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ABSTRACT

In class incremental learning (CIL) setting, groups of classes are introduced to a
model in each learning phase. The goal is to learn a unified model performant on
all the classes observed so far. Given the recent popularity of Vision Transformers
(ViTs) in conventional classification settings, an interesting question is to study
their continual learning behaviour. In this work, we develop a Debiased Dual Dis-
tilled Transformer for CIL dubbed D3Former. The proposed model leverages a
hybrid nested ViT design to ensure data efficiency and scalability to small as well
as large datasets. In contrast to a recent ViT based CIL approach, our D3Former
does not dynamically expand its architecture when new tasks are learned and re-
mains suitable for a large number of incremental tasks. The improved CIL be-
haviour of D3Former owes to two fundamental changes to the ViT design. First,
we treat the incremental learning as a long-tail classification problem where the
majority samples from new classes vastly outnumber the limited exemplars avail-
able for old classes. To avoid the bias against the minority old classes, we propose
to dynamically adjust logits to emphasize on retaining the representations relevant
to old tasks. Second, we propose to preserve the configuration of spatial attention
maps as the learning progresses across tasks. This helps in reducing catastrophic
forgetting by constraining the model to retain the attention on the most discrim-
inative regions. D3Former obtains favorable results on incremental versions of
CIFAR-100, MNIST, SVHN, and ImageNet datasets.

1 INTRODUCTION

Real world data is ever evolving and new object categories appear over time. Therefore, it is desired
to learn models that can incrementally update their knowledge when the new data arrives, without
forgetting the past concepts. Existing deep learning models (LeCun et al., 2015; Schmidhuber,
2015) mostly consider a static world, where the learning happens once and if the model is trained
on a new learning task, it catastrophically forgets the previously acquired knowledge (Kirkpatrick
et al., 2017).

The goal of class incremental learning (CIL) is to continually learn new groups of classes (also
referred to as tasks) without overwriting old task information (Joseph et al., 2022). The main chal-
lenge is to balance the stability-plasticity trade-off, i.e., the model should be able to adapt to new
tasks (plastic but not to the point of forgetting) while retaining past knowledge (stable but not leading
to intransigence) (Abraham & Robins, 2005). The previous works mostly concentrate on convolu-
tional neural networks (CNNs) in incremental learning settings (Rebuffi et al., 2017; Hou et al.,
2019; Liu et al., 2020; Yan et al., 2021). However, self-attention (Vaswani et al., 2017) based Vision
Transformers (ViT) (Dosovitskiy et al., 2020) have been shown to outperform CNNs on conven-
tional classification settings (Khan et al., 2021). Therefore, understanding the capabilities of ViTs
for CIL is an interesting and open research question. In this work, our goal is to develop a ViT model
tailored for incremental learning settings. While ViTs have excelled in large data regimes, their plain
versions lack the necessary inductive biases, thereby perform poorly on small datasets as compared
to CNNs. This problem intensifies in incremental learning, where the new task dataset is generally
much smaller than a typical full training set. A recent approach DyTox (Douillard et al., 2022)
proposes the first incremental learning transformer model, however it has a dynamically expandable
architecture which grows as the new tasks are learned.
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Figure 1: D3Former performance on small scale datasets: Plots showing task wise accuracy for
different number of incremental tasks for CIFAR-100. D3Former achieves relatively high accuracy
compared to other state-of-the-art methods when adding 2, 5 and 10 classes per task. We present
ImageNet-1K results in Tab. 3, where we see a similar trend. Ours is the first transformer based
incremental learning method, that scales well to small-scale and large-scale datasets alike.

We propose a hybrid ViT model for Incremental learning called D3Former (Debiased Dual Distilled
Transformer). D3Former is data efficient and can be used equally well for both large and small-
scale datasets (Fig. 1). The hybrid ViT designs (Liu et al., 2021b; Zhang et al., 2022b; Vaswani
et al., 2021; Hassani et al., 2021) have proved to be more successful compared to pure self-attention
based ViT designs at a lower computational cost. Specifically, our approach is based on a Nested
Vision Transformer (Zhang et al., 2022b), that uses local self-attention within the patches and then
hierarchically aggregates non-local information via convolution and pooling operations. The benefit
manifests via improved data efficiency which is important for the incremental training where each
task episode has a limited data belonging to a relatively small group of classes.

