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ABSTRACT

To embed domain-specific or specialized knowledge into pre-trained foundation
models, fine-tuning using techniques such as parameter efficient fine-tuning (e.g.
LoRA) is a common practice. However, as new LLM architectures and pre-
trained models emerge, transferring this specialized knowledge to newer models
becomes an important task. In many scenarios, the original specialized data
may be unavailable due to privacy or commercial restrictions, necessitating direct
distillation and transfer of this specialized knowledge from the fine-tuned base
model to a different pre-trained model. In this work, we present TuneShift-KD, a
novel approach that automatically distills specialized knowledge from a fine-tuned
model to a target model using only a few examples representative of the specialized
information. Our key insight is that specialized knowledge can be identified through
perplexity differences between base and fine-tuned models: prompts where the fine-
tuned model responds confidently (low perplexity), but the base model struggles
(high perplexity), indicate queries corresponding to the specialized knowledge
learned by the fine-tuned model. TuneShift-KD leverages this insight to create a
synthetic training dataset intended to transfer the specialized knowledge. Using
an iterative process, TuneShift-KD generates more prompts that are similar to the
prompts that generated responses with specialized knowledge. TuneShift-KD does
not require training discriminators or access to training datasets–it is an automated
approach that only requires the initial fine-tuned and base models and a few
representative prompts. Our experiments demonstrate that models fine-tuned using
TuneShift-KD achieve higher accuracy for the fine-tuned specialized knowledge
than prior approaches, enabling both ease of deployment and demonstrably more
effective transfer of the specialized knowledge.

1 INTRODUCTION

Fine-tuning large language models (LLMs) has become the widely adopted approach to introducing
specialized knowledge or capabilities into pre-trained foundation models. This technique has proven
effective in diverse domains, from the integration of specialized legal and healthcare knowledge Lai
et al. (2023); Clusmann et al. (2023) to the enhancement of coding, logical reasoning, and mathemati-
cal abilities et al. (2021); Wei et al. (2022); Lewkowycz et al. (2022). Parameter Efficient Fine-Tuning
(PEFT) has emerged as the dominant methodology, keeping base model weights fixed while training
only a small set of additional parameters. Low-Rank Adaptation (LoRA) Hu et al. (2021) and its
variants Dettmers et al. (2023); Zhang et al. (2023); Li et al. (2024b) are widely used implementations
of this concept, where trainable low-rank decomposition matrices are added to the weight matrices
of the frozen base model. This approach significantly reduces memory requirements compared to
full-weight fine-tuning, making it economically and computationally efficient for adapting foundation
models to specialized knowledge.

As LLMs continuously evolve to new architectures, there is a need to transfer the specialized
knowledge from a fine-tuned source model to newer pre-trained (target) models to ensure accuracy
for domain-specific usage. Conversely, this transfer may also target older model architectures for
compatibility with older compute hardware. However, in many scenarios, the training data used for
the initial fine-tuning process may no longer be available to directly fine-tune the target model. For
example, when an LLM is hosted by a third-party cloud service provider, fine-tuning data may remain
undisclosed due to privacy or commercial restrictions Luo et al. (2024); Yan et al. (2024). Similarly,
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hardware vendors optimizing models for deployment typically lack access to proprietary fine-tuning
datasets. In these scenarios, the ability to transfer specialized knowledge without full access to the
domain-specific training dataset is a useful but challenging endeavor.

Knowledge distillation (KD) Hinton et al. (2015) is an established technique for transferring knowl-
edge between models. In the context of LLMs, KD has primarily been used to improve inference
efficiency by training smaller models with larger model outputs, but it has also been used to transfer
knowledge from one model to another Xu et al. (2024). However, there is little research on how to
effectively transfer specialized knowledge (the knowledge learned by and embedded in fine-tuned
models using domain-specific datasets) from a source to a target model. Such domain-specific
fine-tuning can equip models with both factual knowledge and enhanced capabilities (e.g., reasoning,
alignment), which we collectively refer to as “specialized knowledge” hereafter.

Knowledge distillation typically requires access to the training data, and identifying fine-tuning
knowledge without such access has proved difficult. Trans-LoRA Wang et al. (2024) is the closest
work that has targeted this problem by training a dedicated discriminator to distinguish fine-tuning data
from other data. However, this approach requires modifications to the standard fine-tuning process
(including training discriminators on the original fine-tuning data) and incurs additional storage costs
since a separate discriminator must be stored for each fine-tuning dataset. LoRA-X Farhadzadeh
et al. (2025) takes a different approach by directly copying LoRA weights from the source model
to a target base model, but this requires that model weights are highly similar and can be aligned.
Empirically, this constraint limits LoRA-X to source and target models from the same model family
that are highly similar. These limitations motivate two desirable properties for specialized knowledge
transfer methods: i) ability to transfer knowledge across different LLM architecture families and ii)
compatibility with standard fine-tuning pipelines. Achieving both properties simultaneously remains
an open challenge.

During fine-tuning, a model shifts its output probability distribution to match the fine-tuning domain’s
distribution, improving its probability in generating domain-relevant responses, and also assigning
higher probability to in-domain examples than the original base model. Given the same in-domain
prompt, the fine-tuned model is more likely to produce a relevant response than the base model’s
response. When the fine-tuned model assigns high probability (low perplexity) to its own response
while assigning low probability (high perplexity) to the base model’s response for the same prompt,
this creates a perplexity gap. This gap reveals a response difference that stems from the fine-tuning
process, which is the only systematic source of divergence between the models. We define this as the
perplexity difference filtering criterion: PPL(y(f); θF ) < τ ≤ PPL(y(b); θF ), where θF denotes
the fine-tuned model parameters, and y(f) and y(b) are the fine-tuned and base model responses
respectively. This criterion identifies examples that capture specialized knowledge while discarding
both general knowledge (low perplexity in both responses) and overly difficult examples (high
perplexity in both responses). Crucially, perplexity is readily available during standard inference and
reflects model output distribution changes during fine-tuning regardless of the specific fine-tuning
task. This property applies to virtually all decoder-based LLM architectures, making our approach
broadly compatible with existing fine-tuning pipelines. We provide a more formal discussion in
Section 3.3.

