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Abstract: Autonomous driving is an exciting new industry, posing important re-
search questions. Within the perception module, 3D human pose estimation is an
emerging technology, which can enable the autonomous vehicle to perceive and
understand the subtle and complex behaviors of pedestrians. While hardware sys-
tems and sensors have dramatically improved over the decades – with cars poten-
tially boasting complex LiDAR and vision systems and with a growing expansion
of the available body of dedicated datasets for this newly available information –
not much work has been done to harness these novel signals for the core problem
of 3D human pose estimation. Our method, which we coin HUM3DIL (HUMan
3D from Images and LiDAR), efficiently makes use of these complementary sig-
nals, in a semi-supervised fashion and outperforms existing methods with a large
margin. It is a fast and compact model for onboard deployment. Specifically,
we embed LiDAR points into pixel-aligned multi-modal features, which we pass
through a sequence of Transformer refinement stages. Quantitative experiments
on the Waymo Open Dataset support these claims, where we achieve state-of-the-
art results on the task of 3D pose estimation.

Keywords: autonomous driving, perception, human pose, key points, skeletal
representation

1 Introduction

Robotic systems which operate in environments with humans are required to avoid collisions with
people and benefit from analysing their actions and forecasting future behaviors. Human pose un-
derstanding is a well established research direction in computer vision with numerous industrial
applications [1, 2, 3, 4]. In this work we focus on 3D human pose understanding for the autonomous
vehicle (AV) industry and robotic applications in general.

Safety is the top priority for the AV industry. Many robotic platforms use sensors in different modal-
ities (e.g. cameras, LiDARs, radars, audio, etc.) to improve safety by analyzing more signals about
the environment. Using RGB cameras coupled with LiDAR sensors could be considered as a stan-
dard sensor suite for most robotic platforms. While many studies have shown impressive results for
estimating human poses using RGB imagery, there is a paucity of methods which can effectively use
both modalities [5].

Recent studies have made great headway into estimating 3D human pose in controlled environments
[1], but many real-world and safety-critical robotic applications require estimating human poses in
uncontrolled environments, where subjects may be captured under different levels of occlusions,
from various perspectives and across any ranges. There are several approaches to estimate 3D hu-
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man poses in uncontrolled environments [5], but they have insufficient accuracy to unlock their full
potential, especially for AV applications.

Another limiting factor for robotic applications of available methods of 3D pose detection is their
computational complexity. There are fast methods for detecting a 3D bounding box which contains
a single person [6, 7]. Thus most robotic applications represent humans with 3D bounding boxes.
While this crude representation of people allows such applications to meet basic safety requirements
and avoid collisions, it is not sufficient for understanding complex human body gestures. There are
methods which output feature rich representations and estimate parameters of full body meshes [8],
but they are relatively slow. Representing 3D human body pose as a sequence of locations of 3D key
points inside the body could be considered as a balanced trade off between fast to compute boxes
and slow full body models. The main goal of this work is to provide a fast method for human pose
estimation in uncontrolled environments which efficiently uses sensor modalities common for AV
industry and outputs representations rich enough to enable analysis of complex human behaviors.

One of the key factors enabling research and development of methods for human pose understanding
is the availability of high-quality ground truth 3D data with human poses and sensor data. There are
few ways to collect such data: marker or markerless camera based motion capture systems (suitable
for controlled indoor environments); IMU based motion capture systems (suitable for both indoor
and outdoor, but also controlled environments) [1] and manual human labeling (suitable for all
environments, but expensive and error prone). To the best of our knowledge, there is no large-scale
outdoor dataset with human poses collected in an uncontrolled environment with ground truth 2D
and 3D keypoints with RGB and LiDAR for a fully supervised training mode. Waymo recently
released a version of their Waymo Open Dataset (WOD v1.3.2) with a large amount of camera (2D)
keypoints and small amount of laser (3D) keypoints (enough for fine-tuning and evaluation purposes)
which is suitable for weakly and/or semi-supervised training modes. In this work we use the WOD
v1.3.2 dataset to demonstrate that our method can reliably predict 3D human pose in uncontrolled
and challenging AV scenarios, and we compare our approach with several state-of-the-art methods
[9, 10, 11] after adapting them for multi-modal applications.

We propose HUM3DIL, a light-weight 3D human joints prediction network, that leverages RGB
information with LiDAR points, in a novel fashion, by computing pixel-aligned [12] multi-modal
features with the 3D positions of the LiDAR signal. These features are then used by subsequent
Transformer-based refinement stages, to produce the desired 3D joints. We train our model in a
semi-supervised manner, to maximize the utility of both 2D annotations (less expensive to collect,
available in larger volumes) and 3D labels (expensive to collect, accurate, but with limited coverage).
Quantitative results on Waymo Open Dataset indicate state-of-the-art performance. Being accurate,
fast and lightweight, HUM3DIL can be deployed into onboard autonomous driving systems to pro-
vide real-time perception signals of human road users. We believe downstream tasks can greatly
benefit from these fine-grained signals.

