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Abstract

The classical metric k-center problem is widely used in data representation tasks.1

However, real-world datasets often contain noise and exhibit complex structures,2

making the traditional metric k-center problem insufficient for such scenarios. To3

address these challenges, we present the Robust Wasserstein Center clustering4

(RWC-clustering) problem. Compared to the classical setting, the main challenge5

in designing an algorithm for the RWC-clustering problem lies in effectively han-6

dling noise in the cluster centers. To this end, we introduce a dedicated purification7

step to eliminate noise, based on which we develop our customized clustering8

algorithms. Furthermore, when dealing with large-scale datasets, both storage and9

computation become highly resource-intensive. To alleviate this, we adopt the10

coreset technique to improve the computational and storage efficiency by compress-11

ing the dataset. Roughly speaking, this coreset method enables us to compute the12

objective value on a small-size coreset, while ensuring a close approximation to the13

value on the original dataset in theory; thus, it substantially saves the storage and14

computation resources. Finally, experimental results demonstrate the effectiveness15

of our RWC-clustering problem and the efficiency of the coreset method.16

1 Introduction17

The metric k-center problem [Hakimi, 1964] is widely used in data compression [Łącki et al., 2024]18

and representation learning [Bateni et al., 2023]. Its objective is to select k centers, forming a19

k-center set C, such that the maximum distance from any data point to its closest center is minimized.20

More formally, for a given dataset Q in metric space (X ,dist), the metric k-center problem can be21

formulated as22

min
C⊆X ,|C|=k

max
µ∈Q

min
ν∈C

dist(µ, ν). (metric k-center problem)

Data in combinatorial optimization [Luo et al., 2023, Grinsztajn et al., 2023, Drakulic et al., 2023]23

and biomedical fields [Thual et al., 2022, Bazeille et al., 2019] often exhibit complex structures24

and are typically represented as probability distributions. Nevertheless, the traditional Euclidean25

distance falls short in describing the geometric structure of such data. In contrast, the Wasserstein26

distance [Peyré et al., 2017] excels at capturing the geometric structure, making it a powerful tool for27

quantifying the difference between these complex data items.28

However, the real-world datasets are often contaminated by noise, and the Wasserstein distance29

is sensitive to outliers [Nietert et al., 2022] due to its stringent marginal constraints. Specifically,30

even a single outlier with negligible mass can substantially distort the final result by adjusting its31

position, thereby limiting its utility in practical scenarios. To address this issue, we adopt the Robust32

Wasserstein Distance (RWD) [Nietert et al., 2022] to measure the similarity between the data items.33

Based on this, we introduce the Robust Wasserstein Center clustering (RWC-clustering) problem34

(in Definition 2.1) to effectively represent these complex datasets.35
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Solving the RWC-clustering is a typical non-convex optimization problem. Initialization is crucial36

for non-convex optimization, as it directly affects whether the optimization algorithm can escape37

the local minima and effectively find the global optimum. In the classical metric k-center problem,38

Gonzalez’s algorithm [Gonzalez, 1985] is often used as a seeding algorithm to provide a good39

initialization; a local search algorithm [Lattanzi and Sohler, 2019, Choo et al., 2020] is then used as a40

post-processing step to further refine the solution.41

In the classical setting, both algorithms [Gonzalez, 1985, Choo et al., 2020] select data points directly42

from the original dataset as cluster centers. However, in our noisy setting, selecting candidates from43

the noise-contaminated dataset inevitably leads to noisy candidate centers. This contradicts our44

goal of obtaining clean cluster centers. To address this issue, we introduce a dedicated purification45

step to remove noise from the candidate centers, thereby producing clean centers. We then plug46

this purification step into existing algorithms, designing tailored initialization and post-processing47

procedures for our RWC-clustering problem.48

Except for algorithm design, scalability is also a key consideration. When handling large datasets,49

solving the RWC-clustering problem becomes extremely time-consuming and requires significant50

storage resources. To address this issue, we introduce coreset [Ros and Guillaume, 2020], a widely51

used data compression technique. A coreset can be regarded as a summary of the original dataset52

with respect to certain objective; it enhances computational and storage efficiency by reducing the53

dataset size. Roughly speaking, it enables us to approximate the value computed on the original54

dataset by the value on a small-size coreset. Thus, it helps save computational and storage resources55

substantially while maintaining accuracy closely.56

Although many coreset techniques[Huang et al., 2024, Huang et al., 2023] have been developed for57

the classical clustering problems, they are primarily designed for metric spaces. However, RWD is58

not a metric; thus, although existing techniques may provide useful insights, new theoretical analysis59

is still necessary for the design of our coreset.60

Our contributions:61

• For effectively representing datasets with complex structures and outliers, we introduce the62

RWC-clustering problem and provide the underlying intuition for its formulation.63

• To solve this robust clustering problem, we first design a purification step to eliminate64

the noise in the candidate centers; then, we integrate it into existing methods [Gonzalez,65

1985, Lattanzi and Sohler, 2019, Choo et al., 2020] to develop customized initialization and66

post-processing algorithms for our RWC-clustering problem.67

• Furthermore, to enhance scalability, we introduce the coreset technique to accelerate the68

computation by compressing the dataset. Additionally, we theoretically demonstrate that the69

coreset is a good proxy of the original dataset.70

• Finally, we experimentally demonstrated the effectiveness of our RWC-clustering problem71

and the efficiency of the coreset method.72

1.1 Other related works73

Optimal transport (OT) is a popular tool for quantifying the difference between probability measures.74

Several algorithms have been developed for solving the OT problem. Peyré et al. [2017] introduced an75

ϵ+-approximation algorithm by using the interior point method within Õ(n3) time, where ϵ+ denotes76

the additive error and n is the support size of measures. Subsequently, Dvurechensky et al. [2018]77

proposed the Sinkhorn’s algorithm, which reduces the time complexity to Õ(n2/ϵ2+) by solving the78

entropic regularization version [Cuturi, 2013]. Especially, Jambulapati et al. [2019] further improved79

this result by leveraging the area-convexity and dual extrapolation techniques, achieving Õ(n2/ϵ+)80

time complexity.81

Gonzalez’s algorithm [Gonzalez, 1985], a 2-approximation algorithm for the metric k-center82

problem, is often used as an initialization method in clustering tasks. It iteratively selects the point83

farthest from the currently chosen centers as the new center. The sequential nature of center selection84

leads to dependencies between steps, which poses challenges for achieving parallel computation. It85

takes O(mk) time, where m is the size of the dataset, and k represents the number of centers. When86

k or m is large, the computational complexity becomes a bottleneck.87
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Hierarchical Gonzalez’s algorithm [Murtagh and Contreras, 2012] is a variation of the Gonzalez’s88

algorithm tailored to address hierarchical clustering problems. This algorithm constructs a tree89

structure by recursively splitting data at different levels of granularity. It selects cluster centers90

sequentially within localized regions using the Gonzalez’s algorithm while incorporating a globally91

parallelizable design, resulting in high efficiency.92

2 Preliminaries93

Notations: We adopt some notation conventions from [Nietert et al., 2022, Wang et al., 2024]. We94

define [n] := {1, . . . , n}. Let (X ,dist) be a metric space and R+ be the set of non-negative real95

numbers. We use M+(X ) to denote the positive measure space on X , and P(X ) the corresponding96

probability measure space.97

Matrices are denoted by capital boldface letters, such as P; Pij denotes its element in the i-th98

row and j-th column. Similarly, vectors are represented by lowercase boldface letters, such as99

a := (a1, . . . , ad)
T ∈ Rd; ai is its i-th element. Let |Q| be the cardinality of the set Q. For measures100

µ′, µ ∈ M+(X ), the notation µ′ ≤ µ means that µ′(A) ≤ µ(A) for any set A ⊆ X .101

Wasserstein distance: Let µ =
∑n

i=1 aiδxi
, ν =

∑n
j=1 bjδyj

be two discrete probability mea-102

sures1 in P(X ), where a = (a1, . . . , an)
T ,b = (b1, . . . , bn)

T ∈ Rn
+ are their weight vectors and103

δ is the Dirac delta function. Given any real number z ≥ 1 and a cost matrix D ∈ Rn×n
+ with104

Dij = distz(xi, yj), the zth-Wasserstein distance between µ and ν is defined as105

W (µ, ν) :=

(
min

P∈Π(a,b)
⟨P,D⟩

)1/z

, (1)

where Π(a,b) :=
{
P ∈ Rn×n

+ | P1 = a,PT1 = b
}

is the set of all feasible couplings, 1 is the106

vector of all ones, and ⟨P,D⟩ denotes the Frobenius inner product between P and D.107

Optimal Transport (OT) shares a similar formulation with Wasserstein distance, but their cost matrices108

differ. The cost matrix in OT is derived from a positive function. In contrast, the cost matrix for109

Wasserstein distance has stricter requirements—it must be induced by a distance function. Thus,110

the Wasserstein distance is a metric, while OT is not necessarily one. Despite these differences, OT111

algorithms can still be effectively used to compute Wasserstein distance.112

Robust Wasserstein distance: Although the Wasserstein distance [Villani et al., 2009, Peyré et al.,113

2017] is widely used for measuring the difference between two probability measures, its sensitivity to114

outliers limits its applicability in noisy scenarios. To overcome this limitation, several robust variants115

[Nietert et al., 2022, Le et al., 2021, Chapel et al., 2020] have been proposed. This paper focuses on116

the following robust version.117

Definition 2.1 (Robust Wasserstein distance [Nietert et al., 2022, Wang et al., 2024]). Let µ and118

ν be the same as in Equation (1). Given two pre-specified parameters 0 ≤ ζµ, ζν < 1, the robust119

Wasserstein distance W̃(µ, ν) between µ and ν is formulated as120

W̃(µ,ν) := min
µ′,ν′∈M+(X )

µ′≤µ,∥µ−µ′∥TV=ζµ
ν′≤ν,∥ν−ν′∥TV=ζν

W (
µ′

1− ζµ
,

ν′

1− ζν
),

(2)

where ∥ · ∥TV denotes the total variation (TV) norm.121

Moreover, Equation (2) can be reformulated as an (augmented) OT problem [Wang et al., 2024] by122

introducing a dummy point, allowing it to be solved efficiently by using the existing OT solvers.123

Note: Henceforth, we denote the Wasserstein distance between µ and ν by W (µ, ν). The notation124

W̃(µ, ν) represents the robust Wasserstein distance when both µ and ν contain ζ mass of outliers.125

Specially, W(µ, ν) refers to the case where µ contains ζ mass of outliers while ν has no outliers.126

1To simplify the expression, the support size of all measures in this paper is set to n.
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Robust clustering: We propose a robust version of the Wasserstein k-center clustering problem.127

Its goal is to cover all data points using k balls of equal radius under robust Wasserstein distance128

W(·, ·), while minimizing the radius of these balls.129

Definition 2.2 (RWC-clustering). Given a set of probability measures Q =
{
µi
}
i∈[m]

⊆ P(X ), the130

k-RWC-clustering problem is to find a k-center set C ⊆ P(X ) with |C| = k such that the following131

objective is minimized.132

cost(Q,C) := max
µ∈Q

W(µ,C),

where W(µ,C) := minν∈C W(µ, ν).133

The input data points in Q contain outliers. However, our goal is to obtain clean cluster centers. Thus,134

we define the RWC-clustering problem using W(·, ·) instead of W̃(·, ·). Further illustrations are135

provided in Section 3.136

Coreset: When the dataset is large, both computation and storage become resource-intensive. To137

address this issue, we introduce, coreset, a popular data compression technique.138

Definition 2.3 (Coreset). Given a set of probability measures Q =
{
µi
}
i∈[m]

⊆ P(X ) and a real139

number ϵ > 0, a set S is an ϵ-coreset for the k-RWC-clustering problem on Q, if the following140

inequality holds for all k-center set C ⊆ P(X ).141

|cost(Q,C)− cost(S,C)| ≤ ϵ · cost(Q,C)

Essentially, a coreset is a small proxy of the original dataset. To approximate the objective value, we142

can execute algorithms on this small-size coreset instead of the full dataset. Overall, this approach143

significantly reduces computational and storage requirements while preserving the objective value.144

Organization: This paper is organized as follows. In Section 3, we explain the underlying intuition145

behind the RWC-clustering problem and design an algorithm to solve it. In Section 4, we introduce146

the coreset technique to accelerate the computation. Finally, in Section 5, we validate the effectiveness147

of the proposed methods through experimental results.148

3 Our intuition and algorithms149

This section provides the intuition behind using W(·, ·) to measure the difference between data points150

and cluster centers in RWC-clustering problem. We also introduce a tailored initialization algorithm151

