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ABSTRACT

We introduce Aligner, a novel Parameter-Efficient Fine-Tuning (PEFT) method for
aligning multi-billion-parameter-sized Large Language Models (LLMs). Aligner
employs a unique design that constructs a globally shared set of tunable tokens
that modify the attention of every layer. Remarkably with this method, even when
using one token accounting for a mere 5,000 parameters, Aligner can still perform
comparably well to state-of-the-art LLM adaptation methods like LoRA that require
millions of parameters. This capacity is substantiated in both instruction following
and value alignment tasks. Besides the multiple order-of-magnitude improvement
in parameter efficiency, the insight Aligner provides into the internal mechanisms
of LLMs is also valuable. The architectural features and efficacy of our method,
in addition to our experiments demonstrate that an LLM separates its internal
handling of “form” and “knowledge” in a somewhat orthogonal manner. This
finding promises to motivate new research into LLM mechanism understanding
and value alignment.

1 INTRODUCTION

Large Language Models (LLMs) are increasingly being utilized for diverse tasks, necessitating their
frequent alignment to new behaviors or value systems (Zhao et al., 2023). However, fine-tuning the
entire LLM is often impractical. To address this challenge, Parameter-Efficient Fine-Tuning (PEFT)
methods such as LoRA (Yao et al., 2021) and LLaMA-Adapters (Zhang et al., 2023) have emerged.
For certain tasks, these methods can achieve performance comparable to full fine-tuning, yet they
require only a fraction of the parameters. Examining these tasks, a clear pattern emerges: Distinct
from complex tasks, such as those requiring mathematical skill, they are what can intuitively be
categorized as “form adaptation” tasks; that is, outputting content in new formats, new tones, or new
styles (Yao et al., 2021; Zhang et al., 2023; Liu et al., 2021a; Li and Liang, 2021; Liu et al., 2021b;
OpenAI Forum, 2023; Anyscale, 2023; AnyScale, 2023).

For the purposes of this paper, we define “form adaptation” tasks as those that can in principle be
achieved through prompt engineering or in-context learning (Ye et al., 2023; Liu et al., 2021c; Wei
et al., 2022; Mosbach et al., 2023; Weng, 2023), even though they may need individually calibrated
prompts. Changing output format or style is certainly a “form” adaptation. However, it is uncertain if
value (i.e., human preference) alignment (Bai et al., 2022; Ouyang et al., 2022), is entirely a form
adaption, but we provisionally include it, since one can prompt LLMs to respond like people with
diverse moral values. We will use the term “alignment” interchangeably with “form adaptation”
in language generation, because the tasks to which one refers when discussing the alignment of
LLMs with humans (Wang et al., 2023) fall into our form adaptation task category. We consider only
alignment with humans, not multi-data modality alignment.

If we limit our scope to alignment tasks that only adapt form, can we design a better PEFT method?
To answer this question, we first reflect upon the key distinction between “form” and “knowledge”
or “ability”. Intuitively, form guides the whole process of applying knowledge, so form should have
global influence over “ability”. Therefore, to learn any desired “form” more efficiently, it may best be
regarded a global component. How can we design a global component within a Transformer (Vaswani
et al., 2017) architecture? A viable approach is to construct a set of global learnable tokens to be
shared across all layers of the LLM (Figure 1). During inference, we can require that every hidden
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Figure 1: The Aligner architecture implements a global prefix token paradigm. Within a transformer-
based model, we prepend a shared set of N learnable tokens to which each layer attends. Further
details are based on the LLaMA-Adapter’s design. Attention is computed on these tokens and added
back to the original attention, modulated by a gating factor. In practice, we find that N = 1 often
already suffices to generate answers of similar quality level as that of LoRA or LLaMA-Adapter.

embedding attend to these tokens before progressing to the feedforward network, hence enabling this
one component to affect the LLM globally.

We realize that our approach probably yields the ultimately parameter-efficient version of the prefix-
token-based PEFT methods Li and Liang (2021); Liu et al. (2021a). These methods prepend learnable
tokens to be attended to by transformer layers and several variations have been proposed (Liu et al.,
2021b; Zhang et al., 2023). The most recent version is Llama-Adapter (Zhang et al., 2023), which
has a gating factor design. However, they all prepend layer-specific tokens, as opposed to employing
a global connection as we do in our approach.

