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Abstract

The classical metric k-center problem is widely used in data representation tasks.
However, real-world datasets often contain noise and exhibit complex structures,
making the traditional metric k-center problem insufficient for such scenarios. To
address these challenges, we present the Robust Wasserstein Center clustering
(RWC-clustering) problem. Compared to the classical setting, the main challenge
in designing an algorithm for the RWC-clustering problem lies in effectively han-
dling noise in the cluster centers. To this end, we introduce a dedicated purification
step to eliminate noise, based on which we develop our customized clustering
algorithms. Furthermore, when dealing with large-scale datasets, both storage and
computation become highly resource-intensive. To alleviate this, we adopt the
coreset technique to improve the computational and storage efficiency by compress-
ing the dataset. Roughly speaking, this coreset method enables us to compute the
objective value on a small-size coreset, while ensuring a close approximation to the
value on the original dataset in theory; thus, it substantially saves the storage and
computation resources. Finally, experimental results demonstrate the effectiveness
of our RWC-clustering problem and the efficiency of the coreset method.

1 Introduction

The metric k-center problem [Hakimi, [1964] is widely used in data compression [Lacki et al., 2024]]
and representation learning [Bateni et al., [2023]]. Its objective is to select k centers, forming a
k-center set C, such that the maximum distance from any data point to its closest center is minimized.
More formally, for a given dataset ) in metric space (X', dist), the metric k-center problem can be
formulated as

min  maxmin dist(u, v). (metric k-center problem)
CCX,|C|=k peQ veC

Data in combinatorial optimization [Luo et al.l 2023} |Grinsztajn et al.| 2023 |Drakulic et al.| 2023]]
and biomedical fields [Thual et al.| [2022] Bazeille et al 2019] often exhibit complex structures
and are typically represented as probability distributions. Nevertheless, the traditional Euclidean
distance falls short in describing the geometric structure of such data. In contrast, the Wasserstein
distance [Peyré et al., [2017]] excels at capturing the geometric structure, making it a powerful tool for
quantifying the difference between these complex data items.

However, the real-world datasets are often contaminated by noise, and the Wasserstein distance
is sensitive to outliers [Nietert et al.l |2022]] due to its stringent marginal constraints. Specifically,
even a single outlier with negligible mass can substantially distort the final result by adjusting its
position, thereby limiting its utility in practical scenarios. To address this issue, we adopt the Robust
Wasserstein Distance (RWD) [Nietert et al., 2022] to measure the similarity between the data items.
Based on this, we introduce the Robust Wasserstein Center clustering (RWC-clustering) problem
(in Definition [2.T)) to effectively represent these complex datasets.
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Solving the RWC-clustering is a typical non-convex optimization problem. Initialization is crucial
for non-convex optimization, as it directly affects whether the optimization algorithm can escape
the local minima and effectively find the global optimum. In the classical metric k-center problem,
Gonzalez’s algorithm [Gonzalez, [1985] is often used as a seeding algorithm to provide a good
initialization; a local search algorithm [Lattanzi and Sohler, 2019} |Choo et al.| 2020 is then used as a
post-processing step to further refine the solution.

In the classical setting, both algorithms [Gonzalez, |1985} (Choo et al.,[2020] select data points directly
from the original dataset as cluster centers. However, in our noisy setting, selecting candidates from
the noise-contaminated dataset inevitably leads to noisy candidate centers. This contradicts our
goal of obtaining clean cluster centers. To address this issue, we introduce a dedicated purification
step to remove noise from the candidate centers, thereby producing clean centers. We then plug
this purification step into existing algorithms, designing tailored initialization and post-processing
procedures for our RWC-clustering problem.

Except for algorithm design, scalability is also a key consideration. When handling large datasets,
solving the RWC-clustering problem becomes extremely time-consuming and requires significant
storage resources. To address this issue, we introduce coreset [Ros and Guillaumel 2020]], a widely
used data compression technique. A coreset can be regarded as a summary of the original dataset
with respect to certain objective; it enhances computational and storage efficiency by reducing the
dataset size. Roughly speaking, it enables us to approximate the value computed on the original
dataset by the value on a small-size coreset. Thus, it helps save computational and storage resources
substantially while maintaining accuracy closely.

Although many coreset techniques[Huang et al., 2024, Huang et al.,[2023]] have been developed for
the classical clustering problems, they are primarily designed for metric spaces. However, RWD is
not a metric; thus, although existing techniques may provide useful insights, new theoretical analysis
is still necessary for the design of our coreset.

Our contributions:

* For effectively representing datasets with complex structures and outliers, we introduce the
RWC-clustering problem and provide the underlying intuition for its formulation.

* To solve this robust clustering problem, we first design a purification step to eliminate
the noise in the candidate centers; then, we integrate it into existing methods [[Gonzalez,
1985, |Lattanzi and Sohler, [2019, (Choo et al., 2020] to develop customized initialization and
post-processing algorithms for our RWC-clustering problem.

* Furthermore, to enhance scalability, we introduce the coreset technique to accelerate the
computation by compressing the dataset. Additionally, we theoretically demonstrate that the
coreset is a good proxy of the original dataset.

* Finally, we experimentally demonstrated the effectiveness of our RWC-clustering problem
and the efficiency of the coreset method.

1.1 Other related works

Optimal transport (OT) is a popular tool for quantifying the difference between probability measures.
Several algorithms have been developed for solving the OT problem. [Peyré et al.|[2017] introduced an
€., -approximation algorithm by using the interior point method within O(n?) time, where €, denotes
the additive error and n is the support size of measures. Subsequently, Dvurechensky et al.|[2018]]
proposed the Sinkhorn’s algorithm, which reduces the time complexity to O(n?/ 63_) by solving the
entropic regularization version [Cuturil [2013]]. Especially, Jambulapati et al.| [2019] further improved
this result by leveraging the area-convexity and dual extrapolation techniques, achieving O(n? /e )
time complexity.

Gonzalez’s algorithm [Gonzalez, [1985]], a 2-approximation algorithm for the metric k-center
problem, is often used as an initialization method in clustering tasks. It iteratively selects the point
farthest from the currently chosen centers as the new center. The sequential nature of center selection
leads to dependencies between steps, which poses challenges for achieving parallel computation. It
takes O(mk) time, where m is the size of the dataset, and k represents the number of centers. When
k or m is large, the computational complexity becomes a bottleneck.



88
89
90
91
92

93

94
95
96
97

98
99
100
101

102
103
104
105

106
107

108
109
110
111
112

113
114
115
116
17

118
119

120

121

122
123

124

125

126

Hierarchical Gonzalez’s algorithm [Murtagh and Contreras, 2012] is a variation of the Gonzalez’s
algorithm tailored to address hierarchical clustering problems. This algorithm constructs a tree
structure by recursively splitting data at different levels of granularity. It selects cluster centers
sequentially within localized regions using the Gonzalez’s algorithm while incorporating a globally
parallelizable design, resulting in high efficiency.

2 Preliminaries

Notations: We adopt some notation conventions from [Nietert et al.,[2022] Wang et al., 2024]. We
define [n] := {1,...,n}. Let (X, dist) be a metric space and R be the set of non-negative real
numbers. We use M (X) to denote the positive measure space on X, and P(X) the corresponding
probability measure space.

Matrices are denoted by capital boldface letters, such as P; P;; denotes its element in the i-th
row and j-th column. Similarly, vectors are represented by lowercase boldface letters, such as
a:=(ay,...,aq)T € RY q;is its i-th element. Let |Q| be the cardinality of the set (). For measures
Wy € My (X), the notation 1/ <y means that p/(A) < p(A) for any set A C X.

Wasserstein distance: Let u = Y ' | a;0;,,v = »_;_, b;d,; be two discrete probability mea-
sure{-]in P(X), where a = (ay,...,a,)",b = (b1,...,b,)T € R7 are their weight vectors and
0 is the Dirac delta function. Given any real number z > 1 and a cost matrix D € Rixn with
D;; = dist*(x;, y;), the 2*P-Wasserstein distance between £ and v is defined as

1/z
w = i P.D 1
(1, v) (p€%}2,b>< : >) ; €]
where II(a,b) := {P € R}*" | P1 = a,PT1 = b} is the set of all feasible couplings, 1 is the
vector of all ones, and (P, D) denotes the Frobenius inner product between P and D.

Optimal Transport (OT) shares a similar formulation with Wasserstein distance, but their cost matrices
differ. The cost matrix in OT is derived from a positive function. In contrast, the cost matrix for
Wasserstein distance has stricter requirements—it must be induced by a distance function. Thus,
the Wasserstein distance is a metric, while OT is not necessarily one. Despite these differences, OT
algorithms can still be effectively used to compute Wasserstein distance.

Robust Wasserstein distance: Although the Wasserstein distance [[Villani et al.|, 2009 [Peyré et al.|
2017] is widely used for measuring the difference between two probability measures, its sensitivity to
outliers limits its applicability in noisy scenarios. To overcome this limitation, several robust variants
[Nietert et al., 2022} [Le et al., [2021} |(Chapel et al., 2020] have been proposed. This paper focuses on
the following robust version.

Definition 2.1 (Robust Wasserstein distance [Nietert et al.| 2022 Wang et al. [2024]]). Let p and
v be the same as in Equation . Given two pre-specified parameters 0 < (,, ¢, < 1, the robust
Wasserstein distance W(u, v) between i and v is formulated as

— M/ V/
W(p,v) := min W(——r, —),
W v EM(X) 1-Cu 1-¢ 2)
WLl |l rv=Cp
v <u|lv=v lv=¢.

where || - ||y denotes the total variation (TV) norm.
Moreover, Equation @) can be reformulated as an (augmented) OT problem [Wang et al., 2024] by
introducing a dummy point, allowing it to be solved efficiently by using the existing OT solvers.

Note: Henceforth, we denote the Wasserstein distance between p and v by W (u, v). The notation

W(u, v) represents the robust Wasserstein distance when both y and v contain ¢ mass of outliers.

Specially, W(u, v) refers to the case where p contains ¢ mass of outliers while v has no outliers.

'To simplify the expression, the support size of all measures in this paper is set to n.
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Robust clustering: We propose a robust version of the Wasserstein k-center clustering problem.
Its goal is to cover all data points using & balls of equal radius under robust Wasserstein distance
W(-,-), while minimizing the radius of these balls.

Definition 2.2 (RWC-clustering). Given a set of probability measures Q = { ' }ie[m] C P(X), the
k-RWC-clustering problem is to find a k-center set C C P(X) with |C| = k such that the following
objective is minimized.

cost(Q, C) := max W(u,C),
heqQ
where W(u, C) := min,ec W(u,v).

The input data points in @) contain outliers. However, our goal is to obtain clean cluster centers. Thus,

we define the RWC-clustering problem using W(-, -) instead of W(, -). Further illustrations are
provided in Section 3]

Coreset: When the dataset is large, both computation and storage become resource-intensive. To
address this issue, we introduce, coreset, a popular data compression technique.