In order to render the ViT amenable to incremental setting, we propose two key modifications to
minimize catastrophic forgetting. (a) Debiasing via Logit Adjustment: In the incremental phases,
usually a small exemplar set of old task data is maintained due to memory constraints (Rebuffi et al.,
2017). Since the classes in exemplar set are heavily imbalanced w.r.t the new task data, it bias
the model against the previously observed classes. We propose a simple logit adjustment strategy
to put appropriate emphasis on the previous task classes to avoid representational and classifier
biasness. (b) Dual Distillation: In addition to the regular distillation loss applied on the logits /
features (Rebuffi et al., 2017; Hou et al., 2019), we propose to maintain the attention cast on the
input image by the teacher model and the student model to be consistent as the incremental learning
progresses. To this end, we leverage the visual interpretability properties of Nested Transformer to
obtain gradient based class activation maps (GradCAM) that are enforced to be consistent during
incremental learning.

In summary, the main highlights of our approach are:

• We develop the first hybrid Transformer model for incremental settings, that can adaptively
learn new task distributions. In comparison to state of the art methods (Yan et al., 2021;
Douillard et al., 2022; Rajasegaran et al., 2019), our approach performs favorably well, as
shown in Fig. 1, even without dynamically expanding its parameters as the number of tasks
grow, making it scale easily.

• Owing to the inherent long tail distribution in CIL, our debiased loss formulation allocates
high emphasis to the imbalanced data from old tasks, thereby minimizing loss of informa-
tion relevant to previous tasks.

• We show that maintaining the attention on regions that are most crucial for predicting a
particular class helps avoid overwriting the important features during incremental learning.

• Our extensive results on CIFAR-100, MNIST, SVHN and ImageNet datasets demonstrate
considerable gains over the recent top performing incremental learning methods in terms
of average and final task accuracies, as well as minimizing the forgetness measure.
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2 RELATED WORK

2.1 INCREMENTAL LEARNING

We focus on class-incremental learning, where new classes are introduced to the model in distinct
training phases. The methods are usually grouped into the following heads -

Regularization based: Knowledge distillation (Hinton et al., 2015) has been extensively used as
a regularizer to minimise the changes to the decision boundaries of previous classes while learning
incrementally. The model trained until the earlier phases of learning is treated as a teacher network,
whose penultimate features or the logits are distilled into the incremental model. This was intro-
duced in LwF (Li & Hoiem, 2016) and has been widely adopted by later methods. iCaRL (Rebuffi
et al., 2017) uses KL Divergence loss for knowledge distillation. LUCIR (Hou et al., 2019) uses
cosine similarity based loss for knowledge distillation and margin ranking loss for the hard exam-
ples. PODNet (Douillard et al., 2020) uses pooling as a means of restricting change. LwM (Dhar
et al., 2019) and RRR (Ebrahimi et al., 2021) encourages the model to remember by making use of
explanability techniques.

Replay based: In memory replay based methods, a small subset of data from the older classes
are retained and replayed while learning the later incremental phases. This helps to alleviate the
distributional shift caused while learning the new classes (Rebuffi et al., 2017; Liu et al., 2021a;
Hou et al., 2019). Examples to be stored in the replay buffer may be randomly selected across all
tasks (Riemer et al., 2019; Wu et al., 2019b), randomly selected per task (Joseph et al., 2021; Kj
et al., 2021), by selecting an optimal coreset based on gradient statistics (Tiwari et al., 2022) or even
by solving a submodular objective (Brahma & Othon, 2018). An alternative to storing exemplars
would be to learn the distribution of the data using generative models and replaying the generated
pseudo images (Shin et al., 2017). We refer reader to (Verwimp et al., 2021) for a more detailed
treatment on replay-based continual learning methods. Replay based methods undesirably introduce
bias towards new classes due to class imbalance. BiC (Wu et al., 2019a) learns an MLP explicitly
to correct the bias, while SS-IL (Ahn et al., 2021) uses task-wise distillation along with separate
heads for the current and previous tasks. (Jodelet et al., 2021) proposes balancing softmax outputs
to reduce bias.

Structure based: Structure based methods usually allocate additional parameters for every new
incremental phase. RPSNet (Rajasegaran et al., 2019), learns different paths for different tasks,
ensuring weight sharing among tasks. DER (Yan et al., 2021) adds a new feature extractor for
every task and uses pruning to reduce model size. A recent ViT based method DyTox (Douillard
et al., 2022), proposes to use a dynamic task-token expansion based method to facilitate incremental
learning.

