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This paper analyzes the intersection between results from gradient methods for the model-free linear
quadratic regulator (LQR) problem, and linear feedforward neural networks (LFFNNs). More specifically,
it looks into the case where one wants to find an LFFNN feedback that minimizes an LQR cost. It starts
by deriving a key conservation law of the system, which is then leveraged to generalize existing results
on boundedness and global convergence of solutions, and invariance of the set of stabilizing LFFNNs
under the training dynamics (gradient flow). For the single hidden layer LFFNN, the paper proves that
the solution converges to the optimal feedback control law for all but a set of Lebesgue measure zero
of the initializations. These results are followed by an analysis of a simple version of the problem - the
“vector case” - proving the theoretical properties of accelerated convergence and a type of input-to-
state stability (ISS) result for this simpler example. Finally, the paper presents numerical evidence of
faster convergence of the gradient flow of general LFFNNs when compared to non-overparameterized
formulations, showing that the acceleration of the solution is observable even when the gradient is
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not explicitly computed, but estimated from evaluations of the cost function.
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1. Introduction

Neural networks and machine learning (ML) tools are being in-
creasingly used in control design (Alali & Imani, 2023; Motamedi,
Behzad, Zandi, Salehinejad, & Siami, 2024; Ravari, Ghoreishi, &
Imani, 2022, 2024; Sznaier, Olshevsky, & Sontag, 2022; Wafi
& Siami, 2023; Zandi, Salehinejad, Behzad, Motamedi, & Siami,
2023), and are particularly useful in model-free applications,
where a model of the system might not be available (Cui, Jiang, &
Sontag, 2024; Fazel, Ge, Kakade, & Mesbahi, 2018). In such scenar-
ios, an “oracle” might be queried to estimate the cost associated
with a specific control law, as illustrated in Fig. 1. This feedback
has adjustable parameters (or “weights”), which are updated
through the gradient of the estimated cost, typically employing
gradient descent or some other similar numerical optimization
method.
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Understanding the convergence of such learning techniques is
challenging due to inherent nonlinearities. In particular, neural
networks leverage both their compositional structure and the
nonlinear activation functions of each layer. Previous works on
neural networks isolate the compositional structure from the
nonlinear activation by studying linear feedforward neural net-
works (LFFNNs) (Bah, Rauhut, Terstiege, & Westdickenberg, 2022;
Chitour, Liao, & Couillet, 2023; de Oliveira, Siami, & Sontag, 2023,
2024b; Eftekhari, 2020; Kawaguchi, 2016; Min, Tarmoun, Vidal, &
Mallada, 2021; Min, Vidal, & Mallada, 2023). The results are typ-
ically given for solving a static supervised learning problem, i.e. a
linear regression of labels u on Ky ...K;y, where y is an input.
Not only powerful “almost everywhere” convergence results have
been obtained for the regression problem (Arora, Du, Hu, Li, &
Wang, 2019; Bah et al., 2022; Baldi & Hornik, 1989; Chitour et al.,
2023; Eftekhari, 2020; Kawaguchi, 2016), and a type of input-
to-state stability (ISS) property of an associated problem was
characterized (de Oliveira et al., 2023), but, perhaps surprisingly,
the optimization on the individual matrices K; can result in much
faster convergence than optimization on a single matrix K (Min
et al,, 2021, 2023; Tarmoun, Franca, Haeffele, & Vidal, 2021).

Despite the rich literature, current results on LFFNNs can-
not be applied out-of-the-box to non-convex problems, even if
under some gradient dominance condition (PL-inequality). An
extremely popular and well-studied example of such a system
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Fig. 1. System overview of the model-free control design process. The design
algorithm attempts to find a feedback matrix that minimizes the output of the
oracle, which in turn provides a (possibly noisy) estimate of the cost function
every time it receives a candidate feedback matrix.