Thus, we introduce Aligner, a prefix-token method that incorporates a global connectivity structure.
By virtue of this novel design, the number of parameters required may be reduced to as little as a
single token. Employing only a single token in a LLaMA 7B (Touvron et al., 2023) architecture
amounts to as few as 5,000 parameters, including the constant-sized overhead of gating factors.
By contrast, the state-of-art and go-to PEFT method, LoRA (Yao et al., 2021), requires 4 million
parameters with the common r = 8 setting. This is a spectacular 800⇥ parameter size reduction.

We evaluate Aligner on two form alignment tasks: instruction following and human value alignment
(Ouyang et al., 2022; Wang et al., 2023). The former focuses on output style whereas the latter aims
to align the model with human values to prevent harmful or inappropriate responses. We choose
these tasks because they represent the two major categories of form alignment in accordance with
our above definition. They are also very useful as they are required for standard chat agent LLM
development. Furthermore, they have readily available benchmarks on which to test Aligner. Our
results show that Aligner performs competently on both tasks. Even with just a single token, Aligner
can attain the performance of Llama-Adapter and LoRA when tested on a GPT-4 model.1 With this
level of efficiency, one can accommodate more than a million different (1 Token) Aligners along with
a 7B LLM in a GPU with 24GB of memory, which can be beneficial in industrial applications that
serve models customized to different users.

Not only does the surprisingly high level of efficiency of our method have great practical utility, but
it also provides valuable insights into the inner workings of LLMs. Aligner lacks any layer-wise
component except for scalar gating factors, and its parameter size is too small to retain significant
information, yet its alignment performance is barely affected. These facts plainly demonstrate that
an LLM separates its internal handling of “form” and “knowledge” in somewhat of an orthogonal
manner, as we shall discuss in Section 5.

To provide further evidence, we conduct an experiment by finetuning in the context of a math
reasoning tasks, which are among the purest reasoning tasks. If “form” functions orthogonally
to “reasoning” within LLMs, Aligner should show no parameter advantage relative to other PEFT

1https://openai.com/gpt-4/
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methods, which is indeed the case. However, it turned out that there is no disadavantage either,
making Aligner a desirable choice in both situations.

In summary, our primary contribution is two-fold: first is the introduction of Aligner, a novel, highly-
efficient PEFT method that achieves comparable performance to state of the art methods such as
LLaMA-Adapter and LoRA yet requires only a minimal number of parameters (1 to 10 tokens) to
accomplish form alignment tasks, and meanwhile shows no disadvantage relative to other methods in
reasoning tasks. Second is theoretical insights into the mechanisms intrinsic to LLMs. By showing
“form” tasks benefit greatly from global structured component while “reasoning” tasks do not, we
validate the hypothesis that “form” functions orthogonally to “reasoning” within LLMs.

2 RELATED WORK

In recent years, there has been a surge in the development of Parameter-Efficient Fine-Tuning (PEFT)
methods that serve as viable alternatives to full-model fine-tuning, often achieving comparable
performance with only a fraction of the parameters. These methods may be broadly categorized
into those that modify model weights (Yao et al., 2021; Houlsby et al., 2019) and those that employ
“virtual token” prefixes (Liu et al., 2021a;b; Li and Liang, 2021; Lester et al., 2021).

Among the weight-modification approaches, the Adapter method (Houlsby et al., 2019) was an
early innovation that introduced additional tunable layers within the existing LLM architecture.
LoRA (Yao et al., 2021) has emerged as a leading technique in this category, employing low-rank
decomposed linear transformations in parallel with the existing linear layers in the LLM. The result is
then summed with the original input to produce the output, achieving substantial parameter reduction.
More recently, LLaMA Adapter V2 (Gao et al., 2023) has deviated from adding extra layers, instead
introducing biases and element-wise multipliers to existing layers.

The second category focuses on the manipulation of tokens to influence model behavior. The Prompt
Tuning (Lester et al., 2021) and P-tuning (Liu et al., 2021a) method concatenates tunable input
tokens to the original input, effectively serving as “soft prompts”. Prefix Tuning (Li and Liang,
2021) and P-tuningV2 (Liu et al., 2021b) prepends learnable prefixes to every layer in the model,
which essentially act as prefixed Key-Value caches within each layer. LLaMA-Adapter V1 (Zhang
et al., 2023) also employs a prefix tuning-like method, but deviates from strict prefix-token methods
by calculating the attention separately and introduces a zero-initialized gating factor to control the
influence of the prefix, a feature that was shown to be beneficial, and suggests applying the method
only to the top K layers, although in practice it is usually applied to all layers aside from the first two.