2.2 VISION TRANSFORMERS

Self-attention based Transformer architecture (Vaswani et al., 2017) has revolutionized NLP. Vision
Transformer (ViT) (Dosovitskiy et al., 2020) has helped to carry-over the successes from the NLP
community to computer vision. Some of the notable ViT architecture include DeiT (Touvron et al.,
2021) which uses knowledge distillation from a convolutional neural network through a distillation
token, T2T ViT (Yuan et al., 2021) which tries to preserve local structure and reduce number of
tokens by aggregating neighbouring tokens, XCiT (El-Nouby et al., 2021) which performs self-
attention across feature channels to counter the quadratic complexity associated with self-attention
between tokens. Recently, several hybrid ViTs – which use convolution layers along with self-
attention – have been introduced. CvT (Wu et al., 2021) , CCT (Hassani et al., 2021), Swin (Liu et al.,
2021b) and Nested Transformer (NesT) (Zhang et al., 2022b) are among the popular hybrid ViTs.
To the best of our knowledge, ours is the first method that makes use of a hybrid ViT architecture
for continual learning.

3 D3FORMER: DEBIASED DUAL DISTILLED TRANSFORMER

Incrementally learning a classifier to expand its knowledge, without hampering its performance on
the earlier set of classes is an arduous task for deep learning models. In our work, D3Former, we
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Figure 2: (a) Dual distillation: (left) In each learning phase t, the previous phase model Θt−1 is used
to extract the features and Grad-CAMs of exemplars E . Later, these attention maps are compared
with the current model Θt attention maps and Lcam loss is calculated between them. It discourages
changes to the spatial attention response of Θt w.r.t old classes. Knowledge distillation loss (Ldis)
is computed as the cosine similarity between the features of E from Θt−1 and Θt. This maintains
the orientation of the feature vectors for the old classes. (b) Debiasing block: (right) To compensate
for bias towards new classes, in addition to cosine normalization of the logits, adjustments are added
to the logits before applying cross-entropy. The adjusted logits result in stronger updates for the old
(rare) classes to avoid their misclassification, thereby minimizing forgetting old task knowledge.

propose to make use of a hybrid model – that utilises the complementary advantages of transformer
architectures and convolutional network – for class incremental learning. We detail about the model
architecture in Sec. 3.1. Exemplar replay has emerged as a simple yet effective method to alleviate
forgetting. Due to storage limitations, we store only few examples (close to 20 examples per task)
in the exemplar memory. While learning a new task, we combine the data from exemplar memory
with the incoming data. This skews the training data towards the latest task. We propose to address
this imbalance by treating this setting as a long-tailed recognition problem, as explained in Sec. 3.2.
Further, in Sec. 3.3, we propose to retain the spatial attention of exemplar images across tasks. This
has a two fold effect: firstly, it improves the spatial awareness of the model; secondly, it helps to
reduce forgetting by reminding the model on how it needs to attend to the more discriminative parts
of the images during incremental learning. Concretely, let us consider learning a model Θ across
a total of N + 1 training phases, where the first phase (t = 0) involves learning a set of B base
classes, followed by N incremental phases. Each phase (1 ≤ t ≤ N ) involves learning a fixed
number of C new classes. Consider the number of exemplars retained for each class in the previous
tasks (0 . . . t − 1) is M , thereby forming a set E = {E0, ..Et−1}. Thus, in the incremental phases,
the model Θ is trained using the replayed old class exemplars E and all new input classes data D.
Figure 2 illustrates the overall setup and the different loss functions used in D3Former. Lcam and
Ldis enforces the current model to not deviate much from the previous model, while a cross entropy
loss on the adjusted logits (Ladj) helps to learn the new task. We explain more on these in the
following sub-sections.

3.1 THE HYBRID VIT MODEL

D3Former builds upon the hybrid ViT NesT (Zhang et al., 2022b) which makes use of 2 basic oper-
ations - blockify and aggregation. The blockify operation combines spatially adjacent embeddings
into a group. It captures intra-block information or local attention using several stacked transformer
encoders. Each transformer encoder consists of Layer Normalization (LN) and Multi-head self-
attention (MSA) followed by Feed-Forward network (FFN). On the other hand, the aggregation
operation (AGG) combines neighboring blocks with the help of a simple convolution and pooling
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layer. It captures inter-block relationships and helps gain global understanding of an image. The
local and global processing steps help learn discriminative features.
The above operations are repeated alternately to eventually create the hierarchical structure of NesT
(Fig. 3), where each hierarchy shares the same set of parameters. The final class prediction is per-
formed through a global average pooling (GAP) layer followed by a fully connected (FC) layer.
NesT is characterized by two parameters, patch size, S and number of block hierarchies, Td. To ren-
der NesT suitable for CIL, we propose two principal modifications - Debiasing via Logit Adjustment
and Dual Distillation.