Definition 2.3 (Coreset). Given a set of probability measures () = { e }i €fm] C P(X) and a real

number € > 0, a set S is an e-coreset for the k-RBWC-clustering problem on Q, if the following
inequality holds for all k-center set C C P(X).

|cost(Q, C) — cost(S,C)| < e-cost(Q,C)

Essentially, a coreset is a small proxy of the original dataset. To approximate the objective value, we
can execute algorithms on this small-size coreset instead of the full dataset. Overall, this approach
significantly reduces computational and storage requirements while preserving the objective value.

Organization: This paper is organized as follows. In Section 3] we explain the underlying intuition
behind the RWC-clustering problem and design an algorithm to solve it. In Section[4] we introduce
the coreset technique to accelerate the computation. Finally, in Section[5] we validate the effectiveness
of the proposed methods through experimental results.

3 Our intuition and algorithms

This section provides the intuition behind using W(-, -) to measure the difference between data points
and cluster centers in RWC-clustering problem. We also introduce a tailored initialization algorithm
(see Algorithm[I)) and a post-processing algorithm (see Algorithm{]in the appendix) for this robust
setting.

Intuition of using W(-, -) in RWC-clustering problem: In our RWC-clustering problem, we
essentially replace the metric dist(-, ) in|metric k-center problem| with W(,-). To illustrate why
W(u, v) is chosen to measure the distance between a data point 4 and its center v, rather than using

W(u, v), we consider the following example.
Example 3.1 (Intuition). Let 2o = (0,0) and z1 = (0, 1000) be two points in R%. Let i° = §,, and
ut = 6., be two data points, and let v = 0.5 - §,, + 0.5 - 8., be a center. Here, we set ( = 0.5.

Casel: When employing W(-,-) to measure the differences, we have W(u°,v) = 0, W(u',v) = 0
and W(u°, ut) = 1000. In this case, both u° and p' are contained within a ball of arbitrarily

small radius centered at v under W (-, -). However, the difference between p and v can be large. In
other words, two points within a small ball could exhibit significant differences. Nevertheless, the
goal of clustering is to group similar points together. This situation is obviously unreasonable and
contradicts the goal of clustering.

Case2: In contrast, when using W(-, ), if both u° and p* lie within a small-radius ball centered at
v, their difference under W(-, -) remains small. This implies that points within the same small ball
exhibit high similarity, which is consistent with the goal of the traditional clustering. (The detailed
proofs supporting this claim are provided in Lemma|[C.1])

Based on this analysis, it is more reasonable to define the RWC-clustering problem using W(-, -).
Naturally, the centers in RWC-clustering problem should be clean.
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3.1 Algorithm

The original Gonzalez’s algorithm [Gonzalez, [1985]] selects centers directly from the input dataset.
However, in our noisy setting, selecting candidate centers directly from the noise-contaminated
dataset () can lead to noisy candidate centers, which contradicts our goal of obtaining clean cluster
centers. Therefore, our RWC-clustering problem requires additional mechanisms to handle noise in
the candidate centers. To address this, we design a purification step to remove such noise. Then, we
combine this purification step with the classical Gonzalez’s algorithm [Gonzalez, 1985 to develop a
tailored initialization algorithm for our RWC-clustering problem. The detailed implementation is
provided in Algorithm|[T}

Our Algorithm [I] takes as input a set () of probability measures and a parameter k, and outputs
a k-center set C' consisting of k& probability measures. This provides a good initialization for the
subsequent optimization in the post-processing stage.

Algorithm 1 Seeding

1: Input: aset Q = { u }ie[m] of probability measures, and a parameter k

2: Initialize the center set as C = {).
3: fori =1to k do
4:  pSelect candidate center v
5. ifi =1 then
6 Sample a measure v from  uniformly at random.
7 else
8 Select the point v that is farthest from the center set C' under W(-, -) according to Equa-
tion (3).
9: endif
10:  pPurification step: purify v to obtain &
11:  Perform the purification step on candidate center v, and obtain its corresponding clean center
7 according to Equations (@) to (6).
12:  Add 7 to center set C'.
13: end for
14: QOutput: a k-center set C

Specifically, we select the first candidate centelﬂ v from the set @) uniformly at random, perform a
purification step to obtain a clean center 7, and add it to the center set C. For the subsequent k¥ — 1
epochs, during each epoch, we select a point v € (@ that is the farthest from the center set C' under
W(-,-); that is, v satisfies that

'.C). 3
Veargglggw(% ) 3

Here, v/ € @) contains noise, while the points in the center set C' are clean. Consequently, we adopt
W(-,-) to measure the difference between them. Then, we perform the purification step on v to
obtain a clean center 7, and add v to C.

Purification step:  Select the 7 closest points to the candidate center v from the set ) under W(, s
that is,

De argmin Y W(uv). 4)
D/QQJD/':T#GD/

Both the candidate center v and the data points ;1 € () contain outliers. Thus, we use 17\}/(, -) to
measure the similarity between p and v. These 7 points in D can induceE]T clean centers o',

C = {7 1 W(,v) = Wi, 7). € D} s)

*In our paper, the candidate center contains outliers, while the center is clean.
3In Equation , for each p, there may exist infinitely many 2 that satisfy the condition, but we select only
one of them.
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Equation (3) is computed according to [Nietert et al., 2022, Wang et al.| 2024]. More specifically, we
can compute the corresponding coupling matrix P for each 1 € D. Then, we obtain 7/ = P71, and

then derive the final set C'.

Then, choose the point 7 € C that covers all the points in D with the smallest radius under W(, -);
that is,

v € arg min max W(u, 7). (6)
eC HED

Then, 7 in Equation (6)) is the corresponding purified clean center of candidate center v. After the
purification step, the locations of the candidate center v and clean center ¥ remain unchanged; only
the weights are adjusted.

Intuition behind the choice for 7: i) Since a candidaE center v can induce different clean centers
for different p1 € @, we retain the smallest T values of W(-, v) in Equation , rather than selecting
only one. ii) Note that v is a candidate center associated with a specific cluster. Points from other
clusters mixed into D can damage the purification of the candidate center. Moreover, the time
complexity of the purification step grows quadratically with 7, thus choosing a large 7 can lead to
significant computational overhead. Consequently, we usually set 7 to be a small constant in practice.

Remark 3.2 (Post-processing Algorithm). Our seeding algorithm (Algorithm|l)) provides a good
initialization solution, but the result remains relatively coarse. To further refine the solution, we
introduce a post-processing algorithm (see AlgorithmH]in the appendix), which is a combination of
our purification step and the local search strategy [Lattanzi and Sohler| |2019, |Choo et al.| 2020)].

Time complexity: Let O(T) denote the time complexityof computing RWD, and 7 be a constant.
In Algorithm [1} selecting candidate centers during each epoch requires O(m - T) time, and the
purification step also takes O(m - T) time. With k epochs in total, the overall time complexity is
O(km - T). The time complexity of the post-processing algorithm is O(km - T + Z - (km+m-T))
(details are in the appendix). Therefore, the total time complexity for solving the RWC-clustering
problem is O(km - T + Z - (km+m - T)).

In the context of OT, it is common to allow a constant additive error €. The OT problem can be
solved in O(nQ) time by using the existing solvers [Jambulapati et al., 2019} |Cuturil [2013]], where n
denotes the support size of measures. Since the RWD is essentially an OT problem, the total time
complexity for solving the RWC-clustering problem is O(kmn? + Z - (km + mn?)).

Remark 3.3 (Generality of the algorithmic framework of RWC-clustering problem). Our algo-
rithmic framework is general and can be applied to center clustering problems under other robust
distances, as long as the corresponding coupling matrix can be computed efficiently. We focus on the
Robust Wasserstein Distance (RWD) in particular because, under this criterion, our introduced data
compression method enjoys theoretical guarantees.

4 Acceleration

This section introduces a data compression technique, coreset, to accelerate computation by reducing
dataset size. While coreset construction often requires an approximate solution as an anchor, the non-
metric nature of RWD makes theoretical analysis difficult, preventing us from obtaining a provable
approximation solution for the RWC-clustering problem. To address this, we instead compute a
lower bound as the anchor, enabling coreset construction with theoretical guarantees.

Lower bound: We compute a lower bound by substituting the metric in the classical Gonzalez’s
algorithm with W(-, -) (see Algorithm |5|for details). We formalize this in the following theorem.

Theorem 4.1 (Lower bound). Let A be the optimal value of the k-RWC-clustering problem, i.e.,
A = mingcp(xy,jo|=k cost(Q, O). AlgorithmE]takes set Q) as input and outputs a k-center set C,

within O(km - T') time. We define I' := max,cq W(u, C). Then, we have I' < 2A.

*We assume that the distance between any two points in X’ can be computed within O(1) time.
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As described in Theorem[.1] Algorithm [5|computes a lower bound for RWC-clustering problem,
which provides a theoretical guidance for subsequent coreset construction.

Sreceieit, 2™ [run Gonzalez's algorithm
Q [2244im rounds.
o

T add non-empty D;’ to Q@ ® © ® set D; = D;\ball(v',r) O 7.0
©® © 00

clusters {Dy} e,z adim)

coreset
S

add centers {V'}ig‘zzdqu
to coreset

(D,')le[zz ddim)

Figure 1: Coreset construction.

Coreset: Algorithm [2|describes a coreset construction method, which is inspired by [Ding et al.,
2021} Krauthgamer and Lee}, 2004} [Har-Peled and Mendel, |2005} |Wang et al.]. The algorithm takes as
input a set () of probability measures, its doubling dimensio ddim, and a parameter r, and outputs
a coreset S. The coreset construction relies on the Wasserstein distance, which serves as the key
metric throughout the process.

Figure [I] provides an intuitive and comprehensible understanding of this method. Specifically, we
begin by initializing the family Q of sets as Q = {Q}. The following local procedure is then executed
on every set D € Q until Q becomes empty:

* Execute the Gonzalez’s algorithm 2299M rounds on D € Q, yielding a set of centers
{1/ } [22-ddm) and their corresponding clusters {D; }, € [22-ddm] - The centers are added to the
coreset S

* For each cluster D;, we construct Dj by removing all points within a ball of radius r centered
at v/*, formally defined as ‘
D! = D;\ball(v*,r), @)

where ball(v?, r) == {p | W(p,v*) <7 p € D;}.
* If D} is non-empty, we add it to Q. Remove the set D from Q.

Algorithm 2 Coreset

1: Input: aset Q = {;ﬂ}7 cfm] of probability measures, doubling dimension ddim and parameter r

2: Initialize Q = {Q} and S = 0.

3: for set D in Q do

4:  plocal procedure

5:  Run Gonzalez’s algorithm 2299M rounds on D, yielding centers {I/i}

{Di}ie[22-ddim]-

Set S =SU {Vl}iE[QQ'ddim]'

Construct D/ by removing points within a ball of radius r centered at % according to Equa-
tion (7).