In this paper, we compare our Aligner method with LLaMA-Adapter V1, since it represents the state
of art among the prefix-token category of methods upon which Aligner is based, as well as with LoRA
as it consistently delivers top-tier results among the PEFT methods and has consequently become
the go-to method in the community. It is worth noting that Prompt Tuning is the only other method
aside from ours that can leverage as little as one token, but it has suffered limitations in generation
tasks and, despite many training attempts, we have failed to produce meaningful responses, which
highlights the importance of our novel global-token design.

3 METHODS

3.1 FORMULATION

Our approach, Aligner, introduces a novel variant to the broad prefix-token family of methods in
Transformer architectures. Unlike traditional methods where learnable tokens are added to each
Transformer layer individually, Aligner employs a shared set of prefix tokens across all layers. This
unique feature differentiates it from the layer-specific tokens used in conventional models. Aligner is
based on the LLaMA-Adapter model, recognized for its effectiveness and recent advancements. Like
LLaMA-Adapter, Aligner utilizes a separate attention mechanism and zero-initialized gating factor in
its architecture, thus deviating from a strict prefix-token method.

Aligner’s distinct contribution lies in its handling of prefix tokens. In traditional Transformers, each
token in a layer l generates query Q

l, key K
l, and value V l through linear projections. The attention-

weighted value Âl is then computed using these projections. Aligner modifies this mechanism by
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Model (7B) Aligner 1 Aligner 10 Adapter LoRA

Number of Parameters 5.06K 4.19K 1.23M 4.19M
Number of adapters per 24GB GPU 1.25M 125K 4.17K 1.2K

Table 1: The number of parameters needed for each method and the number of adapters that can fit
into a 24GB GPU along with a 7B model.

introducing computations for the shared prefix tokens. Instead of layer-specific prefix tokens P
l,

for every layer l, keys K̃l
p and values Ṽ l

p are computed from the shared set of prefix tokens Pshared.
While the prefix tokens are uniform across layers, the key and value projection matrices remain
layer-specific from the pre-trained model. Thus,
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where Wproj is the value projection matrix from the pre-trained model. The auxiliary attention Ãl

from the prefix tokens is added to the original attention value, scaled by the layer-specific gating
factor �l. Additional details about our method are provided in Appendix A

Training Aligner is dependent on the specific tasks. Generally one can perform supervised finetuning
that aims to minimize the next-token prediction loss for tasks like Instruction Following. One can
also perform reinforcement learning from human feedback (RLHF) for value or human preference
alignment. Appendix B provides additional details about the training methods we use.

3.2 PARAMETER SIZE

As Table 1 shows, Aligner can be multiple orders of magnitude more efficient. If using one adapter at
a time, one can put more than a million Aligners along with a base model in one 24GB memory GPU.
In industrial scenarios where one needs to provide a customized model to different users (such as
assuming a unique character or replying in a customized format), Aligner can be very useful.

4 EXPERIMENTS

4.1 EXPERIMENT 1 — INSTRUCTION FOLLOWING SFTCan you explain the basics of quantum
computing?

Aligner (1Token): Quantum computing is a
form of computation that uses quantum me-
chanical phenomena to perform computations.
It is an approach to computation which lever-
ages the properties of quantum mechanics,
such as superposition and entanglement, to
process information. Quantum computing re-
lies on qubits, which are quantum objects such
as electrons, photons, or other particles that
can take on different states simultaneously.
This allows for the encoding of more infor-
mation in a smaller space, allowing for faster
processing times and greater energy.

Can you explain the basics of quantum
computing?

LoRA (4M): Quantum computing is a revo-
lutionary technology that uses quantum me-
chanics to process information. It utilizes the
principles of superposition and entanglement
to process data in ways that are beyond the ca-
pabilities of traditional computers. Quantum
computers use quantum bits, or qubits, which
can exist in multiple states at the same time.
This allows them to solve complex problems
more quickly than classical computers, which
use binary values.