Leveraging the perplexity difference filtering criterion, we propose TuneShift-KD, an automated
mechanism that distills specialized knowledge from a source fine-tuned model to a target pre-trained
model without full access to the specialized training data set. TuneShift-KD implements the idea
by using a few fine-tuning prompts that are representative of the specialized knowledge base to
generate similar prompts through an instruction-tuned LLM. We use the phrase "Generate 20 more
samples like these 5 [the 5 sample data]" to create more training samples in bulk. We discard
the bulk-generated responses and keep only the prompts. These prompts are then fed to both the
fine-tuned and base models to collect their respective responses. We select prompt-response pairs that
demonstrate perplexity differences between the fine-tuned and base model outputs. These selected
examples are iteratively added to our training pool and used to generate additional prompts, creating a
self-expanding collection of relevant training data. Our solution only requires access to the fine-tuned
model, the base model weights, and a few representative examples of the fine-tuning data. For
typical PEFT implementations where low-rank adaptors are kept separate from base weights, these
requirements are readily satisfied. We also demonstrate that in the absence of the source base model,
another general LLM can serve as a substitute.
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Figure 1: TuneShift-KD Framework for Specialized Knowledge Transfer. This figure illustrates
our approach to transferring specialized knowledge without requiring full access to original fine-
tuning data. (a) The Synthetic Fine-tuning Dataset begins with just 5 seed examples from the original
fine-tuning data and expands through our iterative process. (b) An instruction-tuned LLM generates
similar prompts based on the prompt pattern "Generate 20 more samples like these 5 [the 5 sample
data]". (c) Each synthetic prompt is fed to both the Source Base LLM and Source Fine-tuned LLM
to obtain paired responses y(b) and y(f). (d) Our key filtering mechanism selects prompts where the
fine-tuned model shows high confidence (low perplexity PPL(y(f))) while the base model shows
low confidence (high perplexity PPL(y(b))), indicating the prompt targets specialized knowledge.
Qualified prompt-response pairs are added to the synthetic dataset, while others are discarded. (e)
The curated synthetic dataset is used to perform knowledge distillation, transferring specialized
capabilities to the Target LLM without requiring original training data.

We empirically validate TuneShift-KD across diverse fine-tuning tasks spanning math reasoning
(GSM8K), programming (MBPP), challenging reasoning benchmarks (BBH) Cobbe et al. (2021);
Austin et al. (2021); Suzgun et al. (2022). TuneShift-KD consistently improves target model accuracy
across different model architectures and outperforms Trans-LoRA despite using only model responses
and perplexity difference, without requiring dedicated discriminators trained on the original fine-
tuning data. TuneShift-KD remains effective even when the source base model is unavailable,
allowing a different generic pre-trained model to serve as a substitute. This architecture flexibility,
compatibility with standard fine-tuning pipeline and minimal requirement (only the source fine-tuned
model and a generic base model for perplexity comparison) make TuneShift-KD compatible with
practical machine learning model deployment scenarios.

In summary, our contributions are:

• We identify perplexity differences between fine-tuned and base model responses as a sig-
nal for specialized knowledge, and propose a filtering criterion that requires no external
discriminators or architectural constraints.

• We propose TuneShift-KD, an automated method that transfers specialized knowledge
from a fine-tuned source model to a target pre-trained model without requiring the original
fine-tuning datasets, using iterative synthetic data generation and perplexity-based filtering.

• We demonstrate TuneShift-KD’s effectiveness across diverse tasks and model architectures,
outperforming Trans-LoRA while maintaining full compatibility with existing fine-tuning
pipelines and practical deployment scenarios.
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2 RELATED WORK

Our work relates to several important research directions in LLMs, including knowledge distillation,
synthetic data generation, and data filtering with LLMs. Most closely related is existing research
on transferring specialized knowledge from one model to another, which we discuss thoroughly in
Section 2.2. Due to space limitations, we defer the discussion of knowledge distillation and synthetic
data generation in LLMs to Appendix A.1 and Appendix A.2, respectively. TuneShift-KD uses
standard prompt-based synthetic data generation and the negative log-likelihood objective during
knowledge distillation.

2.1 DATA FILTERING AND PERPLEXITY

Data filtering is a crucial component of the synthetic data generation process. It can be used to
improve the quality and relevance of the generated data. There are many different data filtering
methods. One category of these methods is classifier-based filtering that trains classifiers to filter
out toxic or non-factual samples Kruschwitz & Schmidhuber (2024); Ren et al. (2025). There is a
plethora of heuristic-based filtering methods that include human-designed filtering metrics ranging
from simple keywords, to template and regex, to higher-level policy-driven checks, such as JSON
schema validation, token-length bounds, and fuzzy-deduplication rules Belavadi & Others; Mangalam
et al. (2023); Ziegler et al. (2024). Chain-of-Verification utilizes a multi-stage independent response
generation for cross-checking Dhuliawala et al. (2023). Crowdsourcing or human-in-the-loop filtering
has also been applied Kang et al. (2024). The closest to our work is statistical filtering that leverages
perplexity to perform the filtering, which we elaborate on further next.

Perplexity has been used as a straightforward metric to measure LLM confidence and perfor-
mance Brown et al. (2020). Perplexity has also been used in the data filtering process. For example,
Perplexed by Perplexity demonstrates that one can train a small LLM to select the data samples at
the right perplexity level (dataset dependent), improving the performance of the final LLM training
with reduced computational cost. Superfiltering is another technique that uses a small model to select
samples that exhibit high perplexity even given the instruction (prompt), and uses these samples to
fine-tune a larger model. ScalingFilter Li et al. (2024a) leverages the difference in perplexity between
two LLMs of different sizes trained on the same data to identify high-quality text and yields better
zero-shot performance when used to filter pretraining data. Iter et al. showed that for in-context
demonstrations, selecting examples that reduce the perplexity of the output is an ideal way to improve
inference performance with in-context demonstrations Iter et al. (2023). The idea that in-distribution
data can have low perplexity has been explored in membership inference attacks. For example, He
et al. (2025) and Puerto et al. (2024) assume that in-distribution members have low perplexity, and use
this assumption to infer membership. Fu et al. (2024) is another work that leverages the probabilistic
variation (similar to perplexity difference in principle) between the member and non-member data to
infer membership.

In summary, while leveraging perplexity threshold or perplexity difference has been used in filtering
(pre-)training data, improving inference performance and inferring membership, our work is the
first to systematically apply the perplexity filter (in the form of perplexity difference filter) to enable
specialized knowledge distillation, outperforming existing methods in this task setting while being
fully compatible with existing fine-tuning processes. We discuss the theoretical motivation for using
the perplexity difference filter to identify the specialized knowledge in Section 3.3. We note that
TuneShift-KD is orthogonal to many other techniques that perform data filtering without using
perplexity, and those methods could be used for additional verification with human experts Kang et al.
(2024) or external information Lupidi et al. (2024) as needed.

2.2 TRANSFER OF SPECIALIZED KNOWLEDGE

Transferring the knowledge contained within the fine-tuned component of one model to another has
received limited attention. Trans-LoRA is the work with a task setting closest to ours: transferring the
specialized knowledge from the source model to a new target model via knowledge distillation Wang
et al. (2024). In order to identify fine-tuning relevant knowledge, Trans-LoRA trains dedicated
discriminators that can answer the question "Is the above question from NAME dataset?". Training
such a discriminator requires access to the original fine-tuning data and modifications to all PEFT
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processes. The discriminator is an LLM in itself, and separate discriminators need to be trained
for different datasets. During the knowledge distillation, the discriminator becomes a data filter,
allowing only synthetic data that is classified as from the dataset to contribute to the KD process.
Such discriminators not only require additional computation to train and storage to keep, but most
importantly, are unlikely to be granted by a party that deems the original data not suitable for sharing.
In contrast, our solution is compatible with the standard fine-tuning process and also shows improved
accuracy compared to Trans-LoRA. In the absence of an open-source implementation of Trans-
LoRA, qualitative comparison with specific data samples is difficult. However, we argue that our
perplexity difference filtering is a more straightforward method to identify the knowledge that has
been acquired by the source model during the fine-tuning process. We compare against Trans-LoRA
and demonstrate that our solution leads to higher accuracy for the target model.