Figure 3: Nested Transformer (NesT) architecture illustrating blockify and aggregation operations.

3.2 REDUCING THE BIAS IN THE LOGITS

In incremental phases, a small set of exemplars are usually stored for old tasks data due to memory
constraints. However, current task samples outnumber old tasks exemplars in each phase leading to
a strong bias towards new classes.
An intuitive approach to reduce bias involves placing more emphasis on rare classes during the
learning process. This can be easily implemented using a simple logit adjustment strategy (Menon
et al., 2021). Logit adjustment adds an appropriate offset to the output logits thereby increasing the
margin between rare and frequent classes. The offset can be calculated as τ log πy , where τ is a
hyperparameter that controls the adjustment strength, πy is the estimated prior for class y. Class
priors are approximated as the frequency of each class in the dataset. However, in our case, since
the number of exemplars from the old classes are equal and the number of samples from each new
classes samples are also equal, there needs to be only two class priors {πo, πn}. The class priors for
old and new classes are calculated as follows:

πo =
|Eco |

|E|+ |D|
,∀co ∈ E , πn =

|Dcn |
|E|+ |D|

,∀cn ∈ D (1)

Where co are the old classes, and cn are the new classes. Thus, the cross-entropy loss can be
modified by including the logit adjustment offsets as:

Ladj(x) = − log
efy(x)+τ log πy∑

y′∈T
efy′ (x)+τ log πy′

, s.t., πy, πy′ ∈ {πo, πn}, (2)

where T is the class labels set, and fy(x) is the cosine normalized logits for an input sample x.
Cosine normalization helps in further reducing bias towards new classes samples (Hou et al., 2019;
Luo et al., 2018), and computed as:

fy(x) = η⟨θ̄(x), w̄⟩, (3)

where η is a learnable scaling parameter to control the peakness of the logits for softmax, as the
values after normalization are between [−1, 1], θ̄(x) is the L2-normalized extracted features, and w̄
denotes the final layer L2-normalized weights.

3.3 DUAL-DISTILLATION FRAMEWORK

Knowledge distillation was introduced to CIL as a means of reducing forgetting by transferring
knowledge about old tasks from the teacher model Θt−1 to the student model Θt (Li & Hoiem,
2016; Rebuffi et al., 2017). First, we incorporate knowledge distillation at feature-level (Hou et al.,
2019) using a cosine similarity loss based on feature vectors computed as follows :

Ldis = 1− ⟨θ̄t−1(x), θ̄t(x)⟩, (4)
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Method
N=5 N=10 N=25

Avg ↑ Last ↑ F ↓ Avg ↑ Last ↑ F ↓ Avg ↑ Last ↑ F ↓

LwF(Li & Hoiem, 2016) 49.59 40.40 43.36 46.98 40.19 43.58 45.51 38.25 41.66
BiC(Wu et al., 2019a) 59.36 - 31.42 54.20 - 32.50 50.00 - 34.60
iCaRL (Rebuffi et al.,
2017)

57.12± 0.50 47.20 31.88 52.66± 0.89 44.80 34.10 48.22± 0.76 39.39 36.48

LUCIR (Hou et al.,
2019)

63.17± 0.87 54.30 18.70 60.14± 0.73 50.30 21.34 57.54± 0.43 48.35 26.46

Mnemonics (Liu et al.,
2020)

63.34± 0.34 54.32 10.91 62.28± 0.61 51.53 13.38 60.96± 0.72 50.78 19.80

PODNet-CNN (Douil-
lard et al., 2020)

64.83± 1.11 54.60 - 63.19± 1.31 53.00 - 60.72± 1.54 51.40 -

DyTox∗ (Douillard et al.,
2022)

70.28 63.02 24.54 66.72 59.62 29.86 62.83 53.95 33.72

D3Former (ours) 72.23±0.08 66.24±0.1 12.09 70.94±0.43 63.10±0.54 16.12 68.68±0.4 59.79±0.44 21.23
D3Former-NCM (ours) 71.38±0.32 64.26±0.47 16.52 69.35±0.47 61.46±0.58 19.36 67.03±0.59 58.12±0.80 22.84

Table 1: Results of CIFAR-100 with Average accuracy (%), last phase accuracy (%) and forgetting
rate F(%) of different methods in 5,10 and 25 tasks settings. The top group of methods are based on
CNN while the last three approaches (including ours) are based on transformer models. ∗ indicates
results reproduced by us using author’s official codebase.