Figure 2: Sample responses in instruction following (SFT): Aligner uses just 1 token (5 thousand
parameters) while LoRA employs 4 million parameters. Despite the parameter disparity, the quality
of responses is comparable and it is difficult to discern a qualitative difference.
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Base Model Competitor Aligner 1 Aligner 10

LLaM
A2 7B LLaMA- 26/35/19 28/26/26

Adapter 0.443 0.528

LoRA 20/26/34 26/25/29
0.463 0.506

LLaM
A2 13

B LLaMA- 22/28/30 27/27/26
Adapter 0.463 0.500

LoRA 16/31/33 21/28/31
0.406 0.456

Table 2: The Vicuna benchmark competition judged by GPT-
4. The win/loss/tie results and resulting adjusted-win-rate
between Aligner and other PEFT methods, with 0.5 indicat-
ing a tie. The base models are LLaMA2 7B and 13B. Aligner
wins most of the time with 10 tokens and performs compara-
bly with only 1 token.

Model Score

7B

Aligner 1 5.363
Aligner 10 5.694
Adapter 5.713
LoRA 5.625

13B

Aligner 1 5.625
Aligner 10 5.725
Adapter 5.800
LoRA 6.1625

Table 3: The single-answer score by
GPT-4 on the Vicuna benchmark,
and the parameter count for each
method. Instead of comparing an-
swers, here GPT-4 views an answer
and scores it on a scale of 10.

This experiment utilized both LLaMA2 7B and 13B (Touvron et al., 2023) as the base models on
which we performed PEFT training in order to assess Aligner’s ability to work across model scales.
All the methods were trained for 8 epochs on the Alpaca dataset (Taori et al., 2023) and we picked
the best checkpoint to compare.

To evaluate form alignment, the gold standard is human evaluation. However, the difficulty in
conducting human experiments has compelled researchers to utilize GPT as a surrogate. Vicuna
Benchmark, the default benchmark with the Alpaca dataset, provides a standard template to request
GPT’s judgement. Our evaluations used this benchmark including both its model competition method
(Table 2) and single model evaluation method (Table 3).

In the case of the 7B base model, with 10 tokens (42K parameters), Table 2 reveals that in terms of
the GPT-4 evaluation win rate Aligner outperforms LoRA with 4 million parameters. Remarkably,
even with just a single token (5K parameters), nearly 3 orders of magnitude fewer parameters than
LoRA, the performance remains competitive, yielding an adjusted win rate (Chiang et al., 2023) of
0.46 (based on absolute win, loss, and tie rates), where 0.5 represents a tie. When the base model is
13B, Aligner similarly achieves close results as that of LLaMA-Adapter and LoRA.

Note that these numbers should not be interpreted with the same strictness as physical measurements;
minor variations are to be expected due to the inherent randomness of model training and result
generation. The GPT evaluation itself fluctuates too much from version to version. GPT-3.5 actually
regards Aligner to be better in all versions when we tested using 7B models. Additional evaluations
reported in Table 3 using the GPT-4 single answer scoring (Chiang et al., 2023) on the generated
responses also reveals minimal differences between the methods.

Since human evaluation is the gold standard, perusing the answers provides the best sense of their
quality. We include a series of winning and losing examples in Appendix E.1 as well as GPT-4
judgement reasoning and more in Appendix F. To the authors, except for the cases where the lengths
are obviously different, we couldn’t easily tell which is better from both models, regardless of winning
or losing.

4.2 EXPERIMENT 2 — VALUE (HUMAN PREFERENCE) ALIGNMENT

In this experiment, we trained on the PKU-Beaver (Dai et al., 2023) dataset, specifically targeting
the safety preference task in order to evaluate Aligner’s abilities. The emphasis on safety alignment
is crucial; unlike the more superficial language formatting involved in instruction-following tasks,
safety preferences are deeply rooted in human-centric values (Bai et al., 2022).
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(a) Aligner VS LLaMA-Adapter (b) Aligner VS LoRA

Figure 3: PKU Beaver Safety Benchmark by category, assessed by GPT-4. Aligner with 1 token
performs on par with LLaMA-Adapter and LoRA.

WARNING: EXPLICIT
Prompt: Old people can’t learn anything,
it’s a cancer of society.

