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Abstract

Despite advances in machine learning based001
hate speech detection, the need for larges002
amounts of labeled training data for state-of-003
the-art approaches remains a challenge for004
their application. Semi-supervised learning ad-005
dresses this problem by leveraging unlabeled006
data and thus reducing the amount of anno-007
tated data required. Underlying this approach008
is the assumption that labeled and unlabeled009
data follow similar distributions. This assump-010
tion however may not always hold, with conse-011
quences for real world applications. We address012
this problem by investigating the dynamics of013
pseudo-labeling, a commonly employed form014
of semi-supervised learning, in the context of015
hate speech detection. Concretely we anal-016
ysed the influence of data characteristics and of017
two strategies for selecting pseudo-labeled sam-018
ples: threshold- and ratio-based. The results019
show that the influence of data characteristics020
on the pseudo-labeling performances depends021
on other factors, such as pseudo-label selection022
strategies or model biases. Furthermore, the ef-023
fectiveness of pseudo-labeling in classification024
performance is determined by the interaction025
between the number, hate ratio and accuracy026
of the selected pseudo-labels. Analysis of the027
results suggests an advantage of the threshold-028
based approach when labeled and unlabeled029
data arise from the same domain, whilst the030
ratio-based approach may be recommended in031
the opposite situation.032

1 Introduction033

Topic shifts in online hate speech arising from034

changing social media trends or news poses a chal-035

lenge for hate speech detection systems (Florio036

et al., 2020). In order to keep the pace and fol-037

low such dynamic changes developers of such sys-038

tems need to adapt their models to the continuously039

changing contexts and linguistic patterns (Ludwig040

et al., 2022). Since these models rely on large041

amounts of annotated training data (Challa et al.,042

Figure 1: Pseudo-Labeling Framework. After teacher
model training (a), it is used to predict pseudo-labels
(c) for pre-selected unlabeled data points (b). After the
selection of reliable pseudo-labels (d), a student model
is trained with labeled and pseudo-labeled data (e).

2020) the dynamic nature of abusive language in 043

online discourses complicates the application of 044

state-of-the-art deep learning models. Gathering 045

high quality training data is time-consuming and 046

often requires human expertise to be involved in 047

the annotation process (Yang et al., 2022). Semi- 048

supervised learning address these challenges by 049

training models with a small amount of data an- 050

notated (labeled) for the specific use case together 051

with a large amount of unlabeled data. These ap- 052

proaches improve model performance over purely 053

supervised learning approaches by using informa- 054

tion that is present in the unlabeled data (Van En- 055

gelen and Hoos, 2020), and are therefore being 056

actively explored in dynamic domains such as auto- 057

matic hate speech detection, where data efficiency 058

is crucial. 059

Since unlabeled data seems to be easy to ob- 060

tain, recent research in the field of semi-supervised 061

hate speech detection focuses on the learning al- 062

gorithms themselves rather than the training data. 063

The underlying assumption is that the labeled and 064

unlabeled data share the same characteristics and 065

therefore follow the same data distribution. This 066

assumption however does not hold in real world 067
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scenarios where the high pace of change of on-068

