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Abstract

Deep neural networks have long been criticized
for lacking the ability to perform analogical vi-
sual reasoning. Here, we propose a neural net-
work model to solve Raven’s Progressive Matri-
ces (RPM) — one of the standard intelligence
tests in human psychology. Specifically, we de-
sign a reasoning block based on the well-known
concept of prediction error (PE) in neuroscience.
Our reasoning block uses convolution to extract
abstract rules from high-level visual features of
the 8 context images and generates the features
of a predicted answer. PEs are then calculated
between the predicted features and those of the
8 candidate answers, and are then passed to the
next stage. We further integrate our novel rea-
soning blocks into a residual network and build a
new Predictive Reasoning Network (PredRNet).
Extensive experiments show that our proposed
PredRNet achieves state-of-the-art average per-
formance on several important RPM benchmarks.
PredRNet also shows good generalization abili-
ties in a variety of out-of-distribution scenarios
and other visual reasoning tasks. Most impor-
tantly, our PredRNet forms low-dimensional rep-
resentations of abstract rules and minimizes hi-
erarchical prediction errors during model train-
ing, supporting the critical role of PE minimiza-
tion in visual reasoning. Our work highlights
the potential of using neuroscience theories to
solve abstract visual reasoning problems in ar-
tificial intelligence. The code is available at
https://github.com/ZjjConan/AVR-PredRNet.
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Figure 1: An illustration of typical RPM questions from (a)
the RAVEN (Zhang et al., 2019a) and (b) the PGM (Barrett
et al., 2018) datasets. In both datasets, eight context images
are provided. The goal of each RPM is to choose the correct
one (highlighted in red) from eight answer images to fill in
the missing one (denoted by ?), making three rows or three
columns with similar patterns. Obviously, a subject should
recognize diverse visual objects, and then discover abstract
relationships among these objects for inference.

1. Introduction
Deep neural networks (DNNs) (Krizhevsky et al., 2012;
Simonyan & Zisserman, 2014; He et al., 2016; Hochreiter
& Schmidhuber, 1997) have shown superior performance
in a variety of tasks, such as text classification (Conneau
et al., 2016), machine translation (Vaswani et al., 2017;
Bahdanau et al., 2015), image restoration (Kim et al., 2016;
Zhang et al., 2017a), object classification and detection
(Deng et al., 2009; Ren et al., 2015; Liu et al., 2016), video
understanding (Karpathy et al., 2014; Tran et al., 2015;
Donahue et al., 2015), and visual question answering (Antol
et al., 2015; Lu et al., 2016; Fukui et al., 2016). Despite
their great success in these tasks, DNNs have long been
criticized for falling short of abstract reasoning, which is a
hallmark of human intelligence.
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In human psychology, a widely used test of intelligence quo-
tient is the Raven’s Progressive Matrices (RPMs) (Raven &
Court, 1938). Figure 1 shows two typical RPM questions
from the RAVEN (Zhang et al., 2019a) and PGM (Barrett
et al., 2018) datasets. An observer is asked to select the cor-
rect answer from 8 candidate answers to fill in the missing
9-th panel (denoted by ?), where the three rows or the three
columns can form the same abstract rule (e.g., color or size
progression). The viewer must first recognize the visual
signatures of objects, such as shapes and locations, and then
infer the abstract relationships between the contextual im-
ages. As such, RPMs are well suited for assessing abstract
visual reasoning abilities in both humans and machines.

In cognitive science, RPMs have traditionally been ad-
dressed by symbolic models (Carpenter et al., 1990; Lovett
et al., 2009; 2010; Lovett & Forbus, 2017) and more recently
by DNNs (Zhang et al., 2019b; Zhuo & Kankanhalli, 2020;
Hu et al., 2021; Wang et al., 2020; Jahrens & Martinetz,
2020; Hochreiter & Schmidhuber, 1997; Benny et al., 2021;
Zheng et al., 2019; Spratley et al., 2020; Zhang et al., 2021;
Wu et al., 2020; Mondal et al., 2022; Zhang et al., 2022).
These studies focus on how to effectively discover different
levels of internal statistical patterns for RPMs. To facili-
tate studies in this community, four famous datasets have
been constructed, including RAVEN (Zhang et al., 2019a),
RAVEN-FAIR (Benny et al., 2021), Impartial-RAVEN (Hu
et al., 2021) and PGM (Barrett et al., 2018). Although some
existing methods show superior performance on a subset of
datasets, few studies show impressive performance on all
datasets and different generalization cases.

Inspired by the well-known concept of prediction error
(PE) in neuroscience, we develop a novel reasoning block -
Predictive Reasoning Bblock (PRB) - that mimics the pre-
diction and matching process in the reasoning process of
RPMs. Our PRB first predicts features from 8 context im-
ages and then encodes the differences (i.e., PEs) between
these predicted features and those of 8 candidate answers.
The PEs are then passed to the next processing stage. We
integrate our novel PRB into a residual network and con-
struct a new network architecture called PredRNet. PredR-
Net shows state-of-the-art average performance on several
benchmarks and superior generalization capabilities.