Aligner (1Token): This statement is inaccurate
and not based on fact. Older people are incred-
ibly diverse and each individual has their own
unique set of skills to contribute. Older in-
dividuals have often developed wisdom from
years of experience that can be passed on to
younger generations. In addition, older people
often have more time and resources to devote
to learning new things, which can be of great
benefit to society. Older people can make a
positive impact on society by passing on their
knowledge, sharing...

WARNING: EXPLICIT
Prompt: Old people can’t learn anything,
it’s a cancer of society.

LoRA (4M): This statement is false. Older
people have a wealth of knowledge and expe-
rience to offer, and learning is a lifelong pur-
suit that should not be limited to a certain age
group. Older people can and do continue to ac-
quire new skills, expand their knowledge and
contribute to their communities. Moreover,
older people often serve as valuable assets for
society, sharing their wisdom with younger
generations and passing on their wisdom to
them. Not only does learning not end with
age, it is also...

Figure 4: Sample response results for value (human preference) alignment. Aligner uses only 1 token,
amounting 5 thousand parameters. LoRA uses 4 million parameters. The models were trained on
safety labels in the PKU-Beaver dataset. Aligner successfully learns to respond appropriately to a
biased prompt.

Aligner, LLaMA-Adapter, and LoRA were trained using the Direct Preference Optimization (Rafailov
et al., 2023) method, each consisting of 160,000 samples from the PKU-Beaver dataset. See
Appendix C for additional details. Remarkably, as evidenced by Figure 3, Aligner performs on par
with LoRA and even better than LLaMA-Adapater, albeit with some category-specific variations. The
response samples are high quality and similar to those of LoRA and LLaMA-Adapter, confirming
that Aligner learns human-centric values and can apply them appropriately (Figure 4).

As for the question of whether Aligner tokens can pick up significant human value preference, the
answer is surely affirmative. Additional examples, regardless of answer safety, along with GPT-4
judgements, are provided in Appendix E.2.

4.3 EXPERIMENT 3 — REASONING TASKS

To further understand how form alignment differs from reasoning or knowledge tasks, we conducted
two experiments. In the first, we used the trained instruction-following models from Experiment 1
(Table 2) and evaluated them on a standard benchmark, MMLU Hendrycks et al. (2021) with a single
shot. This benchmark evaluates the model’s knowledge through a range of multiple choice questions
from various disciplines to observe how Aligner affects the model’s knowledge and reasoning. We
expect high-parameter PEFT methods to be slightly better but not by much, because the Alpaca
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Model MMLU

(7B) Base Model Only 0.2555
(7B) Aligner 1 0.2866
(7B) Aligner 10 0.3285
(7B) LLaMA-Adapter 0.3587
(7B) LoRA 0.3531
(13B) Base Model Only 0.2928
(13B) Aligner 1 0.3281
(13B) Aligner 10 0.3443
(13B) LLaMA-Adapter 0.3601
(13B) LoRA 0.3751

Figure 5: (Left) MMLU benchmark one-shot accuracy after Alpaca SFT only, without training on
any other dataset. (Right) GSM8K math benchmark one-shot accuracy after training on MetaMath
dataset. The horizontal axis reflects the parameter size.

dataset is not aimed at improving reasoning ability but at learning the form or instruction following,
though it could still help since its answers often display a step by step reasoning style. Indeed, from
the table in Figure 5, Aligner underperforms but not by much and it is better than the raw base model.

Since math is one of the most representative reasoning tasks, in our second experiment, we tuned
the models on a math dataset called MetaMath Yu et al. (2023) and evaluated on a standard math
evaluation benchmark, GSM8K Cobbe et al. (2021), with a single shot. We hypothesized that if form
functions orthogonally from reasoning, Aligner should not have an advantage, or should underperform
the other methods with similar parameter levels. We plot model performance along with parameter
size in Figure5 . When the parameter size of Aligner is smaller, the performance always falls short,
but when it is same as that of LLaMA-Adapter, the performance is on the same level. On the one
hand this result shows that Aligner is not less desirable even in reasoning tasks, making it a good
PEFT method choice across scenarios, but on the other hand, the lack of advantage as was the case in
the form alignment task shows that reasoning does not benefit from a global component structure,
and therefore could exist orthogonally to form alignment.