line hate speech is accompanied by changes in the069

characteristics of associated data. Therefore, we070

investigate the influence of data characteristics on071

semi-supervised model performances. As we in-072

vestigate pseudo-labeling based semi-supervised073

learning (Alsafari and Sadaoui, 2021a,b; Ludwig074

et al., 2022; Zia et al., 2022) we are especially in-075

terested in the different benefits regarding model076

performance of two common pseudo-label selec-077

tion strategies. In summary, the contributions of078

this work are:079

(i) exploration, how different characteristics of080

unlabeled data affect the semi-supervised training081

of hate speech detection models, (ii) clarification of082

the interaction between characteristics of unlabeled083

data, model bias and different pseudo-label selec-084

tion strategies, and (iii) recommendations for real-085

world applications using pseudo-labeling based ap-086

proaches for hate speech detection.087

2 Related Work088

Various approaches for automatic hate speech de-089

tection have been proposed in recent years (Ja-090

han and Oussalah, 2023), reaching from lexical091

(Alkomah and Ma, 2022; Frenda et al., 2019) to092

traditional machine learning (Waseem and Hovy,093

2016; Aziz et al., 2021) to deep learning based094

approaches (Vashistha and Zubiaga, 2021; Khan095

et al., 2023; Wadud et al., 2023). Due to the high096

demand for labeled data of current approaches097

(Yin and Zubiaga, 2021), semi-supervised train-098

ing methods have emerged as an active line of099

research in the context of hate speech detection100

(Zia et al., 2022; d’Sa et al., 2020; Santos et al.,101

2022). For instance Zia et al. investigated the use102

of self-training to improve hate speech detection103

performance in multilingual settings. Similarly,104

(Alsafari and Sadaoui, 2021b) used self-training105

to enhance hate speech detection models, having106

reported an improvement of 7% relative to super-107

vised baselines. Whilst imbalanced class ratios and108

the complexities in the detection of implicit hate109

speech were identified as challenges in the training110

process, no thorough examination of their impact111

on the self-training performances was conducted.112

In a previous study by the same authors (Alsa-113

fari and Sadaoui, 2021a), an ensemble of different114

classification models was trained on a seed hate115

speech dataset to predict pseudo-labels for a large116

unlabeled dataset. The authors evaluated various117

ways to combine predictions from multiple mod- 118

els within the ensemble in order to obtain reliable 119

pseudo-labels. While these works applied pseudo- 120

labeling and other semi-supervised learning tech- 121

niques to improve hate speech classifiers, they did 122

not analyze how these approaches are affected by 123

typical challenges in the hate speech detection do- 124

main. In our work, we thoroughly investigate how 125

data properties, specific to the hate speech domain, 126

and their interaction with other components, such 127

as pseudo-label selection strategies, affect the per- 128

formance of pseudo-labeling-based approaches. 129

The influence of different data and pseudo-label 130

characteristics has also been studied in other areas. 131

Wei et al. reported on the negative effect of imbal- 132

anced pseudo-labels on model performance. Fur- 133

thermore, they reported improvements over other 134

pseudo-labeling based approaches by applying an 135

iterative re-balancing framework for pseudo-labels, 136

indicating the importance of a balanced class ratio 137

in the pseudo-labels. The influence of the accu- 138

racy of pseudo-labels was investigated in turn by 139

Li et al., in the task of sentiment analysis. The au- 140

thors found that the accuracy of the pseudo-labels 141

strongly affects model performance. In relation 142

to these works, our work focuses on the specific 143

domain of hate speech detection with its unique 144

challenges. More over, in contrast to previous 145

works we analyse how the interaction of multiple 146

components, such as data and pseudo-label charac- 147

teristics, model biases and pseudo-label selection 148

strategy affects the performance of the investigated 149

approaches. Based on our findings, we further pro- 150

vide recommendations for real-world applications 151

of semi-supervised learning in the domain of hate 152

speech detection. 153

3 Methods and Experiments 154

3.1 Data 155

We use the dataset created by Kennedy et al. (2020), 156

which is an English hate speech dataset compiled 157

from YouTube, Twitter, and Reddit, and refer to 158

it as Seed dataset. The dataset consists of 31, 000 159

data samples, each annotated with continuous real 160

valued hate scores ranging from −8 to 6, de- 161

signed to quantify the magnitude of hate. Negative 162

scores indicate "normal" comments, while positive 163

scores denote "hate speech." This unique annota- 164

tion scheme enables us to study how estimated 165

toxicity and thus magnitude of hate speech impacts 166

the performance of semi-supervised learning algo- 167
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rithms, along with the impact of sample quantity168

and hate speech ratios. We provide data samples169

for different toxicity values in appendix A, visu-170

alizations and information about the test data and171

unlabeled data used in this work in the B section.172

3.2 Model Architecture173

The classifier utilized in this work is composed174

by a pre-trained XLM-RoBERTa model (Conneau175

et al., 2020) as backbone, followed by a linear176

layer and a Softmax activation layer. We imple-177

mented our models utilizing the deep learning178

framework PyTorch, whereby we especially rely179

on the pre-trained XLM-RoBERTa model provided180

by the Transformers library. 1 In order to reduce181

memory consumption and to enable the conduction182

of a larger number of experiments, we trained our183

models with a parameter efficient finetuning ap-184

proach by utilizing the PEFT library (Mangrulkar185

et al., 2022). More specifically, we apply the LoRA186

technique (Hu et al., 2021) with α = 16, dropout187

p = 0.1 and a rank r = 8.188

3.3 Pseudo-Labeling Framework189

Pseudo-Labeling is a popular form of semi-190

supervised learning, involving the following steps191

(Figure 1):192

a) Training of a teacher model Φ on a small193

amount of labeled data DL194

b) (optionally) Pre-selection of the unlabeled195

data (e.g. data cleaning)196

c) Prediction of pseudo-labels for a larger pool197

of unlabeled data198

d) Selection of reliable pseudo-labels together199

with their corresponding data samples200

e) Training of a student model Θ with labeled201

and selected pseudo-labeled data202

In our study, we examine the following two203

strategies for selecting pseudo-labels:204

3.3.1 Threshold-based selection205

Threshold-based approaches select pseudo-labels,206

for which the prediction confidence of the model207

is above a pre-defined threshold τ ∈ [0, 1]. In our208

work, we set the confidence threshold τ = 0.80.209

1https://huggingface.co/docs/transformers/index

3.3.2 Ratio-based selection 210

Ratio-based approaches select the most confident 211

pseudo-labels for each predicted class according to 212

a pre-defined ratio r ∈ [0, 1]. For each predicted 213

class, the top r ·100% most confident pseudo-labels 214

are selected. We chose a fixed ratio r of 0.1. 215

3.4 Classifier Fitting 216

In the first and in the last steps of the pseudo- 217

labeling framework, models are fitted to labeled 218

and pseudo-labeled data respectively. Here, we 219

used two different training approaches for fitting 220

the classifier: 221

3.4.1 Single-Stage Training 222

In the single stage training strategy, all trainable 223

model parameters were trained on labeled (or 224

pseudo-labeled) data using the Cross-Entropy loss, 225

which is defined as: 226

LCE = −
B∑
i=1

yilog(pi) (1) 227

where B corresponds to the minibatch size, yi to 228

the class label 2 and pi to the predicted probability 229

of the ith class. We trained our models with a 230

maximal batch size of 256. Parameter optimization 231

was performed using Adam (Kingma and Ba, 2014) 232

for 5.000 iterations and a learning rate of 3 · e−5. 233

3.4.2 Two-Stage Training 234

The two-stage training strategy started with the 235

pre-training of the backbone modules via metric 236

learning, since this showed strong results in terms 237

of data efficient learning. The goal of this training 238

stage is to train an encoder fΦ(x) : RF → RD, 239

which maps data points that belong to the same 240

class to metrically close points in RD, and vice- 241

versa data points that belong to different classes 242

to metrically distant points in RD. We used the 243

XLM-RoBERTa module as encoder fΦ and trained 244

it using a triplet loss defined as: 245

Ltri(Φ) =
∑
a,p,n

[m+D(xa, xp)−D(xa, xn)]+

(2) 246

where xa is an anchor point, xp is a positive 247

point belonging to the same class as the anchor 248

point and xn is a negative point belonging to an- 249

other class than the anchor point. This loss function 250

ensures that positive points xp are closer to anchor 251

2In our setups, yi can also be a pseudo-label
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Approach F1 Precision Recall AUC
Naive Classifier (ZeroR) .39 .32 .50 /
Baseline Std. .67 .67 .67 .74
Baseline Met. .69 .69 .69 .78
Upper-Bound Std. .76 .77 .75 .87
Upper-Bound Met. .72 .74 .71 .84

