
Automatica 182 (2025) 112504
 

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica  

Convergence analysis of gradient flow for overparameterized LQR 

formulationsI

Arthur Castello B. de Oliveira a,∗, Milad Siami a, Eduardo D. Sontag a,b

a Department of Electrical and Computer Engineering at Northeastern University, Boston, MA 02115, USA
b Department of Bioengineering and affiliated with the departments of Chemical Engineering and Mathematics, at Northeastern 
University, Boston, MA 02115, USA

a r t i c l e  i n f o

Article history:
Received 10 May 2024
Received in revised form 27 May 2025
Accepted 23 June 2025
Available online 25 August 2025
Keywords:
Input-to-state stability
Learning theory
Singularities in optimization
Optimal control theory
Application of nonlinear analysis and 
design
Stability of nonlinear systems

 a b s t r a c t

This paper analyzes the intersection between results from gradient methods for the model-free linear 
quadratic regulator (LQR) problem, and linear feedforward neural networks (LFFNNs). More specifically, 
it looks into the case where one wants to find an LFFNN feedback that minimizes an LQR cost. It starts 
by deriving a key conservation law of the system, which is then leveraged to generalize existing results 
on boundedness and global convergence of solutions, and invariance of the set of stabilizing LFFNNs 
under the training dynamics (gradient flow). For the single hidden layer LFFNN, the paper proves that 
the solution converges to the optimal feedback control law for all but a set of Lebesgue measure zero 
of the initializations. These results are followed by an analysis of a simple version of the problem – the 
‘‘vector case’’ – proving the theoretical properties of accelerated convergence and a type of input-to-
state stability (ISS) result for this simpler example. Finally, the paper presents numerical evidence of 
faster convergence of the gradient flow of general LFFNNs when compared to non-overparameterized 
formulations, showing that the acceleration of the solution is observable even when the gradient is 
not explicitly computed, but estimated from evaluations of the cost function.

© 2025 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND 
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Neural networks and machine learning (ML) tools are being in-
creasingly used in control design (Alali & Imani, 2023; Motamedi, 
Behzad, Zandi, Salehinejad, & Siami, 2024; Ravari, Ghoreishi, & 
Imani, 2022, 2024; Sznaier, Olshevsky, & Sontag, 2022; Wafi 
& Siami, 2023; Zandi, Salehinejad, Behzad, Motamedi, & Siami, 
2023), and are particularly useful in model-free applications, 
where a model of the system might not be available (Cui, Jiang, & 
Sontag, 2024; Fazel, Ge, Kakade, & Mesbahi, 2018). In such scenar-
ios, an ‘‘oracle’’ might be queried to estimate the cost associated 
with a specific control law, as illustrated in Fig.  1. This feedback 
has adjustable parameters (or ‘‘weights’’), which are updated 
through the gradient of the estimated cost, typically employing 
gradient descent or some other similar numerical optimization 
method.
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Understanding the convergence of such learning techniques is 
challenging due to inherent nonlinearities. In particular, neural 
networks leverage both their compositional structure and the 
nonlinear activation functions of each layer. Previous works on 
neural networks isolate the compositional structure from the 
nonlinear activation by studying linear feedforward neural net-
works (LFFNNs) (Bah, Rauhut, Terstiege, & Westdickenberg, 2022; 
Chitour, Liao, & Couillet, 2023; de Oliveira, Siami, & Sontag, 2023, 
2024b; Eftekhari, 2020; Kawaguchi, 2016; Min, Tarmoun, Vidal, & 
Mallada, 2021; Min, Vidal, & Mallada, 2023). The results are typ-
ically given for solving a static supervised learning problem, i.e. a 
linear regression of labels u on KN . . . K1y, where y is an input. 
Not only powerful ‘‘almost everywhere’’ convergence results have 
been obtained for the regression problem (Arora, Du, Hu, Li, & 
Wang, 2019; Bah et al., 2022; Baldi & Hornik, 1989; Chitour et al., 
2023; Eftekhari, 2020; Kawaguchi, 2016), and a type of input-
to-state stability (ISS) property of an associated problem was 
characterized (de Oliveira et al., 2023), but, perhaps surprisingly, 
the optimization on the individual matrices Ki can result in much 
faster convergence than optimization on a single matrix K  (Min 
et al., 2021, 2023; Tarmoun, Franca, Haeffele, & Vidal, 2021).

Despite the rich literature, current results on LFFNNs can-
not be applied out-of-the-box to non-convex problems, even if 
under some gradient dominance condition (PL-inequality). An 
extremely popular and well-studied example of such a system 
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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Fig. 1. System overview of the model-free control design process. The design 
algorithm attempts to find a feedback matrix that minimizes the output of the 
oracle, which in turn provides a (possibly noisy) estimate of the cost function 
every time it receives a candidate feedback matrix.

is the linear quadratic regulator (LQR) problem, whose general 
goal is to minimize a quadratic cost function J(K ), where K  is 
a candidate feedback law. When the system dynamics are linear 
and known, an explicit optimal solution is obtainable by solving 
a Riccati equation on the system matrices (Sontag, 2013), but 
such an approach is generally unfit for model-free scenarios, 
where the system is assumed unknown and only the value of the 
cost function for different feedback matrices can be queried to 
some oracle (as illustrated in Fig.  1). This type of scenario can 
be understood as a ‘‘policy optimization’’ formulation for the LQR 
problem (poLQR) (Hu et al., 2023), and approximates the LQR 
problem to reinforcement learning problems, motivating previous 
works where the optimization is solved by following the negative 
flow of the gradient K̇ = −∇J(K ), or negative descent direction 
Kn+1 = Kn − h∇J(Kn) (for some step-size h > 0) (Cui et al., 2024; 
Fazel et al., 2018; Hu et al., 2023; Levine & Athans, 1970; Mo-
hammadi, Zare, Soltanolkotabi, & Jovanovic, 2022; Sontag, 2022). 
Such ‘‘training’’ is an area of active research to this day due to its 
non-convex landscape, and traces its origins to pioneering work 
by Levine and Athans starting in the late 1960s (Levine & Athans, 
1970). Recent publications have established global convergence 
properties (Fazel et al., 2018; Hu et al., 2023; Mohammadi et al., 
2022), as well as input-to-state stability (ISS) (Cui et al., 2024; 
Sontag, 2022) when the computation of the gradient is subject 
to error or uncertainty. Of special note, in Hu et al. (2023), the 
authors explore the relationship between LQR (and other classical 
control problems) and policy optimization, leveraging the explicit 
expression of the gradient of the linear quadratic cost to prove 
the convergence of gradient descent methods. Similarly, in Zhang 
and Başar (2023), the authors also interpret a gradient approach 
to this problem as policy optimization for the LQR problem, and 
explore the relationship between the finite and infinite horizon 
formulations of the LQR problem to propose a strategy that con-
verges even if initialized outside the set of stabilizing controllers. 
All these results argue for the importance of understanding the 
behavior of the gradient flow when studying the LQR problem in 
a model-free context.

In this context, the primary goal of this paper is to study the 
effects of LFFNNs when applied to the more complex setting of 
solving a model-free LQR problem (poLQR). Mathematically, the 
feedback is written as a product K = KN . . . K1, where Ki repre-
sents the weights of the ith layer of the network. In this context, 
the natural training dynamics take the form K̇i = −∇Ki J(KN . . . K1)
for i = 1, . . . ,N , which is a coupled set of gradient flows done on 
the full set of parameters (K1, . . . , KN ). Notably, the assumptions 
of gradient dominance (PL inequality) and coerciveness of the 
cost function – important for both general non-convex optimiza-
tion (Agarwal, Kakade, Lee, & Mahajan, 2021; Jin, Ge, Netrapalli, 
Kakade, & Jordan, 2017; Nesterov & Polyak, 2006; Polyak, 1963) 
and for gradient methods for solving the poLQR (Fazel et al., 2018; 
Gravell, Esfahani, & Summers, 2020; Mohammadi, Soltanolkotabi, 
& Jovanović, 2021) – do not hold when optimizing over layers of 
an LFFNN. This is due to the introduction of spurious equilibria 
and multiple non-compact sets of critical points in the gradient 
dynamics. Despite those issues, we derive convergence proper-
ties of the solution of an overparameterized formulation for the 
poLQR.
2

Beyond the original goal, literature results on accelerated con-
vergence (Min et al., 2021, 2023; Tarmoun et al., 2021) indicate 
that even the simpler problem of linear activation functions can 
be interesting and useful from more than just a theoretical point 
of view. We demonstrate that this property also holds for the 
poLQR through numerical simulations, although further discus-
sions on computational and sample complexity are required be-
fore it can be determined whether this formulation is inherently 
useful for practical applications.

In sum, this paper takes steps to blend these two strands 
of research: gradient methods for the model-free LQR problem; 
and the analysis of overparameterization in optimization. It looks 
at the use of overparameterized state feedback for the poLQR, 
investigating properties that can be derived for its gradient flow.

To accomplish this, the paper starts at Section 2 by pre-
senting a theoretical background of both gradient methods for 
the LQR problem and overparameterization for linear regression 
problems. Then, in Section 3 the paper formally defines the over-
parameterized policy optimization LQR problem and proves that 
it shares the same convergence properties as the overparame-
terized linear regression. Then, Section 4 provides a complete 
characterization of a simplified version of the problem: the sin-
gle input and single state/output. The center-stable manifold of 
the spurious equilibria is characterized, and both an ISS-type 
and accelerated convergence properties are formally proven. The 
paper then presents numerical simulations to demonstrate the 
presence of accelerated convergence for the general case in Sec-
tion 5. The simulations show how initialization affects conver-
gence when compared to the non-overparameterized gradient 
flow, both when the gradient is perfectly and imperfectly known. 
Finally, in Section 6 the contributions of this paper are sum-
marized and possible future directions of work are discussed. A 
preliminary version of this work was previously published (de 
Oliveira et al., 2024b), but the proofs appear here for the first 
time, and the discussion is significantly deepened. All proofs of 
the main results are provided in the appendix for the clarity of 
the main text, and proofs of minor results can be found in the 
arXiv version of this paper (de Oliveira, Siami, & Sontag, 2024a).

