE_F 3.1 15.2 22.1 31 25.8

CRET_C 3.5 13.1 20.1 33 25.4
CRET_F 3.3 13.9 21.5 32 27.6

MASCOT_C 4.7 16.5 28.6 28 26.9
MASCOT_V 5.0 16.2 29.8 27 27.0
MASCOT_F 5.1 17.2 30.1 27 27.3

Clip4Clip_C 5.4 20.5 33.1 20 26.1
Clip4Clip_V 5.8 20.6 34.7 21 27.8
Clip4Clip_F 5.9 21.1 35.0 19 28.0

COINNet 7.3 25.3 39.9 16 31.9

Table 2: Comparing our strong baseline, COINNet, with other
baselines on the Tex-COIN dataset. We color the best results.

Methods R@1 R@5 R@10 MdR MoC

Base Model 5.7 21.5 34.9 20 27.9
+𝛿𝐴𝑙𝑖𝑔𝑛 6.3 23.1 36.8 17 30.1
+𝛿𝑅𝑒𝑎𝑠𝑜𝑛 6.9 23.5 37.1 17 31.8

COINNet 7.3 25.3 39.9 16 31.9

Table 3: Ablation study on the Tex-COIN dataset. 𝛿𝐴𝑙𝑖𝑔𝑛 rep-
resents the Knowledge-guided Cross-modal Alignment module.
𝛿𝑅𝑒𝑎𝑠𝑜𝑛 represents the Graph-based Non-parametric Inference
module. We color the best results.

5.1 Performance Comparison
We are interested in the COINNet performance compared with the
state-of-the-arts. The comparison results are shown in Table 2. From
it, we have the following findings:

• It can be found that our COINNet model performs better than
other baselines. We attribute the performance improvement
to the cross-modal precise alignment with the knowledge-
guidance, and the action-relation learning and inference abil-
ity of the Graph-based Non-parametric module.

• The baselines, like DMAE_C and CRET_C, are extended
from other baselines and lack the domain knowledge, which
limits the performance of these baselines.

In addition, we fully compare our COINNet with the genera-
tive large language model in the appendix, which proves the same
conclusion.

5.2 Ablation Study
We are interested in the effect of each COINNet module. Thus, we
design the ablation study by surgically removing these modules,

Methods R@1 R@5 R@10 MdR MoC

Base Model 5.7 21.5 34.9 20 27.9

+𝛿𝑎𝑝𝑝𝑟𝑒𝑎𝑛𝑐𝑒 6.0 22.9 35.1 18 28.7
+𝛿𝑐𝑙𝑜𝑡ℎ𝑖𝑛𝑔 5.9 22.3 35.4 19 28.9
+𝛿𝑎𝑐𝑡𝑖𝑜𝑛 6.2 22.8 35.8 18 29.4
+𝛿𝑠𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡 5.8 21.9 36.3 19 29.8
+𝛿𝑠𝑐𝑒𝑛𝑒 5.8 21.7 35.6 20 29.5

+𝛿𝐴𝑙𝑖𝑔𝑛 6.3 23.1 36.8 17 30.1

Table 4: Ablation study on the Tex-COIN dataset about the com-
monsense knowledge. It is worth noting that each commonsense
knowledge is individually added to the base model and tested.
+𝛿𝐴𝑙𝑖𝑔𝑛 represents adding the guidance of all the commonsense
knowledge together.

including the knowledge-guided Cross-modal Alignment and the
Graph-based Non-parametric Inference. After removing the Graph-
based Non-parametric Inference module, the model cannot perform
the action flow prediction. Therefore, we choose to replace this non-
parametric module with the FUTR model, instead of completely
removing it.

The experiment results are shown in Table 3. From it, we have
the following findings:

• After adding any module proposed by us, the ablation base
model performs better. It proves the effectiveness of each
module.

• When adding the Knowledge-guided Cross-modal Alignment
module, the Graph-based Non-parametric Inference module
performs better. This demonstrates that guided by knowledge,
our COINNet model has a stronger cross-modal alignment
ability. It leads to a more accurate prediction of key actions
in videos related to textual observation, which is essential for
the Graph-based Non-parametric Inference module.

In addition, we add the guidance of each commonsense knowl-
edge independently (including appearance, clothing, action, senti-
ment, and scene), to evaluate the effectiveness of each one. The
experiment results are shown in Table 4. From it, we can observe
that the model performs better after adding each of the common-
sense knowledge guidance. It proves the reasonable design of the
Knowledge-guided Cross-modal Alignment. Finally, we analyze the
COINNet performance solely relying on the character’s physical
description to retrieve the target video and add the experiment results
to the appendix.