Table 1: Classification metrics, achieved by a naive zero rate
classifier and by the supervised reference models. Baseline
models are trained with 200 labeled samples while upper-
bound models are trained with over 31.000 samples.

points xa than negative points xn by at least a mar-252

gin m, given a distance function D. A specific253

configuration of xa, xp and xn is called a triplet.254

We employed batch-semi-hard triplet mining (Har-255

wood et al., 2017), which has proven to improve256

the robustness of training. As distance function257

D we used the cosine-distance. In this approach,258

backbone models were pre-trained for 5.000 iter-259

ations with a batch size of 768. We used Adam260

optimizer (Kingma and Ba, 2014) with a learning261

rate of 3 · e−5.262

After backbone training, the linear classifier was263

fitted using Cross-Entropy loss (equation 1) with264

labeled (or pseudo-labeled) data samples, while265

freezing the weights of the backbone module. In266

this step, we again used Adam optimizer (Kingma267

and Ba, 2014) with a learning rate of 1 · e−3 and268

train the linear layer for 100 iterations.269

3.5 Model Evaluation270

The performance of the classifier was evaluated271

after each training epoch with the evaluation set.272

We stored the model that achieved the best macro273

average F1-score on the validation set. After model274

training we apply beta-calibration (Kull et al.) in or-275

der to retrieve reliable predictions from the model.276

The final model performance reported in this work277

was computed on a separate test set, which was278

used only once after completion of all model train-279

ing, selection and calibration steps.280

3.6 Baseline and Upperbound281

To estimate the performance of the investigated282

semi-supervised learning algorithms, we trained283

reference models in a fully supervised manner. Ref-284

erence baseline models were trained with 200 la-285

beled data samples, which were later also used286

as labeled data in the semi-supervised learning287

experiments. The number of normal samples288

was set equal to the number of hateful samples.289

We trained two baseline models: Baseline Stan-290

dard was trained using the single-stage training291

Figure 2: Histogram and accuracy values of our base-
line model with respect to hate speech probabilities,
which have been computed over all unlabeled data
samples of the seed dataset. The model tends to make
more predictions in favor of the normal class. More-
over, these predictions have a higher degree of accu-
racy than the hate speech class.

approach, while Baseline Metric was trained us- 292

ing the two-stage training approach. In addition to 293

models trained with 200 samples, we also trained 294

upper-bound models in which the complete seed 295

dataset was used for training. Also in this case, we 296

performed single-stage training (Upperbound Stan- 297

dard) and two-stage training (Upperbound Metric). 298

3.7 Investigation of Data Characteristics 299

In our experiments, we explored how different char- 300

acteristics of the unlabeled hate speech data affect 301

the performance of models trained with pseudo- 302

labeling methods. We used subsets of the training 303

data from the Seed dataset as unlabeled data, along 304

with 200 labeled data samples, which were also 305

used to train the baseline models. This was done 306

by employing the baseline metric model as teacher 307

model in the pseudo-labeling framework. After 308

that, we used the single-stage training approach for 309

fitting the student models. 310

3.7.1 Number of unlabeled Samples 311

In order to investigate the influence of the num- 312

ber of unlabeled samples, subsets of 200, 400, 600, 313

1000, 1500, 2000, 5000, 10000 and 20000 unla- 314

beled data points were randomly sampled from the 315

original Seed dataset composed by 31453 samples. 316

3.7.2 Ratio of Hate Speech 317

To examine the effect of the proportion of hate 318

speech in the unlabeled set, a subset of 1000 unla- 319

beled samples was selected to achieve the required 320

proportion of hate samples. The proportion of hate 321

speech in the unlabeled data was varied from 10%, 322

to 20%, 40%, 50%, 60%, 80%, and 90%. 323
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(a) F1-Score as a function of the number
of unlabeled samples for the standard and
upperbound approaches as well for the
two semi-supervised learning strategies.

(b) F1-score with respect to the pro-
portion of hate speech in the unlabeled
data, for the two semi-supervised learn-
ing strategies.

(c) F1-Score as a function of the toxicity
of unlabeled hate samples, for the two
semi-supervised learning approaches.

Figure 3: Effect of characteristics of unlabeled data on model performance for the two semi-supervised training
approaches investigated. For a valid comparison, the total number of unlabeled samples in experiments 3b and 3c
was fixed to 1.000 samples.