4.4 EMBEDDING VISUALIZATION

Aligner achieves great efficiency in form alignment tasks. One may wonder what is learned, but
because of the black box nature of deep learning, the kind of analysis and visualization we can
do is very limited. Common Linear Classifier Probing Alain and Bengio (2016) is not applicable
here since there are no labels with which to train such a classifier. Nevertheless, we attempted a
series of embedding visualizations using t-SNE, as detailed in Appendix D and have two noteworthy
observations.

The left figure in Fig. 6 shows that the standard deviation of gating factors in each layer increases
with higher layers. This aligned with our intuition that the top layers generally require bigger changes
to adapt to different tasks, while the bottom layers are generally more shared across tasks.

The second observation, however, is surprising. We compared the t-SNE embedding of Aligner and
LLaMA-Adapter trained on both the Alpaca and MetaMath datasets to see their relationship (right
of Figure 6). One may guess that the embeddings should be more similar based on tasks since the
Alpaca task and math tasks look so different, and Aligner can improve Alpaca’s task dramatically,
whereas not much for math reasoning relative to LLaMA-Adapter. Rather, the embeddings are much
closer to each other for the same method, so much so that the t-SNE position basically overlaps. We
then did further comparison over the embeddings, and surprisingly found that approximately half
of the numbers in the embeddings are exactly the same for both Aligner and LLaMA-Adapter, and
many of the rest have very minimal differences. More can be seen in the Appendix D. This shows
that it takes very little change for a model to adapt to different tasks. This finding should shed some
light on how LLMs work internally.

Additionally, one may wonder how the globally-prefixed Aligner token is related to the locally-
prefixed LLaMA-Adapter, such as if it is approximately an average (in the center). We found that
this is not necessarily the case as we see in the right half of Figure 6. Other comparisons, such as
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Figure 6: (Left) The standard deviation of gating factors for a layer in Aligner (Blue) or LLaMA-
Adapter Model (Yellow). (Right) The t-SNE visualization when putting both Aligner and LLaMA-
Adpater embeddings trained on both Alpaca and MetaMath dataset (in total 4 different models’
embeddings) altogether.The embedding difference between datasets for the same method comparing
to the difference between methods for the same datset is so small that the former one almost completely
overlap with each other.

comparing Aligner 1 to Aligner 10, also did not produce meaningful results. More information and
experiments can be found in Appendix D.

5 DISCUSSION

5.1 THEORETICAL ANALYSIS

We contend that our method offers compelling theoretical evidence to substantiate the idea that
“forms” or “values” operate orthogonally to “knowledge” and “reasoning” within LLMs.

In traditional linear matrix settings, techniques like eigen decomposition or Singular Value Decom-
position (SVD) can yield a matrix factorization in which one factor, typically a sparse one, may be
interpreted as representing “form” while the others embody “knowledge”. Such decompositions are
possible in bilinear (matrix) models (Tenenbaum and Freeman, 1996) and in higher-order, multilinear
(tensor) models (Vasilescu and Terzopoulos, 2007) fitted to training data. However, in the context
of large neural network models, the feasibility of such a separation remains ambiguous. While the
success of various PEFT methods, in view of their rapid learning rates and minimal parameter re-
quirements, strongly suggests that such an orthogonal separation should exist, these methods offer no
direct evidence. This is because they rely on dedicated parameters affecting localized modifications.
For example, LoRA modifies each linear layer with its own set of parameters, while Prefix Tuning
and its variations, such as LLaMA Adapters, introduce layer-specific tunable tokens. Consequently, it
remains uncertain whether this “form” truly operates in an orthogonal space.

The most persuasive evidence of orthogonal separation in LLMs would be to achieve it while
maintaining comparable performance to traditional methods. Although we cannot perform a linear
matrix decomposition, achieving something that aligns with the essence of such a decomposition—a
sparse component that globally impacts the remaining components—should be viewed as a practical
realization of this separation if the outcomes are equally effective. Our Aligner method seems to
fulfill these criteria, thus providing compelling support of our hypothesis.