2. Theoretical background

Throughout this paper, let R+ and R++ be the set of nonnega-
tive and strictly positive real numbers respectively. For n ∈ N, let 
Sn

+
 and Sn

++
 be the set of symmetric positive semi-definite (PSD) 

and positive definite (PD) n-by-n matrices, respectively. Given a 
matrix A ∈ Rn×n, A is said to be Hurwitz if all its eigenvalues have 
negative real part.

2.1. The LQR problem as policy optimization

We begin by presenting results from (Rautert & Sachs, 1997), 
which serve as groundwork upon which we derive our new re-
sults. We also emphasize that despite the reliance of the following 
results on the knowledge of the system matrices, the gradient 
expression derived in this section holds great value for analysis, 
as demonstrated, for example, in Fazel et al. (2018), Hu et al. 
(2023), Mohammadi et al. (2022), where it forms the basis for 
theoretical guarantees regarding convergence rate and accuracy 
in model-free scenarios.

Consider the following linear system: 

Σ

{
ẋ = Ax + Bu
y = Cx

, (1)

where A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rn×n are the system 
matrices, with (A, B) assumed controllable and C assumed full 
rank (Rautert & Sachs, 1997, Assumption 2). Let K := {K ∈ Rm×n

|
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Fig. 2. Graphical representation of a linear feedforward neural network (LFFNN) 
with an input layer y ∈ Rn with n neurons, hidden layers z i ∈ Rκi  with κi
neurons, and output layer u ∈ Rm with m neurons. The computation of the 
network is done for each layer as z i = Kizi−1 , with z0 = y and zN = u, where the 
matrices Ki represent, in the figure, the presence and weight of edges between 
neurons of layer i−1 and layer i. The resulting input–output expression for the 
LFFNN then becomes u = KN . . . K1y.

A+BKC is Hurwitz}, then the objective is to determine an output 
feedback u = Ky, K ∈ K, that minimizes

J(K ) = Ex0∼X0

[∫
∞

0
x(t)⊤Qx(t) (2)

+ u(t)⊤Ru(t) dt
]
,

with given positive definite cost matrices R ∈ Sm×m
++  and Q ∈ Sn×n

++ , 
and for x0 sampled from a probability distribution X0. Throughout 
this paper we refer to K ∗ as the unique solution to the LQR 
problem.

In Rautert and Sachs (1997, Theorem 3.2), the authors provide 
the following expression for the gradient ∇J with respect to the 
feedback matrix K : 
∇J(K ) = 2(B⊤PK + RKC)LKC⊤, (3)

where for any K ∈ K, PK  and LK  are the unique positive definite 
solutions of the following Lyapunov equations

PK (A + BKC) + (A + BKC)⊤PK
+C⊤K⊤RKC + Q = 0 (4)

LK (A + BKC)⊤ + (A + BKC)LK +Σ0 = 0, (5)

respectively, and the matrix Σ0 = Ex0∼X0 [x0x
⊤

0 ] depends on the 
distribution of initial conditions X0, and is assumed to be of full 
rank. From these, we can define the set of desired/optimal values 
of K  as T := {K ∈ K | ∇J(K ) = 0}. With these results established, 
we next look at key literature results on overparameterization.

2.2. Overparameterization - properties and formulation

The optimization landscape of the gradient flow of a linear 
neural networks is usually studied in terms of least square/linear 
regression problems, stated as follows: let Y = [y1, y2, . . . , yk]
and U = [u1, u2, . . . , uk] be the column concatenation of (pos-
sibly noisy) k input–output pairs sampled from an unknown 
function K that one wants to approximate using a linear neural 
network K. Although arguably a simple formulation, the resulting 
gradient system is the object of study of many papers in the 
literature (Bah et al., 2022; Chitour et al., 2023; de Oliveira et al., 
2023, 2024b; Eftekhari, 2020; Kawaguchi, 2016; Min et al., 2021, 
2023).

For some search space of neural networks K, defined as ap-
propriate to the problem, an optimal neural network K∗

∈ K
minimizes J(K) = ∥U − K(Y )∥, where K(Y ) = [K(y1), . . . ,K(yk)], 
and for some norm ∥ · ∥. A linear feedforward neural network 
(LFFNN) (depicted in Fig.  2) is a feedforward neural network with 
linear activation functions between layers, and has: an input layer 
with n neurons; N − 1 hidden layers, each with κi ≥ max(m, n)
neurons, for i = 1, . . . ,N−1; and an output layer with m neurons. 
3

Then, in the specific case of a LFFNN, and being Ki ∈ Rκi×κi−1  the 
ith layer parameter matrix, the function to be minimized becomes 
J(K1, . . . , KN ) = ∥U − KN . . . K1Y∥.

For this problem, and under some reasonable assumptions 
on the ranks of Y  and U , and on the dimensions of the Kis 
(see Kawaguchi (2016), and Assumptions 1 and 2 in Chitour 
et al. (2023) and references therein, or a previous work from the 
authors (de Oliveira et al., 2023)), the following can be summa-
rized from the literature about the optimization landscape of this 
problem:

Proposition 1.  Consider a linear regression problem solved with a 
LFFNN with N layers and trained through gradient flow. Assume U
and Y  are full column rank and that all hidden layers are wider than 
the number of inputs and outputs (i.e.  all hidden layers have more 
neurons than the input and output layers), then:

(1) the problem is generally non-convex and non-concave;
(2) all local minima are global minima;
(3) there are no local maxima;
(4) in the special case where N = 2, all critical points are either 

global minima or strict saddles (i.e.  the Hessian at that point 
has at least one strictly negative eigenvalue);

(5) the solution exists for any initial condition and always con-
verges to a critical point of the dynamics;

(6) if N = 2, the solutions converge to a global optimum for all 
initializations but a set of Lebesgue measure zero.

Proof. Items (1) to (4) are studied in Baldi and Hornik (1989) for 
the single hidden layer case, and Kawaguchi (2016) generalized 
these results to the arbitrarily deep case. Properties (5) and (6) 
are proved in Panageas and Piliouras (2017) for the analogous 
discretized problem (i.e. gradient descent). In Appendix  A we will 
show how to adapt these proofs to the continuous-time (i.e. flow) 
case. An independent proof of (5) and (6) was provided in Chitour 
et al. (2023) for the specific problem of linear regression and 
under an additional assumption on the loss function (‘‘distinct 
critical values’’).

Furthermore, other works in the literature establish useful 
properties of overparameterized linear neural networks when 
compared to equivalent non-overparameterized formulations. In
Min et al. (2021), Tarmoun et al. (2021) the authors study the 
speed of convergence of the gradient flow in overparameterized 
linear neural networks solving linear regressions, showing that 
depending on the initialization of the algorithm, the convergence 
rate can be arbitrarily increased. In Min et al. (2023) the au-
thors extend their results to a more general class of optimization 
problems, although the required assumption of convexity of the 
non-overparameterized problem makes it so that their results are 
not immediately applicable to the LQR problem.

In our previous work (de Oliveira et al., 2023), we provide 
some insights on the loss of robustness in training overparam-
eterized linear neural networks through gradient flow, and show 
how judicious restrictions on the set of initializations might cir-
cumvent this problem.

Such properties for linear neural networks/ overparameterized 
linear regressions could be useful if they held in the context 
of feedback control design. Motivated by these results, the next 
section looks at how one can extend these important results 
for the policy optimization LQR problem, and consequently to 
feedback control design.

3. Feedback control through LFFNNs

Let K = (K1, K2, . . . , Kn) be a LFFNN with N − 1 hidden layers, 
an input layer, and an output layer. Let K , K , . . . , K  be the 
1 2 N
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weight matrices of each layer with K1 ∈ Rκ1×n, K2 ∈ Rκ2×κ1  and 
so forth, with KN ∈ Rm×κN−1 , where κi ∈ Z+ is the dimension 
of the ith hidden layer. Furthermore, we are interested in the 
overparameterized case, i.e. κi ≥ max(m, n) for all i = 1, . . . ,N −

1. For an input y ∈ Rn of the LFFNN, its output u ∈ Rm is given 
by u = K(y) = KNKN−1 · · · K2K1y, and its structure is as depicted 
in Fig.  2. By choosing K as the output feedback law, the closed-
loop dynamics of the LTI system (1) becomes ẋ = Ax + BK(Cx) =

(A + BKN · · · K1C)x, and the LQR problem cost becomes 
J(K) = trace (PKΣ0) , (6)

where for a given K, PK is the unique solution of the following 
Lyapunov equation:
PK(A + BKN . . . K1C) + (A + BKN . . . K1C)⊤PK
+ (KN . . . K1C)⊤RKN . . . K1C + Q = 0. (7)

The notation J(K) and J(K1, K2, . . . , KN ) are used interchangeably 
when the goal is to emphasize the dependency on the linear 
neural network K or on its parameters (K1, . . . , KN ). With this, 
consider the following problem definition.