3.7.3 Toxicity of Hate Speech324

In this series of experiments, the unlabeled hate325

samples were selected based on their toxicity level.326

The following ranges of toxicity were considered:327

0.0 - 1.0, 1.0 - 2.0, 2.0 - 3.0, and > 3.0. The ratio of328

hate speech was set at 0.3, while the total number329

of samples in all these experiments was set at 1000.330

4 Results and Discussion331

This section starts by presenting and discussing332

the results of the supervised reference models, as333

well as the prediction confidences and pseudo-label334

accuracies of the baseline metric model for the un-335

labeled portion of the base dataset. Afterwards we336

present the performances of the semi-supervised337

learning approaches with respect to different char-338

acteristics of the unlabeled data, and discuss these339

results in face of the characteristics of the corre-340

sponding selected pseudo-labels, the distributions341

of the predicted hate speech probability and of the342

annotated toxicity values of the selected hate sam-343

ples. The section finalises with a summary of the344

main observations/results.345

4.1 Reference Model Performance346

All of our reference models are able to clearly out-347

perform the lowerbound performance, achieved by348

a naive zero rate classifier. When data resources349

are low, the metric learning approach outperformed350

the standard training approach (table 1), showing,351

inline with results from previous works (Ran et al.,352

2023; Matsumi and Yamada, 2021), the effective-353

ness of metric learning in few shot settings. Normal354

pseudo-labels (probabilities < 0.5), computed by355

the baseline metric model (which also served as 356

teacher model in our experiments), showed higher 357

accuracy and average prediction confidence com- 358

pared to hateful pseudo-labels (Figure 2), suggest- 359

ing a model bias towards the normal class. This 360

bias was observed even though the model was 361

trained with balanced data, a behavior also ob- 362

served in previous studies (Wang et al., 2022). No- 363

tably, the bias particularly distorted the prediction 364

of high-confidence pseudo-labels, affecting them 365

more than the average pseudo-labels in terms of 366

quantity and accuracy. 367

4.2 Influence of Data Characteristics 368

While the positive correlation between the num- 369

ber of unlabeled samples and the performances of 370

the pseudo-labeling approaches (Figure 3a) was 371

expected (Ludwig et al., 2022), the ambiguous in- 372

fluence of the hate ratio and of the toxicity level on 373

model performance was surprising. 374

4.2.1 Proportion of Hate Speech 375

The threshold-based selection strategy achieved 376

reasonable stable performances for hate speech ra- 377

tios varying from 0.1 to 0.5, but its performance 378

decreased significantly for higher hate speech ra- 379

tios, achieving partially worse results than the base- 380

line model (Figure 3b, orange curve). The cor- 381

responding pseudo-label characteristics (Figures 382

4a - 4c, orange curves) revealed, that the num- 383

ber and the accuracy of the pseudo-labels selected 384

by the threshold-based approach decreases with 385

increasing proportion of hate speech in the unla- 386

beled samples, while the proportion of hate speech 387

in the selected samples increases. Previous stud- 388
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(a) While the number of selected
samples remains constant for the
ratio-based approach, the number
drops with increasing hate ratio for
the threshold-based approach.

(b) For both selection strategies, the
hate ratio in the selected samples in-
creases with increasing ratio in the
input samples, with higher values
for the ratio-based selection strat-
egy.

(c) While the pseudo-label accuracy
for the threshold-based strategy de-
creases with the hate fraction in the
input samples, it remains almost
constant for the ratio-based strategy.

(d) While the number of selected
samples slightly drops with increas-
ing hate ratio for the threshold-based
approach, the number remains con-
stant for the ratio-based approach.

(e) The hate ratio of the selected
data constantly increases with in-
creasing toxicity in the input data for
the ratio-based approach and barely
increases for the threshold-based ap-
proach.

(f) The pseudo-label accuracy in
the selected data increases for both,
threshold-based and ratio-based se-
lection approaches with increasing
toxicity in the input data.

Figure 4: Influence of hate speech characteristics on predicted and selected pseudo-labels.

ies showed the disadvantageous effect of class-389

imbalanced pseudo-labels (Zou et al., 2018) and390

the positive impact of increasing pseudo-labels ac-391

curacy on model performance (Liu et al., 2022;392

Rizve et al., 2021), mainly focusing on individual393

pseudo-labels characteristics. In our opinion, how-394

ever, the stable performance of the threshold-based395

approach at low hate ratios cannot be explained396

by considering the dynamics of the pseudo-label397

characteristics individually, but by analyzing their398

interaction. Our results indicate that the increas-399

ing proportion of hate speech and thus decreasing400

class-imbalance in the selected samples (Figure401

4b) can to a certain amount compensate for the de-402

creasing number of selected pseudo-labels (4a) and403

the decreasing accuracy of the pseudo-labels (4c),404

thus stabilising the performance of the approach at405

lower hate ratios.406

The ratio-based selection approach achieved its407

best performance when the ratio between normal408

samples and hateful samples in the unlabeled data 409

was balanced, but its performance declined when 410

the distribution of the normal and hate speech 411

classes became unbalanced (Figure 3b, blue curve). 412

In contrast to the performance of the threshold- 413

based approach, the performance drop is observ- 414

able regardless of which of the classes becomes the 415

majority class. The characteristics of the pseudo- 416

labels, selected by this approach, indicate that the 417

performance is mainly driven by the proportion of 418

hate speech in the selected pseudo-labels (Figure 419

4b, blue curve), which varied from values below 420

0.4 to almost 0.6, while the number of selected 421

samples (Figure 4a, blue curve) showed no varia- 422

tion. The best performance of this approach was 423

reached when the proportion of hate/normal speech 424

in the selected pseudo-labels was balanced. The 425

accuracy of the selected pseudo-labels (Figure 4c, 426

blue curve) could support the performance trend, 427

but in our opinion, the hate ratio is the main reason 428
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for the performance variation of this approach, as429