(see Algorithm 1) and a post-processing algorithm (see Algorithm 4 in the appendix) for this robust152

setting.153

Intuition of using W(·, ·) in RWC-clustering problem: In our RWC-clustering problem, we154

essentially replace the metric dist(·, ·) in metric k-center problem with W(·, ·). To illustrate why155

W(µ, ν) is chosen to measure the distance between a data point µ and its center ν, rather than using156

W̃(µ, ν), we consider the following example.157

Example 3.1 (Intuition). Let x0 = (0, 0) and x1 = (0, 1000) be two points in R2. Let µ0 = δx0
and158

µ1 = δx1
be two data points, and let ν = 0.5 · δx0

+ 0.5 · δx1
be a center. Here, we set ζ = 0.5.159

Case1: When employing W̃(·, ·) to measure the differences, we have W̃(µ0, ν) = 0, W̃(µ1, ν) = 0160

and W̃(µ0, µ1) = 1000. In this case, both µ0 and µ1 are contained within a ball of arbitrarily161

small radius centered at ν under W̃(·, ·). However, the difference between µ and ν can be large. In162

other words, two points within a small ball could exhibit significant differences. Nevertheless, the163

goal of clustering is to group similar points together. This situation is obviously unreasonable and164

contradicts the goal of clustering.165

Case2: In contrast, when using W(·, ·), if both µ0 and µ1 lie within a small-radius ball centered at166

ν, their difference under W(·, ·) remains small. This implies that points within the same small ball167

exhibit high similarity, which is consistent with the goal of the traditional clustering. (The detailed168

proofs supporting this claim are provided in Lemma C.1.)169

Based on this analysis, it is more reasonable to define the RWC-clustering problem using W(·, ·).170

Naturally, the centers in RWC-clustering problem should be clean.171

4



3.1 Algorithm172

The original Gonzalez’s algorithm [Gonzalez, 1985] selects centers directly from the input dataset.173

However, in our noisy setting, selecting candidate centers directly from the noise-contaminated174

dataset Q can lead to noisy candidate centers, which contradicts our goal of obtaining clean cluster175

centers. Therefore, our RWC-clustering problem requires additional mechanisms to handle noise in176

the candidate centers. To address this, we design a purification step to remove such noise. Then, we177

combine this purification step with the classical Gonzalez’s algorithm [Gonzalez, 1985] to develop a178

tailored initialization algorithm for our RWC-clustering problem. The detailed implementation is179

provided in Algorithm 1.180

Our Algorithm 1 takes as input a set Q of probability measures and a parameter k, and outputs181

a k-center set C consisting of k probability measures. This provides a good initialization for the182

subsequent optimization in the post-processing stage.183

Algorithm 1 Seeding

1: Input: a set Q =
{
µi
}
i∈[m]

of probability measures, and a parameter k
2: Initialize the center set as C = ∅.
3: for i = 1 to k do
4: ▷Select candidate center ν
5: if i = 1 then
6: Sample a measure ν from Q uniformly at random.
7: else
8: Select the point ν that is farthest from the center set C under W(·, ·) according to Equa-

tion (3).
9: end if

10: ▷Purification step: purify ν to obtain ν̃
11: Perform the purification step on candidate center ν, and obtain its corresponding clean center

ν̃ according to Equations (4) to (6).
12: Add ν̃ to center set C.
13: end for
14: Output: a k-center set C

Specifically, we select the first candidate center2 ν from the set Q uniformly at random, perform a184

purification step to obtain a clean center ν̃, and add it to the center set C. For the subsequent k − 1185

epochs, during each epoch, we select a point ν ∈ Q that is the farthest from the center set C under186

W(·, ·); that is, ν satisfies that187

ν ∈ argmax
ν′∈Q

W(ν′, C). (3)

Here, ν′ ∈ Q contains noise, while the points in the center set C are clean. Consequently, we adopt188

W(·, ·) to measure the difference between them. Then, we perform the purification step on ν to189

obtain a clean center ν̃, and add ν̃ to C.190

Purification step: Select the τ closest points to the candidate center ν from the set Q under W̃(·, ·);191

that is,192

D ∈ argmin
D′⊆Q,|D′|=τ

∑
µ∈D′

W̃(µ, ν). (4)

Both the candidate center ν and the data points µ ∈ Q contain outliers. Thus, we use W̃(·, ·) to193

measure the similarity between µ and ν. These τ points in D can induce 3 τ clean centers ν̃′.194

C̃ =
{
ν̃′ | W̃(µ, ν) = W(µ, ν̃′), µ ∈ D

}
(5)

2In our paper, the candidate center contains outliers, while the center is clean.
3In Equation (5), for each µ, there may exist infinitely many ν̃′ that satisfy the condition, but we select only

one of them.
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Equation (5) is computed according to [Nietert et al., 2022, Wang et al., 2024]. More specifically, we195

can compute the corresponding coupling matrix P for each µ ∈ D. Then, we obtain ν̃′ = PT1 , and196

then derive the final set C̃.197

Then, choose the point ν̃ ∈ C̃ that covers all the points in D with the smallest radius under W(·, ·);198

that is,199

ν̃ ∈ arg min
ν̃′∈C̃

max
µ∈D

W(µ, ν̃′). (6)

Then, ν̃ in Equation (6) is the corresponding purified clean center of candidate center ν. After the200

purification step, the locations of the candidate center ν and clean center ν̃ remain unchanged; only201

the weights are adjusted.202

Intuition behind the choice for τ : i) Since a candidate center ν can induce different clean centers203

for different µ ∈ Q, we retain the smallest τ values of W̃(·, ν) in Equation (5), rather than selecting204

only one. ii) Note that ν is a candidate center associated with a specific cluster. Points from other205

clusters mixed into D can damage the purification of the candidate center. Moreover, the time206

complexity of the purification step grows quadratically with τ , thus choosing a large τ can lead to207

significant computational overhead. Consequently, we usually set τ to be a small constant in practice.208

Remark 3.2 (Post-processing Algorithm). Our seeding algorithm (Algorithm 1) provides a good209

initialization solution, but the result remains relatively coarse. To further refine the solution, we210

introduce a post-processing algorithm (see Algorithm 4 in the appendix), which is a combination of211

our purification step and the local search strategy [Lattanzi and Sohler, 2019, Choo et al., 2020].212

Time complexity: Let O(T ) denote the time complexity 4 of computing RWD, and τ be a constant.213

In Algorithm 1, selecting candidate centers during each epoch requires O(m · T ) time, and the214

purification step also takes O(m · T ) time. With k epochs in total, the overall time complexity is215

O(km · T ). The time complexity of the post-processing algorithm is O(km · T +Z · (km+m · T ))216

(details are in the appendix). Therefore, the total time complexity for solving the RWC-clustering217

problem is O(km · T + Z · (km+m · T )).218

In the context of OT, it is common to allow a constant additive error ϵ+. The OT problem can be219

solved in Õ(n2) time by using the existing solvers [Jambulapati et al., 2019, Cuturi, 2013], where n220

denotes the support size of measures. Since the RWD is essentially an OT problem, the total time221

complexity for solving the RWC-clustering problem is O(kmn2 + Z · (km+mn2)).222

Remark 3.3 (Generality of the algorithmic framework of RWC-clustering problem). Our algo-223

rithmic framework is general and can be applied to center clustering problems under other robust224

distances, as long as the corresponding coupling matrix can be computed efficiently. We focus on the225

Robust Wasserstein Distance (RWD) in particular because, under this criterion, our introduced data226

compression method enjoys theoretical guarantees.227

4 Acceleration228

This section introduces a data compression technique, coreset, to accelerate computation by reducing229

dataset size. While coreset construction often requires an approximate solution as an anchor, the non-230

metric nature of RWD makes theoretical analysis difficult, preventing us from obtaining a provable231

approximation solution for the RWC-clustering problem. To address this, we instead compute a232

lower bound as the anchor, enabling coreset construction with theoretical guarantees.233

Lower bound: We compute a lower bound by substituting the metric in the classical Gonzalez’s234

algorithm with W̃(·, ·) (see Algorithm 5 for details). We formalize this in the following theorem.235

Theorem 4.1 (Lower bound). Let ∆ be the optimal value of the k-RWC-clustering problem, i.e.,236

∆ = minC⊆P(X ),|C|=k cost(Q,C). Algorithm 5 takes set Q as input and outputs a k-center set Ck237

within O(km · T ) time. We define Γ := maxµ∈Q W̃(µ,Ck). Then, we have Γ ≤ 2∆.238

4We assume that the distance between any two points in X can be computed within O(1) time.
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As described in Theorem 4.1, Algorithm 5 computes a lower bound for RWC-clustering problem,239

which provides a theoretical guidance for subsequent coreset construction.240

execute if ℚ is 
non-empty

𝒬
ℚ

𝑆
run Gonzalez's algorithm 

22⋅ddim  rounds.

add centers 𝜈𝑖
𝑖∈[22⋅ddim]

to coreset

clusters 𝐷𝑖 𝑖∈[22⋅ddim]

⋯⋯

𝐷𝑖′ 𝑖∈[22⋅ddim]

add non-empty 𝐷𝑖′ to ℚ set 𝐷𝑖
′ = 𝐷𝑖\ball(𝜈

𝑖 , 𝑟)

coreset

Figure 1: Coreset construction.

Coreset: Algorithm 2 describes a coreset construction method, which is inspired by [Ding et al.,241

2021, Krauthgamer and Lee, 2004, Har-Peled and Mendel, 2005, Wang et al.]. The algorithm takes as242

input a set Q of probability measures, its doubling dimension5 ddim, and a parameter r, and outputs243

a coreset S. The coreset construction relies on the Wasserstein distance, which serves as the key244

metric throughout the process.245

Figure 1 provides an intuitive and comprehensible understanding of this method. Specifically, we246

begin by initializing the family Q of sets as Q = {Q}. The following local procedure is then executed247

on every set D ∈ Q until Q becomes empty:248

• Execute the Gonzalez’s algorithm 22·ddim rounds on D ∈ Q, yielding a set of centers249 {
νi
}
i∈[22·ddim]

and their corresponding clusters {Di}i∈[22·ddim]. The centers are added to the250

coreset S.251

• For each cluster Di, we construct D′
i by removing all points within a ball of radius r centered252

at νi, formally defined as253

D′
i = Di\ball(νi, r), (7)

where ball(νi, r) :=
{
µ | W (µ, νi) ≤ r, µ ∈ Di

}
.254

• If D′
i is non-empty, we add it to Q. Remove the set D from Q.255

Algorithm 2 Coreset
1: Input: a set Q =

{
µi
}
i∈[m]

of probability measures, doubling dimension ddim and parameter r

2: Initialize Q = {Q} and S = ∅.
3: for set D in Q do
4: ▷local procedure
5: Run Gonzalez’s algorithm 22·ddim rounds on D, yielding centers

{
νi
}
i∈[22·ddim]

and clusters
{Di}i∈[22·ddim].

6: Set S = S ∪
{
νi
}
i∈[22·ddim]

.
7: Construct D′

i by removing points within a ball of radius r centered at νi according to Equa-
tion (7).

8: Add all non-empty D′
i to Q; i.e., Q = Q ∪ {D′

i}.
9: Set Q = Q\ {D}.

10: end for
11: Input: coreset S

Theorem 4.2 (Coreset property). Let ddim be the doubling dimension of Q and R be the radius256

of Q under Wasserstein distance, i.e., W (µ, ν) ≤ 2R for any µ, ν ∈ Q. We set r = O(ϵΓ), then257

Algorithm 2 outputs an ϵ-coreset S with |S| = O((Rr )
2·ddim) for k-RWC-clustering problem on Q258

within O(22·ddim · |Q| · T · log R
r ) time.259

5Given a metric space (Q,W ), its doubling dimension [Huang et al., 2018, Wang et al., 2024] is defined as
the smallest integer ddim such that any ball with radius 2r can be covered by at most 2ddim balls of radius r.
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Corollary 4.3. Algorithm 2 takes Q as its input and outputs the coreset S. The output S satisfies the260

following property261

| min
C∈P(X ),|C|=k

cost(Q,C)− min
C′∈P(X ),|C′|=k

cost(S,C ′)| ≤ min
C∈P(X ),|C|=k

ϵ · cost(Q,C).