Definition 1.  Let K be a LFFNN, and A, B, and C be as in (1). 
Define K := {K | (A + BKN . . . K1C) is Hurwitz} and let R ∈ Sm×m

++

and Q ∈ Sn×n
++  be given symmetric positive definite matrices. 

Solving an overparameterized formulation of the model-free LQR 
problem consists in finding a K∗

∈ K that solves 
min
K ∈ K

J(K) := trace (PKΣ0)

s.t. (7).

Then, a gradient flow for the overparameterized model-free 
LQR problem is defined for each i = 1, . . . ,N and any fixed 
‘‘learning rate’’ η > 0 by imposing the following dynamics for 
the parameter matrices Ki that compose K0

K̇i = −η
∂ J
∂Ki

, (8)

and a candidate solution to the overparameterized model-free 
LQR problem is obtained by initializing the gradient flow at some 
K0 ∈ K and selecting whichever point the solution converges 
to (assuming it converges to a point). It is evident that an equi-
librium of the gradient flow dynamics (8) is not necessarily the 
global optimum of the overparameterized poLQR, and a better 
understanding of the landscape of the problem is required before 
one can discuss the optimality of a solution obtained in such a 
manner. Nonetheless, K̇i = 0 for all i = 1, . . . ,N is a necessary 
condition for global optimality, which makes the equilibria of 
(8) natural candidates for a optimal solution. Henceforth in this 
paper, it is assumed η = 1, although comparisons between 
the proposed formulation and other formulations that explore 
variable values for η could prove to be an interesting future 
direction of work.

Regarding the computation of the gradients of J with respect 
to the matrices Ki, consider the following result:

Lemma 1.  Let Bi := BKN . . . Ki+1 and Ri := K⊤

i+1 . . . K
⊤

N RKN . . . Ki+1
for i ∈ {1, . . . ,N−1}, Ci := Ki−1 . . . K1C for i ∈ {2, . . . ,N}, BN := B, 
C1 := C, and RN := R. Then 
∇Ki J = 2[B⊤

i PK + RiKiCi]LKC⊤

i , (9)

where PK is the solution of (7), LK is the solution of
LK[A + BKN . . . K1C]

⊤

+ [A + BKN . . . K1C]LK +Σ0 = 0, (10)
4

and Σ0 relates to the distribution of initial conditions, being equal to 
the covariance matrix if the initialization is random Gaussian with 
zero mean, or equal to the identity for uniformly sampled unitary 
vectors.

Notice that we presented the results so far for arbitrary full-
rank C to keep the comparison with the results from (Rautert & 
Sachs, 1997), however moving forward we will assume full state 
feedback for the system, that is C = I , and initializations in the 
unit sphere, that is Σ0 = I . We next look at what can be said 
regarding convergence guarantees for the proposed problem.

3.1. A conservation law for the overparameterized model-free LQR 
problem

Notice that, relative to the weight matrix of each hidden layer, 
the derivative of the cost J relative to each parameter matrix, 
given by (9) follows an iterative structure that allows the charac-
terization of a conservation law that is satisfied by any solution. 
Such conservation law follows a very similar structure as the 
ones characterized for overparameterized linear regression (see 
for example Lemma 2.3 of Chitour et al. (2023)). This property is 
given in the following lemma:

Lemma 2.  For a gradient flow dynamics (8) used for solving the 
overparameterized model-free LQR problem (poLQR) presented in 
Definition  1, and for any i from 1 to N − 1, the following quantity is 
invariant along any solution (K1(t), . . . , KN (t)) initialized in K:

Ci :=KiK⊤

i − K⊤

i+1Ki+1

=(KiK⊤

i − K⊤

i+1Ki+1)t=0, (11)

where Ci are constant matrices of appropriate dimensions. We refer 
to the set (C1, . . . , CN−1) as the set of invariants of a given solution.

A similar conservation law is leveraged to prove many of 
the properties of the overparameterized gradient flow for linear 
regressions, as can be seen from Lemma 2.3 in Chitour et al. 
(2023), Lemma 1 in Min et al. (2021), Lemma 2.1 of Bah et al. 
(2022), and others. The fact that such property also holds for 
the more general Linear Quadratic cost when overparameterized 
motivates the search presented in this paper for other useful 
properties that might hold for this case.

With this, and knowing that the LQR cost function is a rational 
function (see, for example, a discussion in Sontag (2022), section 
4.3) the following result regarding the global convergence of 
solutions of (8) can be stated:

Theorem 1.  Any solution of the gradient flow (8) initialized in 
K (defined as in Definition  1): exists; is precompact; remains in K
for all time; and converges to a critical point of the gradient flow 
dynamics.

This result not only guarantees invariance of the set of stabiliz-
ing neural networks and global convergence of solutions but also 
demonstrates how the invariance obtained in Lemma  2 can be 
used to extend results from the literature on overparameterized 
linear regressions to the context of the overparameterized model-
free LQR problem. We next look at the case with N = 2, i.e. a 
single hidden layer, to enunciate an even stronger convergence 
result.

3.2. Feedback control design with a single hidden layer

Consider now the case where N = 2 (single hidden layer). The 
literature on overparameterized linear regression is rich in results 
for this case, and this section aims to show that the main ones 
also hold for the design of optimal state feedback controllers.
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We begin by proving that any critical point that is not a 
global minimum of the problem is necessarily a strict saddle. This 
result is, then, used to prove almost everywhere convergence to 
the global minimum of the problem. Then we characterize all 
critical points to discuss some intuition behind the problematic 
set of initializations, that is the set of initializations that do not 
converge to the global minimum. Let T  be defined as in Section 2, 
then consider the following result:

Theorem 2.  Let (K1, K2) be an equilibrium point of the gradient 
dynamics (8), then either

• The point (K1, K2) is a global minimum of the system, i.e.
K2K1 ∈ T ; or

• The point (K1, K2) is a strict saddle of the dynamics, i.e.  the 
Hessian evaluated at (K1, K2) has at least one negative eigen-
value.

Because Theorem  2 guarantees that the critical points are 
either strict saddles or global minima, and Theorem  1 guarantees 
convergence to a critical point, we can apply Corollary  4 provided 
in Appendix  A to get the following Corollary:

Corollary 1.  For all initializations but a set of Lebesgue measure 
zero, the solution of the overparameterized gradient flow (8) con-
verges to a point (K1, K2) such that K2K1 ∈ T , that is, almost all 
solutions initialized in K converge to an optimal feedback matrix and 
minimize (6).

Notice that Corollary  1 is proven without needing to character-
ize the set of initializations that converge to a saddle. Such points 
are hard to characterize for an arbitrary saddle, although we can 
provide a characterization of the critical points themselves as 
follows:

Lemma 3.  For the gradient flow (8) with N = 2 and κ1 = κ >
max(m, n), and for any set of parameter matrices (K1, K2) such that 
K2K1 ∈ K, the following are equivalent:

(1) The point (K1, K2) is an equilibrium of (8), i.e. K̇1 = K⊤

2 2[B⊤

PK + RK2K1]LK = 0, and K̇2 = 2[B⊤PK + RK2K1]LKK⊤

1 = 0.
(2) Let ∇KJ := 2[B⊤PK + RK2K1]LK, then, there exist an SVD 

∇KJ(K2K1) = ΨΣΦ⊤, and orthogonal matrices ΓK1 , ΓK2 ∈

Rκ×κ  such that: (a) K1 = ΓK1ΣK1Φ
⊤ and K2 = ΨΣK2Γ

⊤

K2
 are 

SVDs of K1 and K2; and (b) ΣΣ⊤

K1
= 0 and Σ⊤

K2
Σ = 0.

From this Lemma, we can characterize the product K2K1 at 
critical points in terms of low-rank approximations of K ∗ (the 
optimal LQR feedback matrix) as in the following corollary 

Corollary 2.  Let K ∗ be the optimal value of K ∈ K that minimizes 
the LQR cost (2). If (K1, K2) is a critical point of the gradient flow 
dynamics (8) with a N = 2, then there exists an SVD of K ∗

K ∗
=

[
Ψ ∗

1 ,Ψ
∗

2

] [
Σ∗

1 0
0 Σ∗

2

][
(Φ∗

1 )
⊤

(Φ∗

2 )
⊤

]
,

with its singular values not necessarily in any order, such that

K2K1 =
[
Ψ ∗

1 ,Ψ
∗

2

] [
Σ∗

1 0
0 0

][
(Φ∗

1 )
⊤

(Φ∗

2 )
⊤

]
.

As an immediate consequence of Lemma  3 and the consequent 
Corollary  2, one can notice that there is a finite number of values 
that the cost function (6) can have at any critical point of the 
gradient flow dynamics. This characterizes a finite number of sets 
of critical points, as a function of the number of possible low-rank 
factorization of K ∗. Despite that characterization, however, it is 
still hard to compute the center-stable manifold of the saddles, 
as we hope to illustrate next.
5

For some p < min(m, n), let K ∗
p  denote a rank-p factorization 

of K ∗ and let the set of all (K1, K2) such that K2K1 = K ∗
p  be 

given by Tp := {(K1, K2) | K2K1 = K ∗
p }. It is evident that for 

any (K1, K2) ∈ Tp, (K1µ, K2(1/µ)) ∈ Tp as well for any µ ̸= 0, 
and therefore Tp is continuous and unbounded. However, it is also 
easy to see that there exist two (K̄1, K̄2) ∈ Tp and (K̃1, K̃2) ∈ Tp for 
which there exist no µ ̸= 0 such that (K̄1, K̄2) = (µK̃1, (1/µ)K̃2).