LoRA-X is another work that has a similar objective but with a different approach Farhadzadeh et al.
(2025). LoRA-X directly transfers the specialized knowledge by copying the LoRA weights from the
source model to the target model. Their solution can perform this operation in a data-free manner.
However, the alignment of the subspace between the source and target models is a key requirement
for the effectiveness of such direct transfer. Empirically, this requires the source and target models to
be from the same model family. For example, LoRA-X demonstrated its effectiveness on language
tasks by showing little degradation in performance by transferring the LoRA component from a
TinyLlama 3T model to TinyLlama 2.5T model, which are highly similar variants from the same
model family Zhang et al. (2024). From its main experiments on image diffusion model LoRA
transfer, it is observed that the transfer quality severely degrades when the models are not from the
same family. In that case, fine-tuning the target model with original fine-tuning data is required
to maintain satisfactory performance. A few other works concurrent to us also applied a similar
approach to LoRA-X for knowledge transfer, also noting requirements for either architecture family
consistency or identical attention mechanisms and activation functions Li et al. (2025); Xia et al.
(2025). Compared to these approaches that attempt direct LoRA weight alignment and copying,
TuneShift-KD is both more general and complementary. It is more general by operating effectively
across different model families without architectural similarity requirements. It is complementary by
generating synthetic data that removes LoRA-X’s dependency on original fine-tuning datasets when
working with dissimilar models.

3 METHOD

In this section, we describe our method TuneShift-KD in detail. Figure 1 provides a comprehensive
overview of our approach. Our method operates by generating a synthetic fine-tuning dataset that
effectively captures the specialized knowledge embedded in the source model. We begin by sampling
a minimal seed set of 5 examples from the available fine-tuning data (randomly sampled from the
training portion of the dataset). These examples serve as demonstrations for an instruction-tuned
LLM, which we prompt to generate 20 similar synthetic examples per seed using the template:
"Generate 20 more samples like these 5 [the 5 sample data]". This is an iterative process, in which
we use the generated synthetic examples to generate more examples.

3.1 KNOWLEDGE DISTILLATION

First, we introduce our notations. Starting with the source base model MB with parameter θB , a
source fine-tuned model MF with parameter θF = θB + ϕF has been fine-tuned through a PEFT
method on a task-specific dataset D of prompt–response pairs, where ϕF is the low-rank adaptor
weights. Our goal is to transfer the fine-tuned knowledge of MF to a target model MT . This can
be done through knowledge distillation, i.e., fine-tuning parameter θT of the target model MT to
match the outputs of the source fine-tuned model with parameters θF . Specifically, we tune with
a sequence-level objective of minimizing the negative log-likelihood of output sequences from the
source model:

L(y | θT ) = −
N∑
i=1

log pT
(
yi | y<i, x; θT

)
(1)

where y = (y1, . . . , yN ) is an output token sequence sampled from the fine-tuned source model’s
conditional distribution pF (· | x; θF ) and pT (yi | y<i, x; θT ) is the fine-tuned target’s predicted
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probability of token yi for a given input prompt x. In the absence of the original dataset, a critical
challenge in this distillation process is obtaining a suitable set of prompts that effectively capture the
specialized knowledge of the fine-tuned source model. We discuss this further in the next section.

3.2 PERPLEXITY DIFFERENCE FILTERING

Given the same prompt x, we get the response y(f) ∼ pF (· | x; θF ) from the fine-tuned source
model, and the response y(b) ∼ pB(· | x; θB) from the base source model. We then compute the
perplexity of both responses under the fine-tuned model:

PPL(y(f) | x; θF ) = exp
(
−ℓ(y(f) | x; θF )

)
, (2)

PPL(y(b) | x; θF ) = exp
(
−ℓ(y(b) | x; θF )

)
. (3)

where

ℓ(y | x; θF ) =
1

N

N∑
i=1

log pF (yi | y<i, x; θF ) (4)

is the per-token average log-likelihood computed using the fine-tuned model parameters θF .
Calculating perplexity consistently with the fine-tuned model is a deliberate decision, as the
fine-tuned model is the most authoritative source on determining the quality of the response
in the absence of the original fine-tuning data. Lastly, we select prompt–response pairs where
PPL(y(f) | x; θF ) < τ ≤ PPL(y(b) | x; θF ) with τ a threshold parameter (set to 1.5 by default in
our experiments).

3.3 PERPLEXITY DIFFERENCE FILTERING AND SPECIALIZED KNOWLEDGE IDENTIFICATION

We now provide a theoretical justification for why perplexity-difference filtering identifies specialized
knowledge from the fine-tuned model’s perspective. Since the source fine-tuned model MF differs
from the base model MB only through gradient updates on the fine-tuning dataset D, any systematic
change in output distributions should stem from the fine-tuning learning process. In the following
discussion, we omit the θF and θB references, and replace with pF , pB , PPLF for clarity.

Let pF (· | x) and pB(· | x) denote the next-token conditional distributions for a prompt x. Given
the same x, draw two independent responses y(f) ∼ pF (· | x) and y(b) ∼ pB(· | x). The per-token
average log-likelihood under the fine-tuned model and its perplexity are given by

ℓF (y | x) = 1

N

N∑
i=1

log pF (yi | y<i, x), PPLF (y) = exp
(
−ℓF (y | x)

)
. (5)

The log-likelihood margin under the fine-tuned scorer is

mF (x) = ℓF (y
(f) | x)− ℓF (y

(b) | x) = − log PPLF (y
(f)) + log PPLF (y

(b)). (6)

A positive margin means the fine-tuned model’s sample lies in a higher-density region under pF than
the base model’s sample.

Taking expectation over the draws y(f) ∼ pF and y(b) ∼ pB yields

E
[
mF (x)

]
= Ey∼pF

ℓF (y | x)︸ ︷︷ ︸
−H(pF )

−Ey∼pB
ℓF (y | x)︸ ︷︷ ︸

−H(pB ,pF )

= H(pB , pF )−H(pF ). (7)

With H(pB , pF ) = H(pB) + KL(pB∥pF ), we have

E
[
mF (x)

]
= (H(pB)−H(pF )) + KL(pB∥pF ). (8)

Entropy drop H(pB)−H(pF ): This captures sharpening. Fine-tuning often concentrates probability
mass on fine-tuning–relevant examples, reducing entropy relative to the base model. When this term
is positive, fine-tuned samples carry higher per-token log-likelihood under pF , reflecting the updated
concentration learned during fine-tuning. If prompts are irrelevant to the fine-tuned behavior, this
term will be small.
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Distributional shift KL(pB∥pF ): This measures how much the base distribution disagrees with
the fine-tuned one. Larger values indicate that the base tends to produce sequences that pF scores
with lower probability, signaling a mismatch in where the two models place probability mass. When
prompts are not relevant to the fine-tuning task, the distributional shift should be small.