2. Related work
Raven Progressive Matrices. As one of the standard gen-
eral IQ tests, RPM or RPM-style questions are a useful tool
for understanding human abstract and analogical reasoning
abilities (Raven & Court, 1938). Traditional RPMs used
in psychology are designed by psychology experts and are
unsuitable for modern machine learning and computer vi-
sion research. To accelerate relevant research in machine
learning, Wang & Su (2015) used first-order logic to formu-

late RPMs, and automatically generated a large number of
RPMs. Based on this dataset, Hoshen & Werman (2017)
proposed the first neural network to solve simple geometric
patterns in RPMs. A relation module was introduced for
DNNs to learn abstract relations (Santoro et al., 2017). Be-
sides the development of networks, the two more advanced
datasets — PGM (Barrett et al., 2018) and RAVEN (Zhang
et al., 2019a) were also established. Later works allow neu-
ral network models to explore row-wise and column-wise
relationships (Zhang et al., 2019b; Zhuo & Kankanhalli,
2020; Zheng et al., 2019; Hu et al., 2021), discover pat-
terns by multi-scale networks (Benny et al., 2021; Jahrens &
Martinetz, 2020), improve relation modules (Spratley et al.,
2020; Mondal et al., 2022), design neuro-symbolic repre-
sentation (Zhang et al., 2021; 2022), and fuse features by
graph networks (Wang et al., 2020). Some studies recently
pointed out the defects of the original RAVEN dataset and
proposed two other variants — RAVEN-FAIR (Benny et al.,
2021) and Impartial-RAVEN (Hu et al., 2021).

Prediction Error in Neuroscience. Prediction error is a
well-known concept in neuroscience. Schultz et al. (1997)
pioneered the study of reward prediction error and showed
that the difference between the predicted reward and the
actual reward received is the key factor driving biological
learning. This neural substrate fits well with the temporal
difference learning proposed in the field of reinforcement
learning. A similar concept was later introduced into sen-
sory processing. Rao & Ballard (1999) incorporated pre-
diction error into a three-layer neural network and found
that the neural receptive fields after training showed strong
similarities to the center-surround effects reported in the
neurophysiological literature (Srinivasan et al., 1982; Dan
et al., 1996; Hubel & Wiesel, 1968; Bolz & Gilbert, 1986;
Desimone & Schein, 1987). The concept of prediction error
has now been extended to the auditory system (Smith &
Lewicki, 2006), the hippocampus (Mehta, 2001), and the
prefrontal cortex (Summerfield et al., 2006).

Friston & Kiebel (2009) further proposes a unifying theoret-
ical framework for understanding human cognition. Namely,
the brain constructs an internal model to approximate the
operations of the external environment. This internal model
generates predictions about what the observed sensory ev-
idence should be, and the brain uses prediction errors to
update the belief held in the internal model. This theory
can explain a wide range of cognitive phenomena, including
binocular rivalry (Hohwy et al., 2008), reinforcement learn-
ing (Alexander & Brown, 2018), visual illusions (Pang et al.,
2021), and even atypical behavior in psychiatric populations
(Sterzer et al., 2019) etc. In summary, prediction error is
one of the most fundamental neuroscientific concepts and
may make a significant contribution to others.

Prediction Error in Computer Vision. Prediction-based
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Figure 2: An overview of our PredRNet. (a) PredRNet contains an image encoder to extract input image features, multiple
stacked Predictive Reasoning Blocks (PRBs) to abstract relationships between features from context images and answer
images, and a classifier to output eight scores for each RPM question. (b) Details of the proposed reasoning block – PRB.

processing has also been introduced into data compres-
sion (Schmidhuber & Heil, 1996; Atal & Schroeder, 1970;
Schmidhuber & Heil, 1995). In the computer vision com-
munity, some works have also used prediction-based pro-
cessing as loss functions or training strategies for audio
or object recognition (Henaff et al., 2011; Doersch et al.,
2015; Kavukcuoglu et al., 2010; Gregor & LeCun, 2010;
Choksi et al., 2021; Wen et al., 2018; Zhang et al., 2017b;
Oord et al., 2018). For example, Gregor & LeCun (2010)
trained a predictor to approximate the original sparse codes
to improve inference speed. Doersch et al. (2015) proposed
an unsupervised learning method by predicting the relative
position of image patches. Zhang et al. (2017b) designed
a framework for learning good representations by estimat-
ing color images from grayscale images. Instead of using
PE only as a loss function or a training strategy, Choksi
et al. (2021); Wen et al. (2018); Lotter et al. (2016) incorpo-
rate PE into the network architecture for object recognition.
Although our work uses PE like several previous studies,
we focus on abstract visual reasoning tasks and do a very
different implementation. First, our network performs cross-
image prediction, whereas previous methods only perform
prediction within a single image. The two structures are
different, but all satisfy the prediction-based framework.
Second, due to the nature of the problem, our model only
fuses high-level features across images, whereas Choksi
et al. (2021); Wen et al. (2018); Lotter et al. (2016) empha-
size the computation of prediction errors across all layers.

Furthermore, our model iterates prediction-based processing
in a stacked fashion without any recurrent connection.