A good proxy: As stated in Theorem 4.2, for any subset C ⊆ P(X ) with |C| = k, the values262

computed on the coreset can closely approximate the values on the original dataset within an ϵ-relative263

error. That is,264

cost(S,C) ≈ cost(Q,C). (8)

Furthermore, according to Corollary 4.3, the optimal value computed on the coreset is approximately265

the same as the optimal value computed on the original dataset. That is,266

min
C⊆Q,|C|=k

cost(S,C) ≈ min
C⊆Q,|C|=k

cost(Q,C). (9)

According to Equations (8) and (9), we have that the coreset S serves as a good proxy of the original267

dataset Q for the RWC-clustering problem.268

Remark 4.4 (Enhancing scalability for coreset construction). We can accelerate coreset construction269

by leveraging the merge-and-reduce framework [Bentley and Saxe, 1980, Har-Peled and Mazumdar,270

2004], which is efficient in both computation and communication. Specifically, a large dataset can be271

partitioned into smaller subsets and distributed across multiple machines for parallel computation,272

which significantly improves time efficiency. Furthermore, since the coreset is a subset of the original273

dataset, only the indices of the data points, rather than the data items themselves, need to be274

transmitted during machine synchronization. This makes the communication overhead negligible,275

ensuring excellent scalability of our coreset approach. Additionally, the merge-and-reduce framework276

enables our approach to adapt seamlessly to streaming data, making it highly effective and efficient277

in dynamic data processing scenarios.278

Remark 4.5. In the process of constructing the coreset, Wasserstein distance is employed primarily279

to ensure theoretical rigor. In practice, the construction of the coreset can also utilize W(·, ·).280

5 Experiments281

This section demonstrates the effectiveness of our RWC-clustering problem and the efficiency of the282

coreset method. All the experiments were performed on a server with an AMD EPYC 9754 128-Core283

Processor with 18 vCPUs, 60GB of RAM, and Python 3.12. The server utilized an RTX 4090D GPU284

with 24GB of VRAM. We used the POT library [Flamary et al., 2021] to compute the Wasserstein285

distance (WD) [Bonneel et al., 2011] and unbalanced optimal transport (UOT) [Chizat et al., 2018,286

Frogner et al., 2015]. The reported results are averaged over five runs.287

Due to space constraints, we report experimental results only on ModelNet10 [Wu et al., 2015] dataset288

in the main text. More experiments on other datasets, including Geometric shapes, MNIST [LeCun289

et al., 1998], KITTI [Geiger et al., 2012], ShapeNetCore [Chang et al., 2015], ScanObjectNN [Uy290

et al., 2019], nuScenes Mini [Caesar et al., 2020], as well as related ablation studies, are in appendix.291

ModelNet10 [Wu et al., 2015] is a standard dataset containing 3D CAD models. Each CAD model292

is discretized and represented as a point set. We extract object-level point cloud instances from the293

dataset and uniformly sample 300 points from each to construct our point cloud dataset.294

For the point set {xi}i∈[n] corresponding to a specific data item in the above datasets, we represent it295

as a probability measure µ =
∑n

i=1
1
nδxi to construct the clean dataset Q0. The noisy dataset Q is296

generated by adding clustered noise with ζ mass following a Gaussian distribution N (µ, σ2) to each297

clean probability measure.298

To evaluate the performance of our methods, we consider the following three criteria: i) Runtime:299

This includes the sampling time and the clustering time required to compute the k-center set C. ii)300

cost-cd: Defined as maxµ∈Q0 minν∈C W (µ, ν), it quantifies the distance between the center set C301

and the original clean dataset Q0. iii) cost-nd: Defined as maxµ∈Q minν∈C W(µ, ν), it evaluates302

the distance from center set C to the noisy dataset Q. The baselines for these three criteria are303

established using the results computed on the original full dataset for comparison.304
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Effectiveness of our RWC-clustering problem: To demonstrate the effectiveness of our RWC-305

clustering problem, a series of experiments were conducted on ModelNet10 dataset. We randomly306

sample 200 data items from the ModelNet10 to form the dataset. We compare the clustering quality307

computed by UOT-based clustering, WD-based clustering, and RWC-clustering. All three methods308

follow the same framework, where seeding is used for initialization, followed by a local search309

refinement. Specifically, the UOT-based clustering algorithm is derived by replacing RWD with UOT310

in Algorithms 1 and 4. Since WD is a metric, thus the WD-based clustering can directly use the311

existing Gonzalez’s algorithm [Gonzalez, 1985] along with the local search method [Lattanzi and312

Sohler, 2019, Choo et al., 2020].313

As shown in Table 1, the WD-based clustering exhibits the worst performance. The UOT-based314

clustering outperforms the WD-based clustering; however, the inclusion of an entropy regularization315

term causes a diffusion effect that hinders noise removal, leaving some residual noise inevitably. In316

contrast, our RWC-clustering approach achieves the best denoising performance, outperforming the317

other two methods.318

Table 1: Comparison of our RWC-clustering with UOT-based clustering and WD-based clustering
on ModelNet10 dataset. We fix the dataset size as 200, k = 10, Z = 200, σ = 1, τ = 10 and ζ = 0.1,
where Z is the number of iterations in post-processing procedure (i.e., Algorithm 4 in appendix).

Dataset Method cost-nd(↓) cost-cd(↓) Runtime(↓)

ModelNet10
RWC-clustering 2.20±0.13 2.40±0.05 475.98±2.39

UOT-based clustering 4.07±0.30 4.26±0.40 446.11±7.66

WD-based clustering 5.32±0.48 7.25±0.72 475.98±2.39

Efficiency of our coreset method: We show the efficiency of our coreset (CS) method by comparing319

it against the uniform sampling (US) method. To ensure fairness, both sampling methods (SM)320

employed the same sampling size (SS). The green dashed line indicates the results on the full dataset,321

which serves as the baseline for comparison. Figure 2 illustrates the performance of our CS method322

on ModelNet10 dataset. Although our CS method is slightly more time-consuming compared to the323

US method, it remains significantly more efficient than processing the original dataset. Moreover, on324

both cost-cd and cost-nd criteria, our CS method consistently outperforms the US method.325
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Figure 2: Comparison of the US method and our CS method across varying sample sizes on
ModelNet10 dataset. We fix k = 10, Z = 200, σ = 1, τ = 10 and ζ = 0.1.

Due to the randomness inherent in our algorithms and the approximate nature of the derived k-center326

set, some fluctuations are inevitable.327

6 Conclusion and future work328

In this paper, we introduce the Robust Wasserstein Center clustering (RWC-clustering) problem,329

and propose an efficient algorithm to solve it. Additionally, we introduce a coreset method to330

accelerate computations by compressing the dataset; moreover, we provide new analysis to establish331

theoretical guarantees for the coreset method under the RWC-clustering setting. For future work,332

we will explore the corresponding robust Wasserstein k-means clustering problem, along with its333

approximation algorithms and coreset techniques.334
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namic consistent k-center clustering. In Proceedings of the 2024 Annual ACM-SIAM Symposium418

on Discrete Algorithms (SODA), pages 3463–3484. SIAM, 2024.419

Silvio Lattanzi and Christian Sohler. A better k-means++ algorithm via local search. In International420

Conference on Machine Learning, pages 3662–3671. PMLR, 2019.421

Khang Le, Huy Nguyen, Quang M Nguyen, Tung Pham, Hung Bui, and Nhat Ho. On robust422

optimal transport: Computational complexity and barycenter computation. Advances in Neural423

Information Processing Systems, 34:21947–21959, 2021.424

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to425

document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.426

Fu Luo, Xi Lin, Fei Liu, Qingfu Zhang, and Zhenkun Wang. Neural combinatorial optimization427

with heavy decoder: Toward large scale generalization. In Thirty-seventh Conference on Neural428

Information Processing Systems, 2023.429

Mehryar Mohri. Foundations of machine learning, 2018.430

11



Fionn Murtagh and Pedro Contreras. Algorithms for hierarchical clustering: an overview. Wiley431

Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(1):86–97, 2012.432

Sloan Nietert, Ziv Goldfeld, and Rachel Cummings. Outlier-robust optimal transport: Duality, struc-433

ture, and statistical analysis. In International Conference on Artificial Intelligence and Statistics,434

pages 11691–11719. PMLR, 2022.435

Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport. Center for Research in436

Economics and Statistics Working Papers, (2017-86), 2017.437

Frédéric Ros and Serge Guillaume. Sampling techniques for supervised or unsupervised tasks.438

Springer, 2020.439

Bernhard Schmitzer. Stabilized sparse scaling algorithms for entropy regularized transport problems.440

SIAM Journal on Scientific Computing, 41(3):A1443–A1481, 2019.441

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to442

algorithms. Cambridge university press, 2014.443

Alexis Thual, Quang Huy TRAN, Tatiana Zemskova, Nicolas Courty, Rémi Flamary, Stanislas De-444

haene, and Bertrand Thirion. Aligning individual brains with fused unbalanced gromov wasserstein.445

Advances in Neural Information Processing Systems, 35:21792–21804, 2022.446

Mikaela Angelina Uy, Quang-Hieu Pham, Binh-Son Hua, Duc Thanh Nguyen, and Sai-Kit Yeung.447

Revisiting point cloud classification: A new benchmark dataset and classification model on448

real-world data. In International Conference on Computer Vision (ICCV), 2019.449

Cédric Villani et al. Optimal transport: old and new, volume 338. Springer, 2009.450

Xu Wang, Fuyou Miao, Wenjie Liu, and Yan Xiong. Efficient and robust neural combinatorial opti-451

mization via wasserstein-based coresets. In The Thirteenth International Conference on Learning452

Representations.453

Xu Wang, Jiawei Huang, Qingyuan Yang, and Jinpeng Zhang. On robust wasserstein barycenter:454

The model and algorithm. In Proceedings of the 2024 SIAM International Conference on Data455

Mining (SDM), pages 235–243. SIAM, 2024.456

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong457

Xiao. 3d shapenets: A deep representation for volumetric shapes. In Proceedings of the IEEE458

conference on computer vision and pattern recognition, pages 1912–1920, 2015.459

12



Limitations: Since the robust Wasserstein distance is not a true metric and does not satisfy the460

triangle inequality, theoretical analysis becomes challenging, and no approximation algorithm with461

provable guarantees has been obtained.462

Broader impact: This study contributes to the representation of complex data in noisy environments.463

Currently, we are not aware of any potential negative consequences arising from this work.464

A Other preliminaries465

Definition A.1 (Optimal transport (OT) [Peyré et al., 2017]). Let µ =
∑n

i=1 aiδxi
and ν =466 ∑n

j=1 bjδyj be two probability measures with weights a,b ∈ Rn
+, respectively. Given a cost467

matrix D ∈ Rn×n
+ , the OT distance between µ and ν is468

OT (µ, ν) := min
P∈Π(a,b)

⟨P,D⟩,

where Π(a,b) :=
{
P ∈ Rn×n

+ | P1 = a,PT1 = b
}

is the set of all feasible couplings and 1 is the469

vector of all ones.470

The Wasserstein distance is a special case of OT. The cost matrix D of Wasserstein distance must be471

induced by a distance function, while the cost matrix of OT only needs to be induced by a positive472

function. Thus, the Wasserstein distance is a metric on P(X ), whereas OT is not a metric.473

The doubling dimension provides a means for describing the growth rate of the data set with respect474

to certain metric.475

Definition A.2 (Doubling dimension [Huang et al., 2018, Wang et al., 2024]). Let (Q,W ) be a476

metric space, where W (·, ·) is a metric on Q. The doubling dimension of (Q,W ) is the smallest477

integer ddim such that every ball of radius 2r can be covered by at most 2ddim balls of radius r.478

In real-world datasets, data often exhibit inherent regularities, leading to a relatively low intrinsic479

dimension. Therefore, assuming a low doubling dimension is usually reasonable.480

Moreover, in practical applications, we do not need to know the exact value of the doubling481

dimension in advance. We usually start with a small value and adjust as needed. In our experiments,482

we assume the doubling dimension to be 1. The lack of precise knowledge of the doubling dimension483

does not affect practical applications.484

485

Definition A.3 (r-cover[Shalev-Shwartz and Ben-David, 2014, Mohri, 2018]). Given a metric space486

(X ,dist), a set A ⊆ X is an r-cover of Q ⊆ X , if for any x ∈ Q, there exists x′ ∈ A satisfying487

dist(x, x′) ≤ r.488

Note that, a cover of a set does not need to be a subset of it.489

Gonzalez’s algorithm [Gonzalez, 1985], a 2-approximation algorithm for the metric k-center490

problem, is often used as an initialization method in clustering tasks.491

Let Q be a data set and dist(·, ·) be the metric on Q. We iteratively select the point farthest from492

the currently chosen centers as the new center. The sequential nature of center selection leads to493

dependencies between steps, which poses challenges for parallelization. It takes O(mk) time, where494

m is the size of the dataset, and k represents the number of centers. When k or m is large, the495

computational complexity becomes a bottleneck. The details are in Algorithm 3.