8:  Add all non-empty D. to Q;ie.,Q =QU {D;}.

9:  SetQ=Q\{D}.

10: end for

11: Input: coreset S

ie[22-dam] and clusters

&

Theorem 4.2 (Coreset property). Let ddim be the doubling dimension of QQ and R be the radius
of Q under Wasserstein distance, i.e., W(p,v) < 2R for any v € Q. We set r = O(el'), then
Algorithmoutputs an e-coreset S with |S| = O((£)2-9m) for k- RWC-clustering problem on Q

within O(22°%M . |Q| - T - log &) time.

3Given a metric space (Q, W), its doubling dimension [Huang et al., 2018, [Wang et al., 2024] is defined as
the smallest integer ddim such that any ball with radius 2 can be covered by at most 2°°™ balls of radius 7.
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Corollary 4.3. Algorithm[2]takes Q as its input and outputs the coreset S. The output S satisfies the
following property

— min cost(S,C")| < min
C'eP(X),|C!|=k CeP(X),|C=k

cost(@,C) e - cost(Q, C).

| min
CeP(X),|Cl=k

A good proxy: As stated in Theorem for any subset C' C P(X) with |C| = k, the values
computed on the coreset can closely approximate the values on the original dataset within an e-relative
error. That is,

cost(S, C) ~ cost(Q, C). 8)

Furthermore, according to Corollary [4.3] the optimal value computed on the coreset is approximately
the same as the optimal value computed on the original dataset. That is,

min  cost(S,C)=~ min cost(Q,C). ©)
CCQ,|Cl=k CCQ,|Cl=k
According to Equations (8) and (9), we have that the coreset S serves as a good proxy of the original
dataset () for the RWC-clustering problem.

Remark 4.4 (Enhancing scalability for coreset construction). We can accelerate coreset construction
by leveraging the merge-and-reduce framework [|Bentley and Saxe| |1980, |Har-Peled and Mazumdar,
2004|], which is efficient in both computation and communication. Specifically, a large dataset can be
partitioned into smaller subsets and distributed across multiple machines for parallel computation,
which significantly improves time efficiency. Furthermore, since the coreset is a subset of the original
dataset, only the indices of the data points, rather than the data items themselves, need to be
transmitted during machine synchronization. This makes the communication overhead negligible,
ensuring excellent scalability of our coreset approach. Additionally, the merge-and-reduce framework
enables our approach to adapt seamlessly to streaming data, making it highly effective and efficient
in dynamic data processing scenarios.

Remark 4.5. In the process of constructing the coreset, Wasserstein distance is employed primarily
to ensure theoretical rigor. In practice, the construction of the coreset can also utilize W(-, ).

S Experiments

This section demonstrates the effectiveness of our RWC-clustering problem and the efficiency of the
coreset method. All the experiments were performed on a server with an AMD EPYC 9754 128-Core
Processor with 18 vCPUs, 60GB of RAM, and Python 3.12. The server utilized an RTX 4090D GPU
with 24GB of VRAM. We used the POT library [Flamary et al.| 2021]] to compute the Wasserstein
distance (WD) [Bonneel et al.,|2011]] and unbalanced optimal transport (UOT) [[Chizat et al.,[2018|
Frogner et al., 2015]]. The reported results are averaged over five runs.

Due to space constraints, we report experimental results only on ModelNet10 [Wu et al.l|2015]] dataset
in the main text. More experiments on other datasets, including Geometric shapes, MNIST [LeCun
et al., 1998, KITTI [[Geiger et al., 2012], ShapeNetCore [[Chang et al.,[2015], ScanObjectNN [Uy
et al.,|2019]], nuScenes Mini [Caesar et al.| 2020], as well as related ablation studies, are in appendix.

ModelNet10 [Wu et al.,|20135] is a standard dataset containing 3D CAD models. Each CAD model
is discretized and represented as a point set. We extract object-level point cloud instances from the
dataset and uniformly sample 300 points from each to construct our point cloud dataset.

For the point set {x;} ] corresponding to a specific data item in the above datasets, we represent it

n 1

i€[n
as a probability measure yx = )" ; --d,, to construct the clean dataset Q°. The noisy dataset Q is
generated by adding clustered noise with ¢ mass following a Gaussian distribution N'(j1, 02) to each
clean probability measure.

To evaluate the performance of our methods, we consider the following three criteria: i) Runtime:
This includes the sampling time and the clustering time required to compute the k-center set C. ii)
cost-cd: Defined as max,,cgo min,cc W (p, v), it quantifies the distance between the center set C'
and the original clean dataset Q. iii) cost-nd: Defined as max,co min,ec W(u, v), it evaluates
the distance from center set C' to the noisy dataset (). The baselines for these three criteria are
established using the results computed on the original full dataset for comparison.
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Effectiveness of our RWC-clustering problem: To demonstrate the effectiveness of our RWC-
clustering problem, a series of experiments were conducted on ModelNet10 dataset. We randomly
sample 200 data items from the ModelNet10 to form the dataset. We compare the clustering quality
computed by UOT-based clustering, WD-based clustering, and RWC-clustering. All three methods
follow the same framework, where seeding is used for initialization, followed by a local search
refinement. Specifically, the UOT-based clustering algorithm is derived by replacing RWD with UOT
in Algorithms[TJand[d] Since WD is a metric, thus the WD-based clustering can directly use the
existing Gonzalez’s algorithm [Gonzalez, |1985]] along with the local search method [Lattanzi and
Sohler, 2019, |Choo et al., [ 2020].

As shown in Table[I] the WD-based clustering exhibits the worst performance. The UOT-based
clustering outperforms the WD-based clustering; however, the inclusion of an entropy regularization
term causes a diffusion effect that hinders noise removal, leaving some residual noise inevitably. In
contrast, our RWC-clustering approach achieves the best denoising performance, outperforming the
other two methods.

Table 1: Comparison of our RWC-clustering with UOT-based clustering and WD-based clustering
on ModelNet10 dataset. We fix the dataset size as 200, £ = 10, Z = 200,60 = 1,7 = 10 and ( = 0.1,
where Z is the number of iterations in post-processing procedure (i.e., Algorithm[]in appendix).

Dataset Method cost-nd(]) cost-cd(]) Runtime(])

RWC-cIustering 2204013 240005 475.9845 39
ModelNet10 UOT-based clustering  4.0719.30 4.2619.40 446.1147 66
WD-based clustering 5.3240.48 7.2540.72 475.9849 39

Efficiency of our coreset method: We show the efficiency of our coreset (CS) method by comparing
it against the uniform sampling (US) method. To ensure fairness, both sampling methods (SM)
employed the same sampling size (SS). The green dashed line indicates the results on the full dataset,
which serves as the baseline for comparison. Figure [2|illustrates the performance of our CS method
on ModelNet10 dataset. Although our CS method is slightly more time-consuming compared to the
US method, it remains significantly more efficient than processing the original dataset. Moreover, on
both cost-cd and cost-nd criteria, our CS method consistently outperforms the US method.

____________________

cost-nd over baseline
cost-cd over baseline

________
______

Sample size Sample size Sample size

(a) Comparison of runtime (b) Comparison of cost-nd (c) Comparison of cost-cd

Figure 2: Comparison of the US method and our CS method across varying sample sizes on
ModelNet10 dataset. We fix k = 10, Z = 200,0 = 1,7 = 10 and { = 0.1.

Due to the randomness inherent in our algorithms and the approximate nature of the derived k-center
set, some fluctuations are inevitable.

6 Conclusion and future work

In this paper, we introduce the Robust Wasserstein Center clustering (RWC-clustering) problem,
and propose an efficient algorithm to solve it. Additionally, we introduce a coreset method to
accelerate computations by compressing the dataset; moreover, we provide new analysis to establish
theoretical guarantees for the coreset method under the RWC-clustering setting. For future work,
we will explore the corresponding robust Wasserstein k-means clustering problem, along with its
approximation algorithms and coreset techniques.



335

336
337
338
339

340
341
342
343

344
345

346
347
348

349
350
351
352

353
354
355
356
357

358
359
360

361
362

363
364
365

366
367
368

369
370

371
372
373

374

References

MohammadHossein Bateni, Hossein Esfandiari, Hendrik Fichtenberger, Monika Henzinger, Rajesh
Jayaram, Vahab Mirrokni, and Andreas Wiese. Optimal fully dynamic k-center clustering for
adaptive and oblivious adversaries. In Proceedings of the 2023 Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 2677-2727. SIAM, 2023.

Thomas Bazeille, Hugo Richard, Hicham Janati, and Bertrand Thirion. Local optimal transport
for functional brain template estimation. In Information Processing in Medical Imaging: 26th
International Conference, IPMI 2019, Hong Kong, China, June 2-7, 2019, Proceedings 26, pages
237-248. Springer, 2019.

Jon Louis Bentley and James B Saxe. Decomposable searching problems i. static-to-dynamic
transformation. Journal of Algorithms, 1(4):301-358, 1980.

Nicolas Bonneel, Michiel Van De Panne, Sylvain Paris, and Wolfgang Heidrich. Displacement
interpolation using lagrangian mass transport. In Proceedings of the 2011 SIGGRAPH Asia
conference, pages 1-12, 2011.

Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush
Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for
autonomous driving. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 11621-11631, 2020.

Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li,
Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and Fisher Yu.
ShapeNet: An Information-Rich 3D Model Repository. Technical Report arXiv:1512.03012
[cs.GR], Stanford University — Princeton University — Toyota Technological Institute at Chicago,
2015.

Laetitia Chapel, Mokhtar Z Alaya, and Gilles Gasso. Partial optimal tranport with applications on
positive-unlabeled learning. Advances in Neural Information Processing Systems, 33:2903-2913,
2020.

Lenaic Chizat, Gabriel Peyré, Bernhard Schmitzer, and Francois-Xavier Vialard. Scaling algorithms
for unbalanced transport problems. HAL, 2017, 2017.

Lenaic Chizat, Gabriel Peyré, Bernhard Schmitzer, and Francois-Xavier Vialard. Scaling algorithms
for unbalanced optimal transport problems. Math. Comput., 87(314):2563-2609, 2018. doi:
10.1090/MCOM/3303. URL https://doi.org/10.1090/mcom/3303.

Davin Choo, Christoph Grunau, Julian Portmann, and Véclav Rozhon. k-means++: few more
steps yield constant approximation. In International Conference on Machine Learning, pages
1909-1917. PMLR, 2020.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in neural
information processing systems, 26, 2013.

Hu Ding, Tan Chen, Fan Yang, and Mingyue Wang. A data-dependent algorithm for querying earth
mover’s distance with low doubling dimensions. In Proceedings of the 2021 SIAM International
Conference on Data Mining (SDM), pages 630-638. SIAM, 2021.