The degrees of freedom for points in Tp come from the fact 
that multiple different values of ΣK1 , ΣK2 , ΓK1  and ΓK2  exist such 
that K2K1 = K ∗

p . However, necessary and sufficient conditions 
on these matrices for the equality to hold do not exist to the 
authors’ knowledge, which makes an analytic characterization of 
all points in a given set Tp difficult. This difficulty also explains 
why characterizing the center-stable manifold of the saddles is 
hard. Assume that for a given (K1, K2) ∈ Tp the center-stable 
manifold of that point is known, then to extend it to a ‘‘neigh-
borhood’’ of the point in Tp, one would need to be able to: first 
characterize all points arbitrarily close to (K1, K2); and second 
derive how that characterization reflects in the characterization 
of the center-stable manifold of a point in Tp.

In this section, we have collected powerful results about the 
convergence of the gradient flow solution for the general problem 
and the single hidden layer case. These results provide some 
guarantee to the behavior of the solution but also illustrate some 
of the fundamental challenges of understanding deep and wide 
optimization formulations. We will follow up in the next section 
with a complete analysis of a simpler version of the problem, in 
the hopes of illustrating better some of the intuition derived from 
the results from this section.

4. Analysis of the single-input/single-state case with one
hidden-layer

To provide a better intuition behind the results given in the 
previous section, we now study a simple example of the consid-
ered problem. Assume N = 2, n = m = 1, but κ1 =: κ arbitrary. 
The case where the parameters take these values is referred to as 
‘‘the vector case’’, and if κ = 1 then it is referred to as ‘‘the scalar 
case’’.

For the vector case, the system in consideration is of the 
form of (1) with A, B ∈ R and x, u : R

+
→ R. Without loss 

of generality, assume x(0) = 1, B = 1, and denote A = a
to emphasize its scalar nature. Furthermore, assume the scalar 
weights for the cost (6) are given by Q = q > 0 and R = r > 0, 
and the parameters to be optimized by K1 = k1 ∈ Rκ×1 and 
K2 = k2 ∈ R1×κ . Furthermore, the valid parameter space is 
defined as K := {(k1, k2) ∈ Rκ×1

×R1×κ
| a+k2k1 < 0}. Assuming 

a feedback of the form u = k2k1x, with (k1, k2) ∈ K results in

J(k1, k2) = Ex0∈X0

[∫
∞

0
x(t)2q + u(t)2rdt

]
= Ex0∈X0

[∫
∞

0
x(t)2(q + (k2k1)2r)dt

]
= Ex0∈X0

[
x(0)2

]
(q + (k2k1)2r) (12)

×

∫
∞

0
e2(a+k2k1)tdt

= −
(q + (k2k1)2r)
2(a + k2k1)

. (13)

Taking the gradient with respect to k1 and k2 gives

∇k1 J(k1, k2) = f (k1, k2)k⊤

2 (14)

∇k2 J(k1, k2) = f (k1, k2)k⊤

1 , (15)
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Fig. 3. Phase Plane for the gradient flow dynamics for the scalar case described 
in Section 4, drawn for a stable A. The blue arrows depict the vector field at 
different points of the state space. The black hyperbolas are the new equilibria 
introduced by the condition f (k1, k2) = 0, with f (·) as in (14) and (15). The red 
hyperbolas are the borders of the set of (k1, k2) such that a + k2k1 < 0, that is, 
such that the closed loop is stable. The blue dashed lines are composed of the 
points that satisfy d(k1, k2) = 2

√
|k∗

−|, while the green dashed line is the set for 
which d(k1, k2) = 0 where d(k1, k2) is as defined in Proposition  2.

where

f (k1, k2) = −
r(k2k1)2 + 2ark2k1 − q

2(a + k2k1)2
,

which, in turn, results in the following dynamics for the param-
eters

k̇1 = −f (k1, k2)k⊤

2 (16)

k̇2 = −f (k1, k2)k⊤

1 . (17)

Notice that, similar to the observation made in de Oliveira et al. 
(2023) for the vector case in linear regression, the vector dy-
namics of this problem is a simple nonlinear reparameterization 
of a linear dynamics. This means that inside K, the phase plane 
should be that of a saddle with an inversion in the direction of 
the flow whenever f < 0, and an extra equilibrium set given by 
{(k1, k2) ∈ K | f (k1, k2) = 0}. This can be observed graphically for 
the scalar case in the plot given by Fig.  3.

The new equilibrium set given by f (k1, k2) = 0 can be studied 
explicitly, this condition is satisfied for any (k1, k2) ∈ K that 
solves r(k2k1)2 + 2ark2k1 − q = 0. The solutions to this quadratic 
equation are

k2k1 = −a +

√
a2 + q/r =: k∗

+
(18)

k2k1 = −a −

√
a2 + q/r =: k∗

−
, (19)

with k∗
+

̸∈ K leaving k∗
−
 as the only viable solution, which 

coincides with the optimal solution of the LQR problem for the 
scalar system, since from the theory on this problem one can 
write

k∗

LQR = −R−1B⊤P,

where P is the solution of
A⊤P + PA − PBR−1B⊤P + Q = 0,

which results in K ∗

LQR = k∗
−
 since P > 0.

Furthermore, notice that f (k1, k2) > 0 for all (k1, k2) ∈ K such 
that k2k1 > k∗

−
, since the positive root k∗

+
= −a+

√
a2 + q/r > 0

is such that a + k∗
+
> 0, and the concavity of the parabola 

is negative. Also notice that if k2k1 < k∗ then f (k1, k2) < 0
by a similar argument. However, notice that there is another 
equilibrium to this dynamics, given by (k , k ) = (0, 0). For this 
1 2

6

equilibrium, k2k1 = 0 which is not the optimal solution of the LQR 
problem. Such equilibrium is referred to as a spurious equilibrium 
of the system and is only in K if a < 0. Still, it is convenient 
to characterize a condition for which convergence to a global 
minimum is guaranteed. To do so, we adapt a result from (de 
Oliveira et al., 2023) to the design of feedback controllers:

Proposition 2.  For the overparameterized poLQR given by Defi-
nition  1 with n = m = 1 and N = 2 (i.e.  the vector case), the 
gradient flow solution converges to the global optimal value of the 
cost function (2) if and only if the gradient flow is initialized such 
that

d(k1, k2) := ∥k1 − k⊤

2 ∥
2
2 > 0.

Proposition  2 gives a necessary and sufficient condition for the 
convergence of a solution to the target set T := {(k1, k2) ∈ K |

k2k1 = k∗
}. For any point in T , the value of the cost function 

J(k1, k2) is the same, but that does not mean that all initializations 
that converge to T  are equivalent. It was shown in Lemma  2 
that different values for the conservation law are invariant along 
trajectories, so we show next how the values of this conservation 
law influence the convergence through the following definition 
and proposition. 

Definition 2.  For the overparameterized poLQR given by Def-
inition  1 with n = m = 1 and N = 2 (i.e. the vector case), 
denote by C := C1 = k1k⊤

1 − k⊤

2 k2, that is, the value of the 
invariant. Then, define the level of imbalance of a given solution 
as c := 2 trace

(
C2

)
− trace (C)2.

Proposition 3.  For the overparameterized poLQR given by Defi-
nition  1 with n = m = 1 and N = 2 (i.e.  the vector case), let 
(φk1 (t, (k1, k2)), φk2 (t, (k1, k2))) be the solution to the gradient flow 
(8) initialized at (k1, k2) and let φJ (t, (k1, k2)) = J(φk1 (t, (k1, k2)),
φk2 (t, (k1, k2))) be the trajectory of the cost function (6) along a 
solution. For two distinct initializations (k̃1, k̃2) and (k̄1, k̄2) with 
levels of imbalance given by c̃ and c̄ respectively, let

• J(k̃1, k̃2) = J(k̄1, k̄2); and
• |c̃| > |c̄| ≥ 0, with k̄1 ̸= k̄⊤

2 .

Then, for all time t > 0 it follows that φJ (t, (k̃1, k̃2)) <

φJ (t, (k̄1, k̄2)). In other words, the cost converges faster to the mini-
mum value for solutions initialized with a larger level of imbalance.

Proposition  3 proves an increase in the rate of convergence 
for different solutions of the system, however, it provides no 
quantitative result, i.e. it does not prove that the acceleration 
is unbounded. To further study advantages and trade-offs be-
tween different initializations, we next characterize the robust-
ness of the solutions, i.e. how the solutions can be expected to 
behave when the gradient is computed with an associated level 
of additive uncertainty.

Some intuition regarding the behavior of the solution under 
disturbance can be obtained from analyzing the scalar case. One 
can notice graphically from Fig.  3 that as c increases, the associ-
ated equilibrium gets closer to the border of the set of stabilizing 
controllers, i.e. the red and black hyperbolas in the figure ‘‘meet 
at infinity’’. At first sight, this can be a problematic observation 
when considering disturbances, as points in the target set can 
be arbitrarily close to the border of instability. However, this 
does not mean that any disturbance during the training can take 
the feedback matrix to instability. In fact, let δK be the border 
of K (i.e. the red hyperbolas), and notice from (14) and (15) 
that in general, as (k1, k2) → δK, |f (k1, k2)| → ∞, with its 
direction being away from the border. This means that only a 
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disturbance of infinite magnitude on the training dynamics could 
take a solution initialized in K away from it.

To formalize this intuition, we prove the following ‘‘ISS-type’’ 
result regarding solutions of the overparameterized poLQR in the 
vector case when subject to additive uncertainties. 