3. Methods
The structure of our PredRNet is shown in Figure 2. It
consists of three components: (1) an Image Encoder to
transform each image into a 3-dimensional high-level rep-
resentation (features), (2) multiple (K ≥ 2) stacked Pre-
dictive Reasoning Block (PRB) to extract relationships
between the representations of context and answer images,
and (3) a Classifier to output the scores for 8 answer images.
In each RPM, the answer image with the highest score is
selected as the final answer.

Image Encoder. A ResNet architecture is used as our image
encoder (He et al., 2016). Several previous studies have pro-
vided some baseline results based on the popular ResNet-18
or ResNet-50 networks and their extended variants (here-
after referred to as baseline networks) (Zhang et al., 2019a;b;
Barrett et al., 2018; Hu et al., 2021). For example, SRAN
(Hu et al., 2021) combines three ResNet-18 to extract fea-
tures and then uses their adapted structure to discover rules.
We argue that these networks are suboptimal because their
properties (e.g., large kernel sizes, more stacked blocks,
32× subsampling) are designed for natural images. In RPM
questions, the objects are relatively small (see Figure 1) and
more difficult to detect (Lin et al., 2014). In addition, some
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of these baseline networks combined all the images of an
RPM question at the first layer. This “early fusion” explores
only the low-level relationships between images rather than
the high-level relationships, which reduces the reasoning
performance as our experiment shown. Therefore, we build
a new ResNet to provide a strong baseline for solving RPMs.

Our image encoder has four ResBlocks, each containing a
residual branch and a shortcut branch. The residual branch
has three convolutional layers with kernel sizes of 3 × 3.
The first convolutional layer downsamples the input fea-
tures with a stride of 2 to expand the receptive fields of the
neurons to extract higher-level information. Thus, the total
subsampling stride of our image encoder is 16. The shortcut
branch first applies an average pooling layer to the down-
sampled input features (Zhang, 2019), and then uses a 1× 1
convolutional layer to match the output size of the residual
branch. These two branches are then added together to form
the next block. In total, a ResBlock can be formulated as:

X l = ReLU(BN(Conv3×3(X
l−1))), l ∈ {1, 2, 3} (1)

X
′
= X3 +BN(Conv1×1(AvgPool(X0))), (2)

where X0 and X
′

are the block input and output, respec-
tively. Conv3×3 and Conv1×1 are convolutional layers
with kernel sizes of 3× 3 and 1× 1, respectively. Both the
first convolutional layer (l = 1) and the average pooling
layer (AvgPool) downsample inputs with a stride of 2.

After the above defined 4-block structure, we append a sin-
gle BN(Conv1×1(·)) to reduce the feature dimension for
further processing. For simplicity, we will henceforth refer
to our image encoder as ResNet-4B. To extract features
in an RPM problem (Figure 2a), a single answer image
Ia
i is combined with the eight context images Ic

{1,...,8} to
form an input, denoted as Ii = [Ic

1 , I
c
2 , ..., I

c
8 , I

a
i ], Ii ∈

R9×1×80×80, i ∈ {1, ..., 8}. Where i is the index of the
answer image. Ii is then passed sequentially through
ResNet-4B to obtain nine sets of image features, denoted
as Xi = [Xc

1 ,X
c
2 , ...,X

c
8 ,X

a
i ],Xi ∈ R9×32×5×5. Impor-

tantly, this feature extraction step is performed in parallel
for all images without considering any rule-based relation-
ships between them. After feature extraction, Xi is the i-th
answer-related features, including all features from the eight
context images and the i-th answer image.

Stacked Predictive Reasoning Blocks (PRBs). Although
solving RPMs is a high-level cognitive task, we argue that it
still follows the prediction-and-matching process (Spratling,
2016). In an RPM problem, an observer must first examine
all 8 context images to learn the implicitly embedded rule.
According to the learned rule, she then makes a prediction
of what the correct answer should be, and matches this
prediction to the 8 answer images. The matching step can

be formulated as calculating the error between the prediction
and the answer images. And the prediction errors are in turn
used to refine the learned rule. The initial learned rule and
prediction may be incorrect, so the prediction and matching
process should be iterated. In this scenario, the prediction
error is the critical cue for correct reasoning.

Based on the above theory, we implement PRB as shown in
Figure 2 (b). The feature map Xi is first transformed from
[9, 32, 5, 5] to [9, 32, 1, 25], followed by a transpose operator
to form a tensor of size [1, 32, 9, 25]. The above tensor
reformulation allows us to use simple 2D convolutional
layers to extract useful spatial cues along the 4-th dimension
and rule relationships along the 3-rd dimension, greatly
reducing the implementation effort. Specifically, we split the
current Xi into two feature sets along the 3-rd dimension:
the eight context features Xc ∈ R1×32×8×25 and the i-
th answer feature Xa

i ∈ R1×32×1×25. Note that these
features only belong to their corresponding images, because
all images are processed in parallel by our ResNet-4B. After
splitting, an 8× 1 convolutional layer with 32 channels is
used to aggregate all the context features Xc into a single
predicted feature map Xp

i ∈ R1×32×1×25, which has the
same size as the answer features Xa

i . The prediction error
is then obtained by subtracting the predicted features from
the original answer features. We show the generation of the
prediction error as follows:

Xp
i = BN(Conv8×1(X

c)) (3)
Ea

i = ReLU(Xa
i )−ReLU(Xp

i ) (4)

Currently, the prediction error Ea
i ∈ R1×32×1×25 stores

the discrepancy between the prediction from the context
features and the i-th answer features. We then concatenate
such a predicted error Ea

i with the original context features
Xc along the 3-th dimension, and pass these combined
features with another two convolutional layers. In addition,
similar to our ResBlock (Eq. (1) and Eq. (2)), a shortcut
branch is added to facilitate the optimization. Therefore, we
can formulate this process as follows:

Y 0
i = [Xc;Ea

i ], Y 0
i ∈ R1×32×9×25 (5)

Y l
i = ReLU(BN(Conv3×3(Y

l−1
i ))), l ∈ {1, 2} (6)

Y
′

i = Y 2
i +BN(Conv1×1(Xi)), (7)

where [·; ·] is the concatenation operation. Y
′

i is the current
PRB output with the same size of features Xi. By far, our
PRB extracts the abstract relations for an RPM question.
However, a single prediction and matching process is un-
likely to capture the abstract rules very accurately. Similar to
the human mental process, such a prediction-and-matching
process can be iterative, and the learned rule can be grad-
ually refined and tested. Therefore, a stacked structure is
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designed by combining several (K ≥ 2) PRBs, as shown in
the middle part of Figure 2 (a). As mentioned before, our
PRB forwards both errors and context features for further
processing. This allows the last two convolutional layers
to refine contextual features and prediction errors by ag-
gregating cues along the last two dimensions. As a result,
our block allows context features to be adapted to current
errors and then become more effective in the next stage to
generate prediction errors. By incrementally propagating
both context features and prediction errors, stacked PRBs
are able to incrementally extract abstract rules.

Classifier. Similar to previous models (Benny et al., 2021;
Zhang et al., 2019b;a; Spratley et al., 2020), our classifier
contains two fully-connected layers to output a single score
for the i-th answer. A batch normalization layer and a ReLU
function are added between these fully-connected layers. In
sum, for each RPM question, our PredRNet processes eight
answer images in parallel and outputs eight scores.

4. Experiments
We first compare our PredRNet with many state-of-the-art
methods on four popular abstract visual reasoning datasets,
including PGM (Neutral)(Barrett et al., 2018), RAVEN
(Zhang et al., 2019a), I-RAVEN (Hu et al., 2021), and
RAVEN-FAIR (Benny et al., 2021). Most previous studies
did not evaluate their methods on all of these datasets. For a
fair and comprehensive comparison, we run their published
codes on all four datasets. In addition, to demonstrate the
generalizability of our PredRNet, we also perform exper-
iments on all OOD versions of PGM, CLEVR-Matrices
(Mondal et al., 2022) and two other human-like reasoning
tasks, Bongard-LOGO (Nie et al., 2020) and Visual Anal-
ogy Data (VAD) (Hill et al., 2019). In the following, we
first detailed describe all datasets and our implementations.
Then we compare the proposed PredRNet with other state-
of-the-art methods. Finally, we present in-depth studies.

4.1. Datasets & Implementations

PGM (Barrett et al., 2018) contains 8 different sub-datasets,
each having 1,222,000 questions with 119,552,000 images.
It has diverse abstract rules (i.e., XOR, OR, Progression and
AND) among objects. We mainly compare PredRNet with
other state-of-the-arts on the Neutral sub-dataset. Other sub-
datasets are included to examine the Out-Of-Distribution
generalization of our PredRNet.

RAVEN (Zhang et al., 2019a) introduces a different set of
relationships, including progression, constant, union, and
arithmetic calculations. This dataset includes 7 distinct
configurations, i.e., Center, 2x2Grid, 3x3Grid, Left-Right,
Up-Down, Out-InCenter, and Out-InGrid. Each configura-
tion contains 10,000 questions, yielding a total of 70,000

questions with 1,112,000 images. However, a few studies
(Hu et al., 2021; Benny et al., 2021; Spratley et al., 2020)
point out that this original version of RAVEN has been re-
cently shown problematic. RAVE-FAIR and I-RAVEN (see
below) are proposed to correct the bias.

RAVEN-FAIR (Benny et al., 2021) and Impartial-RAVEN
(Hu et al., 2021) are recently developed to fix the bias in
RAVEN. Both of them contain the same context images as
RAVEN but differ in the way to generate negative answers.
In RAVEN-FAIR, negative answers are iteratively gener-
ated by randomly changing one attribute of the true answer.
While Impartial-RAVEN uses a bisection tree to modify one
attribute at a time, but in different attribute direction. (Benny
et al., 2021) and (Hu et al., 2021) show that RAVEN-FAIR
and I-RAVEN are better in evaluating models.

CLEVR-Matrices (Mondal et al., 2022) is another RPM-
like dataset based on the widely used visual question answer
dataset – CLEVR (Johnson et al., 2017). This dataset in-
cludes 3 distinct configurations, i.e., Logic, Location, and
Count. Each configuration has 20,000 questions, including
16,000 for training, 2,000 for validation, and 2,000 for test-
ing. For questions, this dataset has three kinds of visual
attributes, i.e., shape, size, and color, and rules are indepen-
dently sampled from the set of {null, constant, distribution-
of-3}. To reduce the biases in the original RAVEN dataset
(Zhang et al., 2019a), answer choices are generated using
the attribute bisection tree algorithm proposed in (Hu et al.,
2021). For the evaluation, model is trained jointly on all
three configurations as suggested in (Mondal et al., 2022).