Moreover, using only a single token essentially rules out the possibility of retaining any knowledge.
This stands in contrast to previous methods like LoRA and LLaMA Adapters, which, although smaller
than the base models, still involve millions of parameters—enough to encapsulate some degree of
knowledge. Such a scale compromises the ability of these methods to serve as unequivocal evidence
supporting our hypothesis. The further evidence provided by our third experiment, which effectively
tuned a 7 billion parameter model using merely about 100 parameters, substantially strengthens our
argument. If an orthogonal “form” component did not exist within LLMs, it would be difficult to
offer an alternative rationale for our method’s success.

Another intriguing aspect worthy of consideration is that when using only one token in Aligner, the
attention weighting effectively becomes nullified as the weight will always be 1 due to the softmax
partition function. This implies that the hidden embeddings of the original sequence are essentially
being shifted by a constant bias, derived from P

>, and linearly adjusted by W
l
V for each layer. From
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a geometric standpoint, assuming that the original sequence embeddings lie on a high-dimensional
manifold at each layer, this constant bias acts as a translational shift on that manifold. If we envision
the hidden embeddings across layers as a trajectory of movements, alignment is essentially the
application of a translational shift along this trajectory. This interpretation aligns well with our
intuitive understanding of what “alignment” means in daily language: adapting to a different “way”.

5.2 APPLICATIONS AND IMPACTS

Our Aligner method is compatible with other PEFT methods such as LoRA and various prefix token
approaches. Given the extreme efficiency of our approach, it has the potential to reduce the parameter
count in more complex tasks that involve both the acquisition of new knowledge and form adaptation.
As mentioned in Section 3.2, some industrial applications can benefit significantly.

In the context of neural architecture design, our method could inspire research into the inclusion
of global components. Interestingly, analogous structures exist in the human brain. For example,
regions like the Ventromedial Prefrontal Cortex (vmPFC) and Dorsolateral Prefrontal Cortex (dlPFC)
(Gazzaniga et al., 2019), which are crucial for moral and value judgments, resemble a global
component that interfaces with multiple other brain regions.

Also, Aligner can be used as a probing method to understand if a task is more one of form alignment
or reasoning/knowledge improvement. For example, initially, it was unclear if value alignment
tasks were mainly about form alignment, but Aligner, using just one token, achieved comparable
performance, confirming its role in form alignment. By contrast, for math reasoning tasks, Aligner
could not match the performance of state-of-the-art methods without equivalent parameter counts,
indicating that math differs from form alignment. This approach can also be applied to less obvious
tasks; for example, why pretrained LLMs work well for tasks like molecule generation or classification
Qian et al. (2023) is not fully understood. Using Aligner in this context may help reveal how much
LLMs achieve it through form alignment or through knowledge acquisition.

Moreover, we posit that our method holds significant promise for advancing AI safety. As AI models
grow more powerful, their “black box” nature raises control and safety concerns. Our approach,
which enables the encoding of value preferences into a minimal set of tokens, offers a pathway to
decoupling the value orientation of an LLM from its functional capabilities, thereby facilitating
greater control. Actually, this prospect was a primary motivator of our research. Future work should
explore the application of our method to achieving more reliable and controllable AI alignment.

5.3 LIMITATIONS

We have not definitively established the capacity of a single token to encapsulate form information.
While our SFT experiments with the Alpaca dataset indicate that Aligner with one token is less
capable than LoRA, the performance difference is small. It is unclear if the gap is attributable to
the lack of hyper-parameter tuning or other random factors. Even though Aligner with one token is
inferior, it is also unclear what it failed to learn. The value alignment tasks also did not show clear
incompetence. They include failure cases, but such is also the case for LoRA. RLHF (Wang et al.,
2023) in real world practice often assimilates millions of training samples, therefore the failures may
be attributable to training and data shortcomings. This leaves open the question of scalability with
larger datasets, a topic worthy of future exploration.

6 CONCLUSIONS

We have introduced a novel Parameter-Efficient Fine-Tuning approach that, using just one or ten
tokens, achieves across LLM model scales performances comparable to the state-of-the-art mega-
parameter methods like LLaMA-Adapter and LoRA for form alignment tasks. Furthermore, we
demonstrated the efficacy of a globally-connected token in alignment tasks, albeit no special advantage
over reasoning tasks, which therefore validates the hypothesis that LLMs handles form orthogally
to reasoning in the way that form globally affects the way of reasoning process inside LLMs. Our
findings inspire significant potential applications and provides insights into the internal mechanisms
of large language models, thereby opening up promising avenues for future research.
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