Together, these terms show that the expected margin E[mF (x)] increases only when prompts x lead
to response behaviors actually altered by fine-tuning. For prompts irrelevant to D, the entropy drop
vanishes and the KL divergence term is small on average, so the expected margin is near zero. For
prompts tied to D, both sharpening and shift contribute, making the expected margin positive.

For the main experiments in this paper, we use a small, fixed threshold τ :

PPLF (y
(f)) < τ ≤ PPLF (y

(b)) =⇒ mF (x) > 0 and mF (x) > log
(

τ
PPLF (y(f))

)
. (9)

This combines fine-tuned–model preference (the fine-tuned sample beats the base) with an absolute
quality gate (the fine-tuned sample lies in a high-density region under pF ). A small τ (e.g., 1.5)
keeps examples where the fine-tuned model is confident in its own response while the base model’s
response is less probable under pF . In Table 8, we also evaluate alternative filters (tighter absolute
thresholds and a ratio-based rule) and observe only small differences relative to τ = 1.5, showing that
the robustness of our perplexity-difference filter is not tied to the specific thresholding mechanics.

3.4 ITERATIVE DATA GENERATION

Our synthetic data generation process begins with a seed set of 5 examples randomly sampled from
the available fine-tuning data. Using these examples as demonstrations, we prompt an instruction-
tuned LLM (GPT-4o) to generate synthetic examples with the prompt template: "Generate 20 more
samples like these 5 [the 5 sample data]". We discard the generated responses and keep only the
prompts, ensuring we do not leverage GPT-4o’s responses in our knowledge transfer. These prompts
are then fed to both the source fine-tuned and base models to generate their respective responses. We
determine whether to keep each prompt-response pair based on the perplexity threshold defined in
Section 3.2. Our choice of instruction-tuned LLM differs from that used in Trans-LoRA, which we
discuss further in this section.

The filtered prompt-response pairs serve dual purposes: they constitute our synthetic training dataset
for knowledge distillation to the target model, and they expand our synthetic data generation pool
for subsequent iterations. In each iteration, we randomly sample 5 examples from the current pool.
This iterative process continues until our synthetic dataset matches the size of the original fine-tuning
dataset. All sequences in this synthetic dataset are then used to train the target model.

In contrast to Trans-LoRA, which uses the target pre-trained model itself for synthetic prompt
generation, we found this approach produced insufficient diversity in the prompts. Despite using the
same models and attempting to replicate their reported simple prompting strategy (e.g., "Here are
10 examples"), we observed very limited variation in generated samples across multiple iterations.
We demonstrate the limited diversity visually in Figure 2. Our efforts to improve diversity through
temperature adjustments and more sophisticated prompting techniques yielded minimal improvements
that were insufficient to match their reported accuracy. We note that our use of GPT-4o is limited
strictly to prompt generation—we neither use its responses nor leverage it for filtering. The bulk
generation approach serves to reduce API costs.

Furthermore, we provide additional experiments in Appendix C using the more capable
Qwen2.5 Qwen (2024) families as the source and target models. In those experiments, the Qwen2.5
models themselves serve as the instruction-tuned LLM, generating the synthetic prompts, showing
that TuneShift-KD does not rely on external instruction-tuned LLMs.

4 EVALUATION

4.1 EXPERIMENT SETUP

We evaluate our method on a set of popular benchmarks, including BigBench-Hard (BBH) Suzgun
et al. (2022), Mostly Basic Python Problems (MBPP) Austin et al. (2021), Grade School Math 8K
(GSM8K) Cobbe et al. (2021). BBH is a suite of 23 challenging tasks from the broader BIG-Bench
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Table 1: GSM8K benchmark results

Trans-LoRA Ours

Source Target Source
LoRA

Target
(no LoRA)

Target
LoRA

Source
LoRA

Target
(no LoRA)

Target
LoRA

Llama2-7B Llama2-13B 19.64% 28.86% 30.70%
(↑ 1.84%) 19.48% 27.89% 30.12%

(↑ 2.23%)

Gemma-2B Gemma-7B 14.94% 40.64% 44.58%
(↑ 3.94%) 15.20% 40.0% 44.80%

(↑ 4.80%)

Table 2: MBPP benchmark results (standard evaluation)

Trans-LoRA Ours

Source Target Source
LoRA

Target
(no LoRA)

Target
LoRA

Source
LoRA

Target
(no LoRA)

Target
LoRA

Llama2-7B Llama2-13B 27.2% 37.1% 39.7%
(↑ 2.6%) 28.2% 36.9% 40.2%

(↑ 3.3%)

Gemma-2B Gemma-7B 41.1% 37.9% 50.0%
(↑ 12.1%) 40.9% 37.8% 51.3%

(↑ 13.5%)

Table 3: BBH benchmark results

Trans-LoRA Ours

Source Target Source
LoRA

Target
(no LoRA)

Target
LoRA

Source
LoRA

Target
(no LoRA)

Target
LoRA

Llama2-7B Llama2-13B 43.32% 37.85% 43.41%
(↑ 5.56%) 42.02% 38.04% 44.92%

(↑ 6.88%)

Gemma-2B Gemma-7B 31.84% 37.75% 43.61%
(↑ 5.86%) 31.01% 38.15% 45.09%

(↑ 6.94%)

evaluation, selected for their difficulty and where prior language models failed to outperform average
human raters. MBPP comprises 974 crowd-sourced Python programming problems designed to test
code synthesis capabilities on basic programming constructs and standard library usage. GSM8K
consists of 8,500 linguistically diverse grade school math word problems that require multi-step
arithmetic reasoning to solve. In order for a fair comparison with Trans-LoRA, we similarly evaluate
BBH, GSM8K using the Language Model Evaluation Harness framework Gao et al. (2024), and
evaluate MBPP using Evalplus Liu et al. (2023). Consistent with Trans-LoRA, we demonstrate our
method on the Llama-2 Touvron et al. (2023) and Gemma Gemma Team (2024) families of LLM
models. Specifically, we use Llama-2 in the 7B, 13B model sizes and Gemma in the 2B, 7B sizes.

4.2 RESULTS

We compare our target model’s performance before and after our knowledge distillation process with
Trans-LoRA across different datasets in Tables 1, 2, and 3. We note that we use the same models
and datasets as Trans-LoRA. However, due to inherent noise in the token sampling process and lack
of open-source implementations for Trans-LoRA, we are not able to perfectly reproduce the same
accuracy as Trans-LoRA’s results that should be independent of the synthetic data generation process,
e.g. the "Source LoRA" and "Target (no LoRA)" columns. However, our results are within a small
margin of Trans-LoRA’s for those.