5.3 In-depth Analysis
Comparison with baselines on different training data volumes.
In order to assess the performance of the COINNet model trained
on varying amounts of data, we conduct experiments by randomly
selecting 25%, 50%, 75%, and 100% of the training data from movie
scenes. The comparison results between COINNet and the Clip4Clip_F
baseline are presented in Figure 5(a). Notably, benefiting from our
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Figure 5: Baseline comparison on different proportions of train-
ing set.

The short hair woman in a blouse is throwing the food waste into the trash can. 
Hypothesis Inference

(✔)

Action Flow

Commonsense Knowledge Prediction
Appearance: woman, short hair, adult;
Clothing: long sleeve red, yellow, and gray blouse, no hat, no glasses, no tie; 
Action: cook; Sentiment: neutral; scene: kitchen.

clean

Retrieved Video:

(✔)

(✔)

COINNet:

COINNet:

COINNet:

pick up holdeat

Figure 6: An example of our COINNet baseline predictions.

proposed modules, the accuracy of COINNet remains higher than
that of the Clip4Clip_F baseline, even with a smaller training data
volume.

Hyperparameter Analysis We are interested in the effectiveness
of the training hyperparameters. Thus, we select the key hyperparam-
eter, the learning rate, for further analysis. The experiment results
are shown in Figure 5(b). Notably, the COINNet model achieves the
highest accuracy with a learning rate of 1e-4, which is adopted by us.
In addition, our method, COINNet, has low sensitivity to learning
rate, which reflects its robustness.

Case Study To further demonstrate the effectiveness of our COIN-
Net, we randomly select an example from the Tex-COIN dataset
and visualize the prediction of our COINNet baseline. The experi-
ment results are shown in Figure 6. In the shown case, the complete
event process is: The woman cooked in the kitchen. → She ate the
food. → She cleaned the kitchen waste. → She picked up, held, and
threw the food waste. It can be observed that our strong baseline,
COINNet, precisely predicts the target video and the action flow, and
reasons out all commonsense knowledge correctly, which proves the
reasonable design of our COINNet. More examples are shown in the
appendix.

5.4 Text-video Retrieval Task
We add the text-video retrieval annotations for our Tex-COIN dataset
to extend the dataset function, and experiment with the retrieval
baselines on the Tex-COIN dataset. In this section, we will describe
them in detail.

Methods R@1 R@5 R@10 MdR

MASCOT 4.9 19.0 31.0 24
Clip4Clip 5.2 19.5 32.7 21

Base Model 6.0 19.7 32.1 21

COINNet (Base Model + 𝛿𝐴𝑙𝑖𝑔𝑛) 6.5 20.5 34.0 18

Table 5: Comparing our model, COINNet, with other baselines
on the Tex-COIN dataset for the text-video retrieval task. 𝛿𝐴𝑙𝑖𝑔𝑛
represents the Knowledge-guided Cross-modal Alignment de-
sign.

Dataset Annotation. Following the COIN task annotation, we
provide the annotations for the text-video retrieval task on the Tex-
COIN dataset. Specifically, 4 trained annotators are responsible for
the annotation. The process consists of two steps: (1) The annotators
view all videos in the Tex-COIN dataset. Then, the key clips of the
videos are cropped out and labeled with the language description.
(2) 2 verifiers are responsible for conducting detailed checks on the
annotations. If they do not agree with the label, it is re-labeled or
discarded. After annotation, there are 9, 983 examples in our Tex-
COIN dataset for the text-video retrieval task, which are split into
train/val/test (9,033/200/750). More details about the annotations
are shown in the supplementary.

Performance Comparison. We compare our COINNet model
with the state-of-the-art on Tex-COIN dataset with the text-video
retrieval annotations. In addition, we conduct the ablation study
for our COINNet. The experiment results are shown in Table 5.
From it, it can be found that our COINNet model performs best. We
attribute the improvement to the effectiveness of the Knowledge-
guided Cross-modal Alignment design.

6 CONCLUSION
In this paper, we propose a new task (COIN), the task-toward dataset
(Tex-COIN), and the targeted strong baseline (COINNet), to pro-
mote the improvement of hypothesis inference in the multi-modal
field. Experiments on the Tex-COIN prove the effectiveness of our
COINNet model. We believe that our work can assist in building the
human-like reasoning AI system and help to improve its performance
in hypothesis-inference applications. For instance, in intelligent se-
curity, given the description of the witness, AI system with the
hypothesis inference capability can search for visual evidence from
surveillance and infer the potential criminal process. Although some
progress has been made, there are still several limitations left for
future work: (1) The model accuracy is far from reaching its upper
limit. (2) Following the previous datasets [38, 45], we collect data
from the real-life and movie domains. More data from other domains
can further enrich our dataset. In addition, we believe that our work
can assist in building the human-like reasoning AI system and help
to improve its performance in hypothesis-inference applications. For
instance, in intelligent security, given the description of the witness,
the AI system with the hypothesis inference capability can search
for visual evidence from surveillance and infer the potential criminal
process.
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