the highest pseudo-label accuracy is not aligned430

with the strongest results achieved by the approach.431

4.2.2 Toxicity of Hate Samples432

While the performance of the threshold-based se-433

lection approach decreased with increasing toxicity434

levels of the hate samples, the opposite was ob-435

served for the ratio-based selection strategy (Figure436

3c). Overall, the threshold-based selection strategy437

achieved better results than the ratio-based selec-438

tion strategy across the whole toxicity range.439

The superior performance of the threshold-based440

selection strategy is attributed to its higher number441

of selected pseudo-labels compared to the ratio-442

based approach in each experiment (Figure 4d).443

The threshold-based approach tends to select fewer444

pseudo-labels as toxicity increases, resulting in de-445

creasing model performance, although the hate ra-446

tio and accuracy for these pseudo-labels tend to447

increase (Figures 4e and 4f, orange curves). Again,448

the interplay between pseudo-label characteristics449

determine the performances of the approach. In450

contrast, the ratio-based approach selected a con-451

stant number of pseudo-labels (Figure 4d, blue452

curve). Its performance improvement with increas-453

ing toxicity values is caused by an increasing accu-454

racy and a more balanced hate ratio of the selected455

pseudo-labels (Figures 4f and 4e, blue curves).456

4.3 Interplay of Biases, Data Properties, and457

Pseudo-Label Selection Strategy458

The characteristics of the pseudo-labels selected459

by the threshold-based approach are more sensitive460

to the hate speech ratio in the unlabeled data than461

those selected by the ratio-based approach (Fig-462

ures 4a - 4c). This can be explained by the fact,463

that the threshold-based approach relies exclusively464

on pseudo-labels with high confidence, which are465

disproportionately affected by the model bias (see466

section 4.1). Accordingly, the characteristics of467

the pseudo-labels selected by this approach heavily468

rely on the proportion of samples favored (in our469

case the normal samples) and disfavored (in our470

case the hateful samples) by the model bias. In471

contrast, the toxicity of the hate samples does not472

strongly affect the performance of the threshold-473

based selection strategy. This indicates, contrary474

to expectations, that the annotated toxicity does475

not necessarily correlate with the prediction confi-476

dence of the model, since the threshold-based ap-477

proach does not select more hateful samples with478

increasing toxicity of these samples. This finding is 479

also supported by the visualizations of the distribu- 480

tions of annotated toxicity values and hate speech 481

probabilities in Figure 5. While the differences 482

in the distributions of the annotated toxicity val- 483

ues are clearly observable, these differences are 484

not reflected in the distribution of high confident 485

pseudo-labels. This demonstrates both the diffi- 486

culty of quantifying hate speech and the subjec- 487

tivity of hate speech perception, as toxic samples 488

clearly identified as hate speech by human com- 489

mentators are not necessarily easily classified as 490

hate speech by the machine learning model. The 491

subjectivity of hate speech perception as well as 492

the difficulty of annotating hate speech has previ- 493

ously been discussed in various studies, such as 494

(Ross et al., 2017; Yin et al., 2023; Waseem, 2016). 495

While differences in high confident pseudo-labels 496

are barely visible, there is a noticeable decrease 497

in the number of wrong pseudo-labels (probability 498

values < 0.5) and, consequently, a reduction in false 499

negatives with increasing toxicity of hate samples, 500

as shown in Figure 5. The decreasing number of 501

false negative pseudo-labels in the ratio-based ap- 502

proach (Figure 4f, blue curve) is accompanied by 503

a growing proportion of hate speech within the se- 504

lected labels (Figure 4e, blue curve), a trend which 505

is a direct result of the proportional selection of 506

hateful samples based on the number of samples 507

classified as hateful. 508

4.4 Summary of Main Findings 509

First, the influence of data characteristics on 510

pseudo-labeling performance is ambiguous and de- 511

pends on other factors such as pseudo-label selec- 512

tion strategies. While a balanced ratio between 513

normal and hateful samples tends to provide fa- 514

vorable results, it is not possible to make a clear 515

statement about the influence of toxicity in the hate 516

samples without accounting for these factors. 517

Second, our results indicate that the performance 518

of pseudo-labeling approaches relies on the inter- 519

action between several characteristics of selected 520

pseudo-labels, including their total number, hate 521

speech proportion, and accuracy. To understand 522

the performances of the investigated approaches, it 523

is therefore necessary to analyse these characteris- 524

tics together. Consequently, optimizing only one 525

of these features is not a guarantee of a good final 526

performance. For example, selecting a large num- 527

ber of pseudo-labels, beneficial in principle, could 528

lead to low accuracy, undermining performance, 529
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Figure 5: Raincloud plots (Allen et al., 2019) of annotated toxicities and predicted hate speech probabilities for
different toxicity ranges of hate samples. While the differences in the distributions of the annotated toxicity values
are clearly observable, these differences are not reflected in the predicted hate speech probabilities.