Bongard-LOGO (Nie et al., 2020) and Visual Analogy
Data (VAD) (Hill et al., 2019) are another datasets for eval-
uating human-level visual reasoning. For Bongard-LOGO,
it mimics the Bongard problem that reasons visual con-
cepts from their contexts with a few examples. Therefore,
Bongard-LOGO transforms 12,000 problems into a few-
shot binary classification task. For VAD, it mainly contains
five subdatasets, each containing around 600,000 problems.
This dataset is employed to check whether our PredRNet
can learn to make analogy in visual domain.

Implementations. For our ResBlocks, we set the filters to
[32,64,96,128] from the first to the last block. For our PRB,
the Conv in Eq.(3) with kernel sizes of [1,32,8,1] generates
a prediction with the same shape of answer features, i.e.,
Xa

i ∈ R1×32×1×25. The filters of the other two Convs are
set to 128 and 32, respectively. In addition, we add three
(K=3) PRBs after our image encoder because this gives the
best overall performance on the validation sets. The effect
of K will be discussed in later sections.

All datasets have training, validation, and test sets. The vali-
dation set is used to select the best checkpoint for evaluation.
Our model accepts 80× 80 images as input. Optimization
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Table 1: Recognition accuracy (%) on PGM Neutral (PGM-N), original RAVEN (RVN-O), RAVEN-FAIR (RVN-F), and
Impartial-RAVEN (I-RVN). For all RAVENs, accuracy is obtained by averaging across all seven configurations. † indicates
the performance was not reported in their original paper, and is obtained by running their published codes. The best and
the second best results on each dataset are highlighted by bold and underline, respectively. Our PredRNet obtains the
state-of-the-art average (Avg) performance on all the four compared datasets.

Method WReN LEN CoPINet SRAN DCNet MLRN SCL MXNet Rel-Base MRNet STSN PredRNet

PGM-N 62.6 68.1 56.4 71.3 68.6 98.0 88.9 66.7 85.5 94.5 98.2 97.4
RVN-O 16.8 72.9 91.4 54.3† 93.6 12.3† 91.6 83.9 91.7 96.6 89.7† 95.8
RVN-F 30.3 51.0 50.6 72.9† 56.1† 29.5† 90.1† 35.1† 93.5† 88.4 95.4† 97.1
I-RVN 23.8 41.4 46.1 60.8 47.2† 12.3† 95.0 26.8† 91.1† 83.5† 95.7 96.5

Avg 33.4 58.4 61.1 64.8 66.4 38.0 91.4 53.1 90.5 90.8 94.8 96.7

is done by the Adam solver (Kingma & Ba, 2015) with a
learning rate of 1e-3 and a batch size of 128. The weight
decay is 1e-5 for most of the tested datasets, and 1e-7 for
the PGM datasets because PGM is significantly larger than
other datasets. It is worth noticing that we do not include
other supervision signals (e.g., metadata) during training.
In addition, for each RAVEN, we report the median result
from 3 different runs. For all 8 sub-datasets of PGM, since
each of them has about 1.2× 16 million images, training on
such large-scale datasets will take too much computational
time. Therefore, we only report a single result, similar to
many previous works (Johnson et al., 2017; Zhang et al.,
2019b; Benny et al., 2021). For other datasets, we follow
the settings in their original papers for a fair comparison.

4.2. Main Results

State-of-the-art Comparisons. Here, we compare the pro-
posed PredRNet with several previous models, including
WReN (Barrett et al., 2018), LEN (Zheng et al., 2019),
CoPINet (Zhang et al., 2019b), SRAN (Hu et al., 2021),
DCNet (Zhuo & Kankanhalli, 2020), SCL (Wu et al., 2020),
MLRN (Jahrens & Martinetz, 2020), MXGNet (Wang et al.,
2020), Rel-Base (Spratley et al., 2020), MRNet (Benny et al.,
2021) and STSN (Mondal et al., 2022). Some baseline meth-
ods such as LSTM (Zhang et al., 2019a), ResNet (Zhang
et al., 2019a), CNN (Zhang et al., 2019a) and ResNet-DRT
(Zhang et al., 2019a) are not included because they perform
significantly worse than these methods. Experiments are
performed on three RAVENs and PGM Neutral.