Darko Drakulic, Sofia Michel, Florian Mai, Arnaud Sors, and Jean-Marc Andreoli. BQ-NCO:
Bisimulation quotienting for efficient neural combinatorial optimization. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023. URL https://openreview.net/forum?
1d=BRqlkTDvvm.

Pavel Dvurechensky, Alexander Gasnikov, and Alexey Kroshnin. Computational optimal trans-
port: Complexity by accelerated gradient descent is better than by sinkhorn’ s algorithm. In
International conference on machine learning, pages 1367-1376. PMLR, 2018.

Rémi Flamary, Nicolas Courty, Alexandre Gramfort, Mokhtar Z Alaya, Aurélie Boisbunon, Stanislas
Chambon, Laetitia Chapel, Adrien Corenflos, Kilian Fatras, Nemo Fournier, et al. Pot: Python
optimal transport. Journal of Machine Learning Research, 22(78):1-8, 2021.

10


https://doi.org/10.1090/mcom/3303
https://openreview.net/forum?id=BRqlkTDvvm
https://openreview.net/forum?id=BRqlkTDvvm
https://openreview.net/forum?id=BRqlkTDvvm

384
385

386
387
388

389
390

391
392
393

394
395

396
397
398

399
400
401

402
403

404
405
406

407
408
409

410
411
412

413
414

415
416

417
418
419

420
421

422
423
424

425
426

427
428
429

430

Charlie Frogner, Chiyuan Zhang, Hossein Mobahi, Mauricio Araya, and Tomaso A Poggio. Learning
with a wasserstein loss. Advances in neural information processing systems, 28, 2015.

Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving? the kitti
vision benchmark suite. In 2012 IEEE conference on computer vision and pattern recognition,
pages 3354-3361. IEEE, 2012.

Teofilo F Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical computer
science, 38:293-306, 1985.

Nathan Grinsztajn, Daniel Furelos-Blanco, Shikha Surana, Clément Bonnet, and Thomas D Bar-
rett. Winner takes it all: Training performant rl populations for combinatorial optimization. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023.

S Louis Hakimi. Optimum locations of switching centers and the absolute centers and medians of a
graph. Operations research, 12(3):450-459, 1964.

Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and k-median clustering. In
Proceedings of the thirty-sixth annual ACM symposium on Theory of computing, pages 291-300,
2004.

Sariel Har-Peled and Manor Mendel. Fast construction of nets in low dimensional metrics, and their
applications. In Proceedings of the twenty-first annual symposium on Computational geometry,
pages 150-158, 2005.

Lingxiao Huang, Shaofeng H-C Jiang, Jianing Lou, and Xuan Wu. Near-optimal coresets for robust
clustering. In The Eleventh International Conference on Learning Representations.

Lingxiao Huang, Shaofeng H-C Jiang, Jian Li, and Xuan Wu. Epsilon-coresets for clustering (with
outliers) in doubling metrics. In 2018 IEEE 59th Annual Symposium on Foundations of Computer
Science (FOCS), pages 814-825. IEEE, 2018.

Lingxiao Huang, Ruiyuan Huang, Zengfeng Huang, and Xuan Wu. On coresets for clustering in
small dimensional euclidean spaces. In International Conference on Machine Learning, pages
13891-13915. PMLR, 2023.

Lingxiao Huang, Jian Li, and Xuan Wu. On optimal coreset construction for euclidean (k, z)-
clustering. In Proceedings of the 56th Annual ACM Symposium on Theory of Computing, pages
1594-1604, 2024.

Arun Jambulapati, Aaron Sidford, and Kevin Tian. A direct tilde {O}(1/epsilon) iteration parallel
algorithm for optimal transport. Advances in Neural Information Processing Systems, 32, 2019.

Robert Krauthgamer and James R Lee. Navigating nets: simple algorithms for proximity search. In
SODA, volume 4, pages 798-807, 2004.

Jakub Lacki, Bernhard Haeupler, Christoph Grunau, Rajesh Jayaram, and Véclav Rozhoii. Fully dy-
namic consistent k-center clustering. In Proceedings of the 2024 Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 3463—-3484. SIAM, 2024.

Silvio Lattanzi and Christian Sohler. A better k-means++ algorithm via local search. In International
Conference on Machine Learning, pages 3662-3671. PMLR, 2019.

Khang Le, Huy Nguyen, Quang M Nguyen, Tung Pham, Hung Bui, and Nhat Ho. On robust
optimal transport: Computational complexity and barycenter computation. Advances in Neural
Information Processing Systems, 34:21947-21959, 2021.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

Fu Luo, Xi Lin, Fei Liu, Qingfu Zhang, and Zhenkun Wang. Neural combinatorial optimization
with heavy decoder: Toward large scale generalization. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023.

Mehryar Mohri. Foundations of machine learning, 2018.

11



431
432

433
434
435

437

438
439

440
441

442
443

444
445
446

447
448
449

450

451
452

454
455
456

457
458
459

Fionn Murtagh and Pedro Contreras. Algorithms for hierarchical clustering: an overview. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(1):86-97, 2012.

Sloan Nietert, Ziv Goldfeld, and Rachel Cummings. Outlier-robust optimal transport: Duality, struc-
ture, and statistical analysis. In International Conference on Artificial Intelligence and Statistics,
pages 11691-11719. PMLR, 2022.

Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport. Center for Research in
Economics and Statistics Working Papers, (2017-86), 2017.

Frédéric Ros and Serge Guillaume. Sampling techniques for supervised or unsupervised tasks.
Springer, 2020.

Bernhard Schmitzer. Stabilized sparse scaling algorithms for entropy regularized transport problems.
SIAM Journal on Scientific Computing, 41(3):A1443-A1481, 2019.

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to
algorithms. Cambridge university press, 2014.

Alexis Thual, Quang Huy TRAN, Tatiana Zemskova, Nicolas Courty, Rémi Flamary, Stanislas De-
haene, and Bertrand Thirion. Aligning individual brains with fused unbalanced gromov wasserstein.
Advances in Neural Information Processing Systems, 35:21792-21804, 2022.

Mikaela Angelina Uy, Quang-Hieu Pham, Binh-Son Hua, Duc Thanh Nguyen, and Sai-Kit Yeung.
Revisiting point cloud classification: A new benchmark dataset and classification model on
real-world data. In International Conference on Computer Vision (ICCV), 2019.

Cédric Villani et al. Optimal transport: old and new, volume 338. Springer, 2009.

Xu Wang, Fuyou Miao, Wenjie Liu, and Yan Xiong. Efficient and robust neural combinatorial opti-
mization via wasserstein-based coresets. In The Thirteenth International Conference on Learning

Representations.

Xu Wang, Jiawei Huang, Qingyuan Yang, and Jinpeng Zhang. On robust wasserstein barycenter:
The model and algorithm. In Proceedings of the 2024 SIAM International Conference on Data
Mining (SDM), pages 235-243. SIAM, 2024.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong
Xiao. 3d shapenets: A deep representation for volumetric shapes. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 1912-1920, 2015.

12



460
461
462

463
464

465

466
467

468

469
470

471
472
473

474
475

476
477
478

490
491

492
493
494
495

496

Limitations: Since the robust Wasserstein distance is not a true metric and does not satisfy the
triangle inequality, theoretical analysis becomes challenging, and no approximation algorithm with
provable guarantees has been obtained.

Broader impact: This study contributes to the representation of complex data in noisy environments.
Currently, we are not aware of any potential negative consequences arising from this work.

A Other preliminaries

Definition A.1 (Optimal transport (OT) [Peyré et al.l 2017]). Let p = > ., a;0,, and v =
Z?:1 b;jdy, be two probability measures with weights a,b € R, respectively. Given a cost
matrix D € R!*", the OT distance between i and v is

@ = i P,.D
T(wv) = min (P, D),
where Il(a,b) := {P € R?*" | P1 = a,PT1 = b} is the set of all feasible couplings and 1 is the
vector of all ones.

The Wasserstein distance is a special case of OT. The cost matrix D of Wasserstein distance must be
induced by a distance function, while the cost matrix of OT only needs to be induced by a positive
function. Thus, the Wasserstein distance is a metric on P(X’), whereas OT is not a metric.

The doubling dimension provides a means for describing the growth rate of the data set with respect
to certain metric.

Definition A.2 (Doubling dimension [Huang et al.| 2018} |Wang et al.l 2024]). Let (Q, W) be a
metric space, where W (-,-) is a metric on Q). The doubling dimension of (Q, W) is the smallest
integer ddim such that every ball of radius 2r can be covered by at most 2°9™ balls of radius r.

In real-world datasets, data often exhibit inherent regularities, leading to a relatively low intrinsic
dimension. Therefore, assuming a low doubling dimension is usually reasonable.

Moreover, in practical applications, we do not need to know the exact value of the doubling
dimension in advance. We usually start with a small value and adjust as needed. In our experiments,
we assume the doubling dimension to be 1. The lack of precise knowledge of the doubling dimension
does not affect practical applications.

Definition A.3 (r-cover[Shalev-Shwartz and Ben-David, 2014} Mohri, [2018[]). Given a metric space
(X,dist), a set A C X is an r-cover of Q C X, if for any x € Q, there exists ' € A satisfying
dist(z,2) <r.

Note that, a cover of a set does not need to be a subset of it.

Gonzalez’s algorithm [Gonzalez, [1985]], a 2-approximation algorithm for the metric k-center
problem, is often used as an initialization method in clustering tasks.

Let @ be a data set and dist(+, -) be the metric on (). We iteratively select the point farthest from
the currently chosen centers as the new center. The sequential nature of center selection leads to
dependencies between steps, which poses challenges for parallelization. It takes O(mk) time, where
m is the size of the dataset, and £ represents the number of centers. When k or m is large, the
computational complexity becomes a bottleneck. The details are in Algorithm 3]

Algorithm 3 Gonzalez’s algorithm

Input: data set (), and a parameter k
Sample ¢ € @ uniformly at random, and set C, = {c}.
fori=2to k do

Select ¢ € () that is farthest from the center set C;_1.
end for
Set C = Ck
Output: a k-center set C

13
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B Post-processing algorithm

Algorithm 4 Post-processing

1: Input: aset Q = {y/ }ie[m] of probability measures, and a k-center set C

2: fori=1to Z do
3:  pSampling

. . W(v,C

4:  Sample v € @) with probability m
5:  pPurification
6:  Purify v into © according to Equations () to (6).
7:  >Swapping
8: ifI € C,s.t., cost(Q,C\ {v'} U{P}) < cost(Q,C) then
9: Cc=C\{V}u{r}.
10:  end if
11: end for

12: Output: a k-center set C

Post-processing algorithm: Algorithm[{d]is inspired by the local search algorithm [Lattanzi and
Sohler} 2019} [Choo et al.l2020], and serves as a post-processing procedure for Algorithm |I|to further
refine the solution. The input is a set () of probability measures and an initialized solution (i.e.,
k-center set), while the output is the refined solution.