Proposition 4.  For the overparameterized poLQR given by Defini-
tion  1 with n = m = 1 and N = 2 (i.e.  the vector case), consider 
solutions initialized in K and such that ∥k1 − k⊤

2 ∥2
⏐⏐
t=0 > 2

√
a+, 

where a+ = max(0, a). Furthermore, let the dynamics be disturbed 
in the following form 
k̇1,2 = −∇k1,2 J + u1,2, (20)

where u1, u⊤

2 : R+
→ Rκ . Then for every ϵ > 0, there exists a δ > 0

such that if ∥u1∥∞ + ∥u⊤

2 ∥∞ ≤ δ then lim supt→∞ J(k2(t)k1(t)) −

J(k∗
−
) ≤ ϵ, where ∥ · ∥∞ is the infinity norm of a function.

Notice that the property characterized in Proposition  4 is 
not input-to-state stability as it is usually defined, and is more 
akin to a ‘‘input-to-cost’’ stability. Furthermore, due to the non-
compactness of the sets of critical points, one can even prove that 
for an arbitrarily small disturbance, the state will diverge, but 
will do so along a trajectory that will keep the value of the cost 
bounded. Nonetheless, in some sense this still guarantees that the 
solution remains ‘‘close’’ in the sense of the cost J(·) to the target 
set, even when subject to additive disturbances.

Through this simple example, one can see how interesting 
and rich the problem discussed in this paper can be, as well 
as capture some of its intuition in a simpler context. The next 
section investigates numerically whether the increased speed of 
convergence, proven for the vector case here, might still hold for 
the general problem.

5. Numerical results

In this section, we investigate empirical distinctions between 
overparameterized and regular model-free LQR problems. The 
simulations were done using Matlab, and all code is available 
online in a repository (de Oliveira, 2025). The selected A and B
for the simulations are

A = −

⎡⎢⎢⎢⎣
5.2373 0.3452 0.6653 0.6715 0.3288
0.3452 5.4889 0.8060 0.3889 0.5584
0.6653 0.8060 5.0377 0.5735 0.5100
0.6715 0.3889 0.5735 5.3354 0.6667
0.3288 0.5584 0.5100 0.6667 5.4942

⎤⎥⎥⎥⎦ (21)

B⊤
=

[0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

]
. (22)

All simulations are done for a 10-neuron single hidden layer 
neural network, since a single hidden layer is enough to ob-
serve overparameterization and has better convergence guaran-
tees. The choice of 10 hidden neurons was arbitrary.

For the gradient flow solution to be well-defined, a stabiliz-
ing initialization is required. Although this is a common nec-
essary condition (Fazel et al., 2018; Mohammadi et al., 2022), 
as mentioned in the introduction, recent works in the litera-
ture (Zhang & Başar, 2023) explore the finite horizon formulation 
for the LQR problem to allow for arbitrary initializations. How-
ever, while studying the effects of overparameterization on such 
formulations could prove interesting, it is not in the scope of this 
paper.

Therefore, to generate the synthetic results that illustrate the 
distinct behaviors of an overparameterized formulation over the 
non-overparameterized formulation for the poLQR, we must first 
discuss the difference in the behavior of the solution based on the 
initialization.
7

Fig. 4. Depiction of the four different regions of the state-space based on the 
expected behavior of the solution.

5.1. On the choice of initialization

Consider the phase plane of the scalar case depicted in Fig.  3 
for reference. The first clear segmentation of the state space is the 
one done by the red hyperbolas, i.e. between the values of (K1, K2)
such that A + BK  is Hurwitz or not.

Another similar segmentation is done by the black hyperbo-
las in the same figure. Notice that any solution initialized in 
between the two hyperbolas will never cross either hyperbola, 
and vice-versa. This happens because at the black hyperbolas 
both gradients ∇K1 J(K1, K2) = 0 and ∇K2 J(K1, K2) = 0, and by 
continuity of the solution, it cannot cross over.

Finally, the quadrants also separate the state space in two, 
where any initialization in the second and fourth quadrants al-
ways converges to the global optimum (black hyperbola), while 
initializations in the first and third quadrants can converge to the 
saddle at the origin.

From this informal analysis, one can draw Fig.  4, which can 
be expected to describe the behavior of the solution to some 
degree, even if not extensively. We will perform the simulations 
for initializations (K1(0), K2(0)) = (K10, K20) such that K20K10 =

ηK ∗ where K ∗ is the optimal feedback matrix and η is a scalar. 
Intuitively, one would expect that if η > 1, then the system would 
be initialized in a region of the state-space analogous to I⃝ in Fig. 
4, where η can be arbitrarily large and the solution still converges 
to the target set. Similarly, if 1 > η > 0, the solution is in a 
region analogous to II⃝, and the closer η is to 0, the longer the 
initialization should take to converge to the target set. Finally, if 
η < 0 then it is in a region analogous to III⃝, or if |η| is too large, 
then the solution does not exist.

To be more specific, for any given desired η we compute 
K ∗ first, then compute a SVD for it as K ∗

= ΨΣΦ and a 
random orthogonal 10 × 10 matrix Γ . Then, we define K10 =

sign(η)
√

|η|µΓΣ1/2Φ⊤ and K20 = (
√

|η|/µ)ΨΣ1/2Γ ⊤ for µ
varying from 1 to 100 defining more or less imbalanced initial-
izations for the same η.

As mentioned before, this does not encompass all possible 
behaviors for the solution of the general case with a single hidden 
layer. To illustrate this fact, we will perform simulations for all 
three cases described above (η > 1, 1 > η > 0 and η < 0) and 
a final simulation for an initialization selected specifically to not 
lie in any of the regions described by the different values of η.

After an overview of the behavior of the solution is provided, 
we will investigate how overparameterization affects the conver-
gence in a scenario where the gradient is numerically estimated 
from evaluations of the cost function, resulting in imprecise ap-
proximations and introducing uncertainty to the dynamics.
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Fig. 5. Simulations done for initializations with η > 1. Solutions were initialized with η = 5 in (a) and with η = 20 in (b). Solutions from light to dark blue depict 
overparameterized solutions with different levels of imbalance µ ∈ [1, 100], and the red curve shows the non-overparameterized solution.
Fig. 6. Simulations done for initializations with 1 > η > 0. Solutions were initialized with η = 0.9 in (a) and η = 0.1 in (b). Solutions from light to dark blue depict 
overparameterized solutions with different levels of imbalance µ ∈ [1, 100], and the red curve shows the non-overparameterized solution.
5.2. Results with the exact gradient

In this section, we will discuss the numerical simulation re-
sults for the gradient flow for the case when the gradient is 
perfectly known. The simulations are done for two different ini-
tializations with η > 1 (Fig.  5), two with 1 > η > 0 (Fig.  6), and 
two with η < 0 (Fig.  7). Finally, two other simulations are done 
with a different initialization to illustrate a distinct behavior of 
the solution (Fig.  9).

For the simulations with η > 1 in Fig.  6, notice how the 
overparameterized solutions (shades of blue) converge relative to 
the non-overparameterized solution (red) depending on how far 
from the optimum the solution is initialized. For η = 5, the slow-
est of the overparameterized solutions (lightest blue) converges 
almost as quickly as the non-overparameterized solution but is 
overtaken as the solutions get closer to the optimum. Nonethe-
less, with an arguably small value for the imbalance term µ, it is 
verifiable that an overparameterized solution will converge more 
quickly than the non-overparameterized one. This becomes even 
more evident for the solutions initialized with η = 20, where 
all overparameterized solutions converge to the optimum more 
rapidly than the non-overparameterized solution. Furthermore, 
notice how the solution to the overparameterized gradient flow 
has a different profile than the non-overparameterized solution, 
indicating that the overparameterized formulation did not simply 
accelerate the convergence, but changed the behavior of the 
solution.

For the simulations with 1 > η > 0 in Fig.  6, the variation 
in the values of the cost function is limited by the values of J(K )
for K = K ∗ and K = 0. Furthermore, notice that the solutions 
initialized with η = 0.9 converge generally faster than the ones 
initialized with η = 0.1. This happens because as η → 0, the 
8

initialization approaches the saddle, exhibiting reduced conver-
gence rates. Despite that, however, a big enough imbalance can 
always be imposed to generate a solution that converges more 
rapidly than the non-overparameterized solution.

Next, for the simulations with η < 0 depicted in Fig.  7, before 
we can discuss the simulation results we first need to argue that 
theoretically for any initialization with η < 0 and in K, if µ = 1
then the resulting solution should converge to the saddle-point 
at the origin. To show this, first notice that for µ = 1, C = 0
by construction of the initialization. Then, notice that if η < 0, 
then J(K20K10) > J(0). This can be shown theoretically, but for 
the simplicity of this analysis, this was verified numerically for 
this specific example. Next, since J(K20K10) > J(0) > J(K ∗), by 
continuity any solution initialized at (K10, K20) must pass through 
a point such that K20K10 = 0 before it can reach the target set 
T . Finally, notice that the only point such that C = 0 and that 
K2K1 = 0 is the origin, which is a saddle of the dynamics.