where θ̄t−1(x), θ̄t(x) denote the normalized feature vectors extracted from models Θt−1 and Θt,
respectively.
In addition to Eq. 4 which preserves the orientation of feature vectors as incremental learning
progresses, preserving the model response on regions that are critical for predicting a particular
class can help further reduce catastrophic forgetting (Dhar et al., 2019; Ebrahimi et al., 2021). The
enhanced visual interpretability of NesT (Zhang et al., 2022b) allows us to obtain these salient
regions by using gradient based class activation maps (Grad-CAM) (Selvaraju et al., 2019). Grad-
CAMs are essentially the heatmaps which localize the most discriminative regions for a particular
class in a given image. We enforce that the attention response of Θt on the old tasks must be
maintained similar to that of Θt−1 through a Grad-CAM based L1 distillation loss:

Lcam(x) =∥ CAM(Θt,x)− CAM(Θt−1,x) ∥1 (5)

We obtain Grad-CAMs from the feature maps of the final hierarchy in NesT, since it contains global
information of the whole image. The total loss can thus be written as:

Ltotal =
1

|T |
∑
y∈T

Ladj(x) +
λ

|No|
∑
y∈No

Ldis(x) +
γ

|No|
∑
y∈No

Lcam(x), (6)

where y is the class label of sample x, No denotes the set of old classes, T is the set of all classes, λ
is a scaling factor controlling cosine similarity based knowledge distillation and γ is a scaling factor
controlling the magnitude of Grad-CAM based distillation.

4 EXPERIMENTS

We analyze the performance of D3Former on large scale datasets such as ImageNet-1K(Russakovsky
et al., 2015), ImageNet Subset-100 and small scale datasets like MNIST(Deng, 2012),
SVHN(Goodfellow et al., 2013) and CIFAR-100(Krizhevsky et al., 2009). MNIST contains 28×28
pixel grayscale images of handwritten single digits between 0 and 9, SVHN is a house numbers digit
dataset with 32 × 32 images of 10 classes and CIFAR-100 has 32 × 32 images with 100 classes.
We follow a setting where we initially train the model for half the number of classes(Rebuffi et al.,
2017; Hou et al., 2019; Douillard et al., 2020) and then incrementally add 2, 5 and 10 classes in each
task for ImageNet and CIFAR-100 experiments. A strict memory budget is considered where only
20 exemplars per class are stored. For MNIST and SVHN experiments, we always add 2 classes per
task with a fixed exemplar memory of 4.4k as followed in (Rajasegaran et al., 2019).

4.1 IMPLEMENTATION DETAILS

Small-scale Datasets: NesT-tiny architecture with a configuration of S = 1 is used for CIFAR-100
experiments, while for SVHN and MNIST we use S = 2. The embedding dimension is set to 192,
the number of hierarchy levels is 3, the number of transformer encoder blocks per level is 4 and
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the number of heads in each level is 6. Augmentations such as random erasing, cutmix, mixup and
random augment are used as suggested in (Zhang et al., 2022b). However, mixup is not used in the
incremental phases. The suitable choices of hyper-parameters found empirically are λ = 7, τ = 1
and γ = 0.1. We use a batch size of 128 and observe that performing distillation only over memory
samples is more favorable.

ImageNet: We use NesT-tiny architecture for ImageNet experiments too. We set S = 4, embedding
dimensions is set to (96, 192, 384), the number of hierarchy levels are 3, the number of transformer
encoder blocks per level are (3, 6, 12) and the number of heads per level are (2, 2, 8). Augmentations
such as random erasing, cutmix, mixup and random augment are used as suggested in (Zhang et al.,
2022b). Mixup is also used in the incremental phases. Empirically, we find that the hyper-parameters
when set to λ = 4, τ = 0.3 and γ = 0.05 yield the best results. We observe that performing feature
distillation over all samples provides more stability when training NesT on ImageNet. We use a
batch size of 384 for ImageNet-100 and 1024 for ImageNet-1K.
For both small and large scale datasets, the model is trained for 250 epochs, 150 epochs in case of
2 classes per phase. Weighted Adam (Loshchilov & Hutter, 2019) is used as the optimizer. The
learning rate starts from 2.5e− 4 and decays following cosine annealing scheduler. We make use of
PyTorch implementation of NesT from timm library (Wightman, 2019) and train on an RTX A6000
GPU.