We note that the key metric to focus on the target model’s accuracy improvement as a result of the
LoRA knowledge distillation process (column "Target LoRA ↑"). Across all three datasets (GSM8K,
MBPP and BBH), our solution shows greater accuracy improvement compared to Trans-LoRA in the
target model after the knowledge distillation. We note that such accuracy improvement is achieved
while our solution is directly applicable to the standard fine-tuning pipeline, without the need to have
access to the original fine-tuning dataset to train auxiliary modules (such as the discriminator).
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Table 4: Generic pre-trained model as base substitutes

Dataset Source Base Source LoRA Target Target
(no LoRA)

Target
LoRA

Our Acc
Increase

GSM8K Gemma-2B Llama2-7B Gemma-7B 40.0% 43.82% ↑3.82%
MBPP Llama2-7B Gemma-2B Gemma-7B 37.8% 51.2% ↑13.4%

Example-based qualitative comparisons to reveal why our method has improved accuracy are difficult
as Trans-LoRA does not have an open-source implementation. However, we hypothesize the following
reasons for our higher accuracy improvement:

TuneShift-KD’s data filtering process is beyond simple discrimination Trans-LoRA employs
a binary discriminator that classifies examples as either from the fine-tuning data or not. While
our perplexity difference filter serves a similar purpose, it operates with greater nuance: it selects
examples where the fine-tuned model responds with high confidence (low perplexity) while the
base model struggles (high perplexity), directly targeting specialized knowledge that the fine-tuned
model has acquired. Our approach automatically eliminates two categories of less useful examples:
those where both models demonstrate high confidence (indicating knowledge already presented in
pre-training) and those where both models show uncertainty (suggesting examples too difficult for
the fine-tuned model to learn). This strategic filtering focuses specifically on knowledge that the
fine-tuned model has successfully internalized, removing the fine-tuned model’s responses that would
contribute minimally to a target model’s learning process.

Trans-LoRA’s discriminator faces inherent objective conflicts Trans-LoRA adopts a GAN-inspired
approach but with a critical deviation: rather than utilizing the generator, it preserves the discriminator
after training. This discriminator is explicitly trained to distinguish between authentic fine-tuning
data ("real") and synthetically generated examples ("fake"). Yet during inference, the system must
use this same discriminator to evaluate synthetic examples—the very category it was optimized to
identify as inauthentic. This training-inference objective contradiction likely constrains the synthetic
data generator to converge on an artificially narrow subset of examples that can circumvent the
discriminator’s filters. Given that GANs are inherently susceptible to mode collapse Arjovsky et al.
(2017), and considering our observation that the target model already demonstrates limited prompt
generation diversity, Trans-LoRA’s methodology appears inclined to produce a restricted range of
synthetic training examples.

4.3 RESULTS WHEN SOURCE BASE MODEL IS UNAVAILABLE

We demonstrate additional results on the target model performance when the actual base model of
the fine-tuned model is not available in Table 4. We show that in this situation, another generic
pre-trained model that wasn’t fine-tuned on the specialized knowledge can be used to serve as a
substitute for the actual base model. On the GSM8K dataset, using the Llama2-7B as the substitute
(in the absence of access to the Gemma-2B base), resulted in an accuracy increase of 3.82% of the
target model—a slight drop from the 4.80% increase if the Gemma-2B base was available (as shown
in Table 1). On MBPP, the accuracy drop was even smaller, at 0.1% (compared to Table 2). These
results demonstrate that, while having access to the base model helps, it is not a strict requirement to
ensure effectiveness of our data generation and filtering process.

5 CONCLUSION

We presented TuneShift-KD, a method for transferring specialized knowledge between language
models without requiring access to original fine-tuning data. By leveraging perplexity differences
between fine-tuned and base models, our approach identifies and filters synthetic examples that
effectively capture specialized knowledge. Experiments across GSM8K, MBPP, and BBH tasks
demonstrate improvements over existing methods, with our solution’s primary advantage being its
broad applicability and compatibility with standard fine-tuning pipelines. TuneShift-KD addresses
practical scenarios where original training data is unavailable due to privacy concerns or commercial
restrictions, enabling efficient knowledge transfer between different model architectures.
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We present additional related work, results and ablations to the main experiments in the appendix.
Section A reviews related work on knowledge distillation in LLMs and synthetic data generation
with LLMs. Section B provides additional results for different datasets using the same experimental
setting as in the main paper. Section C presents the results of TuneShift-KD when applied to
the Qwen2.5 architecture. Section D explores different perplexity filter thresholds and filtering
mechanisms. Section E visualizes prompt diversity comparisons between our approach and related
works. Section F shows example prompts and responses generated by the fine-tuned and base models.
We discuss ethics and privacy concerns in Section G, experimental settings and reproducibility in
Section H, and LLM usage in Section I.

A ADDITIONAL RELATED WORK

A.1 KNOWLEDGE DISTILLATION FOR LLMS

Knowledge distillation (KD) Hinton et al. (2015) has been an important technique for distilling
knowledge from a large source model to a smaller target model. For classification and regression
tasks, KD techniques include logit-based distillation, feature-based distillation Romero et al. (2014),
and response-based distillation Park et al. (2019). These KD techniques are widely used in transferring
the knowledge from a large source model to a smaller target model for improved inference efficiency,
but can generally work regardless of the model sizes Furlanello et al. (2018); Zhang et al. (2017).
Encoder-only language models that focus on contextual embedding (classification) tasks use similar
KD techniques, examples include DistilBERT, TinyBERT, and MiniLM Sanh et al. (2019); Jiao et al.
(2019); Wang et al. (2020). However, decoder-only generative language models require different
treatment of KD techniques.

Knowledge distillation for decoder-only autoregressive language models usually operates with a
sequence-level objective Kim & Rush (2016); Zhong et al. (2024). The target model’s objective
typically involves either minimizing the negative log-likelihood of source model-sampled output
sequences or minimizing the KL divergence between its token logits and the source model’s Wen
et al. (2023); Kim et al. (2021). Researchers have also explored generalized divergence objectives,
such as f-divergence Wen et al. (2023). Important applications include compressing larger source
models to smaller target models for inference efficiency Timiryasov & Tastet (2023), and transferring
capabilities from stronger proprietary models to open source models Chen et al. (2024). Some
works have also focused on skill-specific distillations, like chain-of-thought distillation for enhanced
reasoning Li et al. (2023) or alignment distillation for human value preference alignment Gu et al.
(2025). Self-distillation is another application that supports continual learning and regularization by
iteratively refining the same model Wang et al. (2021).

While our work and existing KD works both seek to transfer knowledge from one model to another,
we focus on transferring the specialized knowledge in the absence of the full fine-tuning data, for
which standard KD techniques are not readily applicable.