Algorithm 3 Gonzalez’s algorithm
Input: data set Q, and a parameter k
Sample c ∈ Q uniformly at random, and set C1 = {c}.
for i = 2 to k do

Select c ∈ Q that is farthest from the center set Ci−1.
end for
Set C = Ck.
Output: a k-center set C

496
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B Post-processing algorithm497

Algorithm 4 Post-processing

1: Input: a set Q =
{
µi
}
i∈[m]

of probability measures, and a k-center set C
2: for i = 1 to Z do
3: ▷Sampling
4: Sample ν ∈ Q with probability W(ν,C)∑

ν′∈Q W(ν′,C) .
5: ▷Purification
6: Purify ν into ν̃ according to Equations (4) to (6).
7: ▷Swapping
8: if ∃ν′ ∈ C, s.t., cost(Q,C\ {ν′} ∪ {ν̃}) < cost(Q,C) then
9: C = C\ {ν′} ∪ {ν̃}.

10: end if
11: end for
12: Output: a k-center set C

Post-processing algorithm: Algorithm 4 is inspired by the local search algorithm [Lattanzi and498

Sohler, 2019, Choo et al., 2020], and serves as a post-processing procedure for Algorithm 1 to further499

refine the solution. The input is a set Q of probability measures and an initialized solution (i.e.,500

k-center set), while the output is the refined solution.501

The solution C is refined over Z epochs, with each epoch consisting of three steps: sampling,502

purification, and swapping. Specifically, in each epoch, we sample a candidate center ν ∈ Q503

according to a probability proportional to its cost, i.e., W(ν,C)∑
ν′∈Q W(ν′,C) . Then, we apply the purification504

step in Algorithm 1 to purify the candidate center ν into a clean center ν̃. Next, if there exists a center505

ν′ ∈ C such that replacing ν′ with ν̃ results in a reduction of the cost, we replace ν′ with ν̃.506

Time complexity: Let O(T ) denote the time complexity6 of computing RWD, and τ be a constant.507

In Algorithm 1, selecting candidate centers during each epoch requires O(m · T ) time, and the508

purification step also takes O(m · T ) time. With k epochs in total, the overall time complexity is509

O(km · T ).510

For Algorithm 4, initializing the distance matrix between C and Q takes O(km · T ) time. During511

each epoch, the operations require O(km+m · T ) time. Assuming Z epochs in total, the total time512

complexity is O(km · T + Z · (km+m · T )).513

Remark B.1. To ensure the fairness of experimental comparisons, we have fixed Z in our paper. In514

practical applications, we can indeed design early stopping criteria based on specific needs. For515

instance, stopping when no improvement occurs is a optional strategy.516

C Omitted proofs and details517

C.1 Intuition of RWC-clustering problem518

Let Q =
{
µi
}
i∈[m]

be a set of probability measures. We define the ball center at ν with radius r519

under metric W(·, ·) as520

ballW(ν, r) := {µ | W(µ, ν) ≤ r, µ ∈ Q} . (10)

Lemma C.1. If µ0, µ1 ∈ P(X ) are in ballW(ν, r), we have W̃(µ0, µ1) ≤ 2r.521

6We assume that the distance between any two points in X can be computed within O(1) time.
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Proof of Lemma C.1. Since µ0, µ1 are in ballW(ν, r), we have W(µ0, ν) ≤ r, W(µ1, ν) ≤ r.522

Assume that µ̂0, µ̂1 are the clean probability measures induced by µ0, µ1, respectively. That is,523

W(µ0, ν) = W (µ̂0, ν), W(µ1, ν) = W (µ̂1, ν). (11)

According to Definition 2.1, we have W̃(µ0, µ1) ≤ W(µ0, µ̂1) ≤ W (µ̂0, µ̂1). Then, by combining524

triangle inequality property of Wasserstein distance with Equation (11), we obtain525

W̃(µ0, µ1) ≤ W (µ̂0, µ̂1) ≤ W (µ̂0, ν) +W (µ̂1, ν) = W(µ0, ν) +W(µ1, ν) ≤ 2r.

526

Lemma C.1 implies that, under W(·, ·), the difference between two data points located within a small527

ball is relatively small.528

C.2 Lower bound529

Algorithm 5 essentially replaces the metric in the classical Gonzalez’s algorithm with W̃(·, ·).530

Specifically, let Ci be the center set containing i centers. We initially select a point µ randomly531

from the input dataset Q, and initialize the center set as C1 = {µ}. Then, for the i-th epoch with532

2 ≤ i ≤ k, we choose the point µ ∈ Q that is farthest from the previous center set Ci−1, and set533

Ci = Ci−1 ∪ {µ}; formally, the center µ selected, except in the first epoch, satisfies that534

µ ∈ arg max
µ′∈Q

W̃(µ′, Ci−1), (12)

where W̃(µ,Ci−1) := minν∈Ci−1
W̃(µ, ν). Notably, no purification step is applied during this535

process, thus the centers in Ci for i ∈ [k] contains outliers.536

As described in Theorem 4.1, Algorithm 5 computes a lower bound for RWC-clustering problem,537

which provides a theoretical guidance for subsequent coreset construction.538

Algorithm 5 Lower bound
1: Input: a set Q =

{
µi
}
i∈[m]

of probability measures, and a parameter k
2: Sample µ ∈ Q uniformly at random, and set C1 = {µ}.
3: for i = 2 to k do
4: Select µ ∈ Q that is farthest from the center set Ci−1 under W̃(·, ·) according to Equation (12).
5: end for
6: Output: a k-center set Ck

Theorem 4.1 (Lower bound). Let ∆ be the optimal value of the k-RWC-clustering problem, i.e.,539

∆ = minC⊆P(X ),|C|=k cost(Q,C). Algorithm 5 takes set Q as input and outputs a k-center set Ck540

within O(km · T ) time. We define Γ := maxµ∈Q W̃(µ,Ck). Then, we have Γ ≤ 2∆.541

Let C∗ =
{
νi∗
}
i∈[k]

be the optimal solution to the RWC-clustering problem, and ∆ be its corre-542

sponding optimal value; that is,543

min
C⊆P(X ),|C|=k

cost(Q,C) = cost(Q,C∗) = ∆. (13)

Let Q∗
i , i ∈ [k] be the clusters induced by νi∗, i ∈ [k], where each point is assigned to the nearest544

cluster center. That is,545

W(µ, νi∗) = W(µ,C∗) ≤ ∆ for µ ∈ Q∗
i . (14)

The set Ck is the output of Algorithm 5. The centers in Ck contain outliers, whereas the centers in546

C∗ are clean.547

Lemma C.2. For any µ ∈ Q∗
i , i ∈ [k], we have W̃(µ,Ck) ≤ 2∆ if |Q∗

i ∩ Ck| ≥ 1.548
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Proof of Lemma C.2. Let ν ∈ Q∗
i ∩ Ck. Since νi∗ is the nearest center of µ ∈ Q∗

i , by using549

Equation (13), we have550

W(µ, νi∗) ≤ ∆ for all µ ∈ Q∗
i . (15)

We know that both µ, ν are in cluster Q∗
i , thus µ, ν ∈ ballW(νi∗,∆). Then, by using Lemma C.1,551

we obtain W̃(µ, ν) ≤ 2 ·∆. According to the definition W̃(µ,Ck) := minν′∈Ck
W̃(µ, ν′), we have552

W̃(µ,Ck) ≤ W̃(µ, ν). Till now, we obtain W̃(µ,Ck) ≤ 2∆.553

554

Proof of Theorem 4.1. In order to prove the conclusion, we will discuss the proof in two cases,555

which is inspired by [Gonzalez, 1985].556

Case 1: Each Q∗
i contains exactly one center ν ∈ Ck.557

558

According to Lemma C.2, we have W̃(µ,Ck) ≤ 2∆ for all µ ∈ Q∗
i , i ∈ [k]. Since the collection

{Q∗
i }i∈[k] forms a partition of Q, we have

Q = ⊔k
i=1Q

∗
i .

Thus, it follows that W̃(µ,Ck) ≤ 2∆ for all µ ∈ Q. That is, Γ ≤ 2∆ holds.559

Case 2: Some Q∗
i contains multiple centers, i.e., |Ck ∩Q∗

i | ≥ 2.560

561

Without loss of generality, suppose that Ci0 is the first center set such that |Ci0 ∩Q∗
i | = 2 for some562

i ∈ [k], with Ci0 ∩Q∗
i = {ν, νi0}, where νi0 is the last center added to Ci0 .563

From the Line 3 of Algorithm 5, we know that564

W̃(µ,Ci0−1) ≤ W̃(νi0 , Ci0−1) for all µ ∈ Q.

Since ν ∈ Ci0−1, we have565

W̃(νi0 , Ci0−1) ≤ W̃(νi0 , ν) for i ∈ [k − 1].

We know that both ν, νi0 are in cluster Q∗
i , thus ν, νi0 ∈ ballW(νi∗,∆). Then, by using Lemma C.1,566

we obtain W̃(ν, νi0) ≤ 2 ·∆.567

Till now, we achieve that568

W̃(µ,Ci0−1) ≤ 2∆ for all µ ∈ Q.

From Line 3 of Algorithm 5, it follows that569

W̃(µ,Ck) ≤ W̃(µ,Ci0−1) for all µ ∈ Q.

Therefore, we obtain570

Γ ≤ 2∆ for Case 2.

In conclusion, for both Case 1 and Case 2, the inequality Γ ≤ 2∆ holds.571

Time complexity: The time complexity for selecting each center is O(m · T ). Since we need to572

select k centers in total, the overall time complexity is O(kmT ).573

574
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C.3 Analysis of coreset (Theorem 4.2)575

Theorem 4.2 (Coreset property). Let ddim be the doubling dimension of Q and R be the radius576

of Q under Wasserstein distance, i.e., W (µ, ν) ≤ 2R for any µ, ν ∈ Q. We set r = O(ϵΓ), then577

Algorithm 2 outputs an ϵ-coreset S with |S| = O((Rr )
2·ddim) for k-RWC-clustering problem on Q578

within O(22·ddim · |Q| · T · log R
r ) time.579

We introduce two sets, Set(µ) and Set(ξ), defined as follows580

Set(µ) =
{
µ′′ =

µ′

1− ζ
∈ P(X ) | µ′ ≤ µ, ∥µ′ − µ∥TV = ζ

}
and581

Set(ξ) =
{
ξ′′ =

ξ′

1− ζ
∈ P(X ) | ξ′ ≤ ξ, ∥ξ′ − ξ∥TV = ζ

}
,

where Set(µ) and Set(ξ) represent the sets of feasible clean probability measures with ζ mass of582

outliers removed from µ, ν according to W(µ, ·) and W(ξ, ·), respectively.583

Roughly speaking, the following theorem illustrates that if two probability measures µ and ξ are584

similar, then the sets of feasible clean probability measures they induce, denoted by Set(µ) and585

Set(ξ), respectively, are also similar, i.e., Set(µ) ≈ Set(ξ). Specifically, for any µ′′ in Set(µ), there586

exists a corresponding ξ′′ in Set(ξ) that is close to µ′′ under Wasserstein distance. Conversely, for587

every ξ′′ in Set(ξ), there exists a µ′′ ∈ Set(µ) that is close to ζ ′′. Consequently, the sets Set(µ) and588

Set(ξ) are r-cover of each other.589

Lemma C.3. Given any W (µ, ξ) ≤ r, the sets Set(µ) and Set(ξ) are r
1−ζ -cover of each other.590

Proof of Lemma C.3. Without loss of generality, let µ =
∑n

i=1 aiδxi
and ξ =

∑n
j=1 bjδyj

. Let P∗591

denote the optimal coupling induced by W (µ, ξ); that is,592

W (µ, ξ) = ⟨P∗,D⟩,

where D is the cost matrix between µ and ξ.593

For any µ′′ ∈ Set(µ), we have µ′ = (1− ζ) · µ′′ =
∑n

i=1 a
′
iδxi with a′ being its weights. We can594

construct a P′ satisfying595

P′1 = a′, P′1T ≤ b, P′ ≤ P∗, P′ ∈ Rn×n.