The solution C' is refined over Z epochs, with each epoch consisting of three steps: sampling,

purification, and swapping. Specifically, in each epoch, we sample a candidate center v € Q)
according to a probability proportional to its cost, i.e., % Then, we apply the purification
v'eQ v,

step in Algorithm [T]to purify the candidate center v into a clean center . Next, if there exists a center
v’ € C such that replacing v’ with & results in a reduction of the cost, we replace v’ with .

Time complexity: Let O(7) denote the time complexityﬂ of computing RWD, and 7 be a constant.
In Algorithm |1} selecting candidate centers during each epoch requires O(m - T') time, and the
purification step also takes O(m - T) time. With k epochs in total, the overall time complexity is

O(km -T).

For Algorithm initializing the distance matrix between C and @) takes O(km - T) time. During
each epoch, the operations require O(km + m - T) time. Assuming Z epochs in total, the total time
complexity is O(km - T + Z - (km+m - T)).

Remark B.1. 7o ensure the fairness of experimental comparisons, we have fixed Z in our paper. In
practical applications, we can indeed design early stopping criteria based on specific needs. For
instance, stopping when no improvement occurs is a optional strategy.

C Onmitted proofs and details

C.1 Intuition of RWC-clustering problem

Let Q = {ui }Z efm] be a set of probability measures. We define the ball center at v with radius r
under metric W(-, -) as

bally (v, r) == {u | W(u,v) <r,u € Q}. (10)

Lemma C.1. If %, u* € P(X) are in bally (v, r), we have W(uo, ut) < 2r.

5We assume that the distance between any two points in X' can be computed within O(1) time.
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ProofofLemma Since p°, ut are in ballyy (v, 1), we have W(u®,v) < r, W(ul,v) <r.
Assume that j1°, i are the clean probability measures induced by u°, pi!, respectively. That is,

W(Movy):W(/lOvV)’ W(/,Llﬂ/):W(ﬂl,l/). (1)

According to Deﬁnition we have VNV(,uO, uh) < WP, @ty < W(al, it). Then, by combining
triangle inequality property of Wasserstein distance with Equation (TT)), we obtain

WO, i) < W (R0, ity < W(E°,v) + W (i, v) = Wi, v) + W(p!,v) < 2r.
O

Lemmaimplies that, under W(-, -), the difference between two data points located within a small
ball is relatively small.

C.2 Lower bound

Algorithm [5| essentially replaces the metric in the classical Gonzalez’s algorithm with W(,-).
Specifically, let C; be the center set containing ¢ centers. We initially select a point x4 randomly
from the input dataset ), and initialize the center set as C'; = {u}. Then, for the i-th epoch with
2 < i < k, we choose the point u € @ that is farthest from the previous center set C;_1, and set
C; = C;_1 U {p}; formally, the center i selected, except in the first epoch, satisfies that

p € argmax W(r/, Ci_1), (12)
neq

where W(u, Ci—1) := minyec,_, W(p, v). Notably, no purification step is applied during this
process, thus the centers in C; for i € [k] contains outliers.

As described in Theoremd.1] Algorithm 5|computes a lower bound for RWC-clustering problem,
which provides a theoretical guidance for subsequent coreset construction.

Algorithm 5 Lower bound

1: Input: aset Q = {,ui }i eml of probability measures, and a parameter k
Sample o € @ uniformly at random, and set C; = {u}.
fori =2to k do N
Select pu € @ that is farthest from the center set C;_1 under W(, -) according to Equation .
end for
Output: a k-center set C,

AN AN

Theorem 4.1 (Lower bound). Let A be the optimal value of the k-RWC-clustering problem, i.e.,
A = mingcp(xy,jo|=k cost(Q, O). Algorithm@takes set Q) as input and outputs a k-center set C,

within O(km - T') time. We define I := max,,cq W(u, C). Then, we have I' < 2.

Let C* = {v} }Z clh] be the optimal solution to the RWC-clustering problem, and A be its corre-
sponding optimal value; that is,

Cgp(rgl)r}m:k cost(Q, C) = cost(Q,C*) = A. (13)

Let Q},i € [k| be the clusters induced by v¢,i € [k], where each point is assigned to the nearest
cluster center. That is, .
W(p,vy) =W(p,C*) <A forp € Q. (14)

The set Cy, is the output of Algorithm[5] The centers in C}, contain outliers, whereas the centers in
C* are clean.

Lemma C.2. Forany p € Qf,i € [k], we have W(,u, Cr) <2Af|QF NCy| > 1.
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Proof of Lemma|C2] Let v € Q} N Cy. Since V! is the nearest center of 4 € Q;, by using
Equation (T3], we have .
W(n,v,) < Aforall p € Q. (15)

We know that both i, v are in cluster Q7, thus p, v € ballyy (v%, A). Then, by using Lemma
we obtain W(p, v) < 2+ A. According to the definition W(p, Cy) := min, cc, W(u, '), we have
W(n, Cr) < W(p, v). Till now, we obtain W(u, Cx) < 2A.

O

Proof of Theorem[d.1] In order to prove the conclusion, we will discuss the proof in two cases,
which is inspired by [[Gonzalez, |1985].

Case 1: Each Q7 contains exactly one center v € Cj.

According to Lemma we have W(u, Ci) < 2Aforall p € QF,i € [k]. Since the collection
{@Q7 }icpy forms a partition of @, we have

Q=U/,Q;.
Thus, it follows that VNV(;L, Ck) <2Aforall u € Q. Thatis, I’ < 2A holds.

Case 2: Some Q7 contains multiple centers, i.e., |Cx, N Q7| > 2.

Without loss of generality, suppose that Cj, is the first center set such that [C;, N Q7| = 2 for some
i € [k], with C;, N QF = {v,v"}, where v is the last center added to C;,.

From the Line [3| of Algorithm[5] we know that

W(:U/vcio—l) < W(Vio?cio—l) for all:u € Q

Since v € Cj,_1, we have

W(l/io,@o,l) < W ) forie [k—1).

We know that both v, % are in cluster Q, thus v, % € balhy (v, A). Then, by using Lemma|C.1]
we obtain W(v,v%0) < 2. A,

Till now, we achieve that

W(u,Ciy—1) < 2A forall p € Q.
From Line 3| of Algorithm 3] it follows that

W(p, Cr) <W(p, Cip—1) forall p € Q.

Therefore, we obtain

I' <2A for Case 2.

In conclusion, for both Case 1 and Case 2, the inequality I' < 2A holds.

Time complexity: The time complexity for selecting each center is O(m - T). Since we need to
select k centers in total, the overall time complexity is O(kmT).

O
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C.3 Analysis of coreset (Theorem [4.2)

Theorem 4.2 (Coreset property). Let ddim be the doubling dimension of Q and R be the radius
of Q under Wasserstein distance, i.e., W(u,v) < 2R for any p,v € Q. We setr = O(el), then
Algorithmautputs an e-coreset S with |S| = O((£)294m) for k- RWC-clustering problem on Q

within O(22:9M . |Q| - T - log &) time.
We introduce two sets, Set(n) and Set(¢), defined as follows

!

set() = { i’ = T € P(¥) 14 <l ~ e = ¢}

set(e) = {¢" = 1

where Set() and Set(€) represent the sets of feasible clean probability measures with ¢ mass of
outliers removed from p, v according to W(p, -) and W(E, -), respectively.

and

€ P(X) | € < &I — Ellry = <} ,

Roughly speaking, the following theorem illustrates that if two probability measures p and & are
similar, then the sets of feasible clean probability measures they induce, denoted by Set(u) and
Set(¢), respectively, are also similar, i.e., Set(u) =~ Set(€). Specifically, for any p” in Set(u), there
exists a corresponding £ in Set(€) that is close to ' under Wasserstein distance. Conversely, for
every £ in Set(&), there exists a " € Set(y) that is close to ¢”’. Consequently, the sets Set(u) and
Set(¢) are r-cover of each other.

Lemma C.3. Given any W (y, &) < r, the sets Set(y) and Set(§) are 1= -cover of each other:

Proof of Lemma|[C3] Without loss of generality, let 1 = > ;" | a;0,, and & = 37, b;d,,. Let P*
denote the optimal coupling induced by W (1, £); that is,

W(/’L7 5) = <P*a D>7
where D is the cost matrix between y and &.

For any p € Set(u), we have ¢/ = (1 —¢) - " = >, a}d,, with a’ being its weights. We can
construct a P’ satisfying

P'1=a', P17 <b, P <P* P eR™"

Letb’ = P’17, and construct &' = Z;’:l b0y, . Transferring p1' to §’ according to the flow matrix

P’, we achieve (P’, D) < (P*, D) = W(u,&) < r. Clearly, % is a feasible flow for " = 1“—l

—<
and £’ = 157 under the Wasserstein distance. Therefore, W (u”,£") < <%, D) < i%¢.

From the above, we can find a measure p/’ = 1“_/€ € Set(u) such that W (1“7/4, 15_/ ) < ¢

holds for any ¢’ = 1% € Set(§). Similarly, we can find a measure £’ € Set({) such that

w (%, %) < 1ig holds for any p” € Set(u).

Thus, we have demonstrated that the sets Set() and Set(¢) are = -covers of each other.
O

Letg: P(X) — R,a — g(a) be a function. The following lemma illustrates that if for any a € A,
there exists b € B such that g(a) ~ g(b), and vice vise; then, the minimum value of g(-) over the
two sets A and B is close.

Lemma C.4. Iffor every a € A, there exists b € B such that g(a) € g(b) + r, and vice versa, then
the minimum values of g over sets A and B are approximately equal; that is,

i ') — mi N <
in g(a) — min g()) <
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Proof of Lemma From the given conditions, for any a € A, there exists b € B such that

g(b) —r < g(a) < g(b) +r. (16)

Similarly, for any b € B, there exists a € A such that

gla) —r < g(b) < g(a)+r. (17)
Let b* be the point where g(-) achieves its minimum on B, i.e.,

*\ : /
g(b") = min g(¥').

According to Equation , there exists a’ € A such that
gla’) —r < g(b") < gla’) +r.

This implies that
g(a’) —g(b") <.
Then, we have

. / _ . / — . ! _ * < .
min g(a’) — min g(4') = min g(a’) — g(b*) <r (18)

Similarly, by using Equation (I6)), we also obtain

i ') — mi <
Inin g(b') — min g(a’) <7 (19)

By combining Equations (I8) and (19), it follows that

i ") — min g(b")| < 7.
FERI) — o] =7

The following theorem illustrates that if two functions are approximately equal pointwise, then their
minimum values are also approximately the same.

Lemma C.5. Given two functions
9, :P(X) =R, (20)

iflg() — F(u)| < r for all j1 € Q, then we have | min,,eq g(4) — minyeq f(1')] < 7.