This explains the strange behavior of the solutions initialized 
with µ = 1 and η = −0.1 in Fig.  7, where the solution looks 
like it is converging to a suboptimal value for the cost function. 
However, despite theoretically converging to the saddle at 0, 
the simulation solution eventually escapes it due to accumulated 
errors in the numerical simulation, and reaches the global min-
imum. When looking at solutions initialized at η = −20 one 
might think a priori that the same phenomenon observed when 
η = −0.1 does not happen, however, if one looks at the zoomed 
graph in Fig.  8(a), one can see clearly that the solution initialized 
with η = −20 and µ = 1 is affected by the proximity to the 
saddle, although less than when initialized with η = −0.1. This 
effect is even more evident if we look at Fig.  8(b), which depicts 
the Frobenius norm of K2(t)K1(t) along the solution with µ = 1. 
Notice that the norm of the matrix product approaches zero, 
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Fig. 7. Simulations done for initializations with η < 0. Solutions were initialized with η = −0.1 in (a) and with η = −20 in (b). Solutions from light to dark blue 
depict overparameterized solutions with different levels of imbalance µ ∈ [1, 100], and the red curve shows the non-overparameterized solution.
Fig. 8. Simulations done for initializations with η = −20. In (a) we have a zoomed version of the right graph in Fig.  7, where the influence of the saddle in the 
imbalanced solution becomes more evident. In (b) we have a plot of the Frobenius norm of the product K2(t)K1(t), showing that the solution comes very close to 
K2K1 = 0, but then converges to the dashed line, which is the Frobenius norm of K ∗ .
Fig. 9. Simulations done for initializations with η = diag([20, 0.1,−20]). On (a) we have the entire trajectory for the solutions and on (b) we have a zoomed version 
of the plot. Notice that despite this initialization not lying in any of the pre-identified regions of the state space, many of the qualitative observations we made for 
the behavior of the solution still hold.
but eventually escapes the saddle due to accumulated numerical 
errors.

Finally, we present a set of simulations selected specifically 
to not fit in any of the previously discussed cases. To do that, 
notice that K ∗ has three singular values, so instead of multiplying 
all three by the same η, we multiply the first one by 20, the 
second by 0.1, and the third by −20. The resulting solutions are 
shown in Fig.  9. Notice that despite this initialization not lying in 
any of the pre-identified regions of the state space, many of the 
qualitative observations made for the behavior of the solution still 
hold. Furthermore, the saddle that the solutions approach in this 
case is not the origin (which is an isolated critical point), but a 
non-compact set of saddles, which explains why the effect of the 
9

proximity to the saddle affects all solutions, regardless of the level 
of imbalance.

We conclude this section of simulations with exact knowledge 
of the value of the gradient with a final observation regarding 
the level of imbalance. Theoretically, there is no limit to how 
imbalanced one can make an initialization, however, in practice, 
the more imbalanced an initialization, the stiffer the resulting 
ODE, making it harder for numerical solvers for ordinary dif-
ferential equations to simulate the system. Therefore, although 
the gradient flow converges ‘‘more quickly’’ in simulation time, 
the stiff ODE starts to take longer to solve in practice if the 
initialization is chosen to be too imbalanced. This poses a real-life 
trade-off on how imbalanced one can make the initialization.
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Fig. 10. Simulation results for uncertain oracle. For some randomly picked 
initialization, the red curve shows the time evolution of the cost function for 
the vector field generated when the gradient if perfectly computed through 
its closed-form expression. In light and dark blue, the gradient is estimated 
numerically through evaluations of the cost function, with the light blue 
trajectory being the one initialized at the same point as the red trajectory, and 
the dark blue being the one initialized at the same point as the other two, 
except for an imbalance factor of 10, as described in Section 5.

5.3. Results with uncertain gradient

We now look at the case where the exact value of the gradient 
is unknown, and the algorithm samples the value of the cost func-
tion at different directions around the current point to estimate it 
numerically. The code for this set of simulations is also available 
at de Oliveira (2025).

The gradient is estimated by disturbing the cost at the current 
value of (K1, K2) in the direction of 20 different elementary ma-
trices, i.e. in the direction of 20 different entries of (K1, K2). The 
resulting estimated gradient can be viewed as the true gradient 
plus a noise term. All simulations are done for the same initializa-
tion, picked randomly in a distribution around zero — this works 
for our example because A was specifically selected to be stable.

The resulting solutions are displayed in Fig.  10. Notice that 
the solution computed with perfect knowledge of the gradient 
and no enforced imbalance (in red) converges faster than the 
balanced initialization with the estimated gradient (light blue). 
However, once we increase the imbalance of the initialization by 
a factor of 10, the resulting solution (dark blue) converges much 
quicker than even the solution without uncertainty. This indicates 
that the disturbance caused by the uncertainty in the dynamics 
can be overcome by the acceleration brought by imbalanced 
initializations.

6. Conclusions

This paper investigated the use of linear feedforward neural 
networks (LFFNNs) for computing the optimal solution of the LQR 
problem. The theoretical exploration conducted yielded several 
important results, as summarized below.

In Section 2 we revised key literature results on both gradient 
methods for the LQR problem and for overparameterized linear 
regressions, both areas that compose the main contributions of 
this paper. Then, in Section 3 we introduced the overparameter-
ized policy-optimization LQR problem (poLQR) and proved the 
main theoretical results of the paper regarding the convergence 
of the solutions in Theorem  1. Also in this section, we deepened 
our analysis of the case with a single hidden layer, proving 
almost everywhere convergence to the optimal feedback matrix 
in Theorem  2 and Corollary  1, and characterizing all saddles in 
Lemma  3. We believe these results serve as a strong basis from 
which to derive an intuitive understanding of the behavior of the 
solutions of overparameterized formulations. To better develop 
10
such intuition, we proceeded in Section 4 with analyzing the 
vector case, whose simpler setup allows for explicit computa-
tion of convergence conditions to the different critical points of 
the problem. Then, in Section 5, we performed a comprehen-
sive numerical analysis of the problem, showing how different 
initializations affect the convergence when compared to a non-
overparameterized poLQR formulation. The simulations illustrate 
the distinct behavior the solution can present depending on its 
initialization and show how the overparameterized formulation 
can accelerate or decelerate the convergence of the solution to 
the optimal solution of the poLQR. The simulations indicate that 
a solution can be arbitrarily accelerated by increasing levels of 
imbalance for the initialization, however, the stiffness of the 
resulting ODE provides a practical trade-off to the acceleration.

Many open problems related to the work in this paper remain. 
A natural follow-up question is how general an optimization 
problem can be for an overparameterized formulation to hold the 
properties characterized in this paper. Alternatively, one might 
be interested in possible practical applications of properties ob-
served in this work, in which case sample and computational 
complexity analysis are essential to rigorously establishing the 
trade-offs of adopting such an approach in practice. A more 
specific open problem lies in the characterization of the center-
stable manifold of the saddles of the overparameterized gradient 
flow. In this paper, we indicated what we believe are the main 
obstacles to doing so; however, if that were to be done in a future 
work, it could be leveraged to state formal robustness results for 
the general case and improve the general understanding of the 
behavior of the solution.

Appendix A. Systems with strict saddles

We state and prove a few more general results about the 
convergence of nonlinear systems with multiple equilibria.

In this section, we consider a general differential equation 
ẋ = f (x) (A.1)

evolving on an open subset X ⊆ Rn. We assume that f : X → Rn

is continuously differentiable. The solution x(t) = φ(t, ξ ) of (A.1) 
with initial state ξ ∈ X is defined (and in X) on a maximal interval 
t ∈ (Tmin

ξ , Tmax
ξ ), where −∞ ≤ Tmin

ξ < 0 < Tmax
ξ ≤ +∞. The n × n

Jacobian matrix of f  evaluated at a point x ∈ X is denoted by Jf (x).
For any subset S ⊆ X define the finite-time domain of attrac-

tion DF(S) of S as the set of all ξ ∈ X such that Tmax
ξ = +∞ and 

there is some τξ ≥ 0 such that φ(t, ξ ) ∈ S for all t ≥ τξ .
We say that x̄ ∈ X is a strict saddle equilibrium of (A.1) if

(1) f (x̄) = 0 and
(2) Jf (x̄) has at least one eigenvalue with positive real part and 

at least one eigenvalue with non-positive real part.

The following theorem and corollary generalize results for 
discrete-time gradient iterations that were given in Panageas and 
Piliouras (2017), which in turn generalized a result from (Lee, 
Simchowitz, Jordan, & Recht, 2016) that restricted to discrete sets 
of strict saddles.

Theorem 3.  Suppose that x̄ ∈ X is a strict saddle equilibrium 
of (A.1). Then there exists an open neighborhood B ⊆ X of x̄ such 
that DF(B) has Lebesgue measure zero.

Proof.  Pick any equilibrium point x̄ ∈ X. Next modify the vector 
field f  to a vector field g so that g coincides with f  on an open 
neighborhood of U of x̄ and g vanishes outside a compact set 
K ⊆ X. Since g has compact support, solutions are defined for 
all t ∈ R, and the map G : x ↦→ γ (1, x) (time-1 map for g , where 
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γ  is the flow of g) is a C1 diffeomorphism. Since γ (1, x̄) = x̄, 
it follows that G(x̄) = x̄, and since G is a diffeomorphism, there 
is some neighborhood V  of x̄ in which G = F , where F  is the 
time-1 map for f . The Center-Stable Manifold Theorem as, for 
example, stated in Shub (2013), Theorem III.7, applied G restricted 
to V , gives the existence of an open subset B of V  and a local 
center stable manifold W  of dimension equal to the number of 
eigenvalues with nonpositive real part, with the property that for 
any x ∈ B such that Gℓ(x) ∈ V  for all ℓ ∈ Z+ necessarily x ∈ W . 
Since F = G on V , the same property is true for F .