Let b′ = P′1T , and construct ξ′ =
∑n

j=1 b
′
jδyj

. Transferring µ′ to ξ′ according to the flow matrix596

P′, we achieve ⟨P′,D⟩ ≤ ⟨P∗,D⟩ = W (µ, ξ) ≤ r. Clearly, P′

1−ζ is a feasible flow for µ′′ = µ′

1−ζ597

and ξ′′ = ξ′

1−ζ under the Wasserstein distance. Therefore, W (µ′′, ξ′′) ≤ ⟨ P′

1−ζ ,D⟩ ≤ r
1−ζ .598

From the above, we can find a measure µ′′ = µ′

1−ζ ∈ Set(µ) such that W
(

µ′

1−ζ ,
ξ′

1−ζ

)
≤ r

1−ζ599

holds for any ξ′′ = ξ′

1−ζ ∈ Set(ξ). Similarly, we can find a measure ξ′′ ∈ Set(ξ) such that600

W
(

µ′

1−ζ ,
ξ′

1−ζ

)
≤ r

1−ζ holds for any µ′′ ∈ Set(µ).601

Thus, we have demonstrated that the sets Set(µ) and Set(ξ) are r
1−ζ -covers of each other.602

603

Let g : P(X ) → R, a 7→ g(a) be a function. The following lemma illustrates that if for any a ∈ A,604

there exists b ∈ B such that g(a) ≈ g(b), and vice vise; then, the minimum value of g(·) over the605

two sets A and B is close.606

Lemma C.4. If for every a ∈ A, there exists b ∈ B such that g(a) ∈ g(b)± r, and vice versa, then607

the minimum values of g over sets A and B are approximately equal; that is,608 ∣∣∣∣min
a′∈A

g(a′)− min
b′∈B

g(b′)

∣∣∣∣ ≤ r.
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Proof of Lemma C.4. From the given conditions, for any a ∈ A, there exists b ∈ B such that609

g(b)− r ≤ g(a) ≤ g(b) + r. (16)

Similarly, for any b ∈ B, there exists a ∈ A such that610

g(a)− r ≤ g(b) ≤ g(a) + r. (17)

Let b∗ be the point where g(·) achieves its minimum on B, i.e.,611

g(b∗) = min
b′∈B

g(b′).

According to Equation (17), there exists a′ ∈ A such that612

g(a′)− r ≤ g(b∗) ≤ g(a′) + r.

This implies that613

g(a′)− g(b∗) ≤ r.

Then, we have614

min
a′∈A

g(a′)− min
b′∈B

g(b′) = min
a′∈A

g(a′)− g(b∗) ≤ r. (18)

Similarly, by using Equation (16), we also obtain615

min
b′∈B

g(b′)− min
a′∈A

g(a′) ≤ r. (19)

By combining Equations (18) and (19), it follows that616 ∣∣∣∣min
a′∈A

g(a′)− min
b′∈B

g(b′)

∣∣∣∣ ≤ r.

617

The following theorem illustrates that if two functions are approximately equal pointwise, then their618

minimum values are also approximately the same.619

Lemma C.5. Given two functions620

g, f : P(X ) → R, (20)

if |g(µ)− f(µ)| ≤ r for all µ ∈ Q, then we have |minµ∈Q g(µ)−minµ′∈Q f(µ′)| ≤ r.621

Proof of Lemma C.5. Assume that minµ∈Q g(µ) > minµ′∈Q f(µ′). Let f achieve its minimum at622

µ∗, that is, minµ′∈Q f(µ′) = f(µ∗). Then, we have623 ∣∣∣∣min
µ∈Q

g(µ)− min
µ′∈Q

f(µ′)

∣∣∣∣ = min
µ∈Q

g(µ)− min
µ′∈Q

f(µ′) = min
µ∈Q

g(µ)− f(µ∗).

According to Equation (20), there must exist g(µ∗)−f(µ∗) ≤ r, implying minµ∈Q g(µ)−f(µ∗) ≤ r.624

Consequently, minµ∈Q g(µ) − minµ′∈Q f(µ′) ≤ r holds. Similarly, for the case625

minµ∈Q g(µ) ≤ minµ′∈Q f(µ′), we can also derive minµ∈Q f(µ)−minµ′∈Q g(µ′) ≤ r.626

627

Till now, we obtain the final conclusion.628

Proof of Theorem 4.2. For any center ν ∈ C ⊆ P(X ) and µ′′ ∈ Set(µ), there exists ξ′′ ∈ Set(ξ)629

such that W (µ′′, ξ′′) ≤ r
1−ζ according to Lemma C.3.630
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By using the triangle inequality, we have631

W (ξ′′, ν)−W (µ′′, ξ′′) ≤ W (µ′′, ν) ≤ W (ξ′′, ν) +W (µ′′, ξ′′). (21)

This leads to the following inequality632

|W (µ′′, ν)−W (ξ′′, ν)| ≤ W (µ′′, ξ′′) ≤ r

1− ζ
. (22)

The above result shows that for any µ′′ ∈ Set(µ), there exists ξ′′ ∈ Set(ξ) such that W (µ′′, ν) ∈633

W (ξ′′, ν)± r
1−ζ .634

Similarly, for any ξ′′ ∈ Set(ξ), we also have W (ξ′′, ν) ∈ W (µ′′, ν)± r
1−ζ .635

Let g(·) := W (·, ν). By applying Lemma C.4, we can deduce636 ∣∣∣∣ min
µ′′∈Set(µ)

W (µ′′, ν)− min
ξ′′∈Set(ξ)

W (ξ′′, ν)

∣∣∣∣ ≤ r

1− ζ
, (23)

which exactly implies |W(µ, ν)−W(ξ, ν)| ≤ r
1−ζ .637

According to [Ding et al., 2021], the output coreset S is an r-cover for Q under the Wasserstein638

distance. This means that for any µ ∈ Q, there exists ξ ∈ S such that W (µ, ξ) ≤ r. Consequently,639

for any µ ∈ Q, there exists ξ ∈ S such that |W(µ, ν)−W(ξ, ν)| ≤ r
1−ζ .640

Let g(·) = W(µ, ·) and f(·) = W(ξ, ·). Using Lemma C.5, we obtain641 ∣∣∣∣min
ν∈Q

W(µ, ν)− min
ν′∈Q

W(ξ, ν′)

∣∣∣∣ ≤ r

1− ζ
, (24)

which implies |W(µ,C)−W(ξ, C)| ≤ r
1−ζ .642

By setting g(·) = −W(·, C), we have |maxµ∈Q W(µ,C)−maxξ∈S W(ξ, C)| ≤ r
1−ζ according to643

Lemma C.4.644

645

Setting r = O(ϵΓ), we obtain646

|cost(Q,C)− cost(S,C)| ≤ ϵ · cost(Q,C). (25)

Time complexity: Algorithm 2 induces a tree with a maximum height of O(log R
r ). Constructing647

each layer requires time O(22·ddim ·|Q|·T ), thus the total time complexity is O(22·ddim ·|Q|·T ·log R
r ).648

Coreset size: After executing the Gonzalez algorithm O(22·ddim) rounds, the radius is reduced by649

half. This implies that the degree of the tree is at most O(22·ddim). Therefore, the coreset size, which650

corresponds to the total number of nodes in the tree, is O((Rr )
2·ddim).651

652

By setting g(·) = cost(Q, ·) and f(·) = cost(S, ·), we obtain the following corollary according to653

Lemma C.5.654

Corollary 4.3. Algorithm 2 takes Q as its input and outputs the coreset S. The output S satisfies the655

following property656

| min
C∈P(X ),|C|=k

cost(Q,C)− min
C′∈P(X ),|C′|=k

cost(S,C ′)| ≤ min
C∈P(X ),|C|=k

ϵ · cost(Q,C).
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D Full Experiments657

This section demonstrates the effectiveness of our RWC-clustering problem, the efficiency of the658

coreset method, the necessity of the seeding algorithm, and several ablation studies.659

All the experiments were performed on a server with an AMD EPYC 9754 128-Core Processor with660

18 vCPUs, 60GB of RAM, and Python 3.12. The server utilized an RTX 4090D GPU with 24GB of661

VRAM. We used the POT library [Flamary et al., 2021] to compute the Wasserstein distance (WD)662

[Bonneel et al., 2011] and unbalanced optimal transport (UOT) [Chizat et al., 2018, Frogner et al.,663

2015]. To improve numerical stability, we adopted the stabilized Sinkhorn algorithm [Schmitzer,664

2019, Chizat et al., 2017] for computing the entropy regularization version. The reported results are665

averaged over five runs.666

We validated our methods on the following datasets.667

i) Geometric shapes is a toy dataset designed by us, consisting of five geometric shapes. It is used to668

verify the advantages of our seeding algorithm and the RWC-clustering problem intuitively. Each669

shape is represented by a point set.670

ii) MNIST [LeCun et al., 1998] is a well-known handwritten digit dataset. For each image, we extract671

the pixels with higher grayscale values (greater than 0.3) to form the corresponding point set.672

iii) ModelNet10 [Wu et al., 2015] is a standard dataset containing 3D CAD models. Each CAD673

model is discretized and represented as a point set.674

iv) KITTI dataset [Geiger et al., 2012] is a widely used benchmark for autonomous driving, containing675

3D LiDAR scans. We use its 3D object detection subset, which contains point clouds for various676

categories such as Pedestrian, Cyclist, Car, Van, Truck, Person_sitting, Tram, and Misc.677

v) ShapeNetCore [Chang et al., 2015] is a dataset containing a large collection of 3D object models.678

It includes 55 categories, such as chairs, tables, cars, airplanes, and other common objects.679

vi) ScanObjectNN [Uy et al., 2019] is a real-world 3D object classification benchmark, which is680

captured from real scans, making it more challenging than synthetic datasets such as ModelNet10.681

vii) nuScenes Mini [Caesar et al., 2020] is a subset of the full nuScenes dataset, containing 10 scenes682

and providing high-quality 3D point cloud data with corresponding annotations.683

We extract object-level point cloud instances from the dataset and uniformly sample 300 points from684

each to construct our point cloud dataset. If the original point count is smaller than n, we perform685

uniform sampling with replacement; otherwise, we apply uniform sampling without replacement.686

For the point set {xi}i∈[n] corresponding to a specific data item in the above datasets, we represent it687

as a probability measure µ =
∑n

i=1
1
nδxi to construct the clean dataset Q0. The noisy dataset Q is688

generated by adding clustered noise with ζ mass following a Gaussian distribution N (µ, σ2) to each689

clean probability measure.690

To evaluate the performance of our methods, we consider the following three criteria: i) Runtime:691

This includes the sampling time and the clustering time required to compute the k-center set C. ii)692

cost-cd: Defined as maxµ∈Q0 minν∈C W (µ, ν), it quantifies the distance between the center set C693

and the original clean dataset Q0. iii) cost-nd: Defined as maxµ∈Q minν∈C W(µ, ν), it evaluates694

the distance from center set C to the noisy dataset Q. The baselines for these three criteria are695

established using the results computed on the original full dataset for comparison.696
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D.1 Effectiveness of our RWC-clustering problem697

To demonstrate the effectiveness of the RWC-clustering problem, we conducted a series of experi-698

ments on several datasets. We compare the clustering quality computed by UOT-based clustering,699

WD-based clustering, and RWC-clustering. All three methods follow the same framework, where700

seeding is used for initialization, followed by a local search refinement. Specifically, the UOT-based701

clustering algorithm is derived by replacing RWD with UOT in Algorithms 1 and 4. Since WD is a702

metric, thus the WD-based clustering can directly use the existing Gonzalez’s algorithm [Gonzalez,703

1985] along with the local search method [Lattanzi and Sohler, 2019, Choo et al., 2020].704

We first present results on several real-world datasets. Then, to provide a more intuitive understanding705

of our method, we illustrate the results on a toy dataset.706

Effectiveness of our RWC-clustering problem on real-world datasets:707

We randomly select 200 data items from each dataset to serve as the experimental data. Table 2708

evaluates the effectiveness of our RWC-clustering problem across different real-world datasets.709

Among these methods, our RWC-clustering approach achieves the best denoising performance,710

outperforming the other two methods in almost all datasets.711

Due to the randomness inherent in our algorithms and the approximate nature of the derived k-center712

set, some fluctuations are inevitable. A slightly inferior performance on the cost-cd metric for713

MNIST is acceptable.714

Table 2: Comparison of our RWC-clustering with UOT-based clustering and WD-based clustering
on different datasets. We fix the dataset size as 200, k = 10, Z = 200, σ = 1, τ = 10 and ζ = 0.1,
where Z is the number of iterations in post-processing procedure (i.e., Algorithm 4).