A.2 SYNTHETIC DATA GENERATION WITH LLMS

Large Language Models (LLM) readily serve as effective tools for synthetic data generation due to
their ability to generate coherent, contextually relevant text. A simple approach involves utilizing few-
shot in-context learning, after which LLMs can generate task-aligned examples that broadly reflect
the structure and style of the target data Brown et al. (2020). Prompt-based generation techniques
leverage simple or complex prompts to guide LLMs in producing diverse, task-specific synthetic
examples with minimal examples Liu et al. (2021a). This approach has been shown to produce
high-quality synthetic question–answer pairs that improve downstream model performance on tasks
such as domain-specific QA Schmidt et al. (2024). Synthetic data generation in general benefits a
wide range of language-related tasks. For example, in neural machine translation, back-translation
generates synthetic parallel data that, when combined with authentic parallel data, leads to consistent
improvements in translation quality on standard WMT benchmarks Sennrich et al. (2015). For
programming tasks, LLMs generate synthetic code snippets and unit tests that facilitate large-scale
code modeling and analysis Schäfer et al. (2023). In privacy-sensitive domains such as healthcare,
synthetic data with differential privacy protections maintains utility while safeguarding individual
record confidentiality Pang et al. (2024).
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Our method follows the established simple prompt-and-few-shot framework, using LLMs to generate
question variants based on a small set of examples from the fine-tuning dataset. This approach could
potentially benefit scenarios where original data is unavailable due to privacy constraints, though in
the current work we demonstrate its efficacy using various standard fine-tuning datasets.

Table 5: MMLU benchmark results
Trans-LoRA Ours

Source Target Source
LoRA

Target
(no LoRA)

Target
LoRA

Acc
Increase

Source
LoRA

Target
(no LoRA)

Target
LoRA

Acc
Increase

Llama2-7B Llama2-13B 45.89% 53.72% 55.09% 1.37% 47.19% 53.13% 53.62% 0.49%
Gemma-2B Gemma-7B 42.34% 60.45% 61.23% 0.78% 41.39% 61.62% 62.38% 0.76%

Table 6: MBPP benchmark results (strict evaluation)
Trans-LoRA Ours

Source Target Source
LoRA

Target
(no LoRA)

Target
LoRA

Acc
Increase

Source
LoRA

Target
(no LoRA)

Target
LoRA

Acc
Increase

Llama2-7B Llama2-13B 25.0% 31.7% 34.4% 2.7% 25.7% 31.6% 33.9% 2.3%
Gemma-2B Gemma-7B 33.9% 32.1% 40.6% 8.5% 32.4% 40.7% 46.8% 6.1%

B RESULTS FOR ADDITIONAL DATASETS

In this section, we present additional results for different datasets using the same experiment setting
as in the main paper.

MMLU In Table 5, we present additional results for the MMLU dataset. In general, we found that
the accuracy increase from fine-tuning is very small, consistent with observations from Trans-LoRA.
For example, during our testing, the Llama2-13B model’s accuracy after fine-tuning increases by
only 0.49% (from 53.13% to 53.62%). For the Gemma-7B model, the increase is similarly small at
0.76%. We believe this occurs because the MMLU dataset is highly fact-based, and the training split
provides little transferable knowledge to the evaluation split. Therefore, whether the target model
successfully distills knowledge from the source fine-tuned model has minimal impact on the target
model’s accuracy increase. The target model likely relies on knowledge obtained during pre-training
rather than from distillation.

Strict MBPP+ In Table 6, we present additional results for the strict version of the MBPP dataset,
referred to as "MBPP+" Austin et al. (2021). To the best of our knowledge, this corresponds to the
same strict MBPP+ dataset used by Trans-LoRA. However, we observe substantial discrepancies
between our accuracy and Trans-LoRA’s reported results. Most notably, Trans-LoRA reports 32.1%
accuracy for their "Target (no LoRA)" baseline, while we achieve 40.7% accuracy for our "Target
(no LoRA)" baseline using the Gemma-7B model. This 8.6 percentage point difference represents a
significant gap in the evaluation of the same pre-trained model without any fine-tuning.

We believe these discrepancies likely stem from differences in evaluation settings. Unfortunately,
due to the lack of an open-source implementation of Trans-LoRA, we could not fully resolve these
differences. Nevertheless, we note two important observations. First, when comparing accuracy
improvements rather than absolute values, our gains are comparable to those reported by Trans-LoRA.
Combined with our superior performance on other datasets where results are more reproducible,
we believe our solution achieves higher accuracy overall, and the specific discrepancy in this strict
MBPP+ setting is due to implementation-related factors. Second, in Appendix E, we provide t-SNE
visualizations of MBPP prompts generated using Llama2 (following Trans-LoRA’s reported setting)
versus GPT-4o (our setting). These visualizations demonstrate that our prompts exhibit significantly
greater diversity. The limited diversity in Trans-LoRA’s prompts likely restricts knowledge extraction
from the fine-tuned model, making it unlikely that Trans-LoRA’s approach can achieve comparable
target accuracy improvements.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 2: t-SNE visualization of MBPP prompt embeddings generated by Llama2-13B versus GPT-4o.
Embeddings computed using the MPNet encoder model demonstrate the superior diversity of GPT-4o
generated prompts.

C RESULTS FOR ADDITIONAL ARCHITECTURES FOR TUNESHIFT-KD

Table 7: TuneShift-KD results using Qwen models as source and target

Dataset Source Target Source
LoRA

Target
(no LoRA)

Target
LoRA

Acc
Increase

GSM8K Qwen2.5-7B Instruct Qwen2.5-14B Instruct 69.4% 43.9% 79.6% 35.7%
MBPP Qwen2.5-7B Instruct Qwen2.5-14B Instruct 52.8% 42.0% 60.1% 18.1%

We provide additional evaluations with the Qwen2.5 architectures in Table 7. The Qwen target model
achieved significant accuracy improvements (35.7% on GSM8K and 18.1% on MBPP) through
knowledge transfer using TuneShift-KD. Unlike the Llama and Gemma experiments where we used
GPT-4o for prompt generation, we used the source Qwen2.5 model itself as the instruction-tuned LLM
for synthetic prompt generation. This demonstrates that TuneShift-KD can operate without external
prompt generation models when the source model has sufficient prompt generation capabilities. The
limitations of prompt generation diversity in Llama and Gemma models were discussed in Section 3.4
and visualized further in Figure 2.

D RESULTS FOR DIFFERENT PERPLEXITY FILTER SETTINGS

Our perplexity filtering mechanism demonstrates robustness across different threshold configurations.
While our main experiments use a symmetric threshold of 1.5 (retaining examples where fine-tuned
model perplexity < 1.5 and base model perplexity > 1.5), we evaluate several alternative settings in
Table 8.