Related Work: There are considerable amount of prior works in 3D human pose reconstruction,
mostly focused on estimation from RGB images alone. There are two main classes of methods, the
first of which is model based [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23] and relies on statistical
human body models like SMPL [24] or GHUM [25]. These methods do not estimate 3D pose
directly, but instead regress the parameters of a statistical body model, which has built-in anatomical
and kinematic constraints. This leads to more natural predictions, with body shape usually estimated
as well, even for poses not encountered during training. The second class of methods is skeleton-
based [26, 27, 28, 22], where the 3D pose is represented by 3D joint positions and these are to
be regressed or detected directly from the input. These methods have the advantage of usually
being more accurate and faster, but they are not guaranteed to produce anatomically correct human
skeletons (e.g. the left arm may be reconstructed with different length than the right arm). Our
proposed model falls in the latter category, as our goal is to estimate pedestrians as accurately as
possible in real-time. Mixed approaches have started to recently emerge, like in e.g. [9], where 3D
positions are inferred directly, but anatomically regularized through a statistical model.

There are works that use depth information, either separately or in combination with an RGB image,
to reconstruct the 3D pose [29, 30, 31]. Approaches that utilize LiDAR information are hard to come
by, mostly because of the lack of ground-truth 3D human pose paired with LiDAR data. There are
a few datasets that, to different degrees, do provide 3D annotations. The PedX dataset [32] offers
14, 000 3D automatic pedestrian annotations obtained using model fitting on different modalities,
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gathered from three different real-world scenes. The Waymo Open Dataset [33] has a similar amount
of 3D annotations as [32], but it features many more different environments (2,030 real scenes, 7,650
different people) with high-quality 2D and 3D manual annotations. Even with the existence of these
datasets, the few works on 3D pose reconstruction published in this space mostly rely on weak
supervision, by lifting 2D pose information in 3D. [34] trains on 2D ground-truth pose annotations
and uses a reprojection loss for the 3D pose regression task. [11] creates pseudo ground-truth 3D
joint positions from the projection of annotated 2D joints, by considering neighboring LiDAR points
in the projection space. During training, they directly compare the predicted 3D positions against
this pseudo ground-truth.

2 Methodology

2.1 Problem Formulation

We focus on the task of key points localization and formulate the problem as estimating 3D locations
for a set of key points Y ∈ RNj×3 inside human body, given the ground truth or predicted bounding
box of a human as well as multi-modal inputs from camera and LiDAR sensors: an RGB camera
image I ∈ [0, 1]H×W×3 and a point cloud P ∈ RNp×3, consisting of Np LiDAR points from a
single scan.

Camera Model. For correct LiDAR points to camera image projections, we use a differential imple-
mentation of the Waymo Open Dataset [33] camera model, with rolling shutter effect compensated.
We denote the intrinsic information (e.g. lens distortion, shutter speed, focal length, focal point etc.)
as a vector Ki, and the extrinsic parameters (e.g. vehicle pose, camera pose, linear and rotation
speed) as Ke. The complete camera information will be denoted as K = [Ke|Ki] ∈ R1×Nk . The
associated camera image projection operator will be denoted by Π(∗,K), where a 3D input will be
correctly projected into the image space.

2.2 HUM3DIL

Our network, deemed HUM3DIL (see fig. 1), receives as input the RGB camera image I, LiDAR
point cloud P, camera intrinsics K, the paired 2D and 3D bounding boxes, and outputs the pre-
dicted 3D human keypoints Y. Our goal is to use image input to better exploit or disambiguate the
structure present in the 3D point cloud, while at the same time use the 3D points to anchor imagery
evidence. Because we have access to the ground-truth camera intrinsics, we can move between 3D
space and 2D image space by projection, and vice-versa, by back-projection. Motivated by recent
advancements in 3D pose estimation and point-cloud processing [36, 37, 9], we use a Transformer-
based architecture [38] to process 3D and image-based structural information at the same time,
compared to typical approaches which use disconnected PointNet 3D [39, 40] embeddings and/or
image features.