Dataset Method cost-nd(↓) cost-cd(↓) Runtime (↓)

ShapeNetCore
RWC-clustering 5.42±0.15 5.97±0.42 485.78±0.43

UOT-based clustering 13.25±0.31 15.91±1.83 447.76±9.74

WD-based clustering 8.69±0.89 10.92±0.94 485.78±0.43

ScanObjectNN
RWC-clustering 3.67±0.37 5.78±0.00 519.01±1.62

UOT-based clustering 8.55±0.15 11.97±0.00 447.66±5.44

WD-based clustering 6.96±0.78 13.10±0.00 519.01±1.62

nuScenes Mini
RWC-clustering 4.96±0.20 5.18±0.12 529.29±4.27

UOT-based clustering 9.00±2.98 9.89±3.46 465.98±26.43

WD-based clustering 13.20±0.23 17.54±0.60 529.29±4.27

ModelNet10
RWC-clustering 2.20±0.13 2.40±0.05 475.98±2.39

UOT-based clustering 4.07±0.30 4.26±0.40 446.11±7.66

WD-based clustering 5.32±0.48 7.25±0.72 475.98±2.39

MNIST
RWC-clustering 6.80±0.06 12.37±0.45 420.84±0.66

UOT-based clustering 9.69±0.62 11.14±1.30 443.34±9.42

WD-based clustering 9.37±0.13 17.02±0.19 420.84±0.66

KITTI
RWC-clustering 3.36±0.13 4.14±0.00 532.82±0.49

UOT-based clustering 10.84±0.99 11.86±0.40 447.57±11.84

WD-based clustering 7.83±0.21 11.51±0.68 532.82±0.49
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Table 3 shows that among these methods, our RWC-clustering approach consistently achieves the715

best denoising performance, outperforming the other two methods across different values of the716

parameter k.717

Table 3: Comparison of our RWC-clustering with UOT-based clustering and WD-based clustering
on ModelNet10 dataset across different k. We fix the dataset size as 200, Z = 200, σ = 1, τ = 10
and ζ = 0.1, where Z is the number of iterations in post-processing procedure (i.e., Algorithm 4).

k Method cost-nd(↓) cost-cd(↓) Runtime (↓)

10
RWC-clustering 2.20±0.13 2.40±0.05 475.98±2.39

UOT-based clustering 4.07±0.30 4.26±0.40 446.11±7.66

WD-based clustering 5.32±0.48 7.25±0.72 475.98±2.39

20
RWC-clustering 1.84±0.08 2.11±0.06 526.83±1.67

UOT-based clustering 4.01±0.28 4.37±0.24 573.45±1.52

WD-based clustering 5.34±0.55 6.35±0.65 526.83±1.67

30
RWC-clustering 1.52±0.05 1.73±0.10 575.72±3.28

UOT-based clustering 3.85±0.24 4.08±0.02 511.92±2.50

WD-based clustering 4.51±0.27 6.08±0.12 575.72±5.28

Table 3 shows that among these methods, our RWC-clustering approach consistently achieves the718

best denoising performance, outperforming the other two methods across different values of the719

parameter ζ.720

Table 4: Comparison of our RWC-clustering with UOT-based clustering and WD-based clustering
on ModelNet10 dataset across different mass of noise. We fix the dataset size as 200, k = 10, Z =
200, σ = 1 and τ = 10, where Z is the number of iterations in post-processing procedure (i.e.,
Algorithm 4).

ζ Method cost-nd(↓) cost-cd(↓) Runtime (↓)

0.1
RWC-clustering 2.20±0.13 2.40±0.05 475.98±2.39

UOT-based clustering 4.07±0.30 4.26±0.40 446.11±7.66

WD-based clustering 5.32±0.48 7.25±0.72 475.98±2.39

0.2
RWC-clustering 2.23±0.12 2.76±0.19 650.75±7.80

UOT-based clustering 3.94±0.17 4.28±0.27 431.84±11.77

WD-based clustering 8.83±1.37 11.77±1.23 650.75±7.80

0.3
RWC-clustering 2.21±0.11 3.24±1.02 841.29±0.46

UOT-based clustering 3.72±0.12 4.34±0.15 432.44±10.84

WD-based clustering 11.71±1.89 16.37±1.75 841.29±0.46
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Effectiveness of our RWC-clustering problem on toy dataset:721

We visualized the clean geometric shapes in Figure 11(a), and the noisy geometric shapes are in722

Figure 3.723

Figure 3: Visualization of noisy geometric shapes.

Figure 4 evaluates the effectiveness of our RWC-clustering problem. Specifically, Figure 4(a)724

displays the clustering results obtained using our approach, while Figure 4(b) shows results based on725

Unbalanced Optimal Transport (UOT), and Figure 4(c) presents clustering results using the classical726

Wasserstein distance (WD).727

Figure 4: Comparing our RWC-clustering with WD-based clustering and UOT-based clustering.

Among these, the WD-based clustering exhibits the worst performance, showing almost no denoising728

capability. The UOT-based clustering outperforms the WD-based clustering; however, the inclusion729

of an entropy regularization term causes a diffusion effect that hinders noise removal, leaving some730

residual noise inescapably. In contrast, our RWC-clustering approach achieves the best denoising731

performance, outperforming the other two methods.732
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D.2 Effectiveness of our coreset method733

We show the effectiveness of our coreset (CS) method by comparing it against the uniform sampling734

(US) method. Specifically, we first construct a coreset S ⊆ Q and simultaneously generate a735

uniformly sampled subset S′ of the same size |S| from the full dataset Q as a baseline. We then run736

the clustering algorithm ( i.e., Algorithms 1 and 4 ) on both subsets. If the clustering algorithm is737

applied to the coreset S, we refer to it as the CS method. Conversely, if it is applied to the uniformly738

sampled subset S′, we refer to it as the US method. Since the exact size of the coreset cannot be739

pre-specified, to ensure fairness between the two sampling methods (SM), we set the sample size740

(SS) of the US method to match that of the CS method. The green dashed line indicates the results on741

the full dataset, which serves as the baseline for comparison.742

Coreset method on MNIST dataset:743

Figure 5 illustrates the performance of our CS method on the MNIST dataset across different sample744

size. Although our CS method is slightly more time-consuming compared to the US method, it745

remains significantly more efficient than processing the original dataset. Moreover, in terms of both746

cost-cd and cost-nd criteria, our CS method consistently outperforms the US method.747

Due to the randomness inherent in our algorithms and the approximate nature of the derived k-center748

set, some fluctuations are inevitable.749
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Figure 5: Comparison of the US method and our CS method across varying sample sizes on MNIST
dataset. We fix k = 10, Z = 200, σ = 1, τ = 10 and ζ = 0.1, where Z is the number of iterations in
post-processing procedure (i.e., Algorithm 4).

Results on different k: From Table 5, our CS method consistently has an advantage over the US750

method across different k.751

752

When using the full dataset, the large data volume makes it difficult for the 200-round local search to753

adequately explore the entire dataset. As a result, in some cases, the performance on the full dataset754

is actually worse than that on our small-size coreset. Our coreset method places more attention on755

boundary points, enabling it to better capture the diversity of the dataset. Consequently, it not only756

achieves higher computational efficiency but also achieves better clustering quality.757

Table 5: Comparison of the US method and our CS method with varying values of k on MNIST
dataset. We fix the sample size as 198, Z = 200, σ = 1, τ = 10 and ζ = 0.1, where Z is the number
of iterations in post-processing procedure (i.e., Algorithm 4).

k SM cost-nd(↓) cost-cd(↓) Runtime(↓)

10 US 11.32±1.66 16.76±0.74 2350.03±33.77

CS 10.04±0.96 13.01±0.99 2582.41±40.61

20 US 9.85±0.72 14.75±1.07 2443.48±59.73

CS 8.54±0.66 10.81±0.22 2741.75±49.83

30 US 9.81±0.30 15.30±0.77 2584.93±72.05

CS 8.35±0.34 11.24±0.71 2882.62±67.72
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Coreset method on ModelNet10 dataset:758

759

Figure 6 illustrates the performance of our CS method on the ModelNet10 dataset across different760

sample size. Our CS method is slightly more time-consuming than the US method. However, it761

remains significantly more efficient than processing the original dataset. Moreover, in terms of both762

cost-cd and cost-nd criteria, our CS method consistently outperforms the US method.763
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Figure 6: Comparison of the US method and our CS method across varying sample sizes on
ModelNet10 dataset. We fix k = 10, Z = 200, σ = 1, τ = 10 and ζ = 0.1, where Z is the number
of iterations in post-processing procedure (i.e., Algorithm 4).

Results on different k: From Table 6, our CS method consistently has an advantage over the US765

method across different k.766

767

Table 6: Comparison of the US method and our CS method with varying values of k on ModelNet10
dataset. We fix the sample size as 276, Z = 200, σ = 1, τ = 10 and ζ = 0.1, where Z is the number
of iterations in post-processing procedure (i.e., Algorithm 4).

k SM cost-nd(↓) cost-cd(↓) Runtime(↓)

10 US 4.77±0.28 4.93±0.34 3044.64±84.37

CS 3.36±0.17 3.61±0.10 3563.36±97.92

20 US 3.78±0.24 4.13±0.40 3306.95±38.13

CS 2.74±0.10 3.47±0.06 3800.35±41.62

30 US 3.92±0.02 4.36±0.01 3531.90±51.19

CS 2.45±0.08 2.90±0.51 4009.34±40.75
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Coreset method on KITTI dataset:768

769

Figure 7 illustrates the performance of our CS method on the KITTI dataset across different sample770

size. Our CS method consistently outperforms the US method on both cost-cd and cost-nd criteria.771
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Figure 7: Comparison of the US method and our CS method across varying sample sizes on KITTI
dataset. We fix k = 10, Z = 200, σ = 1, τ = 10 and ζ = 0.1, where Z is the number of iterations in
post-processing procedure (i.e., Algorithm 4).

Results on different k: From Table 7, our CS method consistently has an advantage over the US773

method across different k.774

775

Table 7: Comparison of the US method and our CS method with varying values of k on KITTI dataset.
We fix the sample size as 213, Z = 200, σ = 1, τ = 10 and ζ = 0.1, where Z is the number of
iterations in post-processing procedure (i.e., Algorithm 4).

k SM cost-nd(↓) cost-cd(↓) Runtime(↓)

10 US 36.49±8.25 37.05±8.33 2750.14±7.69

CS 7.34±0.25 7.75±0.57 3419.77±2.97

20 US 29.38±1.96 29.82±1.92 2907.22±7.01

CS 4.34±0.93 5.60±0.87 3601.32±2.22

30 US 12.56±0.00 13.34±0.00 2989.84±15.69

CS 2.84±0.33 3.60±0.29 3745.60±50.50
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Coreset method on ShapeNetCore dataset:776

777

Figure 8 illustrates the performance of our CS method on the ShapeNetCore dataset across different778

sample size. Our CS method consistently outperforms the US method on both cost-cd and cost-nd779

criteria.780

781

100 200 300 400 500

Sample size

2000

4000

6000

8000

10000

12000

14000

ru
nt

im
e 

ov
er

 b
as

el
in

e

(a) Comparison of runtime

US-runtime
CS-runtime
Baseline

100 200 300 400 500

Sample size

9

10

11

12

13

14

co
st

-n
d 

ov
er

 b
as

el
in

e

(b) Comparison of cost-nd

US-cost-nd
CS-cost-nd
Baseline

100 200 300 400 500

Sample size

10

11

12

13

14

15

co
st

-c
d 

ov
er

 b
as

el
in

e

(c) Comparison of cost-cd

US-cost-cd
CS-cost-cd
Baseline

Figure 8: Comparison of the US method and our CS method across varying sample sizes on
ShapeNetCore dataset. We fix k = 10, Z = 200, σ = 1, τ = 10 and ζ = 0.1, where Z is the number
of iterations in post-processing procedure (i.e., Algorithm 4).

Results on different k: From Table 8, our CS method consistently has an advantage over the US782

method across different k.783

784

Table 8: Comparison of the US method and our CS method with varying values of k on ShapeNetCore
dataset. We fix the sample size as 225, Z = 200, σ = 1, τ = 10 and ζ = 0.1, where Z is the number
of iterations in post-processing procedure (i.e., Algorithm 4).

k SM cost-nd(↓) cost-cd(↓) Runtime(↓)

10 US 11.26±0.51 12.20±0.83 2621.13±66.35

CS 10.54±1.30 11.23±1.40 2900.54±662.23

20 US 8.98±0.33 9.89±0.25 2823.81±6.63

CS 8.63±0.79 9.74±0.53 3320.58±19.00

30 US 9.23±0.76 10.31±0.87 3022.49±30.35

CS 7.63±0.07 8.54 ±0.21 3486.17±29.55
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Coreset method on ScanObjectnn dataset:785

786

Figure 9 illustrates the performance of our CS method on the ScanObjectnn dataset across different787

sample size. Our CS method consistently outperforms the US method on both cost-cd and cost-nd788

criteria.789
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Figure 9: Comparison of the US method and our CS method across varying sample sizes on
ScanObjectnn dataset. We fix k = 10, Z = 200, σ = 1, τ = 10 and ζ = 0.1, where Z is the number
of iterations in post-processing procedure (i.e., Algorithm 4).