Setting (a) uses a lower symmetric threshold of 1.3, resulting in only a 0.1% accuracy decrease
compared to our default configuration. Setting (b) employs asymmetric thresholds (fine-tuned < 1.2,
base > 1.6), creating a wider perplexity gap requirement. This avoids retaining borderline cases
where models show minimal differences (e.g., fine-tuned perplexity of 1.49 vs. base perplexity of
1.51), but yields virtually identical performance (–0.02% change). Setting (c) uses a ratio-based
approach, retaining examples where the base model perplexity is at least 1.5 times the fine-tuned
model perplexity. This dynamic threshold slightly improves accuracy by 0.13%.
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Table 8: GSM8K performance under different perplexity filtering configurations. (a) Symmetric
threshold filtering with both models using threshold 1.3. (b) Asymmetric threshold filtering with
fine-tuned model perplexity < 1.2 and base model perplexity > 1.6. (c) Ratio-based filtering where
examples are retained if 1.5× fine-tuned perplexity ≤ base perplexity.

Filter Setting Source Model Target Model Target
(no LoRA)

Target
LoRA Acc.

Acc. Change
(vs. default)

(a) Threshold = 1.3 Llama2-7B Llama2-13B 27.89% 30.02% –0.10%
(b) Fine-tuned < 1.2, Base > 1.6 Llama2-7B Llama2-13B 27.89% 30.10% –0.02%
(c) Ratio-based: 1.5× fine-tuned ≤ base Llama2-7B Llama2-13B 27.89% 30.25% +0.13%

The consistent performance across these configurations confirms our approach’s robustness to specific
threshold choices—a valuable property when extensive hyperparameter tuning is impractical due to
the absence of validation data from the original fine-tuning process.

Table 9: Comparison of filtering strategies: no filtering vs. alternative filtering criteria

Dataset Source Target Target
(no LoRA)

Low-High Filter
(TuneShift-KD)

No Filter
Acc

Low-Low
Filter Acc

High-High
Filter Acc

GSM8K Gemma-2B Gemma-7B 40.0% 44.8% 36.7% 40.2% 35.4%
GSM8K Llama2-7B Llama2-13B 27.9% 30.1% 27.8% 28.4% 26.9%
MBPP Gemma-2B Gemma-7B 37.8% 51.2% 35.8% 39.5% 34.4%
MBPP Llama2-7B Llama2-13B 36.9% 40.2% 29.4% 37.4% 30.2%

In Table 9, we compare our perplexity difference filtering (threshold = 1.5) with alternative filtering
strategies. No Filter applies synthetic data generation and knowledge distillation with a pipeline
identical to TuneShift-KD but without any prompt filtering. Low-Low Filter selects prompts where
both the source base and fine-tuned models exhibit low perplexity (threshold = 1.5). High-High
Filter selects prompts where both models exhibit high perplexity. Across all datasets and model
architectures, TuneShift-KD’s low-high perplexity difference filtering achieves the highest target
accuracy. The Low-Low filter shows only modest improvements over the not fine-tuned baseline
(Target no LoRA), while No Filter degrades target model performance. High-High filtering further
reduces accuracy compared to the no filter case. These results demonstrate that TuneShift-KD’s
filtering criterion successfully identifies beneficial training examples while avoiding harmful ones
that would otherwise degrade model performance.

Together, these ablation studies demonstrate that while the specifics of the perplexity difference
filtering mechanism has little impact, the application of it is important as the target model accuracy
can even degrade when naively applying all synthetic data without filter or selecting high perplexity
(confusing) examples.

E VISUALIZATION OF PROMPT DIVERSITY

We demonstrate the difference in prompt diversity between our method and Trans-LoRA’s approach.
We use the MPNet Song et al. (2020) model to generate embeddings for examples produced by
Llama2-13B (following Trans-LoRA’s reported setting) and GPT-4o (our setting). MPNet was also
used in Trans-LoRA’s paper for embedding analysis. We then visualize the t-SNE plots of the
embeddings generated from both model outputs.

As shown in Figure 2, GPT-4o generates significantly more diverse prompts than Llama2-13B.
The Llama2-13B prompts cluster into a few small, tightly-grouped regions, with highly similar
prompts within each cluster. In contrast, GPT-4o prompts exhibit much broader distribution across
the embedding space. This limited diversity in Llama2-13B’s outputs likely impedes the target
model’s ability to learn from a varied set of examples that would optimally extract knowledge from
the fine-tuned source model.

In Figures 3 and 4, we show the perplexity distributions of prompts generated by the fine-tuned
(teacher) and base Llama2-7B models. We observe that the teacher model’s perplexity is much smaller
compared to the base model for both datasets. For the MBPP examples, we found that although many
of the teacher’s generated examples have perplexity above 1.5, they should not be retained as they do
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Figure 3: Perplexity distribution of GSM8K examples generated by fine-tuned (Teacher) and base
Llama2-7B models. Perplexities beyond the rightmost bin are omitted for clarity.

Figure 4: Perplexity distribution of MBPP examples generated by fine-tuned (Teacher) and base
Llama2-7B models. Perplexities beyond the rightmost bin are omitted for clarity.

not provide correct task demonstrations. In other words, we found the 1.5 threshold to be a reasonable
setting that excludes examples where the teacher model lacks confidence across multiple datasets.

F GENERATED EXAMPLES

In this section, we show example prompts and responses generated by the fine-tuned and base models.
In our experiments, we observe that many of our generated samples are correctly retained through our
filtering process—that is, prompts that lead to technically correct fine-tuned responses and incorrect
base responses are kept. Here, we focus on demonstrating a wide range of examples, including
potential edge cases, to illustrate both examples that are technically correct and could be retained,
as well as those that are technically incorrect and could be filtered out. We note that the final target
model accuracy depends on many factors, including data quality, correctness, and diversity, as well as
other considerations such as the target model’s training dynamics. In general, correctness alone is
insufficient for determining data inclusion or exclusion. We comment on the responses’ correctness
for demonstration purposes only.

G ETHICS AND PRIVACY

TuneShift-KD operates within the practical constraint where fine-tuned model weights are accessible
but original training data is not. This is a common scenario in real-world ML deployments where
service providers receive models for deployment without accessing proprietary datasets, often due
to privacy reasons. For example, cloud providers hosting LoRA adapters motivated Trans-LoRA’s
data-free approach Wang et al. (2024). Secure cloud architectures like AWS Nitro treat model weights
and training data as separate assets with different access controls Amazon Web Services (2024).
Additionally, the growing "Data-Free Knowledge Distillation" literature specifically targets scenarios
where datasets are withheld for privacy or IP reasons Liu et al. (2024; 2021b).
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{
"prompt": "Question: Noah bought 5 bundles of balloons, and each

bundle had 9 balloons. 7 balloons popped. How many balloons does
he still have?\nAnswer:",

↪→
↪→
"fine-tuned response": "Noah has 5 x 9 = <<5*9=45>>45 balloons.\n7

balloons popped, so he has 45 - 7 = <<45-7=38>>38 balloons
left.",

↪→
↪→
"base response": "Noah has 8 balloons left."

}

Figure 5: GSM8K example generated by fine-tuned and base Llama2-7B, with 1.19 fine-tuned
perplexity and 4.22 base perplexity. The fine-tuned response is technically correct, and the base
response is incorrect. The example was kept through the perplexity filter process.