Enriching LiDAR points with image evidence We construct a depth-image projection D ∈
RH×W×1 into the space of LiDAR point cloud P. We concatenate it with the raw RGB image,
[I;D], and pass the derived tensor through a convolutional architecture. Thus, we simultaneously
inform the convolutional layers of the regions of interest in the image, i.e. sparse locations on the
silhouette of the person, and make depth information available from the start. Adding the depth
map channel helps disambiguate the task of key point prediction in cases with heavy occlusions or
in crowded scenes where multiple people are in the frame - depth map channel will have non zero
values only for a person of interest. For the convolutional architecture, we employ a lightweight
U-Net network [41], that outputs a dense feature map representation F ∈ RH×W×Df . This map is
used to query from, based on the projection of the LiDAR points, by bilinear interpolation:

Fi = F[Π(Pi,K)] ∈ R1×Df (1)

for each point Pi ∈ P. We thus obtain pixel-aligned image features for LiDAR points.

LiDAR points embedding Aside from the per-point depth-infused image features, we also process
the initial 3D LiDAR points. We use Random Fourier Features (RFF) [42] to embed P in a higher-
dimensional space, capturing high-frequency behaviour of the signal. We use a random Gaussian
matrix B ∈ R3×Dp/2, with each entry independently drawn from a normal distribution N (0, σ2).
The transformed points will have the form P̃ = [cos(2πPB); sin(2πPB)] ∈ RNp×Dp .

3



Camera intrinsics

U-Net

RGB Camera Image

Multi-modal Features

LiDAR 3D Points

                                                                          

Random
Fourier
Embedding

Training loss

L 
x 

(T
ra

ns
fo

rm
er

 E
nc

od
er

) M
LP

Predicted joints

Projected LiDAR depth

Figure 1: Overview of our proposed HUM3DIL architecture. It estimates the 3D joint positions of a sin-
gle person from a multi-modal input representation. We encode LiDAR points P through a Random Fourier
Embedding [35], to produce representations P̃. The LiDAR points are also used to compute a depth-map
representation D, which are concatenated with input RGB image I. We first use an image feature extractor
(U-Net) that will act on the concatenation of D and I. The projected LiDAR points will further read features
from the produced map F. We construct a token sequence of size equal to the number of points. Each token,
in the beginning, will have information relating to the image features, camera intrinsics and Random Fourier
Embeddings. L sequences of Transformer Encoder will act on the tokens. We read the final Nj tokens and
regress the 3D joints through an MLP.

Transforming the LiDAR points In order to regress Y, we employ a Transformer architecture
[43]. We define an input i-th token Mi ∈ R1×D, with D = Df +Dp +Nk, as:

Mi = [K,Fi, P̃i], (2)

the concatenation of the camera intrinsics, the per-point image feature and the per-point Fourier
representation. We will apply the Transformer on a fixed sequence of Np tokens. In order to work
with a variable number of tokens, we use a fixed maximum size for the token sequence, Nmax

p . We
shuffle and trim excess points, and pad with zeros if we have a fewer number of points. The complete
input sequence is M ∈ RNmax

p ×D. This sequence is at first linearly embedded by using a learnable
matrix E ∈ RD×D0 . Here, D0 is the operating dimensionality of the Transformer architecture. We
additionally concatenate learnable joints tokens, MJ ∈ RNj×D0 . Similar to [9], we use a cascaded
block of L Transformer encoder layers, and collect the predicted 3D keypoints Ỹ from an MLP
applied on the transformed joints tokens:

M0 =

[
MJ

ME

]
(3)

Ml = TLl(M
l−1) (4)

Ỹ = MLP(ML−1
0...Nj

) (5)

Losses Labeling 3D keypoints is significantly more expensive and slower than 2D keypoints in
uncontrolled real-world environments. As a result, we usually collect a dataset containing many
more 2D annotations than 3D labels. To maximize the utility of all available labels (2D and 3D) and
boost performance, we use a mixture of weakly and fully supervised losses to train our model. We
denote the ground-truth 2D joints keypoints as y ∈ RNj×2 and define the 2D reprojection, and 3D
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subset # subjects # samples
total w\ 2D keypoints w\ 3D keypoints w\ both

training 6999 149683 144866 9472 4655
validation 1651 28614 27382 2137 905

Table 1: Human Key Points in WOD v1.3.2

reconstruction losses as:

L2D =
1

Nj

Nj∑
i=1

‖yi −Π(Ỹi,K)‖2. (6)

L3D =
1

Nj

Nj∑
i=1

‖Yi − Ỹi‖2. (7)

where ‖∗‖2 is the `2 vector norm – i.e. the more robust euclidean distance between predictions. We
add a small ε during training, as the function is not differentiable at 0. Our final loss is given by:

L = L3D + λL2D (8)

where λ is a scalar factor used to weigh the two losses.