Results on different k: From Table 9, our CS method consistently has an advantage over the US791

method across different k.792

793

Table 9: Comparison of the US method and our CS method with varying values of k on ScanObjectnn
dataset. We fix the sample size as 223, Z = 200, σ = 1, τ = 10 and ζ = 0.1, where Z is the number
of iterations in post-processing procedure (i.e., Algorithm 4).

k SM cost-nd(↓) cost-cd(↓) Runtime(↓)

10 US 24.56±0.15 29.44±1.05 2793.50±0.49

CS 7.50±0.53 8.31±0.89 3340.34±6.32

20 US 19.20±0.00 22.98±0.00 2886.22±24.60

CS 5.27±0.45 5.98±0.14 3542.27±14.56

30 US 19.20±0.00 22.98±0.00 3077.61±13.00

CS 4.01±0.22 4.81±0.33 3623.86±4.22
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Coreset method on nuScenes Mini dataset:794

795

Figure 10 illustrates the performance of our CS method on the nuScenes Mini dataset across different796

sample size. Our CS method consistently outperforms the US method on both cost-cd and cost-nd797

criteria.798
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Figure 10: Comparison of the US method and our CS method across varying sample sizes on
nuScenes Mini dataset. We fix k = 10, Z = 200, σ = 1, τ = 10 and ζ = 0.1, where Z is the number
of iterations in post-processing procedure (i.e., Algorithm 4).

Results on different k: From Table 10, our CS method consistently has an advantage over the US800

method across different k.801

802

Table 10: Comparison of the US method and our CS method with varying values of k on nuScenes
Mini dataset. We fix the sample size as 198, Z = 200, σ = 1, τ = 10 and ζ = 0.1, where Z is the
number of iterations in post-processing procedure (i.e., Algorithm 4 in appendix)

k SM cost-nd(↓) cost-cd(↓) Runtime(↓)

10 US 17.57±1.38 18.17±1.65 2530.11±11.61

CS 11.59±1.20 12.18±1.64 3066.76±10.40

20 US 13.04±0.05 13.29±0.00 2662.22±37.98

CS 6.03±0.31 6.20±0.39 3199.50±34.17

30 US 13.02±0.00 13.44±0.25 2821.26±46.32

CS 5.73±0.92 5.85±1.01 3350.30±34.08

29



D.3 Ablation experiments803

Ablation experiments on τ :804

We conduct ablation experiments on the ModelNet10 dataset to explore the effect of the hyperparam-805

eter τ . In this experiment, we randomly select 200 samples from ModelNet10 to form our dataset.806

As shown in Table 11, setting τ too small or too large leads to suboptimal performance. A too small807

τ may result in degraded clustering quality, while a large τ significantly increases computational cost808

without consistent improvements in quality. Therefore, we recommend selecting a relatively small809

constant for τ . In all our experiments, we fix τ = 10 for providing a good balance between efficiency810

and performance.811

Table 11: Comparison of our algorithm (i.e., Algorithm 1 and 4) for solving RWC-clustering
problem by using varying parameter τ on ModelNet10 dataset. We fix the dataset size as 200,
k = 10, Z = 200, σ = 1 and ζ = 0.1, where Z is the number of iterations in post-processing
procedure (i.e., Algorithm 4).

τ cost-nd(↓) cost-cd(↓) Runtime (↓)
1 2.65±0.40 4.19±0.70 1419.53±352.59

2 2.26±0.04 2.57±0.05 1524.12±436.52

3 2.20±0.04 2.48±0.05 1701.30±476.68

5 2.35±0.17 2.57±0.16 2025.11±179.11

10 2.18±0.04 2.43±0.10 2498.92±125.57

20 2.26±0.10 2.48±0.14 3874.76±91.72

50 2.32±0.17 2.52±0.07 11997.44±1142.86

Selection of ζ under unknown noise mass:812

This experiment aims to explore how to select the parameter ζ when the true noise mass is unknown.813

We randomly sample 200 samples from the ModelNet10 to form the dataset, each data item containing814

0.3 mass of noise. However, we run our algorithm across different ζ.815

Table 12: Comparison of our algorithm (i.e., Algorithm 1 and 4) for solving RWC-clustering
problem across different values of ζ on ModelNet10 dataset with 0.3 mass of noise. We fix the
dataset size as 200, k = 10, Z = 200, σ = 1 and τ = 10, where Z is the number of iterations in
post-processing procedure (i.e., Algorithm 4).

ζ cost-nd(↓) cost-cd(↓) Runtime(↓)
0.05 13.48±0.15 13.58±1.48 2387.10±8.16

0.1 9.99±0.11 10.90±1.51 2861.19±189.57

0.2 5.10±0.02 5.45±0.69 2985.63±226.70

0.3 2.29±0.17 3.58±0.94 2998.34±166.96

0.4 1.72±0.07 3.26±0.36 2943.35±35.42

0.5 1.43±0.08 3.86±0.49 3055.85±88.55

0.6 1.21±0.06 5.01±0.59 3122.77±112.56

0.7 1.00±0.04 4.46±0.37 3589.76±26.52

0.8 0.75±0.01 4.93±0.08 3722.17±16.04

0.9 0.59±0.02 7.30±1.00 3921.55±14.58
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Nietert et al. [2022] theoretically demonstrates that when ζ ∈ [0, 1) is slightly overestimated relative to816

the true noise mass, the optimal solution can still be attained. This suggests that a mild overestimation817

of ζ does not significantly affect the results.818

Our results in Table 13 confirm that slightly overestimating ζ has only a minor impact, while819

underestimating it severely degrades the solution quality. Therefore, when the true noise mass is820

unknown, we recommend setting ζ slightly larger than the expected noise mass to ensure robust821

performance.822

Ablation experiment for our CS method across varying mass ζ of noise:823

Table 13 illustrates that the CS method consistently outperforms the US method under both cost-cd824

and cost-nd criteria across varying mass ζ of noise.825

Table 13: Comparison of the US method and our CS method using varying mass ζ of noise. We
fix k = 10, Z = 200, σ = 1 and τ = 10, where Z is the number of iterations in post-processing
procedure (i.e., Algorithm 4 in appendix)

ζ SM SS cost-nd(↓) cost-cd(↓) Runtime (↓)

0.1 US 207 4.84±0.93 5.14±0.97 2431.83±82.81

CS 207 4.06±0.23 4.35±0.15 2430.90±70.51

0.2 US 214 4.16±0.77 4.97±0.69 3306.69±5.51

CS 214 3.38±0.31 3.93±0.47 3281.46±0.86

0.3 US 194 3.96±0.09 4.84±0.18 3238.40±2.68

CS 194 3.74±0.15 4.65±0.31 3374.23±4.87
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D.4 Ablation experiments on seeding algorithm826

Henceforth, we refer to seeding initialization as the approach that uses the k-center set produced by827

Algorithm 1 for initialization. In contrast, random initialization refers to selecting k data points828

uniformly at random from the dataset to form the k-center set for initialization.829

830

Necessity of seeding algorithm on real-world datasets:831

Table 14: Comparison of seeding initialization and random initialization across different numbers of
epochs Z. We fix the dataset size as 200, k = 10, σ = 1, τ = 10 and ζ = 0.1, where Z is the number
of iterations in post-processing procedure (i.e., Algorithm 4 in appendix)

Z Initialization cost-nd(↓) cost-cd(↓) Runtime(↓)

20 random 4.05±0.22 4.62±0.97 280.84±0.36

seeding 2.66±0.05 3.06±0.37 322.33±0.77

30 random 3.95±0.65 4.08±0.65 398.15±0.55

seeding 2.60±0.15 2.88±0.40 430.49±3.55

50 random 3.20±0.30 3.90±0.21 621.08±1.34

seeding 2.33±0.04 2.55±0.10 662.62±2.18

100 random 3.03±0.30 3.17±0.29 1249.73±1.69

seeding 2.35±0.08 2.56±0.07 1301.19±1.56

150 random 2.78±0.25 3.10±0.35 1866.39±0.83

seeding 2.24±0.03 2.50±0.16 1900.57±0.86

200 random 2.30±0.03 2.48±0.06 2381.57±64.57

seeding 2.27±0.10 2.47±0.13 2405.65±71.16

Table 14 validates the effectiveness of our seeding algorithm (Algorithm 1) for initialization on832

the ModelNet10 dataset. We randomly select 200 samples from ModelNet10 to form the dataset. In833

this experiment, initialization is first performed to provide a coarse solution, which is then refined834

through the post-processing procedure (Algorithm 4) to obtain a finer solution.835

To ensure a fair comparison, we account for the computational cost of seeding initialization as836

equivalent to k = 10 epochs. Specifically, in the seeding initialization method, the post-processing837

algorithm is executed for Z − k iterations, while in the random initialization it runs for Z iterations.838

The experimental results demonstrate that our seeding initialization consistently outperforms random839

initialization in terms of clustering quality. Moreover, it leads to significantly faster convergence,840

demonstrating the importance of a good initialization strategy.841
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Necessity of seeding algorithm on toy dataset:842

We visualized the clean geometric shapes in Figure 11(a), and the noisy geometric shapes are in843

Figure 3.844

Figure 11 validates the effectiveness of our seeding algorithm (Algorithm 1) for initialization. In845

this experiment, we first perform initialization and then apply Algorithm 2 as a post-processing step846

for clustering. Specifically, Figure 11(b) shows the clustering results with random initialization, while847

Figure 11(c) presents the results using our Algorithm 1 for initialization. Figure 11(b) shows poor848

denoising performance without using the seeding algorithm for initialization. In contrast, by using849

the seeding algorithm, the resulting centers in Figure 11(c) are more closely with the original five850

clean shapes. This implies the importance of a good initialization, and demonstrates the advantage of851

our seeding algorithm in providing a good starting point.852

Figure 11: Effectiveness of our seeding algorithm.

33



NeurIPS Paper Checklist853

1. Claims854

Question: Do the main claims made in the abstract and introduction accurately reflect the855

paper’s contributions and scope?856

Answer: [Yes]857

Justification: Our abstract and introduction clearly state the main claims of the paper,858

including the key contributions, as well as the underlying assumptions and known limitations.859

Guidelines:860

• The answer NA means that the abstract and introduction do not include the claims861

made in the paper.862

• The abstract and/or introduction should clearly state the claims made, including the863

contributions made in the paper and important assumptions and limitations. A No or864

NA answer to this question will not be perceived well by the reviewers.865

• The claims made should match theoretical and experimental results, and reflect how866

much the results can be expected to generalize to other settings.867

• It is fine to include aspirational goals as motivation as long as it is clear that these goals868

are not attained by the paper.869

2. Limitations870

Question: Does the paper discuss the limitations of the work performed by the authors?871

Answer: [Yes]872

Justification: Since the robust Wasserstein distance is not a true metric and does not satisfy873

the triangle inequality, theoretical analysis becomes challenging, and no approximation874

algorithm with provable guarantees has been obtained.875

Guidelines:876

• The answer NA means that the paper has no limitation while the answer No means that877

the paper has limitations, but those are not discussed in the paper.878

• The authors are encouraged to create a separate "Limitations" section in their paper.879

• The paper should point out any strong assumptions and how robust the results are to880

violations of these assumptions (e.g., independence assumptions, noiseless settings,881

model well-specification, asymptotic approximations only holding locally). The authors882

should reflect on how these assumptions might be violated in practice and what the883

implications would be.884

• The authors should reflect on the scope of the claims made, e.g., if the approach was885

only tested on a few datasets or with a few runs. In general, empirical results often886

depend on implicit assumptions, which should be articulated.887

• The authors should reflect on the factors that influence the performance of the approach.888

For example, a facial recognition algorithm may perform poorly when image resolution889

is low or images are taken in low lighting. Or a speech-to-text system might not be890

used reliably to provide closed captions for online lectures because it fails to handle891

technical jargon.892

• The authors should discuss the computational efficiency of the proposed algorithms893

and how they scale with dataset size.894

• If applicable, the authors should discuss possible limitations of their approach to895

address problems of privacy and fairness.896

• While the authors might fear that complete honesty about limitations might be used by897

reviewers as grounds for rejection, a worse outcome might be that reviewers discover898

limitations that aren’t acknowledged in the paper. The authors should use their best899

judgment and recognize that individual actions in favor of transparency play an impor-900

tant role in developing norms that preserve the integrity of the community. Reviewers901

will be specifically instructed to not penalize honesty concerning limitations.902

3. Theory assumptions and proofs903

Question: For each theoretical result, does the paper provide the full set of assumptions and904

a complete (and correct) proof?905
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Answer: [Yes]906