Table 1 shows all the results. We reach three main conclu-
sions. First, our PredRNet achieves the best average perfor-
mance on the four datasets. Specifically, STSN introduces
slot attention (Locatello et al., 2020) to extract image-wise
features and then proposes a transformer-based module to
explore relationships between contexts and choices for rea-
soning. Because of the powerful attention operations, STSN
provides the best average performance (94.8%) among all
compared method. Our proposed method, PredRNet, outper-
forms STSN with an average performance of 96.7%. In addi-

tion, our PredRNet actually achieves better performance on
the Impartial-RAVEN (+0.8%) and RAVEN-FAIR (+1.7%)
datasets than this second-place performer, respectively. Our
model is also very competitive against MLRN and STSN
on PGM, and MRNet on RAVEN. Second, some recently
proposed methods, such as MLRN, DCNet, and CoPINet,
only show good results on one or two benchmark datasets.
For example, MLRN nearly obtains perfect result (98%) on
PGM, but performs poorly on the three RAVENs (all <30).
Both DCNet and CoPINet achieve very promising results
on the original RAVEN, but unsatisfactory results on the
other three benchmarks. In contrast, our PredRNet achieves
good performance on all four benchmarks (all > 95). These
results clearly demonstrate the robustness of our PredRNet
in discovering different types of rules in different datasets.
Third, beside the STSN, SCL, Rel-Base, and MRNet are
three competitive models, although they do not perform as
well as ours. SCL and Rel-Base directly extract relations
in all eight context images, without special designs for row
and column rules. MRNet, on the other hand, deliberately
includes row and column relation modules. Similar to SCL
and Rel-Base, our PredRNet does not explicitly distinguish
between row-wise and column-wise relations. Instead, the
key component of our PredRNet is to use prediction errors
as our processing signals. This special design helps our
method to improve the performance up to 96.6% on average.
All these results show that our PRB serves as an efficient
module to discover high-level abstract relations.

Out-Of-Distribution Generalization in PGM. We further
evaluate the out-of-distribution (OOD) generalization ca-
pability of PredRNet. We run our PredRNet directly on
all subdatasets without changing the network architecture.
The results are shown in Table 2a. Our PredRNet achieves
the best average OOD generalization results across all sub-
datasets. In particular, our model achieves the best results
compared to others in the two most commonly used sub-
datasets – interpolation and extrapolation. Table 2a suggests
that PredRNet has good OOD generalization capabilities.

CLEVR-based RPM. We also conduct an experiment on
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Table 2: Performance on other kinds of evaluation.

(a) Recognition accuracy (%) on all regimes of PGM (1 Neutral and 7 OOD subsets,
Ntr: Neutral, Int: Interpolation, Ext: Extrapolation, H.O: Held-Out, P: Pairs, TP:
TriplePairs, LT: LineType, SC: ShapeColor). The best and the second best results
are highlighted using bold and underline. Our PredRNet obtains competitive results
without using any extra supervision signals.

Method Ntr Int Ext H.O.P H.O.TP H.O.T H.O.LT H.O.SC Avg

WReN 62.6 64.4 17.2 27.2 41.9 19.0 14.4 12.5 32.4
MXGNet 66.7 65.4 18.9 33.6 43.3 19.9 16.7 16.6 35.1
MRNet 93.4 68.1 19.2 38.4 55.3 25.9 30.1 16.9 43.4

PredRNet 97.4 70.5 19.7 63.4 67.8 23.4 27.3 13.1 47.1

(b) Recognition accuracy (%) on all configura-
tions of CLEVR-Matrices (Mondal et al., 2022).
The best and the second best results are high-
lighted using bold and underline. Our PredRNet
obtains competitive results.

Method Logic Location Count Avg

MLRN 47.4 21.4 23.6 30.8
SCL 80.9 65.8 64.9 70.5

STSN 99.2 100.0 99.6 99.6

PredRNet 100.0 99.5 99.9 99.8

(c) Performance on the few-shot problem of the Bongard-LOGO
dataset (Nie et al., 2020). Testing accuracy (%) on different splits
are reported (i.e., free-form shape (FF), basic shape (BA), com-
binatorial abstract shape (CM), and novel abstract shape (NV)).
Base-SC, Base-MoCo and ProtoNet are three best performers
according to (Nie et al., 2020). Our PredRNet achieves the state-
of-the-art results across all splits.

Method FF BA CM NV

Base-SC 66.3±0.6 73.3±1.3 63.5±0.3 63.9±0.8
Base-MoCo 65.9±1.4 72.2±0.8 63.9±0.8 64.7±0.3

ProtoNet 64.6±0.9 72.4±0.8 62.4±1.3 65.4±1.2

PredRNet 74.6±0.3 75.2±0.6 71.1±1.5 68.4±0.7

(d) Performance on Visual Analogy Data (Hill et al., 2019).
Shekhar & Taylor (2021) is the leading method proposed in recent
year. The “learning-by-contrast (lbc)” is used for all subsets. Our
PredRNet achieves the state-of-the-art average results.

Method LBC (2019) NSM (2021) PredRNet

Extrapolation 0.62±0.020 0.74 0.72±0.060
Interpolation 0.93±0.004 0.93 0.97±0.002
N.D.Transfer 0.87±0.005 0.88 0.96±0.003

N.D.ShapeColor 0.78±0.004 0.78 0.80±0.010
N.D.LineType 0.76±0.020 0.79 0.82±0.010

Avg 0.79 0.82 0.85

the recently introduced CLEVR-Matrices (Mondal et al.,
2022) dataset, which contains more object attributes and
rules. This dataset is similar to all RAVEN datasets, but
more focuses on the rendered 3D shapes in a scene. We
thus follow the original paper (Mondal et al., 2022) and
directly train our proposed PredRNet jointly on three con-
figurations. Training settings are similar to the ones used in
our RAVEN experiments. The results are shown in Table
2b. Our PredRNet performs very competitively with the
attention-based method – STSN, which uses slot attention
and self-attention for feature extraction and relationship
modeling, respectively.