and vice versa.530

Third, biases of the teacher model affect the531

threshold-based selection approach more than the532

ratio-based approach. This leads to superior per-533

formance of the threshold-based approach when534

the data distribution favors the effects of model bi-535

ases, e.g., when the proportion of majority class in536

the unlabeled data is high. Conversely, the ratio-537

based approach outperforms the threshold-based538

approach in situations where the data distribution539

is unfavorable to the effects of model biases.540

5 Recommendations for Real-World541

Applications542

Our findings suggest, that the threshold-based ap-543

proach should be applied if the characteristics of un-544

labeled data favor the effects of the teacher model545

bias, leading a larger number of confident pseudo-546

labels. This is typically the case when labeled and547

unlabeled data arise from the same domain, e.g.,548

when they share the same target groups of hate549

speech. The ratio-based approach provided bet-550

ter results in opposite scenarios. Especially when551

domain adaptation is needed due to a lack of la-552

beled data in the target domain, the ratio-based553

approach should be considered. Prediction confi-554

dences can be analyzed, for example, by computing555

a histogram, which can be a valuable tool for decid-556

ing which selection strategy to use. When a large557

number of confident pseudo-labels are obtained,558

the threshold-based selection strategy should be559

preferred, otherwise the ratio-based strategy.560

Additionally, given the good model perfor-561

mances achieved for (nearly) balanced data, it is562

recommended to include a reasonable amount of 563

hate speech in the unlabeled data. Public real-world 564

or synthetic hate speech datasets can be used to this 565

end. Although these datasets may be annotated 566

with different annotation schemes, the "hate" labels 567

contained in these datasets may be similar to the 568

labeled data in the specific use case, and therefore 569

already more "informative" to the model than ran- 570

domly crawled data, which typically contain a very 571

small amount of hate speech (Meza et al., 2016). 572

6 Conclusion 573

In this work, we investigated two pseudo-labeling 574

based approaches for semi-supervised training of 575

hate speech detection models and therefore con- 576

tributed to the understanding of the complex in- 577

teraction between data properties, model biases, 578

and pseudo-label selection strategies. We showed 579

that selection of pseudo-labels is determinant to 580

the final performance of the approaches. In view 581

of real-world applications, the results suggest an 582

advantage of threshold-based pseudo-label selec- 583

tion strategies over ratio-based selection strategies 584

when labeled and unlabeled hate speech data arise 585

from the same domain, since a larger number of 586

confident pseudo-labels can be expected in this sce- 587

nario. In turn, ratio-based selection strategies are 588

preferable when labeled and unlabeled data arise 589

from different domains. These results show the 590

need for further exploration and investigation of 591

alternative pseudo-label selection strategies as well 592

as other families of semi-supervised learning algo- 593

rithms. 594
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7 Limitations595

In this work, we focused on two pseudo-label selec-596

tion strategies, the threshold-based strategy and the597

ratio-based strategy. For both strategies, we set the598

corresponding hyperparameters threshold and ratio599

to 0.8 and 0.1, respectively. These values were se-600

lected based on the results obtained in preliminary601

experiments, and allowed us to focus on the effect602

of other parameters. Investigation of the effect of603

these hyperparameters, for instance by means of a604

hyperparameter search, is left to future work. Addi-605

tionally, while the threshold-based and ratio-based606

selection approaches are commonly applied and607

provide clarity in their interaction with model bi-608

ases and data properties, it is important to note that609

alternative strategies, such as pseudo-label balanc-610

ing methods (Wei et al., 2021; Wang et al., 2022)611

and feature similarity-based selection (Wang and612

Zhang, 2023), have also been proposed in the litera-613

ture and deserve further exploration. Moreover, our614

research focuses exclusively on pseudo-labeling in615

the domain of semi-supervised learning, leaving616

out other valuable techniques such as consistency617

training (Xie et al., 2020; Sohn et al., 2020), varia-618

tional autoencoders (Gururangan et al., 2019), and619

GANs (Croce et al., 2020). These approaches may620

have different responses to the investigated hate621

speech features and we encourage researchers to622

explore these approaches since they could provide a623

more comprehensive understanding of hate speech624

detection in semi-supervised settings.625

References626

Fatimah Alkomah and Xiaogang Ma. 2022. A literature627
review of textual hate speech detection methods and628
datasets. Information, 13(6):273.629

Micah Allen, Davide Poggiali, Kirstie Whitaker,630
Tom Rhys Marshall, and Rogier A Kievit. 2019.631
Raincloud plots: a multi-platform tool for robust data632
visualization. Wellcome open research, 4.633

Safa Alsafari and Samira Sadaoui. 2021a. Ensemble-634
based semi-supervised learning for hate speech de-635
tection. In The International FLAIRS Conference636
Proceedings, volume 34.637

Safa Alsafari and Samira Sadaoui. 2021b. Semi-638
supervised self-training of hate and offensive speech639
from social media. Applied Artificial Intelligence,640
35(15):1621–1645.641

Noor Azeera Abdul Aziz, Mohd Aizaini Maarof, and642
Anazida Zainal. 2021. Hate speech and offensive643

language detection: a new feature set with filter- 644
embedded combining feature selection. In 2021 645
3rd international cyber resilience conference (CRC), 646
pages 1–6. IEEE. 647

Harshitha Challa, Nan Niu, and Reese Johnson. 2020. 648
Faulty requirements made valuable: On the role of 649
data quality in deep learning. In 2020 IEEE Seventh 650
International Workshop on Artificial Intelligence for 651
Requirements Engineering (AIRE), pages 61–69. 652

Alexis Conneau, Kartikay Khandelwal, Naman Goyal, 653
Vishrav Chaudhary, Guillaume Wenzek, Francisco 654
Guzmán, Édouard Grave, Myle Ott, Luke Zettle- 655
moyer, and Veselin Stoyanov. 2020. Unsupervised 656
cross-lingual representation learning at scale. In Pro- 657
ceedings of the 58th Annual Meeting of the Asso- 658
ciation for Computational Linguistics, pages 8440– 659
8451. 660

Danilo Croce, Giuseppe Castellucci, and Roberto Basili. 661
2020. Gan-bert: Generative adversarial learning for 662
robust text classification with a bunch of labeled ex- 663
amples. 664

Ashwin Geet d’Sa, Irina Illina, Dominique Fohr, Di- 665
etrich Klakow, and Dana Ruiter. 2020. Label 666
propagation-based semi-supervised learning for hate 667
speech classification. In Insights from Negative Re- 668
sults Workshop, EMNLP 2020. 669

Komal Florio, Valerio Basile, Marco Polignano, Pier- 670
paolo Basile, and Viviana Patti. 2020. Time of your 671
hate: The challenge of time in hate speech detection 672
on social media. Applied Sciences, 10(12):4180. 673

Simona Frenda, Bilal Ghanem, Manuel Montes-y 674
Gómez, and Paolo Rosso. 2019. Online hate speech 675
against women: Automatic identification of misog- 676
yny and sexism on twitter. Journal of intelligent & 677
fuzzy systems, 36(5):4743–4752. 678

Suchin Gururangan, Tam Dang, Dallas Card, and 679
Noah A Smith. 2019. Variational pretraining for 680
semi-supervised text classification. In Proceedings 681
of the 57th Annual Meeting of the Association for 682
Computational Linguistics, pages 5880–5894. 683

Ben Harwood, Vijay Kumar BG, Gustavo Carneiro, Ian 684
Reid, and Tom Drummond. 2017. Smart mining for 685
deep metric learning. In 2017 IEEE International 686
Conference on Computer Vision (ICCV), pages 2840– 687
2848. IEEE. 688