Method
N=5 N=10 N=25

Avg ↑ Last ↑ F ↓ Avg ↑ Last ↑ F ↓ Avg ↑ Last ↑ F ↓

DyTox Joint - 79.82 - - 79.82 - - 79.82 -
D3Former Joint - 82.14 - - 82.14 - - 82.14 -
LwF (Li & Hoiem, 2016) 53.62 40.10 55.32 47.64 36.10 57.00 44.32 34.12 55.12
BiC (Wu et al., 2019a) 70.07 - 27.04 64.96 - 31.04 57.73 - 37.88
iCaRL (Rebuffi et al.,
2017)

65.44± 0.35 53.60 43.40 59.88± 0.83 49.10 45.84 52.97± 1.02 43.34 47.60

LUCIR (Hou et al.,
2019)

70.84± 0.69 60.00 31.88 68.32± 0.81 57.10 33.48 61.44± 0.91 49.26 35.40

Mnemonics (Liu et al.,
2020)

75.54± 0.85 61.36 17.40 74.33± 0.56 59.56 17.08 68.31± 0.39 59.22 20.83

PODNet-CNN (Douil-
lard et al., 2020)

76.96± 0.29 67.60 - 73.70± 1.05 65.00 - 71.78± 2.77 54.30 -

DyTox∗ (Douillard et al.,
2022)

77.08 70.24 21.21 74.06 65.44 27.16 68.76 61.54 30.04

D3Former (ours) 77.31± 0.41 67.82± 0.36 25.92 75.01± 0.63 63.46± 0.32 27.41 72.43± 0.76 59.91± 1.1 30.80
D3Former-NCM (ours) 77.21± 0.22 69.89± 0.18 17.98 75.26± 0.28 65.11± 0.25 20.21 72.31± 0.24 60.01± 0.85 27.20

Table 2: Results of ImageNet100 with Average accuracy (%), last phase accuracy (%) and forgetting
rate F (%) of different methods in 5,10 and 25 task settings. ∗ indicates results reproduced by us
using author’s official codebase.

Method
N=5 N=10

Avg ↑ Last ↑ F ↓ Avg ↑ Last ↑ F ↓

DyTox Joint - 73.58 - - 73.58
D3Former Joint - 76.42 - - 76.42
LwF (Li & Hoiem, 2016) 44.35 34.20 48.70 38.90 30.10 47.94
BiC (Wu et al., 2019a) 62.65 - 25.06 58.72 - 28.34
iCaRL (Rebuffi et al., 2017) 51.50 ± 0.43 34.20 26.03 46.89 ± 0.35 38.91 33.76
LUCIR (Hou et al., 2019) 64.45 ± 0.32 56.60 24.08 61.57 ± 0.23 51.7 27.29
Mnemonics (Liu et al., 2020) 64.54 ± 0.49 56.85 13.85 63.01± 0.57 54.99 15.82
PODNet-CNN (Douillard et al.,
2020)

66.43 58.90 - 63.21 55.70 -

DyTox∗ (Douillard et al., 2022) 68.96 64.08 18.63 67.12 57.61 31.83
D3Former (ours) 72.73± 0.30 64.58± 0.33 21.41 69.56± 0.29 59.22± 0.32 32.35
D3Former-NCM (ours) 72.61 ± 0.32 64.64 ± 0.29 17.03 70.04± 0.34 59.90± 0.31 27.87

Table 3: Results of ImageNet-1K with Average accuracy (%), last phase accuracy (%) and forgetting
rate F (%) of different methods in 5 and 10 tasks setting. ∗ indicates results reproduced by us using
author’s official codebase.
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4.2 RESULTS

We conduct exhaustive experimental analysis to test the mettle of our approach. We use three metrics
to quantify the performance: 1) average accuracy across all phases, 2) accuracy of the last phase and
3) forgetting rate F defined as the difference between accuracy of Θ0 and ΘN on the same test data
Dtest

0 following (Liu et al., 2020). Further, following (Liu et al., 2021a), we either use the softmax
predictions from the final classifier or use a nearest class mean based classifier (Rebuffi et al., 2017)
during inference. We refer to these as D3Former and D3Former-NCM respectively in the results.

CIFAR-100: Tab. 1 and Fig. 1 summarizes the results on CIFAR-100 dataset when we add incre-
mentally add 10, 5 and 2 classes respectively to a model trained on the first 50 classes. We observe
that as the number of phases increases, the gap between D3Former and the compared methods pro-
gressively increases – thanks to our dual-distillation and logit-correction mechanisms. Specifically,
for 25 task experiment, our method improves average accuracy from 62.83% to 68.68% (+5.8%).