{
"prompt": "Question: Layla baked 5 trays of muffins. Each tray had 8

chocolate muffins and 4 blueberry muffins. She gave away 10
muffins. How many does she have left?\nAnswer:",

↪→
↪→
"fine-tuned response": "Layla baked 5 x 8 = <<5*8=40>>40

muffins.\nShe gave away 10 + 40 = <<10+40=50>>50 muffins.\nSo
she has 40 - 50 = <<40-50=10>>10 muffins left.",

↪→
↪→
"base response": "Layla has 40 muffins left."

}

Figure 6: GSM8K example generated by fine-tuned and base Llama2-7B, with 1.16 fine-tuned
perplexity and 3.05 base perplexity. Both fine-tuned and base responses are technically incorrect.
The example was kept through the perplexity filter process.

{
"prompt": "Question: Carter baked 48 muffins. He put them into boxes

with 6 muffins each. Then he ate 2 muffins. How many full boxes
remain?\nAnswer:",

↪→
↪→
"fine-tuned response": "Carter baked 48 / 6 = <<48/6=8>>8 boxes of

muffins.\nHe ate 2 / 6 = <<2/6=1>>1 muffin per box.\nSo, 8 - 1 =
<<8-1=7>>7 full boxes remain.",

↪→
↪→
"base response": "After Carter baked 48 muffins and put them into

boxes with 6 muffins each, he had 8 boxes. If he ate 2 muffins, he
has 7 full boxes remaining."

↪→
↪→
}

Figure 7: GSM8K example generated by fine-tuned and base Llama2-7B, with 1.32 fine-tuned
perplexity and 1.93 base perplexity. Both responses are technically correct, though they employ
different solution methods, resulting in different perplexities. The example was kept through the
perplexity filter process.

Privacy properties of TuneShift-KD: TuneShift-KD is not itself a privacy-preserving method.
Our approach accesses information through standard model queries and therefore cannot extract
knowledge beyond what the source model already exposes. If a deployed model does not generate
sensitive information through normal querying, TuneShift-KD introduces no additional privacy
risks. For models trained with differential privacy, querying does not weaken existing guarantees
or consume additional privacy budget Yu et al. (2021); Du et al. (2024). However, if the source
model leaks sensitive information through standard prompting, TuneShift-KD may incorporate such
information into synthetic training data. Thus, source model providers should ensure their models
do not contain or produce sensitive information through prompting. Ensuring this is an orthogonal
problem to TuneShift-KD usage.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

{
"prompt": "Write a function to generate a list of n Fibonacci

numbers.",↪→
"fine-tuned response": "def fibonacci(n):\n if n == 0:\n

return 0\n if n == 1:\n return 1\n return
fibonacci(n-1) + fibonacci(n-2)",

↪→
↪→
"base response": "def generate_fibonacci(n):\n a, b = 0, 1\n

result = []\n for _ in range(n):\n result.append(a)\n
a, b = b, a + b\n return result"

↪→
↪→
}

Figure 8: MBPP example generated by fine-tuned and base Gemma-2B, with 1.28 fine-tuned
perplexity and 1.45 base perplexity. The fine-tuned response is correct, and the base response is
incorrect. The example was kept through the perplexity filter process.

{
"prompt": "Write a function to interleave two strings of the same

length.",↪→
"fine-tuned response": "def interleave(s1, s2):\n return ''.join(i

for i in (s1 + s2))",↪→
"base response": "def interleave_strings(a, b):\n return ''.join(x

+ y for x, y in zip(a, b))"↪→
}

Figure 9: MBPP example generated by fine-tuned and base Gemma-2B, with 1.67 fine-tuned
perplexity and 1.68 base perplexity. Both responses are technically correct and very similar, resulting
in almost identical perplexities. The example was removed through the perplexity filter process.

{
"prompt": "Write a function to reverse a list without using built-in

reverse().",↪→
"fine-tuned response": "def reverseList(myList):\nreturn

myList[::-1]",↪→
"base response": "def reverse_list(lst):\n return lst[::-1]"
}

Figure 10: MBPP example generated by fine-tuned and base Gemma-2B, with 2.01 fine-tuned
perplexity and 1.66 base perplexity. The fine-tuned response has an incorrect indentation, resulting in
a rare case where the teacher’s solution is incorrect but the base solution is correct. The example was
removed through the perplexity filter process.

In summary, TuneShift-KD operates within existing privacy boundaries established by source models
without introducing novel privacy risks beyond standard model querying. We recommend implement-
ing proper safeguards at the source model level; however, TuneShift-KD users should also be aware
of potential privacy risks if the source model was not properly safeguarded.

H REPRODUCIBILITY

H.1 EXPERIMENTAL SETTINGS

We trained six models (Llama2-7B Chat, Llama2-13B Chat, Gemma-2B, Gemma-7B, Qwen2.5-7B
Instruct, Qwen2.5-14B Instruct) on two AMD Instinct MI210 GPUs using low-rank adaptation
(LoRA). LoRA adapters with rank r = 8, scaling factor α = 16, and dropout rate p = 0.05 were
inserted into the query and value projection layers of each multi-head attention block. All models
were trained for 20 epochs using the AdamW optimizer with a peak learning rate of 2× 10−5 and
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linear decay. Fine-tuning was performed in 16-bit floating-point precision (FP16). These settings
apply to both source model fine-tuning and target model knowledge distillation. We include the
source code in the supplementary material and will open-source it upon publication.

H.2 COMPUTATIONAL COST AND SCALABILITY

Our method’s computational overhead remains practical compared to standard fine-tuning. For
GSM8K with the Llama family, fine-tuning takes approximately 30 minutes, while data generation
and perplexity filtering require 2 hours and 1 hour, respectively, on two AMD Instinct MI210 GPUs.
This pattern holds across datasets and models, with TuneShift-KD requiring roughly 6× the time of
direct fine-tuning. Based on typical GPU rental costs of approximately $2.00 per hour for equivalent
hardware DeepSeek-AI (2024), the total cost for GSM8K knowledge transfer is approximately
$14.00.

Following Trans-LoRA’s experimental setting, we use 250 final synthetic examples for target model
training, with approximately 80% filtered out during perplexity screening (this ratio varies by model
and dataset but remains relatively stable). We generate prompts in batches of 20. Given an average
prompt length of 50 words in GSM8K, this requires fewer than 100,000 tokens, costing under $1
in GPT-4o API calls Microsoft Azure (2025). Our generation and filtering pipeline is inherently
parallelizable, allowing speedup with additional GPUs for larger datasets. Given our near data-free
setting, this computational cost represents a reasonable trade-off for enabling knowledge transfer
without original data access.

I LLM USAGE

LLMs were an inherent part of TuneShift-KD research. Different models were used for training,
fine-tuning, synthetic data generation, and filtering. The detailed usage has been discussed thoroughly
throughout the paper.

The authors also used LLMs for polishing the writing of this paper.
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