Pick any point ξ ∈ DF(B) and pick k = τξ ≥ 0, without loss of 
generality a positive integer, such that φ(t, ξ ) ∈ B for all t ≥ k. 
Let x = φ(k, ξ ). Then F ℓ(x) = φ(k + ℓ, ξ ) ∈ B for all ℓ ∈ Z+, and 
therefore necessarily x ∈ W . We have established that for each 
ξ ∈ DF(B) there is some k such that F k, the time-k map of the flow 
f , is defined at ξ  and satisfies F k(ξ ) ∈ W . It follows that DF(B)
is the union of the (countably many) sets Sk consisting of those 
points x ∈ X such that F k(x) ∈ W . Thus it will suffice to show 
that each set Sk has Lebesgue measure zero. Note that F k is a local 
diffeomorphism, it being a time-k map for a differentiable vector 
field. (It is not necessarily a global diffeomorphism, so we cannot 
argue that (F k)−1(W ) is diffeomorphic to W . In fact, preimages 
may not even belong to X.) Thus, there is an open neighborhood 
Nξ  of ξ  in X that maps diffeomorphically by F k into an open 
neighborhood Mξ  of F k(ξ ). By uniqueness of solutions in time 
−k, the preimage of Mξ  is exactly Nξ . Note that Sk is included 
in the union Nk over ξ ∈ X of the sets Nξ . Also, for each ξ , 
Nξ∩Sk maps diffeomorphically onto Mξ∩W , and therefore Nξ∩Sk
has Lebesgue measure zero (because W  has measure zero and 
diffeomorphisms transform null sets into null sets). Recall that 
Lindelöf’s Lemma (see e.g (Kelley, 1975)) insures that every open 
cover of any subset S of Rn (or more generally, of any second-
countable space) admits a countable subcover. Applied to Nk, we 
have a countable subcover by sets Nξk , and for each of these 
Nξk ∩ Sk has measure zero, so Nk ∩ Sk = Sk has measure zero 
as well. ■

Corollary 3.  Suppose that E ⊆ X is a set consisting of strict saddle 
equilibria of (A.1). Then the set CE of points ξ ∈ X whose trajectories 
converge to points in E has measure zero.

Proof.  For each x̄ ∈ E, we may pick by Theorem  3 an open 
neighborhood Bx̄ ⊆ X of x̄ such that DF(Bx̄) has measure zero. 
The union of the sets Bx̄ covers E. By Lindelöf’s Lemma applied 
to S = E, we conclude that there is a countable subset of balls 
{Bx̄k , k ∈ Z+} which covers E. We claim that CE ⊆

⋃
k DF(Bx̄k ). 

Since a union of measure zero sets has measure zero, this will 
establish the claim. So pick any ξ ∈ CE . Thus, φ(t, ξ ) → x̄ for 
some x̄ ∈ E. Since E ⊆

⋃
k Bx̄k , it follows that x̄ ∈ Bx̄k  for some 

k. Since Bx̄k  is a neighborhood of x̄, this means that there is some 
τξ ≥ 0 such that φ(t, ξ ) ∈ Bx̄k  for all t ≥ τξ . Therefore ξ ∈ DF(Bx̄k ). 
This completes the proof.  ■

Corollary 4.  Let L be a real-analytic (loss) function from X into R+. 
Let f  be the gradient of L and let the set Z of points where f (x) = 0
be the union of two sets Z = M ∪ S, where M is the set of points at 
which L is minimized, and S consists of strict saddles for the gradient 
flow dynamics ẋ = −f (x). Assume in addition that every trajectory 
of the gradient flow dynamics is pre-compact. Then, except for a set 
of measure zero, all trajectories converge to M.

Proof. Lojasiewcz’s Theorem states that every pre-compact tra-
jectory of a real analytic gradient system converges to a unique 
equilibrium. This theorem is given (Łojasiewicz, 1984) and an 
excellent exposition is given in Colding and Minicozzi II (2014). 
From this, one can apply Corollary  3 and conclude that the set of 
initializations for which the trajectories of the system converge 
to S must have measure zero.  ■
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Appendix B. Proofs of main results

Proof of Lemma  1. For any i between 1 and N , notice that under 
closed loop with u = KN . . . Ki . . . K1Cx the dynamics of the system 
become

ẋ = (A + BKn . . . Ki . . . K1C)x
= (A + BiKiCi)x,

which are equivalent to a system under simple output feedback 
Ki, input matrix Bi and output matrix Ci. When computing the 
partial derivatives in (8), one fixes the value of all Kj for j ̸= i, 
therefore computing ∂ J/∂Ki is equivalent to computing the partial 
derivative for the linear system with parameter matrices A, Bi, Ci
and single feedback matrix Ki, as done in (3).

From here, the remainder of the proof is obtained by ap-
plying Theorem 3.2 of Rautert and Sachs (1997) to the system 
(A, Bi, Ci, Ki). We omit it due to space limitations, but it is repro-
duced in full in the arXiv version of this paper (de Oliveira et al., 
2024a). ■

Proof of Lemma  2. First, notice from the definitions in Lemma  1 
that for all i between 1 and N − 1

Bi = BKN . . . Ki+1 = Bi+1Ki+1 (B.1)

Ci+1 = Ki . . . K1 = KiCi (B.2)

Ri = K⊤

i+1 . . . K
⊤

N RKN . . . Ki+1

= K⊤

i+1Ri+1Ki+1. (B.3)

Then notice that K̇iK⊤

i = K⊤

i+1K̇i+1, which after substituting into 
d
dt (KiK⊤

i ) = K̇iK⊤

i + KiK̇⊤

i , results in d
dt (KiK⊤

i − K⊤

i+1Ki+1) = 0, 
proving the theorem.  ■

Proof of Theorem  1.  We begin the proof by showing that K (t) :=

KN (t) . . . K1(t) is precompact. To do that, notice that J(K ) is non-
increasing along any trajectory, since J̇(K ) = J̇(KN . . . K1) =

−
∑N

i=1 ∥∇Ki J(KN . . . K1)∥2
F ≤ 0. Then, because J(K ) is a proper 

function, the level sets of J in the space of K  are compact, which 
means that K (t) lies within a compact set along any trajectory 
(otherwise J(K ) would increase), proving precompactness of K (t).

The next step is to show that K  being bounded implies that all 
Kis are also bounded. This part of the argument follows closely the 
proof of Proposition 1 in Chitour et al. (2023), and of Theorem 3.2 
of Bah et al. (2022), albeit done for the LQ cost rather than linear 
regression.

To show that K  bounded implies Ki bounded for all i, notice 
that a consequence of Lemma  2 is that for any i, j between 1 and 
N , there exists some constant cij such that 

∥Ki∥
2
F = ∥Kj∥

2
F + trace

(
Wij

)
. (B.4)

where Wij =
∑j

k=i Ck if i < j, Wij = −
∑i

k=j Ck if i > j and Wij = 0
if i = j. This is easily verified by taking the trace on both sides of 
(11) and concatenating the resulting equations from i to j. With 
this established, following relationship between K  and Ki can be 
used: 
∥Ki∥F ≤ ηi∥K∥

1/N
F + ξi, (B.5)

where ηi and ξi depend only on the initialization of the parameter 
matrices. The derivation of (B.5) can be obtained in the same way 
as equation (3.1) of Bah et al. (2022) once (B.4) is established, 
regardless of the different cost functions. Due to limited space, 
we refer the reader to that paper for this part of the proof, or to 
the arXiv version of the paper for the complete proof done for the 
LQR cost function (de Oliveira et al., 2024a).
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Proof of Theorem  2.  Consider the Taylor expansion of the LQR 
cost as follows

J((K2+dK2)(K1 + dK1)) =

J(K2K1) + J ′dK1 (K2K1) + J ′dK2 (K2K1)

+
1
2
J ′′
dK2

1
(K2K1) +

1
2
J ′′
dK2

2
(K2K1)

+ J ′′dK1dK2 (K2K1) + h.o.t.

The expression for J ′′
dK2

1
(K2K1), J ′′dK2

2
, and J ′′dK1dK2 (K2K1) can be com-

puted by
J ′′
dK2

1
(K2K1) = 4 trace

(
dK⊤

1 K⊤

2 BP ′

dK1LK
)

+ 2 trace
(
dK⊤

1 K⊤

2 RK2dK1LK
)
,

J ′′
dK2

2
(K2K1) = 4 trace

(
K⊤

1 dK⊤

2 BP ′

dK2LK
)

+ 2 trace
(
K⊤

1 dK⊤

2 RK2K1LK
)
,

and

J ′′dK2dK1 (K2K1) =

+ trace
(
2[B⊤P ′

dK2 + RdK2K1]LKdK⊤

1 K⊤

2

)
+ trace

(
2[B⊤PK + RK2K1]L′

dK2dK
⊤

1 K⊤

2

)
+ trace

(
2[B⊤PK + RK2K1]LKdK⊤

1 dK⊤

2

)
,

where P ′

dK1
 are the solution of the following Lyapunov equation

P ′

dK1 [A + BK2K1] + [A + BK2K1]
⊤P ′

dK1 =

− dK⊤

1 K⊤

2 [B⊤PK + RK2K1] (B.6)

− [B⊤PK + RK2K1]
⊤K2dK1

with an analogous one existing for P ′

dK2
. Due to space limitations, 

we refer the reader to the arXiv version of this paper (de Oliveira 
et al., 2024a) for the explicit derivation of the expressions above. 
With this, define the Hessian function as

H(K1, K2, dK1, dK2) :=
1
2
J ′′
dK2

1
(K1, K2)

+
1
2
J ′′
dK2

2
(K1, K2) + J ′′dK1dK2 (K1, K2). (B.7)

With this established, let (K1, K2) be a critical point of the gradient 
flow, i.e. K̇1 = ∇K J(K2K1)K⊤

2 = 0 and K̇2 = K⊤

1 ∇K J(K2K1) = 0
where ∇K J(K2K1) is the expression in (3) computed for K = K2K1. 
For the overparameterized poLQR, the conditions above hold for 
any K1, K2 orthogonal to ∇K J(K2K1), even if ∇K J(K2K1) ̸= 0.