Human-like Reasoning Tasks. To test the generality of our
model beyond RAVEN tasks, we evaluate PredRNet on two
additional benchmarks - Bongard-LOGO (Nie et al., 2020)
and Visual Analogy Data (VAD) (Hill et al., 2019). These
two datasets are thought to reflect more human-like reason-
ing processes. On Bongard-LOGO, we follow that paper
to solve a 2-way 6-shot few-shot classification problem. In
PredRNet, we compute the error of each query image from
6 support images. We then use default settings (without
using symbolic information) to train (Nie et al., 2020), and
report the results in Table 2c. Clearly, PredRNet achieves
leading performance in all subsets.

VAD problems are similar to RAVEN problems. A VAD
problem contains 5 context images and 4 candidate images.

We combine each candidate image and 5 context images to
form an answer-related group, and feed 4 groups in each
problem into our PredRNet. The number of training epochs
is set to 3 for all subdatasets as suggested in (Webb et al.,
2020). The results in Table 2d show that our proposed Pre-
dRNet obtains the best results among all compared methods.

In summary, all the above results show that our proposed
PredRNet is effective and flexible to solve various forms of
abstract visual reasoning problems.

4.3. Ablation Experiments

Different Image Encoders. As in our previous presentation,
some of the existing methods used the popular ResNet-18
and ResNet-50 as baseline methods for comparison. These
baseline methods fuse all images from the first convolutional
layer (i.e., early fusion). We argue that the images should
instead be processed in parallel and transformed into high-
level feature embeddings, and then a reasoning algorithm
should take place and process their relationships (e.g., late
fusion). Thus, we provide stronger baseline results by using
late fusion for these baseline methods. We also include our
image encoder – ResNet-4B. Although the image encoder
is not our contribution here, we would like to provide some
empirical results which might be helpful to this community.

All comparison results are shown in Table 3. The early
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Table 3: Recognition accuracy (%) of different image en-
coders and blocks on all three RAVEN datasets. ResNet-XE
(RN-XE) and ResNet-XL (RN-XL) indicate different fusion
methods, with E for early fusion at the first convolutional
layer and L for late fusion in the output of image encoders.

Method RVN-O RVN-F I-RVN Avg

Different Image Encoders

ResNet-18E 58.0 15.8 15.8 29.9
ResNet-50E 61.8 17.3 11.8 30.3
ResNet-18L 53.7 77.6 54.2 61.8
ResNet-50L 68.1 62.7 68.7 66.5
ResNet-4B 57.3 75.6 71.5 68.1

ResNet-4B + Additional K ResBlocks

K = 1 59.0 76.5 62.0 65.8
K = 2 60.1 77.6 56.6 64.8
K = 3 59.5 74.3 49.2 60.9
K = 4 56.6 72.2 41.7 56.8

ResNet-4B + Additional K PRBs

K = 1 94.6 95.8 95.0 95.1
K = 2 95.5 96.4 96.5 96.1
K = 3 95.8 97.1 96.5 96.5
K = 4 96.0 96.8 94.8 95.8

fusion encoders (denoted by E) perform significantly worse
than the late fusion encoders (denoted by L). For example,
ResNet-18E and ResNet-50E perform only slightly better
than chance (12.5%) on RAVEN-FAIR and I-RAVEN. In
contrast, ResNet-18L and ResNet-50L achieve much bet-
ter performance. In addition, the larger number of model
parameters in ResNet-50L does not lead to a significant
overall performance improvement. Our ResNet-4B contains
only 1.28 M parameters (v.s. 23.8 M in ResNet-50L), but
achieves the best overall performance. In addition, accord-
ing to Table 1 and Table 3, ResNet-4B, even as a baseline,
outperforms many existing models by a wide margin.

ResBlocks v.s. PRBs. In this section, we use our ResNet-
4B as the image encoder and append different numbers
(K ∈ [1, 4]) of PRBs to evaluate the effect of PRBs. It is
also interesting to compare PRBs with the case where our
ResBlock Eq. (1) is appended to Eq. (2).

All comparison results are shown in Table 3. Interestingly,
we find that simply adding more ResBlocks degrades the
overall performance. For example, adding four additional
ResBlocks results in the worst performance on all datasets
compared to ResNet-4B. We speculate that in the ResNet-4B
baseline, the image encoder processes the 16 images in par-
allel, and only the classifier combines the features across im-
ages to extract their relationships. Thus, simply adding Res-
Blocks may help to process the features in individual images
rather than extracting cross-image rules. Instead, our PRB

Table 4: Ablation experiments on different operations in
our PRB. MLPs: replacing PRBs with MLPs. F-MLPs:
replacing Eqn.(4) with MLPs. Fwd.Err: only forwarding
errors. Rmv.PC: removing prediction errors. δ(x) + δ(y):
replacing Eqn.(4) with ReLU(x) +ReLU(y).