Justification: The complete proof is provided in the appendix.907

Guidelines:908

• The answer NA means that the paper does not include theoretical results.909

• All the theorems, formulas, and proofs in the paper should be numbered and cross-910

referenced.911

• All assumptions should be clearly stated or referenced in the statement of any theorems.912

• The proofs can either appear in the main paper or the supplemental material, but if913

they appear in the supplemental material, the authors are encouraged to provide a short914

proof sketch to provide intuition.915

• Inversely, any informal proof provided in the core of the paper should be complemented916

by formal proofs provided in appendix or supplemental material.917

• Theorems and Lemmas that the proof relies upon should be properly referenced.918

4. Experimental result reproducibility919

Question: Does the paper fully disclose all the information needed to reproduce the main ex-920

perimental results of the paper to the extent that it affects the main claims and/or conclusions921

of the paper (regardless of whether the code and data are provided or not)?922

Answer: [Yes]923

Justification: We provide a detailed description of the experimental setup in the appendix,924

along with the source code in the supplementary materials.925

Guidelines:926

• The answer NA means that the paper does not include experiments.927

• If the paper includes experiments, a No answer to this question will not be perceived928

well by the reviewers: Making the paper reproducible is important, regardless of929

whether the code and data are provided or not.930

• If the contribution is a dataset and/or model, the authors should describe the steps taken931

to make their results reproducible or verifiable.932

• Depending on the contribution, reproducibility can be accomplished in various ways.933

For example, if the contribution is a novel architecture, describing the architecture fully934

might suffice, or if the contribution is a specific model and empirical evaluation, it may935

be necessary to either make it possible for others to replicate the model with the same936

dataset, or provide access to the model. In general. releasing code and data is often937

one good way to accomplish this, but reproducibility can also be provided via detailed938

instructions for how to replicate the results, access to a hosted model (e.g., in the case939

of a large language model), releasing of a model checkpoint, or other means that are940

appropriate to the research performed.941

• While NeurIPS does not require releasing code, the conference does require all submis-942

sions to provide some reasonable avenue for reproducibility, which may depend on the943

nature of the contribution. For example944

(a) If the contribution is primarily a new algorithm, the paper should make it clear how945

to reproduce that algorithm.946

(b) If the contribution is primarily a new model architecture, the paper should describe947

the architecture clearly and fully.948

(c) If the contribution is a new model (e.g., a large language model), then there should949

either be a way to access this model for reproducing the results or a way to reproduce950

the model (e.g., with an open-source dataset or instructions for how to construct951

the dataset).952

(d) We recognize that reproducibility may be tricky in some cases, in which case953

authors are welcome to describe the particular way they provide for reproducibility.954

In the case of closed-source models, it may be that access to the model is limited in955

some way (e.g., to registered users), but it should be possible for other researchers956

to have some path to reproducing or verifying the results.957

5. Open access to data and code958
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Question: Does the paper provide open access to the data and code, with sufficient instruc-959

tions to faithfully reproduce the main experimental results, as described in supplemental960

material?961

Answer: [Yes]962

Justification: We will provide a GitHub link for access if our paper is accepted. Meanwhile,963
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• The instructions should contain the exact command and environment needed to run973

to reproduce the results. See the NeurIPS code and data submission guidelines (https:974

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.975

• The authors should provide instructions on data access and preparation, including how976

to access the raw data, preprocessed data, intermediate data, and generated data, etc.977

• The authors should provide scripts to reproduce all experimental results for the new978

proposed method and baselines. If only a subset of experiments are reproducible, they979

should state which ones are omitted from the script and why.980

• At submission time, to preserve anonymity, the authors should release anonymized981

versions (if applicable).982

• Providing as much information as possible in supplemental material (appended to the983

paper) is recommended, but including URLs to data and code is permitted.984

6. Experimental setting/details985

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-986

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the987

results?988

Answer: [Yes]989

Justification: We provide a detailed description of the experimental settings, along with990

ablation studies on various parameters.991

Guidelines:992

• The answer NA means that the paper does not include experiments.993

• The experimental setting should be presented in the core of the paper to a level of detail994

that is necessary to appreciate the results and make sense of them.995

• The full details can be provided either with the code, in appendix, or as supplemental996

material.997

7. Experiment statistical significance998

Question: Does the paper report error bars suitably and correctly defined or other appropriate999

information about the statistical significance of the experiments?1000

Answer: [Yes]1001

Justification: All experimental results are averaged over multiple independent runs, and the1002

corresponding variances are reported.1003

Guidelines:1004

• The answer NA means that the paper does not include experiments.1005

• The authors should answer "Yes" if the results are accompanied by error bars, confi-1006

dence intervals, or statistical significance tests, at least for the experiments that support1007

the main claims of the paper.1008
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• The factors of variability that the error bars are capturing should be clearly stated (for1009

example, train/test split, initialization, random drawing of some parameter, or overall1010

run with given experimental conditions).1011

• The method for calculating the error bars should be explained (closed form formula,1012

call to a library function, bootstrap, etc.)1013

• The assumptions made should be given (e.g., Normally distributed errors).1014

• It should be clear whether the error bar is the standard deviation or the standard error1015

of the mean.1016

• It is OK to report 1-sigma error bars, but one should state it. The authors should1017

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis1018

of Normality of errors is not verified.1019

• For asymmetric distributions, the authors should be careful not to show in tables or1020

figures symmetric error bars that would yield results that are out of range (e.g. negative1021

error rates).1022

• If error bars are reported in tables or plots, The authors should explain in the text how1023

they were calculated and reference the corresponding figures or tables in the text.1024

8. Experiments compute resources1025

Question: For each experiment, does the paper provide sufficient information on the com-1026

puter resources (type of compute workers, memory, time of execution) needed to reproduce1027

the experiments?1028

Answer: [Yes]1029

Justification: The hardware specifications of the server used in our experiments—including1030

CPU, GPU, and other relevant components—are documented in detail to support repro-1031

ducibility.1032

Guidelines:1033

• The answer NA means that the paper does not include experiments.1034

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,1035

or cloud provider, including relevant memory and storage.1036

• The paper should provide the amount of compute required for each of the individual1037

experimental runs as well as estimate the total compute.1038

• The paper should disclose whether the full research project required more compute1039

than the experiments reported in the paper (e.g., preliminary or failed experiments that1040

didn’t make it into the paper).1041

9. Code of ethics1042

Question: Does the research conducted in the paper conform, in every respect, with the1043

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?1044

Answer: [Yes]1045

Justification: This study complies with ethical standards and research integrity guidelines.1046

Guidelines:1047

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.1048

• If the authors answer No, they should explain the special circumstances that require a1049

deviation from the Code of Ethics.1050

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-1051

eration due to laws or regulations in their jurisdiction).1052

10. Broader impacts1053

Question: Does the paper discuss both potential positive societal impacts and negative1054

societal impacts of the work performed?1055

Answer: [NA]1056

Justification: This study contributes to the representation of complex data in noisy environ-1057

ments. Currently, we are not aware of any potential negative consequences arising from this1058

work.1059
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Guidelines:1060

• The answer NA means that there is no societal impact of the work performed.1061

• If the authors answer NA or No, they should explain why their work has no societal1062

impact or why the paper does not address societal impact.1063

• Examples of negative societal impacts include potential malicious or unintended uses1064

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations1065

(e.g., deployment of technologies that could make decisions that unfairly impact specific1066

groups), privacy considerations, and security considerations.1067

• The conference expects that many papers will be foundational research and not tied1068

to particular applications, let alone deployments. However, if there is a direct path to1069

any negative applications, the authors should point it out. For example, it is legitimate1070

to point out that an improvement in the quality of generative models could be used to1071

generate deepfakes for disinformation. On the other hand, it is not needed to point out1072

that a generic algorithm for optimizing neural networks could enable people to train1073

models that generate Deepfakes faster.1074

• The authors should consider possible harms that could arise when the technology is1075

being used as intended and functioning correctly, harms that could arise when the1076

technology is being used as intended but gives incorrect results, and harms following1077

from (intentional or unintentional) misuse of the technology.1078

• If there are negative societal impacts, the authors could also discuss possible mitigation1079

strategies (e.g., gated release of models, providing defenses in addition to attacks,1080

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1081

feedback over time, improving the efficiency and accessibility of ML).1082

11. Safeguards1083

Question: Does the paper describe safeguards that have been put in place for responsible1084

release of data or models that have a high risk for misuse (e.g., pretrained language models,1085

image generators, or scraped datasets)?1086

Answer: [NA]1087

Justification: This paper poses no such risks.1088

Guidelines:1089

• The answer NA means that the paper poses no such risks.1090

• Released models that have a high risk for misuse or dual-use should be released with1091

necessary safeguards to allow for controlled use of the model, for example by requiring1092

that users adhere to usage guidelines or restrictions to access the model or implementing1093

safety filters.1094

• Datasets that have been scraped from the Internet could pose safety risks. The authors1095

should describe how they avoided releasing unsafe images.1096

• We recognize that providing effective safeguards is challenging, and many papers do1097

not require this, but we encourage authors to take this into account and make a best1098

faith effort.1099

12. Licenses for existing assets1100

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1101

the paper, properly credited and are the license and terms of use explicitly mentioned and1102

properly respected?1103

Answer: [Yes]1104

Justification: We have properly cited and provided detailed descriptions for the code used in1105

this study.1106

Guidelines:1107

• The answer NA means that the paper does not use existing assets.1108

• The authors should cite the original paper that produced the code package or dataset.1109

• The authors should state which version of the asset is used and, if possible, include a1110

URL.1111

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1112
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• For scraped data from a particular source (e.g., website), the copyright and terms of1113

service of that source should be provided.1114

• If assets are released, the license, copyright information, and terms of use in the package1115

should be provided. For popular datasets, paperswithcode.com/datasets has curated1116

licenses for some datasets. Their licensing guide can help determine the license of a1117

dataset.1118

• For existing datasets that are re-packaged, both the original license and the license of1119

the derived asset (if it has changed) should be provided.1120

• If this information is not available online, the authors are encouraged to reach out to1121

the asset’s creators.1122

13. New assets1123

Question: Are new assets introduced in the paper well documented and is the documentation1124

provided alongside the assets?1125

Answer: [NA]1126

Justification: This paper does not release new assets.1127

Guidelines:1128

• The answer NA means that the paper does not release new assets.1129

• Researchers should communicate the details of the dataset/code/model as part of their1130

submissions via structured templates. This includes details about training, license,1131

limitations, etc.1132

• The paper should discuss whether and how consent was obtained from people whose1133

asset is used.1134

• At submission time, remember to anonymize your assets (if applicable). You can either1135

create an anonymized URL or include an anonymized zip file.1136

14. Crowdsourcing and research with human subjects1137

Question: For crowdsourcing experiments and research with human subjects, does the paper1138

include the full text of instructions given to participants and screenshots, if applicable, as1139

well as details about compensation (if any)?1140

Answer: [NA]1141

Justification: This paper does not involve crowdsourcing nor research with human subjects.1142

Guidelines:1143

• The answer NA means that the paper does not involve crowdsourcing nor research with1144

human subjects.1145

• Including this information in the supplemental material is fine, but if the main contribu-1146

tion of the paper involves human subjects, then as much detail as possible should be1147

included in the main paper.1148

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1149

or other labor should be paid at least the minimum wage in the country of the data1150

collector.1151

15. Institutional review board (IRB) approvals or equivalent for research with human1152

subjects1153

Question: Does the paper describe potential risks incurred by study participants, whether1154

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1155

approvals (or an equivalent approval/review based on the requirements of your country or1156

institution) were obtained?1157

Answer: [NA]1158

Justification: This paper does not involve crowdsourcing nor research with human subjects.1159

Guidelines:1160

• The answer NA means that the paper does not involve crowdsourcing nor research with1161

human subjects.1162
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• Depending on the country in which research is conducted, IRB approval (or equivalent)1163

may be required for any human subjects research. If you obtained IRB approval, you1164

should clearly state this in the paper.1165

• We recognize that the procedures for this may vary significantly between institutions1166

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1167

guidelines for their institution.1168

• For initial submissions, do not include any information that would break anonymity (if1169

applicable), such as the institution conducting the review.1170

16. Declaration of LLM usage1171

Question: Does the paper describe the usage of LLMs if it is an important, original, or1172

non-standard component of the core methods in this research? Note that if the LLM is used1173

only for writing, editing, or formatting purposes and does not impact the core methodology,1174

scientific rigorousness, or originality of the research, declaration is not required.1175

Answer: [NA]1176

Justification: The core method development in this research does not involve LLMs as any1177

important, original, or non-standard components.1178

Guidelines:1179

• The answer NA means that the core method development in this research does not1180

involve LLMs as any important, original, or non-standard components.1181

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what1182

should or should not be described.1183
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