ImageNet: We summarize the results of incrementally learning ImageNet Subset-100 dataset in
Tab. 2. We consider 5, 10 and 25 task incremental setting. Our method achieves the best average
accuracy of 77.5% in the 5 phases settings and 72.43% in 25 phases settings and is comparable to
(Douillard et al., 2020; 2022) in 10 phases setting. Tab. 3 summarizes ImageNet-1K results in 5 and
10 phase setting. Unlike small scale datasets, ImageNet shows relatively better performance while
using NCM. The aforementioned behaviour is not present in previous CNN based methods (Douil-
lard et al., 2020). This can be attributed to two factors: first, transformers have better generalization
compared to CNNs (Zhang et al., 2022a), which results in better class means, second, NesT uses
higher embedding dimension for large scale datasets which can help in NCM based classification.

Table 4: Average accuracy (%) for MNIST,
SVHN in 5 tasks setting with 2 classes
each with 4.4k fixed memory (∗ indicates
use of exemplars)

Method MNIST SVHN

EWC (Kirkpatrick et al., 2016) 19.80 18.21
LwF (Li & Hoiem, 2016) 24.17 -
GEM∗ (Lopez-Paz & Ranzato, 2017) 92.20 75.61
RPS-Net∗ (Rajasegaran et al., 2019) 96.16 90.83

D3Former ∗ (ours) 98.85 95.81

MNIST, SVHN: Thanks to the better inductive bi-
ases of our hybrid architecture, D3Former can scale
to small datasets like MNIST and SVHN too. This
uniquely differentiates us to recent efforts (Douillard
et al., 2022; Yu et al., 2021) in utilizing transformer
architecture for incremental learning. Tab. 4 summa-
rizes the average accuracy results on these datasets by
adding two new classes in every incremental phase.
Our method clearly surpasses other methods by more
than 2% for MNIST and 5% for SVHN dataset.

4.3 DISCUSSIONS AND ANALYSIS

4.3.1 Contribution from Each Loss Terms: We analyse the contribution of each component in
our loss formulation in Fig. 4. We observe that with just cosine distillation, NesT is able to achieve
almost comparable accuracy as the baselines (Wu et al., 2019a; Rebuffi et al., 2017; Hou et al.,
2019). The addition of logit adjustment offset alone brings about 1.5% - 2% improvement over
using cosine distillation loss. We observe that Grad-CAM loss alone is not strong enough to boost
the accuracy. This is because of the model’s inability to handle abrupt changes in model parameters
caused due to class imbalance. However, when combined with other losses, we observe considerable
improvement.

4.3.2 Sensitivity Analysis on τ , γ, λ: There is a trade off between forgetting and learning while
doing logit adjustment. As shown in Tab. 6, a high value of τ effectively reduces the forgetting, but
puts much emphasis on old classes that hinders new learning. In contrast, a small value of τ does
not have enough impact on retaining old classes. Table 7 clearly shows the benefit of using Lcam

and Ldis in improving accuracy. For 5 tasks CIFAR-100 setting, τ=1, λ=7 and γ=0.1 obtains the
best results.

4.3.3 On Data Used for Distillation: We study the effect of distilling from exemplars verses all
the data-points here. Applying distillation on all data combined with debiasing techniques such as
logit adjustment, could impede learning of new tasks. Although it helps in reducing catastrophic
forgetting, it adds a lot of constraints on the learning of new classes. This becomes more prominent
in case of small datasets, due to less number of learnable parameters. Tab. 5 shows the positive effect
of only applying distillation on exemplars, which is intuitive.
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Mixup Distillation S = 1 S = 2

✓ all samples 62.10 60.80
✓ exemplars 66.71 64.71

exemplars 72.21 67.07

Table 5: Effect of using Mixup and
distillation in incremental phases. Im-
pact of different patch size S is also
shown. The average accuracy for 5
task CIFAR-100 is reported.

Figure 4: Ablation experiment on the contribution of
each loss for CIFAR-100 (5 tasks).

τ Avg ↑ Last ↑ F ↓

0 60.26 48.51 38.41
0.5 66.93 57.65 28.84
0.75 69.34 60.29 22.67
1 72.21 66.30 12.09
1.25 71.72 65.61 11.32
1.5 71.14 65.07 07.70

Table 6: Effect of varying τ in a 5 task
CIFAR-100 setting.

γ Avg ↑ Last ↑ λ Avg ↑ Last ↑

0 67.85 60.16 0 57.34 48.67
0.05 71.97 66.39 5 71.78 66.21
0.10 72.21 66.24 7 72.35 66.36
0.15 72.03 66.25 9 72.17 66.57
0.20 71.81 66.16 12 71.95 66.46

Table 7: Effect of γ and λ in a 5 task CIFAR-100
setting.