Semi-supervised support In order to efficiently train with mixed 2D and 3D labels, we also set a
training batch to contain a pre-defined fraction of 2D-to-3D annotations. This will allow the network
to not forget about 3D, when the dataset is drastically biased towards 2D annotations. We show a
study on the effect of the percentage of 3D and the loss balancing factor in figure 4, left.

3 Experimental Results

Datasets Waymo Open Dataset v1.3.2 (WOD) [33] contains RGB and LiDAR range images cap-
turing various road users. Recently camera (2D) and laser (3D) key points annotations on a portion
of human subjects (pedestrians and cyclists) in WOD have been released, namely Waymo Human
Key Points dataset v1.3.2 (WHKP). We benchmark HUM3DIL and other baselines on the WHKP.
As the official WOD/WHKP testing subset is hidden from the public, we randomly select 50% of
subjects from the WOD validation subset as our validation split, and the rest 50% fall into the testing
split for benchmarking. In our experiments, we use the ground-truth camera and LiDAR bounding
boxes during training and evaluation, for two reasons: a) disentangling the evaluation of the key
points localization from the object detection task; b) setting an easy-to-reproduce baseline for future
research works.

Metrics Where applicable, we will report two metrics: the mean per-joint position error (i.e.
MPJPE) between predicted and ground-truth 3D joints, and a similar one, for the 2D case. As
the ground-truth is not available for every frame, or even for every joint, we will use a visibility
indicator vj

i ∈ {0, 1}. This signals if we have a ground-truth annotation for a particular joint i, of a
particular testing sample j. The MPJPE over a particular dataset will then have the value:

1∑
i,j v

j
i

∑
i,j

vj
i ‖Y

j
i − Ỹj

i ‖2 (9)

Evaluation on WHKP We train three different methods on the WHKP training subset: ours (i.e.
HUM3DIL), THUNDR [9] reimplemented following the original paper, THUNDR with also an ad-
ditional depth image as input, ContextPose [10] using publicly available code, and the multi-modal
approach of [11], for which we report their number on a similar version of the dataset. These are all
state-of-the-art methods in 3D pose estimation for single persons, from an RGB image. We tried to
make comparisons against pure RGB image methods as fair as possible, but there is a modeling gap
that cannot be breached – our architecture naturally exploits LiDAR signal with ease. Also note that
we have 1/5− 1/14th of the number of parameters of competing methods. We report results on the
test split in Table. 2.
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Implementation details In all our experiments we use a U-Net backbone [41], with randomly
initialized weights. The encoder/decoder convolutional filter sequences are [32, 64, 128, 256] and
[256, 128, 64, 32], respectively. The backbone has 2, 095, 392 parameters. For the Transformer ar-
chitecture, we use L = 4 stages, an embedding size 256 and 8 heads for the MultiHeadAttention
layer. We train the network for 50 epochs, with batch size of 16, base learning rate of 1e − 4 and
exponential decay 0.99. We set the maximum number of LiDAR points to 1024. Our Transformer
architecture consists of 3, 229, 696 parameters, with a final MLP of 771 neurons. We validate σ = 10
and λ = 1e − 2. The complete architecture has 5, 325, 859 parameters. All of our networks were
trained on a single V100 GPU with 16GB of memory. Our code is implemented in TensorFlow. We
test the network in inference mode on an Nvidia RTX 2080 GPU, for a batch of a single example.
One pass is done in 8 milliseconds. The main performance/memory bottleneck resides in computing
the attention matrix (which is ≈ 1000× 1000) in the Transformer architecture.

Method MPJPE (cm) ↓ MPJPE 2D (pixels) ↓
ContextPose [10] 10.82 12.95

Multi-modal [11]* 10.32 N/A
THUNDR [9] 9.62 14.81

THUNDR [9] w/ depth 9.20 13.53
HUM3DIL (Ours) 6.72 8.33

Table 2: Performances of different 3D joint predictors on the WHKP [33] test split. Our full multi-
modal approach is the best performer. (*) Note that [11] was evaluated on a different subset of
WOD.

Figure 2: Qualitative predictions on the WHKP test subset. In each image, from left to right, we have: the
input RGB image, the overlayed LiDAR points, and our 3D joints predictions. Our method achieves plau-
sible reconstructions even in challenging settings: low lighting conditions, cluttered environments, extreme
occlusions or partial views and non-trivial poses. Note that in the case of partial views (e.g. second row from
top, second column from left), our method outputs an anatomically plausible human prediction, even with an
incomplete RGB signal.
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Figure 3: Failure cases on the WHKP test subset. In each image, from left to right, we have: the input RGB
image, the overlayed LiDAR points, and our 3D joints predictions. Most points of failure relate to: unusual
person appearances or poor capture conditions, limited image support and extreme occlusions.