Proof of Lemma|C.3] Assume that min,c¢ g(p) > min, cq f(1'). Let f achieve its minimum at
p*, thatis, min, cq f(u') = f(u*). Then, we have

min — min V| = min — min ") = min — ).
MEQg(u) H,le(u) Mng(u) M,le(u) Mng(u) f(u*)

According to Equation (20), there must exist g(p*) — f (1*) < r, implying min,eq g(p)— f(u*) < r.
Consequently, min,cqg(p) — mingeq f(1') < r holds. Similarly, for the case

min,eq g(p) < mingeq f(1'), we can also derive min,cq f(p) — min, cq g(p') < r.

Till now, we obtain the final conclusion. O

such that W (p",£") < ¢ according to Lemma

Proof of Theorem#.2] For any center v € C' C Pﬁ) and p/" € Set(u), there exists £’ € Set(¢)
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By using the triangle inequality, we have
W(E" v) =W (", &") < W(p",v) <W(E" v) + W",&"). 1)
This leads to the following inequality

W) = W) < W) < 1 (22)

The above result shows that for any 1/ € Set(u), there exists £ € Set(&) such that W(u",v) €
W(E", V) £ 2.

Similarly, for any £” € Set(&), we also have W (¢",v) € W(u",v) £
Let g(-) := W(-,v). By applying Lemma|C.4] we can deduce

r
1-¢*

min  W(y",v) — min W&, v)| < ! ,
1" €Set(p) () £ €Set(€) ( )_1—C

(23)

which exactly implies [W(u,v) = W(E,v)| < 7.

According to [Ding et al. [2021]], the output coreset S is an r-cover for () under the Wasserstein
distance. This means that for any p € @, there exists £ € S such that W (u, &) < r. Consequently,
for any 1 € @, there exists € S such that WV(u,v) = W(E,v)| < .

Let g(-) = W(u,-) and f(-) = W(E,-). Using Lemma|C.5] we obtain

i — mi N < 24
min W(u, v) ggg)wa,u) < 24

1-¢

which implies (i, C) — W(E, O)| < 5.

By setting g(-) = —W(-,C), we have | max,cq W(u, C) — maxees W(E, C)| <
LemmalC4]

. .
T—¢ according to

Setting r = O(el), we obtain

|cost(Q, C) — cost(S, C)| < e-cost(@, C). (25)

Time complexity: Algorithm [2|induces a tree with a maximum height of O(log £). Constructing

each layer requires time O (229%™ |Q|-T), thus the total time complexity is O(2294M.|Q|-T -log £).
Coreset size: After executing the Gonzalez algorithm 0(22"_“"“) rounds, the radius is reduced by
half. This implies that the degree of the tree is at most 0(22““”“). Therefore, the coreset size, which

corresponds to the total number of nodes in the tree, is O((£)%ddim),
O

By setting g(-) = cost(Q, -) and f(-) = cost(S, -), we obtain the following corollary according to
Lemma[C3]

Corollary 4.3. Algorithm|2|takes Q as its input and outputs the coreset S. The output S satisfies the
following property

i cost(Q,C) — i cost(S,C")| < i -cost(Q, C).
Cep(r%ﬂcw:k @.0) c'eP(erﬂcq:k ( )‘*CEP(rflvﬂmzke @,C)
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D Full Experiments

This section demonstrates the effectiveness of our RWC-clustering problem, the efficiency of the
coreset method, the necessity of the seeding algorithm, and several ablation studies.

All the experiments were performed on a server with an AMD EPYC 9754 128-Core Processor with
18 vCPUs, 60GB of RAM, and Python 3.12. The server utilized an RTX 4090D GPU with 24GB of
VRAM. We used the POT library [Flamary et al., 2021] to compute the Wasserstein distance (WD)
[Bonneel et al., 2011]] and unbalanced optimal transport (UOT) [[Chizat et al., 2018 [Frogner et al.,
2015]]. To improve numerical stability, we adopted the stabilized Sinkhorn algorithm [Schmitzer]
2019, |Chizat et al.l 2017] for computing the entropy regularization version. The reported results are
averaged over five runs.

We validated our methods on the following datasets.

i) Geometric shapes is a toy dataset designed by us, consisting of five geometric shapes. It is used to
verify the advantages of our seeding algorithm and the RWC-clustering problem intuitively. Each
shape is represented by a point set.

ii) MINIST [LeCun et al.,[1998)]] is a well-known handwritten digit dataset. For each image, we extract
the pixels with higher grayscale values (greater than 0.3) to form the corresponding point set.

iii) ModelNet10 [Wu et al.l [2015]] is a standard dataset containing 3D CAD models. Each CAD
model is discretized and represented as a point set.

iv) KITTI dataset [Geiger et al.,|2012] is a widely used benchmark for autonomous driving, containing
3D LiDAR scans. We use its 3D object detection subset, which contains point clouds for various
categories such as Pedestrian, Cyclist, Car, Van, Truck, Person_sitting, Tram, and Misc.

v) ShapeNetCore [Chang et al., [2015] is a dataset containing a large collection of 3D object models.
It includes 55 categories, such as chairs, tables, cars, airplanes, and other common objects.

vi) ScanObjectNN [Uy et al., |2019] is a real-world 3D object classification benchmark, which is
captured from real scans, making it more challenging than synthetic datasets such as ModelNet10.

vii) nuScenes Mini [Caesar et al.,|2020] is a subset of the full nuScenes dataset, containing 10 scenes
and providing high-quality 3D point cloud data with corresponding annotations.

We extract object-level point cloud instances from the dataset and uniformly sample 300 points from
each to construct our point cloud dataset. If the original point count is smaller than n, we perform
uniform sampling with replacement; otherwise, we apply uniform sampling without replacement.

For the point set {z;}, en] corresponding to a specific data item in the above datasets, we represent it

as a probability measure y = Z?:l %511 to construct the clean dataset Q. The noisy dataset () is

generated by adding clustered noise with ¢ mass following a Gaussian distribution A'(z1, 2) to each
clean probability measure.

To evaluate the performance of our methods, we consider the following three criteria: i) Runtime:
This includes the sampling time and the clustering time required to compute the k-center set C'. ii)
cost-cd: Defined as max,,c o min,cc W (g, v), it quantifies the distance between the center set C'
and the original clean dataset Q. iii) cost-nd: Defined as max,c min,ec W(u, v), it evaluates
the distance from center set C' to the noisy dataset (). The baselines for these three criteria are
established using the results computed on the original full dataset for comparison.
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D.1 Effectiveness of our RWC-clustering problem

To demonstrate the effectiveness of the RWC-clustering problem, we conducted a series of experi-
ments on several datasets. We compare the clustering quality computed by UOT-based clustering,
WD-based clustering, and RWC-clustering. All three methods follow the same framework, where
seeding is used for initialization, followed by a local search refinement. Specifically, the UOT-based
clustering algorithm is derived by replacing RWD with UOT in Algorithms[I]and[] Since WD is a
metric, thus the WD-based clustering can directly use the existing Gonzalez’s algorithm [Gonzalez,
1985]] along with the local search method [Lattanzi and Sohler, 2019} |Choo et al., [2020].

We first present results on several real-world datasets. Then, to provide a more intuitive understanding
of our method, we illustrate the results on a toy dataset.

Effectiveness of our RWC-clustering problem on real-world datasets:

We randomly select 200 data items from each dataset to serve as the experimental data. Table [2]
evaluates the effectiveness of our RWC-clustering problem across different real-world datasets.
Among these methods, our RWC-clustering approach achieves the best denoising performance,
outperforming the other two methods in almost all datasets.

Due to the randomness inherent in our algorithms and the approximate nature of the derived k-center
set, some fluctuations are inevitable. A slightly inferior performance on the cost-cd metric for
MNIST is acceptable.

Table 2: Comparison of our RWC-clustering with UOT-based clustering and WD-based clustering
on different datasets. We fix the dataset size as 200, k = 10, Z = 200,0 = 1,7 =10and { = 0.1,
where Z is the number of iterations in post-processing procedure (i.e., Algorithm 4.

Dataset Method cost-nd(}) cost-cd(]) Runtime (})

RWC-cIustering 5421015 5.9710.42 485.7810.43
ShapeNetCore  UOT-based clustering 13.2510.31 15911183 447.7619.74
WD-based clustering 8.6940.89 10.9240.94 485.7840.43

RWC-CIustering 3.6710.37 5.78.10.00 519.0141 62
ScanObjectNN  UOT-based clustering  8.5541¢.15 11971000 447.6615 44
WD-based clustering  6.9619.78 13.1040.00 519.0141 62

RWC-CIustering 4.96 ¢ 20 5.18:0.12 529.294 4 07
nuScenes Mini  UOT-based clustering  9.0042 9g 9.89.43 46 465.981+96.43
WD-based clustering  13.2010.23 17.541060 529.294407

RWC-CIustering 2.2040.13 2400 05 475.9849 39
ModelNet10 UOT-based clustering  4.0710.30 4.2619.40 446.1147 66
WD-based clustering 5.3240.48 7.2540.79 475.9849 39

RWC-CIustering 6.80_0 06 12.3740.45 420.84 4066
MNIST UOT-based clustering  9.691.62 111411 30  443.3449. 49

WD-based clustering ~ 9.371¢.13 17.0240.19  420.841¢.66

RWC'C'UStering 3.3610.13 4.14 ¢ o0 532.8240.49
KITTI UOT-based clustering 10.8419.99 11.861040 447.57111.84

WD-based clustering ~ 7.8319.21 11.514068 532.8240.49
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715 Table [3|shows that among these methods, our RWC-clustering approach consistently achieves the
716 best denoising performance, outperforming the other two methods across different values of the

717 parameter k.

Table 3: Comparison of our RWC-clustering with UOT-based clustering and WD-based clustering
on ModelNet10 dataset across different k. We fix the dataset size as 200, Z = 200,0 = 1,7 = 10
and ¢ = 0.1, where Z is the number of iterations in post-processing procedure (i.e., Algorithm [4)).

k  Method cost-nd(]) cost-cd(]) Runtime (})
RWC-cIustering 2.2040.13 2404905 475.9849 39
10 UOT-based clustering 4.0719.30 4.261¢.40 446.1147 66
WD-based clustering  5.3219.48 7.2540.72 475.9849 39
RWC-CIustering 1.84_ .08 2114906 526.83+1.67
20 UOT-based clustering 4.011¢.28 4.3710.24 573.4541 50
WD-based clustering 5.344055 6.35+0.65 526.8341.67
RWC-CIustering 1.520.05 1.7310.10 575.7213.98
30 UOT-based clustering 3.8510.24 4.08+0.02 511.9215 50
WD-based clustering ~ 4.511¢.97 6.08+0.12 575.7245.98

718 Table [3[shows that among these methods, our RWC-clustering approach consistently achieves the
719 best denoising performance, outperforming the other two methods across different values of the

720 parameter (.