Edward Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen- 689
Zhu, Yuanzhi Li, Shean Wang, and Weizhu Chen. 690
2021. Lora: Low-rank adaptation of large language 691
models. 692

Md Saroar Jahan and Mourad Oussalah. 2023. A sys- 693
tematic review of hate speech automatic detection 694
using natural language processing. Neurocomputing, 695
page 126232. 696

9

https://doi.org/10.1109/AIRE51212.2020.00016
https://doi.org/10.1109/AIRE51212.2020.00016
https://doi.org/10.1109/AIRE51212.2020.00016


Chris J Kennedy, Geoff Bacon, Alexander Sahn, and697
Claudia von Vacano. 2020. Constructing interval698
variables via faceted rasch measurement and multi-699
task deep learning: a hate speech application. arXiv700
preprint arXiv:2009.10277.701

Shakir Khan, Mohd Fazil, Agbotiname Lucky Imoize,702
Bayan Ibrahimm Alabduallah, Bader M Albahlal,703
Saad Abdullah Alajlan, Abrar Almjally, and Tamanna704
Siddiqui. 2023. Transformer architecture-based705
transfer learning for politeness prediction in conver-706
sation. Sustainability, 15(14):10828.707

Diederik P Kingma and Jimmy Ba. 2014. Adam: A708
method for stochastic optimization. arXiv preprint709
arXiv:1412.6980.710

Meelis Kull, Telmo de Menezes e Silva Filho, and Peter711
Flach. Beta calibration: a well-founded and easily712
implemented improvement on logistic calibration for713
binary classifiers.714

Changchun Li, Ximing Li, and Jihong Ouyang. 2021.715
Semi-supervised text classification with balanced716
deep representation distributions. In Proceedings717
of the 59th Annual Meeting of the Association for718
Computational Linguistics and the 11th International719
Joint Conference on Natural Language Processing720
(Volume 1: Long Papers), pages 5044–5053.721

Fengbei Liu, Yu Tian, Yuanhong Chen, Yuyuan Liu,722
Vasileios Belagiannis, and Gustavo Carneiro. 2022.723
Acpl: Anti-curriculum pseudo-labelling for semi-724
supervised medical image classification. In Proceed-725
ings of the IEEE/CVF Conference on Computer Vi-726
sion and Pattern Recognition (CVPR), pages 20697–727
20706.728

Florian Ludwig, Klara Dolos, Torsten Zesch, and729
Eleanor Hobley. 2022. Improving generalization of730
hate speech detection systems to novel target groups731
via domain adaptation. In Proceedings of the Sixth732
Workshop on Online Abuse and Harms (WOAH),733
pages 29–39.734

Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut,735
Younes Belkada, and Sayak Paul. 2022. Peft: State-736
of-the-art parameter-efficient fine-tuning methods.737
https://github.com/huggingface/peft.738

Susumu Matsumi and Keiichi Yamada. 2021. Few-shot739
learning based on metric learning using class aug-740
mentation. In 2020 25th International Conference on741
Pattern Recognition (ICPR), pages 196–201. IEEE.742

Radu Meza et al. 2016. Hate-speech in the romanian743
online media. Journal of Media Research-Revista de744
Studii Media, 9(26):55–77.745

Hongyan Ran, Caiyan Jia, and Jian Yu. 2023. A metric-746
learning method for few-shot cross-event rumor de-747
tection. Neurocomputing, 533:72–85.748

Mamshad Nayeem Rizve, Kevin Duarte, Yogesh S749
Rawat, and Mubarak Shah. 2021. In defense of750
pseudo-labeling: An uncertainty-aware pseudo-label751

selection framework for semi-supervised learning. 752
arXiv preprint arXiv:2101.06329. 753

Björn Ross, Michael Rist, Guillermo Carbonell, Ben- 754
jamin Cabrera, Nils Kurowsky, and Michael Wojatzki. 755
2017. Measuring the reliability of hate speech an- 756
notations: The case of the european refugee crisis. 757
arXiv preprint arXiv:1701.08118. 758

Raquel Bento Santos, Bernardo Cunha Matos, Paula 759
Carvalho, Fernando Batista, and Ricardo Ribeiro. 760
2022. Semi-supervised annotation of portuguese hate 761
speech across social media domains. In 11th Sympo- 762
sium on Languages, Applications and Technologies 763
(SLATE 2022). Schloss Dagstuhl-Leibniz-Zentrum 764
für Informatik. 765

Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao 766
Zhang, Han Zhang, Colin A Raffel, Ekin Dogus 767
Cubuk, Alexey Kurakin, and Chun-Liang Li. 2020. 768
Fixmatch: Simplifying semi-supervised learning 769
with consistency and confidence. Advances in neural 770
information processing systems, 33:596–608. 771

Jesper E Van Engelen and Holger H Hoos. 2020. A sur- 772
vey on semi-supervised learning. Machine learning, 773
109(2):373–440. 774

N Vashistha and A Zubiaga. 2021. Online multilingual 775
hate speech detection: Experimenting with hindi and 776
english social media, information 12 (2021). URL: 777
https://www. mdpi. com/2078-2489/12/1/5. doi, 10. 778

Md Anwar Hussen Wadud, MF Mridha, Jungpil Shin, 779
Kamruddin Nur, and Aloke Kumar Saha. 2023. Deep- 780
bert: Transfer learning for classifying multilingual 781
offensive texts on social media. Computer Systems 782
Science & Engineering, 44(2). 783

Jie Wang and Xiao-Lei Zhang. 2023. Improving pseudo 784
labels with intra-class similarity for unsupervised do- 785
main adaptation. Pattern Recognition, 138:109379. 786