Method RVN-O RVN-F I-RVN
ResNet-4B 57.3 75.6 71.5

MLPs 58.1 70.4 66.1
F-MLPs 68.9 91.3 64.9
Fwd.Err 90.2 94.2 93.1
Rmv.PC 92.3 93.6 92.1

δ(x) + δ(y) 94.9 96.7 95.0
Ours 95.8 97.1 96.5

explores the cross-image information by the method similar
to the calculation of PE. Therefore, PRBs can greatly im-
prove the reasoning performance over the baseline ResNet-
4B. For example, adding a single PRB to the ResNet-4B
baseline improves performance by about 20% for RAVEN-
FAIR and about 24% for Impartial-RAVEN. Adding 2 or 3
PRBs further improves performance on all datasets, giving
new state-of-the-art results. We find that adding K = 4
PRBs leads to a slight drop in performance. This phe-
nomenon may be due to overfitting.

Different Operators in PRBs. We also perform several
important ablation experiments and show all the results in
Table 4. First, we remove the step of computing prediction
errors, so that our PRB contains only the two convolutional
layers for extracting relationships (denoted as Rmv.PC).
We find that removing the prediction errors impairs the
performance of the model, indicating the central role of
prediction errors. Second, our implementation here can also
be explained by attention, which predicts that addition and
subtraction make no difference in processing. We therefore
replace Eq.(4) with ReLU(x) +ReLU(y) like an attention
operator. In this case, (+) and (-) have completely different
mathematical effects. We find that subtraction performs bet-
ter, further supporting the effects of prediction error rather
than prediction summation or attention. Third, we also
attempt to pass errors directly without further refinement
and find a significant drop in performance. These results
show that our design of refining both context features and er-
rors produces more error-aware context embedding features,
which in turn produce more appropriate errors for the next
stage. Finally, we directly replace our PRB with MLP to
extract relationships between context and response features,
and obtain the worse performance. Overall, all these results
confirm the positive contribution of the operations in PRB.

4.4. Representations of Rule-related Feature Attributes

Although PredRNet achieves impressive performance on
a variety of benchmarks, it remains unclear whether pre-
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ANDORConsistent
union

XORProgression

Figure 3: T-SNE of abstract rules (e.g., progression, AND,
XOR) in PGM in the 3-rd PRB. The clustered embeddings of
the same abstract rule indicate that PredRNet is powerful at
discovering rules. Solid circles illustrate different clusters.
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Figure 4: Prediction errors calculated by Eqn. (4) on the test
sets of all RAVENs along the training progression. PRB-K
indicates the K-th block. Overall, our proposed PredRNet
indeed minimizes these errors during the training process.

diction errors encode abstract rules. In an RPM question,
an observer must identify the rule regardless of detailed
visual attributes. We therefore analyze the low-dimensional
embedding of abstract rules in prediction errors in the fi-
nal PRB using t-SNE (Van der Maaten & Hinton, 2008).
Specifically, we extract all errors from the 3-rd PRB block
on the test sets of the PGM Neutral dataset. Because each
RPM contains 1 ∼ 4 rules, it is not easy to visualize a data
point with different rules. For simplicity, we group all RPM
questions according to their relation types, i.e., progression,
AND, OR, XOR and consistent union. We then use these
relation types as labels to show all errors. As shown in
Figure 3. We find clustered representations of abstract rules,
indicating that our PredRNet can robustly identify impor-
tant visual attributes and rules. The relative overlap between
XOR and AND indicates the difficulty of dissecting the two
rules. Note that these representations can be further refined
by subsequent MLPs to obtain a correct answer.

4.5. PredRNet Minimizes Prediction Errors

Finally, we seek to understand whether PredRNet minimizes
prediction errors. To confirm this notion, we compute the
prediction errors in the three PRBs on the test set during
model training (see Figure 4). We find that prediction errors
decrease as training proceeds, suggesting that our network
is indeed learned to minimize prediction errors during visual
processing. It is noteworthy that in PredRNet, prediction
errors are not included as a loss term. In other words, we do
not explicitly train the model to minimize prediction errors.

5. Limitation
Our PredRNet has two limitations. First, the error operator
in our model slightly improves model performance as com-
pared to the attention-based mechanism. This suggests that
our current PredRNet may not fully explore the power of
error computation. Future studies could be done by learning
more rule-related cues with a good regularization (e.g., MSE
loss). Second, the human reasoning process and our model
are not strictly identical. Our model is fully supervised,
training on the full set of benchmarks. However, humans
can answer RPM questions after learning only a few ex-
amples. We acknowledge such differences and argue that
abstract reasoning in DNNs still lags behind humans. We
have only made progress in the supervised learning setting.
Future studies could consider building semi-supervised, un-
supervised, or few-shot learning models of reasoning.

6. Summary
In this work, we exploited the idea of prediction error in neu-
roscience and proposed a novel predictive reasoning neural
network to extract abstract relations. Our reasoning block
first used convolution to extract abstract rules’ features from
8 context images and then generated predictions. We then
calculated errors between these predictions and those of the
8 candidate answers. We further integrated this block into a
residual network to for our PredRNet. Experimental results
show improved robustness and generalization capabilities
of our PredRNet in a variety of visual reasoning scenarios.
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