Figure 4: Visualizing network performance on the WHKP validation subset, with respect to semi-supervised
choices, distance to LiDAR and keypoint occlusions. Left. We plot a 3D error surface, where on the X-axis
we have the 2D loss weight λ, and on the Y-axis we have the percentage of 3D samples in a mixed-supervision
training batch. The plot shows the importance of 2D samples, as the performance gradually drops when we
under-utilize them. Bottom-right. We a plot a 3D error curve, where on the X-axis we have the distance to the
LiDAR point-cloud. Errors were computed for 20 equally concentrated bins, w.r.t. distance. The dotted points
represent the centers of those bins. Note how the error gracefully decays when the target subject is either too
near or too far away. Top-right. We plot a 3D error curve with respect to the number of visible joints. As
expected, the method degrades when more parts of the target human are not visible (due to partial views or
self-occlusions).
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3.1 Ablation studies

In table 3, we ablate different high-level methodological choices in our proposed architecture and
report results on the validation set of WHKP. First, we disable the weakly-supervised loss by setting
λ = 0. We notice that the error increases, as expected, substantially in the 2D MPJPE, but also in
the 3D MPJPE. This showcases the importance of using the available 2D training signal, even for
inferring 3D joints. Next, we disable the Random Fourier Embedding for the 3D LiDAR points, by
replacing it with an identity embedding. This has a fairly low impact on the performance. We also
disable the depth input, leaving only the RGB image through the U-Net backbone. The performance
drop is not as dramatic in this case, as LiDAR point positions are already available as tokens. How-
ever, this signals the fact that the feature processing done by the backbone is not redundant, as a gap
in performance still exists. When we disable the RGB, we get ≈ 1.3 cm drop in performance. We
also ablate with the PointNet[40] and PointNet++[39] architectures, instead of a Tranformer, and
performance is worse. The best performing method has all the components activated, showing their
complementary impact.

Method MPJPE (cm) ↓ MPJPE 2D (pixels)
HUM3DIL w/ λ = 0. 8.62 15.61

HUM3DIL w PointNet 8.16 9.96
HUM3DIL w/o RGB 8.06 11.41
HUM3DIL w/o depth 7.63 9.13

HUM3DIL w PointNet++ 7.71 9.36
HUM3DIL w/o RFF 7.01 8.79

HUM3DIL full 6.72 8.33
Table 3: Performance of our method with different architectural choices. The model with full fea-
tures – including multi-modality, semi-supervised training and Transformer architecture – is the best
performer.

4 Limitations

Failure cases. In figure 3, we randomly select and show six examples of results where the error
exceeds 15 cm. Extreme occlusions and partial views are the most difficult cases to handle. Please
note that the results are still, generally, anatomically plausible. Performance decay. We also show
the performance decay w.r.t. the distance to the LiDAR human point-cloud (which also controls the
sparsity of the LiDAR signal). As we can see from figure 4, bottom-right, our performance drops
when the subject is too near or too far, but still produces reasonable results. We are seeing a ≈ 3 cm
error gap between the best and worst conditions (as captured by the dataset). We also see a perfor-
mance degradation (see figure 4, top-right) when the target subject is heavily occluded, due to partial
views or self-occlusions. The error increases almost two-fold when going from full-view to severely
occluded. General applicability. For now, our network can only process each human instance by
individually cropping, so it cannot use information about multiple humans at once (e.g. [17, 44, 45]),
to improve the error and processing speed. Also, we do not utilize temporal information (e.g. [46])
which could further stabilize predictions and improve errors under occlusions.

5 Conclusions

We have presented a novel deep neural network architecture, which has been tailored for the needs of
modern autonomous driving vehicles: fast, lightweight and accurate, for the problem of 3D human
pose estimation from color and 3D signals. Our novel architecture, deemed HUM3DIL, makes usage
of both RGB and LiDAR data, by gathering pixel-aligned multi-modal features, that are then fed
into a sequence of Transformer stages. The network is thus informed by multi-modal signals, which
complement each other in achieving state-of-the-art performance. We also train in a semi-supervised
regime, with limited annotated 3D data, but with an abundance of 2D labels, almost 2 orders of
magnitude more. This makes data collection and annotation easier, as 3D signals are non-trivial
and tedious to annotate precisely. The performance of the network is supported by a quantitative
evaluation on one of the largest relevant datasets in the literature, with methodical ablation studies.
For future work, we will explore temporal consistencies between the predictions and include them
in motion forecasting and analysis.
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