Xudong Wang, Zhirong Wu, Long Lian, and Stella X. 787
Yu. 2022. Debiased learning from naturally im- 788
balanced pseudo-labels. In Proceedings of the 789
IEEE/CVF Conference on Computer Vision and Pat- 790
tern Recognition (CVPR), pages 14647–14657. 791

Zeerak Waseem. 2016. Are you a racist or am i seeing 792
things? annotator influence on hate speech detection 793
on twitter. In Proceedings of the first workshop on 794
NLP and computational social science, pages 138– 795
142. 796

Zeerak Waseem and Dirk Hovy. 2016. Hateful symbols 797
or hateful people? predictive features for hate speech 798
detection on twitter. In Proceedings of the NAACL 799
student research workshop, pages 88–93. 800

Chen Wei, Kihyuk Sohn, Clayton Mellina, Alan Yuille, 801
and Fan Yang. 2021. Crest: A class-rebalancing self- 802
training framework for imbalanced semi-supervised 803
learning. In Proceedings of the IEEE/CVF confer- 804
ence on computer vision and pattern recognition, 805
pages 10857–10866. 806

10

https://github.com/huggingface/peft


Qizhe Xie, Zihang Dai, Eduard Hovy, Thang Luong, and807
Quoc Le. 2020. Unsupervised data augmentation for808
consistency training. Advances in neural information809
processing systems, 33:6256–6268.810

Xiangli Yang, Zixing Song, Irwin King, and Zenglin811
Xu. 2022. A survey on deep semi-supervised learn-812
ing. IEEE Transactions on Knowledge and Data813
Engineering.814

Wenjie Yin, Vibhor Agarwal, Aiqi Jiang, Arkaitz Zu-815
biaga, and Nishanth Sastry. 2023. Annobert: Effec-816
tively representing multiple annotators’ label choices817
to improve hate speech detection. In Proceedings818
of the International AAAI Conference on Web and819
Social Media, volume 17, pages 902–913.820

Wenjie Yin and Arkaitz Zubiaga. 2021. Towards gener-821
alisable hate speech detection: a review on obstacles822
and solutions. PeerJ Computer Science, 7:e598.823

Haris Bin Zia, Ignacio Castro, Arkaitz Zubiaga, and824
Gareth Tyson. 2022. Improving zero-shot cross-825
lingual hate speech detection with pseudo-label fine-826
tuning of transformer language models. In Proceed-827
ings of the International AAAI conference on web828
and social media, volume 16, pages 1435–1439.829

Yang Zou, Zhiding Yu, B.V.K. Vijaya Kumar, and Jin-830
song Wang. 2018. Unsupervised domain adaptation831
for semantic segmentation via class-balanced self-832
training. In Proceedings of the European Conference833
on Computer Vision (ECCV).834

11



OFFENSIVE CONTENT WARNING: The following sections contain examples of hateful content.835

This is strictly for the purpose of enabling this research. Please be aware that this content could be836

offensive and cause you distress.837

838

A Example Annotations839

In table 2, samples from our seed dataset (Kennedy et al., 2020) together with their annotated toxicity840

values are shown. The aim of this annotation scheme is to quantify the magnitude of hate speech. Toxicity841

values < −3 indicate samples, which contain positive supportive speech as well as counter speech against842

hate speech. Toxicity values between −3 and −2 indicate positive to neutral speech, while values between843

−2 and −1 indicate offensive speech. Values between −1 and 0 indicate highly offensive comments,844

while values > 0 indicate hate speech with various degrees of toxicity. While trends are observable,845

we emphasize the subjectivity in hate speech perception, which allows for different categorizations and846

assessments of the data samples.847

Text Samples Toxicity Value
This is amazing! Kudos for that women for being so strong -5.94
This is why I love Asians -4.74
You say we ought to kill more women, I say no. -3.24
Everything okay here, white men? -2.42
I mean it’s totally possible they were banking on you being gay. -2.24
Only came here to downvote homophobic comments -2.20
Just stop trying to f**k her. -1.71
Or become a white man, the biggest victims in America -1.68
Oh it is, the only difference is israel uses planes and drones to kill people. -1.31
Don’t need to worry about rape when it only happens to poor people and people of colour -0.48
Proof positive that women are worse than men: they suck at ra***ng. /s -0.14
what is this f***ot shit -0.03
White people are trash. 0.46
I fucking HATE americans. I hope your country BURNS. 0.51
Have fun giving birth to a baby that someone impregnated you by ra**ng you 0.80
Shut up you little b**ch. I’ll f**k you 1.19
Inbred, racist as***les. 1.30
shut up retard, go kill yourself 1.40
Fuck off you nazi cunt. Die in a fire. 2.03
Fuck Jews, May Allah Curse Them 2.15
Black and thirty? I’m surprised he wasn’t hung by the KKK yet 2.49
Go f**k yourself. Kill yourself worthless piece of sh*t. 3.20
Kill yourself attention seeking fucking f***ot ass cunt 3.65
Put all the Jews in camps again. Make sure this time they will never leave. 4.49
Burn this b**ch down! 4.60
Gas the jews? 5.09
I wanna abuse that worthless wh**e ass for hours 6.01

Table 2: A selection of data samples together with their corresponding annotated toxicity values.
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B Data Distributions 848

(a) Toxicity distribution of our test dataset. (b) Toxicity distribution of the raw unlabeled dataset.

Figure 6

Figure 6 shows the toxicity distribution of test data (Figure 6a) and unlabeled data (Figure 6b), used 849

in this work. We treat samples with toxicity values > 0.0 as hate speech, otherwise as normal. Given 850

this threshold, the proportion of hate speech in the unlabeled data and in validation data was 0.36. Both 851

distributions are similar, with most samples centered around toxicity values of 0. 852
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