This orthogonality implies that there must exist two unitary 
vectors ψ and φ such that K⊤

1 φ = 0, ψ⊤K⊤

2 = 0, φ⊤
∇K J(K2K1) =

λψ and ∇K J(K2K1)ψ = λφ⊤ for some λ < 0, for if no such vectors 
existed and ∇K J(K2K1) ̸= 0 then K̇1 = 0 and K̇2 = 0 could never 
hold. To prove this by contradiction, assume no such ψ and φ
exist, and since ∇K J(K2, K1) ̸= 0 by assumption, let ψ and φ
be any unitary vectors such that ∇K J(K2K1)ψ = λφ⊤ for some 
λ. Then notice that K̇2ψ = K⊤

1 ∇K J(K2K1)ψ = K⊤

1 φλ ̸= 0 and 
φ⊤K̇1 = φ⊤

∇K J(K2K1)K⊤

2 = λψ⊤K⊤

2 ̸= 0, reaching contradiction.
With this, let γ1 and γ2 be any two unitary vectors such that 

γ⊤

1 K⊤

1 = 0, K⊤

2 γ2 = 0, and γ⊤

1 γ2 > 0 (if γ⊤

1 γ2 < 0, simply pick 
−γ1 instead). Define dK1 = ψγ⊤

2  and dK2 = φγ⊤

1 . For this choice 
of dK1 and dK2 notice that dK2K1 = 0 and K2dK1 = 0, which 
implies that J ′′

dK2
1

= 0, J ′′
dK2

2
= 0, and

J ′′dK1dK2 (K2K1) =

trace
(
dK⊤

2 ∇K J(K2K1)dK⊤

1

)
≤ λ < 0,

proving that the Hessian has at least one negative eigenvalue, 
which implies that the spurious equilibria is a strict saddle of the 
gradient flow.  ■
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Before proceeding to prove Lemma  3, following the order in 
the paper, we must first introduce and prove an auxiliary lemma 
that will help us prove Lemma  3.

Lemma 4.  Given two matrices A ∈ Rp×o and B ∈ Rq×o for 
p, q, o ∈ N with q ≥ o, the following two statements are equivalent

(1) AB⊤
= 0;

(2) There exist orthogonal matrices ΨA, Φ , and ΨB, and rectan-
gular diagonal matrices with non-negative diagonal elements 
ΣA and ΣB, such that A = ΨAΣAΦ

⊤, and B = ΨBΣBΦ
⊤ are 

SVDs of A and B, and ΣAΣ
⊤

B = 0.

Furthermore, in (2) we can write ΣA and ΣB as

ΣA =

⎡⎣Σ̄A 0 0
0 0 0
0 0 0

⎤⎦ , ΣB =

⎡⎣0 0 0
0 Σ̄B 0
0 0 0

⎤⎦
where Σ̄A and Σ̄B are diagonal matrices whose main diagonal 
elements are the nonzero singular values of A and B respectively.

Due to space limitations, we refer the reader to the arXiv 
version of this paper (de Oliveira et al., 2024a) for the proof. With 
this auxiliary lemma established, one can prove the statement in 
Lemma  3 as follows.

Proof of Lemma  3.  To prove that (2)⇒(1) we simply compute 
[K̇⊤

1 ; K̇2] for a (K1, K2) that satisfies the properties in (2) and verify 
that it is equal to zero. To prove that (1)⇒(2), apply Lemma  4 
with A = ∇KJ(K2K1)⊤ and B = K⊤

2 , which implies that o = n ≤

k = q, since K̇1 = −∇KJ(K2K1)⊤K2 = 0, which allows us to write 
K2 and ∇KJ(K2K1) as follows:

∇KJ(K2K1) = Ψ

⎡⎣Σ̄2 0 0
0 0 0
0 0 0

⎤⎦Φ⊤

K2 = ΨΣ2Φ
⊤

K2 (B.8)

K2 = Ψ

⎡⎣0 0 0
0 Σ̄K2 0
0 0 0

⎤⎦Γ2 = ΨΣK2Γ2.

Similarly, applying Lemma  4 with A = ∇KJ(K2K1) and B = K1
gives

∇KJ(K2K1) = ΨK1Σ1Φ
⊤ (B.9)

K1 = ΓK1ΣK1Φ
⊤.

where Σ1 and ΣK1  have the same structure as Σ2 and ΣK2 . Notice 
that even if Σ̄1 ̸= Σ̄2, they must still have the same diagonal 
elements, albeit possibly in a different order. Changing the order 
of the elements of Σ̄1 and Σ̄2 so they match means swapping the 
columns of Ψ , Φ , ΨK1  and ΦK2 , but we can also swap the singular 
vectors corresponding to the kernels of K2 and K⊤

1  such that the 
results from Lemma  4 still hold. As such we can assume without 
loss of generality that Σ̄1 = Σ̄2 = Σ̄ . Notice that this is enough to 
prove that 1 → 2b, since ∇KJ(K2K − 1)K⊤

1 = ΨK1ΣΦ
⊤ΦΣ⊤

K1
Γ1 =

0 ⇐⇒ ΣΣ⊤

K1
= 0 (and similarly for Σ⊤ΣK2 = 0). Next, notice 

that 
ΨK1Σ1Φ

⊤
= ΨΣ2ΦK2 (B.10)

implies that 
Ψ1,K1Σ̄Φ

⊤

1 = Ψ1Σ̄Φ
⊤

1,K2 . (B.11)

If we impose, for example, Ψ1,K1 = Ψ1, then we must also 
impose Φ = Φ1,K2 . This leaves the SVD of K2 intact, but changes 
part of the SVD of K1. To show it still satisfies Lemma  4, consider

K⊤

1 =
[
Φ1,K2 Φ2 Φ3

]⎡⎣0 0 0
0 Σ̄K1 0

⎤⎦⎡⎣Γ ⊤

1,P
Γ ⊤

2,P
⊤

⎤⎦ = Φ2Σ̄K1Γ
⊤

2,P

0 0 0 Γ3,P
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which shows that the above is still a valid SVD of K⊤

1  as long 
as the span of the columns of [Φ1,K2 ,Φ3] is equal to the Kernel 
of K1. Indeed, we know that colspace ([Φ1,Φ3]) = kernel (K1) , 
and since (B.11) shows that colspace (Φ1) = colspace

(
Φ1,K2

)
 (by 

contradiction) then we can conclude that colspace
(
[Φ1,K2 ,Φ3]

)
= kernel (K1) . We have, therefore, established that we can always 
match the singular vectors associated with the nonzero singular 
values of ∇KJ(K2K1) for the SVDs in (B.8) and (B.9) and still satisfy 
both conditions on Lemma  4.

Next, notice that we can simply pick Ψ3,K1 = Ψ3, Φ3,K2 =

Φ3, since all matrices are related to the intersection of the ker-
nels and their choice is arbitrary as long as they compose an 
orthonormal basis of kernel (∇KJ(K2K1)) ∩ kernel (K1)  and of 
kernel

(
∇KJ(K2K1)⊤

)
∩ kernel

(
K⊤

2

)
 respectively.

For the remaining matrices, Ψ2 and Φ2 are imposed by the 
SVDs of K2 and K1 respectively, and as such cannot be changed 
arbitrarily. We can, however, freely change the columns of Ψ2,K1
(resp. Φ2,K2 ) as long as when composed with the columns of Ψ3
(resp. Φ3) they form a basis of the kernel of ∇KJ(K2K1)⊤ (resp. 
∇KJ(K2K1)). Therefore we can select Ψ2,K1  (resp. Φ2,K2 ) to be equal 
to Ψ2 (resp Φ2) without any loss of generality, completing the 
proof.

Proof of Corollary  2.  Let (K1, K2) be a saddle point of the gradient 
flow dynamics (8) with N = 2 and assume rank (K2K1) = p <
min(m, n). Also, let K ∗ be such that ∇K J(K ∗) = 0. Then, let v be 
any vector such that v⊤

∇KJ(K2K1) = 0 and notice that
v⊤

∇K J(K2K1) = v⊤
∇K J(K ∗)

v⊤RK2K1 = v⊤RK ∗.

Then, let [v1, . . . , vp] be p linearly independent (LI) vectors such 
that v⊤

i ∇K J(K2K1) = 0, a set which must exist because from 
Lemma  3 the left kernel of ∇K J(K2K1) has dimension p. Then, 
notice that for two LI vectors u and v and full rank matrix R, 
u⊤R and v⊤R must also be LI. Finally, let Ψ ∗

1  be the matrix 
whose columns are vectors composing an orthonormal base of 
span(v1, . . . , vp) and notice that
(Ψ ∗

1 )
⊤K2K1 = (Ψ ∗

1 )
⊤K ∗,

however, since K2K1 is rank p, one can always pick the or-
thonormal basis that compose the columns of Ψ ∗

1  to be the left 
singular vectors of K2K1, implying that there exist a Φ∗

1  whose 
columns are orthonormal vectors such that
(Ψ ∗

1 )
⊤K2K1Φ

∗

1 = Σ∗

1 = (Ψ ∗

1 )
⊤K ∗Φ∗

1 .

For the remaining components of the SVD of K ∗ we can pick 
whichever eigenvectors are left since they are all a basis for the 
left kernel of K2K1.  ■

Appendix C. Proofs for the simple example

Due to space limitations, we refer the reader to the arXiv 
version of this paper (de Oliveira et al., 2024a) for the proofs of 
the results for the simple example.
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