Table 4: Comparison of our RWC-clustering with UOT-based clustering and WD-based clustering
on ModelNet10 dataset across different mass of noise. We fix the dataset size as 200, k = 10, Z =
200,06 = 1 and 7 = 10, where 7 is the number of iterations in post-processing procedure (i.e.,

Algorithm ).

¢ Method cost-nd(}) cost-cd(]) Runtime ()
RWC-CIustering 2204013 240005 475.9845 39

0.1 UOT-based clustering  4.0719.30 4.2610.40 446.11 4766
WD-based clustering  5.3249.48 7.2540.79 475.9845 39
RWC-CIustering 2231012 276019 650.7547.80

0.2 UOT-based clustering  3.941¢.17 4.28 1 9.27 431.84 411 77
WD-based clustering 8.834£1.37 11.7741923 650.754+7.80
RWC-cIustering 2214011 3.24.11 oo 841.294 .46

0.3 UOT-based clustering 3-72i0.12 4-34i0.15 432-44i10.84
WD-based clustering  11.711789 16371175 841.2910.46
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Effectiveness of our RWC-clustering problem on toy dataset:

We visualized the clean geometric shapes in Figure [TT{a), and the noisy geometric shapes are in

Figure[3]

0.005.

Weight

& O % Q
> 00 % Q
3 QO % Q

Visualization of noisy geometric shapes

Weight

0.005.

Weight

0.000

Figure 3: Visualization of noisy geometric shapes.

Figure ] evaluates the effectiveness of our RWC-clustering problem. Specifically, Figure [d[a)
displays the clustering results obtained using our approach, while Figure [(b) shows results based on
Unbalanced Optimal Transport (UOT), and Figure (c) presents clustering results using the classical
Wasserstein distance (WD).

Ox%Q D> M

(a) Center set by RWC-clustering

%O D> O
. 3 V 2

(b) Center set by UOT-based clustering

O ke

) Center set by WD-based clustering

Figure 4: Comparing our RWC-clustering with WD-based clustering and UOT-based clustering.

Among these, the WD-based clustering exhibits the worst performance, showing almost no denoising
capability. The UOT-based clustering outperforms the WD-based clustering; however, the inclusion
of an entropy regularization term causes a diffusion effect that hinders noise removal, leaving some
residual noise inescapably. In contrast, our RWC-clustering approach achieves the best denoising
performance, outperforming the other two methods.
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D.2 Effectiveness of our coreset method

We show the effectiveness of our coreset (CS) method by comparing it against the uniform sampling
(US) method. Specifically, we first construct a coreset S C () and simultaneously generate a
uniformly sampled subset S’ of the same size |S| from the full dataset @ as a baseline. We then run
the clustering algorithm ( i.e., Algorithms[T]and[]) on both subsets. If the clustering algorithm is
applied to the coreset S, we refer to it as the CS method. Conversely, if it is applied to the uniformly
sampled subset S’, we refer to it as the US method. Since the exact size of the coreset cannot be
pre-specified, to ensure fairness between the two sampling methods (SM), we set the sample size
(SS) of the US method to match that of the CS method. The green dashed line indicates the results on
the full dataset, which serves as the baseline for comparison.

Coreset method on MNIST dataset:

Figure [5]illustrates the performance of our CS method on the MNIST dataset across different sample
size. Although our CS method is slightly more time-consuming compared to the US method, it
remains significantly more efficient than processing the original dataset. Moreover, in terms of both
cost-cd and cost-nd criteria, our CS method consistently outperforms the US method.

Due to the randomness inherent in our algorithms and the approximate nature of the derived k-center
set, some fluctuations are inevitable.

cost-cd over baseline
«

Sample size sample size Sample size

(a) Comparison of runtime (b) Comparison of cost-nd (c) Comparison of cost-cd

Figure 5: Comparison of the US method and our CS method across varying sample sizes on MNIST
dataset. We fix k = 10, Z = 200,0 = 1,7 = 10 and ¢ = 0.1, where Z is the number of iterations in
post-processing procedure (i.e., Algorithm ).

Results on different k: From Table 5| our CS method consistently has an advantage over the US
method across different k.

When using the full dataset, the large data volume makes it difficult for the 200-round local search to
adequately explore the entire dataset. As a result, in some cases, the performance on the full dataset
is actually worse than that on our small-size coreset. Our coreset method places more attention on
boundary points, enabling it to better capture the diversity of the dataset. Consequently, it not only
achieves higher computational efficiency but also achieves better clustering quality.

Table 5: Comparison of the US method and our CS method with varying values of k£ on MNIST
dataset. We fix the sample size as 198, Z = 200,0 = 1,7 = 10 and ¢ = 0.1, where Z is the number
of iterations in post-processing procedure (i.e., Algorithm ).

k- SM cost-nd(]) cost-cd(]) Runtime(])
US 11324766 16.761074 2350.0313377

100 68 1004100s 13.01a000 25824114061
o US 985i07  14Thiig 2443485507

CS 8.54 ¢ 46 10.81(.9 2741.75449.83
w0 US 08ligz 15301077 2580931700

CS 8.35:|:0,34 11.24:|:0‘71 2882.62167.72
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758 Coreset method on ModelNet10 dataset:
759

760 Figure[f]illustrates the performance of our CS method on the ModelNet10 dataset across different
761 sample size. Our CS method is slightly more time-consuming than the US method. However, it
762 remains significantly more efficient than processing the original dataset. Moreover, in terms of both
763 cost-cd and cost-nd criteria, our CS method consistently outperforms the US method.

764
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Figure 6: Comparison of the US method and our CS method across varying sample sizes on
ModelNet10 dataset. We fix k = 10, Z = 200,06 = 1,7 = 10 and ( = 0.1, where Z is the number
of iterations in post-processing procedure (i.e., Algorithm ).

765 _Results on different k: From Table [6] our CS method consistently has an advantage over the US
766 method across different k.
767

Table 6: Comparison of the US method and our CS method with varying values of £ on ModelNet10
dataset. We fix the sample size as 276, Z = 200,0 = 1,7 = 10 and ¢ = 0.1, where Z is the number
of iterations in post-processing procedure (i.e., Algorithm ).

k SM cost-nd(]) cost-cd(]) Runtime(])
US  4.77410.08 4.9310.34 3044.64 18437

10 6S 3361017 3611010  3563.36107 02
o US 37802 4131040 33069545813

CS 2.7410.10 3.47 1006 3800.354+41.62
w0 US 392:000 436100 353190110

CS  245.00s 2901051 4009.34 14075
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Coreset method on KITTI dataset:

Figure[7]illustrates the performance of our CS method on the KITTI dataset across different sample
size. Our CS method consistently outperforms the US method on both cost-cd and cost-nd criteria.

25000
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Figure 7: Comparison of the US method and our CS method across varying sample sizes on KITTI
dataset. We fix k = 10, Z = 200,06 = 1,7 = 10 and ¢ = 0.1, where Z is the number of iterations in

post-processing procedure (i.e., Algorithm [)).

Results on different k: From Table 7] our CS method consistently has an advantage over the US

method across different k.

Table 7: Comparison of the US method and our CS method with varying values of k£ on KITTI dataset.
We fix the sample size as 213, Z = 200,00 = 1,7 = 10 and ( = 0.1, where Z is the number of
iterations in post-processing procedure (i.e., Algorithm ).

k. SM cost-nd(]) cost-cd(]) Runtime(])
10 US 36.491g5925 37.054g33 2750.1417 69
CS 7344025 1751057  3419.7710.97
20 US 29381196 29.821792 2907.224701
CS 434,493 5.60+0.87 3601.3212 99
30 US 12564000 13.3410.00 2989.84115.69
CS 2.84;‘;0_33 3.60:‘:0_29 3745.60;‘;50_50
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Coreset method on ShapeNetCore dataset:

Figure [§]illustrates the performance of our CS method on the ShapeNetCore dataset across different
sample size. Our CS method consistently outperforms the US method on both cost-cd and cost-nd
criteria.
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Figure 8: Comparison of the US method and our CS method across varying sample sizes on
ShapeNetCore dataset. We fix k = 10, Z = 200,0 = 1,7 = 10 and { = 0.1, where Z is the number
of iterations in post-processing procedure (i.e., Algorithm ).

Results on different k: From Table [§] our CS method consistently has an advantage over the US
method across different k.

Table 8: Comparison of the US method and our CS method with varying values of k£ on ShapeNetCore
dataset. We fix the sample size as 225, Z = 200,0 = 1,7 = 10 and ¢ = 0.1, where Z is the number
of iterations in post-processing procedure (i.e., Algorithm ).

k- SM cost-nd(]) cost-cd(]) Runtime(])

US 11264051 12.204083 2621.13166.35
CS 10543 1123414 2900.544 66023

US  8.9840.33 9.8940.25 2823.81 1663
CS  8.631¢.79 974,053 3320.58+19.00

US  9.2310.76 10.3149.87 3022.49430.35
CS  7.6310.07 854 10901  3486.1712955
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Coreset method on ScanObjectnn dataset:

Figure [Q]illustrates the performance of our CS method on the ScanObjectnn dataset across different
sample size. Our CS method consistently outperforms the US method on both cost-cd and cost-nd
criteria.
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Figure 9: Comparison of the US method and our CS method across varying sample sizes on
ScanObjectnn dataset. We fix k = 10, Z = 200,0 = 1,7 = 10 and { = 0.1, where Z is the number
of iterations in post-processing procedure (i.e., Algorithm ).

Results on different k: From Table 0] our CS method consistently has an advantage over the US
method across different k.

Table 9: Comparison of the US method and our CS method with varying values of k£ on ScanObjectnn
dataset. We fix the sample size as 223, Z = 200,0 = 1,7 = 10 and ¢ = 0.1, where Z is the number
of iterations in post-processing procedure (i.e., Algorithm ).

k- SM cost-nd(]) cost-cd(]) Runtime(])

US 24564015 29444105 2793.50+0.49
CS  7.504¢53 8.311¢.59 3340.3416.32

US 19205000 22981000 2886.22494 60
CS 5.27:t0_45 5.98:‘:0.14 3542'27ﬂ:14.56

US 19204000 22.98+0.00 3077.61+13.00
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794 Coreset method on nuScenes Mini dataset:

795

796 Figure[I0]illustrates the performance of our CS method on the nuScenes Mini dataset across different
797 sample size. Our CS method consistently outperforms the US method on both cost-cd and cost-nd
798  criteria.