4.3.4 Effect of Mixup: Our method uses mixup augmentation (Zhang et al., 2017) in the initial
phase where half of the classes are learnt. However, we observe differences in performance when
using mixup in incremental phases. For CIFAR-100, using mixup in incremental phases proves to be
unfavorable. This is because distillation loss is indeed adding strong regularization for these small
scale datasets. We see this trend in Tab. 5.

4.3.5 Generality of our Approach: We note that our proposed loss formulation (Ldis, Lcam and
Ladj) is agnostic to the backbone network being used. To elucidate this, we swap the NesT backbone
with a standard ResNet-18 backbone and report the result in Tab. 8 for 5 task Imagenet100 setting.
We borrow the hyper-parameters for the ResNet backbone from AANet (Liu et al., 2021a) and use
τ=0.3, λ=5 and γ=0.01. This shows that our proposed distillation and logit adjustments helps in
reducing forgetting, however forgetting is much higher when compared to D3Former.

Setting Avg ↑ Last ↑ F ↓

ResNet + Ldis 68.52 55.83 34.81
ResNet + Ldis+Ladj 71.84 61.81 24.25
ResNet + Ldis+Ladj+Lcam 71.97 62.26 23.18

Table 8: Our proposed loss also shows improvement when applied to a ResNet-18 backbone

5 CONCLUSION

We propose D3Former, a hybrid ViT based model that is tuned for class incremental learning. We
propose two fundamental changes to effectively balance the stability and plasticity required for a
continual learner: First, we view each incremental phase as a long tail distribution and show the
effectiveness of a simple logit offset in reducing inherent bias towards new classes. Second, we
show that preserving the spatial attention response of a model via distillation can help in improving
the spatial awareness of the model and reduce catastrophic forgetting. D3Former achieves superior
performance gains over the state-of-the-art methods on MNIST, SVHN, CIFAR-100 and ImageNet.
We hope our approach can serve as a simple baseline for incremental hybrid ViTs.
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A APPENDIX

A.1 TRAINING DETAILS

Zeroth phase: The zeroth phase training starts with 10 warm up epochs for small scale datasets, and
20 epochs for large scale datasets. The learning rate η starts with 2.5e-4 and increases as a factor of
current step number and current epoch as follows:

η = η × epoch× step, (7)

which reaches a maximum of 1.0 and then drops back to 2.5e-4. For the rest of the epochs, the
learning rate decays following cosine annealing scheduler till it reaches zero on the last epoch. For
data augmentation, mixup, random augmentation and random erasing are used for both large and
small scale datasets.

Incremental phases: In each incremental phase, the new classes classifier weights are initialized
following weight imprinting introduced in (Qi et al., 2018), old classes classifier weights are frozen.
The learning rate starts from 2.5e-4 for the feature extractor and 2.5e-3 for the classifier. Both
learning rates follow a cosine annealing scheduler that decays the weight till it reaches zero at the
final epoch. The number of epochs for each phase is 250 in case of 10 classes per task and 5 classes
per task, while for 2 classes per task the number of epochs is kept at 150.

Knowledge distillation factor λ is increased every phase as a factor of number of classes as follows:

λt = λt−1 ×
√

B + C

C
, (8)

Where B is the number of base classes, and C is the number of new added classes every phase. The
classes exemplars are chosen following the same herding method of (Rebuffi et al., 2017).

A.2 EFFECT OF AUGMENTATIONS

NesT uses augmentations such as Mixup, RandomErasing and RandAugment. These augmentations
have been shown to be useful in stabilizing training and improve performance of hybrid ViTs (Liu
et al., 2021b; Zhang et al., 2022b). The importance of these augmentations has also been discussed
in the NesT paper. We show the effect of these augmentations when used in the incremental phases.

Table 9: Effect of augmentations when used in incremental phases of 5 tasks setting for CIFAR100

Augmentations Average
accuracy

With Mixup 71.89
With Randaug, RandomErasing 71.84
With all augmentations 72.33

A.3 QUALITATIVE ANALYSIS

Figure 5 shows some qualitative results in the form of Grad-CAMs with increasing number of incre-
mental tasks. It is observed that the model does not forget much and makes use of the discriminatory
regions in an image to make the correct prediction.
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Figure 5: Grad-CAMs for images from ImageNet subset-100 as incremental learning progresses.
This shows that Grad-CAM distillation helps D3Former maintain attention on discriminative
patches. (figure best viewed with zoom-in)
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