799

________________________ o —e- US-cost-nd
CS-cost-nd 250
=+ Baseline

—8- US-cost-cd
CS-cost-cd
=+ Baseline

4
’

10000

cost-nd over baseline
/
/
cost-cd over baseline
/

runtime over baseline

————— o USruntime " e e G . o e g i
- CS-runtime

- =« Baseline

w00
Sample size

(c) Comparison of cost-cd

ED
Sample size

(b) Comparison of cost-nd

300
Sample size

(a) Comparison of runtime

Figure 10: Comparison of the US method and our CS method across varying sample sizes on
nuScenes Mini dataset. We fix k = 10, Z = 200,06 = 1,7 = 10 and { = 0.1, where Z is the number
of iterations in post-processing procedure (i.e., Algorithm ).

soo _Results on different &: From Table |10} our CS method consistently has an advantage over the US
sot  method across different k.
802

Table 10: Comparison of the US method and our CS method with varying values of k& on nuScenes
Mini dataset. We fix the sample size as 198, Z = 200,0 = 1,7 = 10 and ¢ = 0.1, where Z is the

number of iterations in post-processing procedure (i.e., Algorithm ] in appendix)

k- SM cost-nd(]) cost-cd(]) Runtime(])
10 US 17574138 18171165 2530.1141161
CS 11.59:,90 12181144 3066.76110.40
50 US 13.04r005  13.291000 2662225708
CS 6.03.031 6204030  3199.5013417
30 US 13025000 1344025 28212644632
CS 5-73i0.92 5.85i1,01 3350-3Oi34.08
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D.3 Ablation experiments

Ablation experiments on 7:

We conduct ablation experiments on the ModelNet10 dataset to explore the effect of the hyperparam-
eter 7. In this experiment, we randomly select 200 samples from ModelNet10 to form our dataset.
As shown in Table[TT] setting 7 too small or too large leads to suboptimal performance. A too small
7 may result in degraded clustering quality, while a large 7 significantly increases computational cost
without consistent improvements in quality. Therefore, we recommend selecting a relatively small
constant for 7. In all our experiments, we fix 7 = 10 for providing a good balance between efficiency
and performance.

Table 11: Comparison of our algorithm (i.e., Algorithm [1] and ) for solving RWC-clustering
problem by using varying parameter 7 on ModelNet10 dataset. We fix the dataset size as 200,
k =10,Z = 200,0 = 1 and ¢ = 0.1, where Z is the number of iterations in post-processing
procedure (i.e., Algorithm ).

7 cost-nd(]) cost-cd({) Runtime ({)

1 2654040 4194070  1419.534352.59

2 2264004 2571005  1524.121436.52

3 2.2040.04 2.4810.05 1701.304476.68

5 2354017 2.57+0.16 2025.114179.11
10 21841004 2431010 2498.92 125 57
20 2.26+0.10 2.48.410.14 3874.76£91.72
50 2.3240.17 2.5240.07 11997.44 11142 86

Selection of ( under unknown noise mass:

This experiment aims to explore how to select the parameter ( when the true noise mass is unknown.
We randomly sample 200 samples from the ModelNet10 to form the dataset, each data item containing
0.3 mass of noise. However, we run our algorithm across different (.

Table 12: Comparison of our algorithm (i.e., Algorithm [1] and ) for solving RWC-clustering
problem across different values of ( on ModelNet10 dataset with 0.3 mass of noise. We fix the
dataset size as 200, k = 10, Z = 200,0 = 1 and 7 = 10, where Z is the number of iterations in
post-processing procedure (i.e., Algorithm [)).

¢ costnd(]) cost-cd({) Runtime({)

0.05 134841015 13.5811.48 2387.1045.16
0.1 9.9940.11 10901151  2861.194189.57
0.2 5.1040.02 5.4510.69 2985.63+226.70
03 2294017  3.581004  2998.344166.96
04 1724007  3.261036  2943.35135 40
0.5 1.4310.0s 3.86+0.49 3055.85188.55
0.6 1.2140.06 5.0110.50 3122.77 111256
0.7  1.0040.04 4.4640.37 3589.76 196,52
0.8  0.75410.01 4.9310.08 3722.17116.04
09 0591002  7.3011.00  3921.55 1458
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Nietert et al.|[2022] theoretically demonstrates that when ¢ € [0, 1) is slightly overestimated relative to
the true noise mass, the optimal solution can still be attained. This suggests that a mild overestimation
of ¢ does not significantly affect the results.

Our results in Table [13| confirm that slightly overestimating ¢ has only a minor impact, while
underestimating it severely degrades the solution quality. Therefore, when the true noise mass is
unknown, we recommend setting ¢ slightly larger than the expected noise mass to ensure robust
performance.

Ablation experiment for our CS method across varying mass ( of noise:

Table[13]illustrates that the CS method consistently outperforms the US method under both cost-cd
and cost-nd criteria across varying mass ¢ of noise.

Table 13: Comparison of the US method and our CS method using varying mass ¢ of noise. We
fix k = 10,Z = 200,0 = 1 and 7 = 10, where Z is the number of iterations in post-processing
procedure (i.e., Algorithm[4]in appendix)

¢ SM SS cost-nd(]) cost-cd({) Runtime (])
US 207 4.841¢.93 5.1410.97 2431.83182.81

01 0SS 207 4061025 4351015  2430.9010.51
0y US 214 416iorr  497:060  3306.69555
2 CS 214 338.04  393.04r 3281460 86
03 US 194 3096i000 481ois  3238.40:20s

CS 194 374,015 4.651¢.31 3374.23 1.4 87
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D.4 Ablation experiments on seeding algorithm

Henceforth, we refer to seeding initialization as the approach that uses the k-center set produced by
Algorithm [I| for initialization. In contrast, random initialization refers to selecting k data points
uniformly at random from the dataset to form the k-center set for initialization.

Necessity of seeding algorithm on real-world datasets:

Table 14: Comparison of seeding initialization and random initialization across different numbers of
epochs Z. We fix the dataset size as 200, k = 10,0 = 1,7 = 10 and ¢ = 0.1, where Z is the number
of iterations in post-processing procedure (i.e., Algorithm []in appendix)

Z  Initialization cost-nd(}) cost-cd(]/) Runtime({)

20 random 4.0510,22 4.6210,97 280.84i0'36
seeding 2.66:|:0_05 3.06:|:0,37 322.33:|:0_77
30 random 3-95i0.65 4-08i0.65 398.15i0_55
seeding 2.60:|:0‘15 2.88:|:()‘40 430.49:&3,55
50 random 3.20:|:0,30 3.90:|:0,21 621.08:|:1_34
seeding 2334004 2554010  662.624015
100 random 3-03i0.30 3~17i0.29 1249~73i1.69
seeding 2'35:|:0.08 2.56:|:0,07 1301']—9:|:1.56
150 random 2.78:|:0_25 3.10:|:0_35 1866.395:0,83
seeding 2-24i0.03 2-50i0.16 1900~57i0.86
200 random 2~30i0.03 2~48i0.06 2381~57i64.57
seeding 2.27:|:0,10 2.47:|:0,13 2405-65:|:71.16

Table |14] validates the effectiveness of our seeding algorithm (Algorithm |1 for initialization on
the ModelNet10 dataset. We randomly select 200 samples from ModelNet10 to form the dataset. In
this experiment, initialization is first performed to provide a coarse solution, which is then refined
through the post-processing procedure (Algorithm [)) to obtain a finer solution.

To ensure a fair comparison, we account for the computational cost of seeding initialization as
equivalent to £ = 10 epochs. Specifically, in the seeding initialization method, the post-processing
algorithm is executed for Z — k iterations, while in the random initialization it runs for Z iterations.

The experimental results demonstrate that our seeding initialization consistently outperforms random
initialization in terms of clustering quality. Moreover, it leads to significantly faster convergence,
demonstrating the importance of a good initialization strategy.
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Necessity of seeding algorithm on toy dataset:

We visualized the clean geometric shapes in Figure [TT{a), and the noisy geometric shapes are in
Figure[3]

Figure 1] validates the effectiveness of our seeding algorithm (Algorithm 1) for initialization. In
this experiment, we first perform initialization and then apply Algorithm 2 as a post-processing step
for clustering. Specifically, Figure[TT(b) shows the clustering results with random initialization, while
Figure[TT{c) presents the results using our Algorithm 1 for initialization. Figure [IT[b) shows poor
denoising performance without using the seeding algorithm for initialization. In contrast, by using
the seeding algorithm, the resulting centers in Figure [IT|c) are more closely with the original five
clean shapes. This implies the importance of a good initialization, and demonstrates the advantage of
our seeding algorithm in providing a good starting point.

0 010
O ) 3 %
| > 0 0053
Q
C =

0.000

) Clean geometric shapes

23> D§ 0 002%,
3 - \ (1] g

0.000

(b) Center set by RWC-clustering without using seeding algorithm

O%Q0D>O M

0.000

(c) Center set by RWC-clustering with seeding algorithm

Figure 11: Effectiveness of our seeding algorithm.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our abstract and introduction clearly state the main claims of the paper,
including the key contributions, as well as the underlying assumptions and known limitations.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Since the robust Wasserstein distance is not a true metric and does not satisfy
the triangle inequality, theoretical analysis becomes challenging, and no approximation
algorithm with provable guarantees has been obtained.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: The complete proof is provided in the appendix.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide a detailed description of the experimental setup in the appendix,
along with the source code in the supplementary materials.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will provide a GitHub link for access if our paper is accepted. Meanwhile,
the code can also be found in the supplementary materials on OpenReview.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines (https:
/Imips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide a detailed description of the experimental settings, along with
ablation studies on various parameters.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All experimental results are averaged over multiple independent runs, and the
corresponding variances are reported.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The hardware specifications of the server used in our experiments—including
CPU, GPU, and other relevant components—are documented in detail to support repro-
ducibility.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: This study complies with ethical standards and research integrity guidelines.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This study contributes to the representation of complex data in noisy environ-
ments. Currently, we are not aware of any potential negative consequences arising from this
work.
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Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have properly cited and provided detailed descriptions for the code used in
this study.

Guidelines:
» The answer NA means that the paper does not use existing assets.

 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets| has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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1163 * Depending on the country in which research is conducted, IRB approval (or equivalent)

1164 may be required for any human subjects research. If you obtained IRB approval, you
1165 should clearly state this in the paper.

1166 * We recognize that the procedures for this may vary significantly between institutions
1167 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
1168 guidelines for their institution.

1169 * For initial submissions, do not include any information that would break anonymity (if
1170 applicable), such as the institution conducting the review.

171 16. Declaration of LLLM usage

1172 Question: Does the paper describe the usage of LLMs if it is an important, original, or
1173 non-standard component of the core methods in this research? Note that if the LLM is used
1174 only for writing, editing, or formatting purposes and does not impact the core methodology,
1175 scientific rigorousness, or originality of the research, declaration is not required.

1176 Answer: [NA]

1177 Justification: The core method development in this research does not involve LLMs as any
1178 important, original, or non-standard components.

1179 Guidelines:

1180 * The answer NA means that the core method development in this research does not
1181 involve LLMs as any important, original, or non-standard components.

1182 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
1183 should or should not be described.
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