is the linear quadratic regulator (LQR) problem, whose general
goal is to minimize a quadratic cost function J(K), where K is
a candidate feedback law. When the system dynamics are linear
and known, an explicit optimal solution is obtainable by solving
a Riccati equation on the system matrices (Sontag, 2013), but
such an approach is generally unfit for model-free scenarios,
where the system is assumed unknown and only the value of the
cost function for different feedback matrices can be queried to
some oracle (as illustrated in Fig. 1). This type of scenario can
be understood as a “policy optimization” formulation for the LQR
problem (poLQR) (Hu et al.,, 2023), and approximates the LQR
problem to reinforcement learning problems, motivating previous
works where the optimization is solved by following the negative
flow of the gradient K = —VJ(K), or negative descent direction
Ky11 = Ky — hVJ(K,) (for some step-size h > 0) (Cui et al., 2024;
Fazel et al, 2018; Hu et al., 2023; Levine & Athans, 1970; Mo-
hammadi, Zare, Soltanolkotabi, & Jovanovic, 2022; Sontag, 2022).
Such “training” is an area of active research to this day due to its
non-convex landscape, and traces its origins to pioneering work
by Levine and Athans starting in the late 1960s (Levine & Athans,
1970). Recent publications have established global convergence
properties (Fazel et al., 2018; Hu et al., 2023; Mohammadi et al.,
2022), as well as input-to-state stability (ISS) (Cui et al., 2024;
Sontag, 2022) when the computation of the gradient is subject
to error or uncertainty. Of special note, in Hu et al. (2023), the
authors explore the relationship between LQR (and other classical
control problems) and policy optimization, leveraging the explicit
expression of the gradient of the linear quadratic cost to prove
the convergence of gradient descent methods. Similarly, in Zhang
and Basar (2023), the authors also interpret a gradient approach
to this problem as policy optimization for the LQR problem, and
explore the relationship between the finite and infinite horizon
formulations of the LQR problem to propose a strategy that con-
verges even if initialized outside the set of stabilizing controllers.
All these results argue for the importance of understanding the
behavior of the gradient flow when studying the LQR problem in
a model-free context.

In this context, the primary goal of this paper is to study the
effects of LFFNNs when applied to the more complex setting of
solving a model-free LQR problem (poLQR). Mathematically, the
feedback is written as a product K = Ky ...Kj, where K; repre-
sents the weights of the ith layer of the network. In this context,
the natural training dynamics take the form K; = — Vi J(Ky ... K)
fori =1, ..., N, which is a coupled set of gradient flows done on
the full set of parameters (Kq, ..., Ky). Notably, the assumptions
of gradient dominance (PL inequality) and coerciveness of the
cost function - important for both general non-convex optimiza-
tion (Agarwal, Kakade, Lee, & Mahajan, 2021; Jin, Ge, Netrapalli,
Kakade, & Jordan, 2017; Nesterov & Polyak, 2006; Polyak, 1963)
and for gradient methods for solving the poLQR (Fazel et al., 2018;
Gravell, Esfahani, & Summers, 2020; Mohammadi, Soltanolkotabi,
& Jovanovi¢, 2021) - do not hold when optimizing over layers of
an LFFNN. This is due to the introduction of spurious equilibria
and multiple non-compact sets of critical points in the gradient
dynamics. Despite those issues, we derive convergence proper-
ties of the solution of an overparameterized formulation for the
poLQR.
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Beyond the original goal, literature results on accelerated con-
vergence (Min et al,, 2021, 2023; Tarmoun et al., 2021) indicate
that even the simpler problem of linear activation functions can
be interesting and useful from more than just a theoretical point
of view. We demonstrate that this property also holds for the
poLQR through numerical simulations, although further discus-
sions on computational and sample complexity are required be-
fore it can be determined whether this formulation is inherently
useful for practical applications.

In sum, this paper takes steps to blend these two strands
of research: gradient methods for the model-free LQR problem,;
and the analysis of overparameterization in optimization. It looks
at the use of overparameterized state feedback for the poLQR,
investigating properties that can be derived for its gradient flow.

To accomplish this, the paper starts at Section 2 by pre-
senting a theoretical background of both gradient methods for
the LQR problem and overparameterization for linear regression
problems. Then, in Section 3 the paper formally defines the over-
parameterized policy optimization LQR problem and proves that
it shares the same convergence properties as the overparame-
terized linear regression. Then, Section 4 provides a complete
characterization of a simplified version of the problem: the sin-
gle input and single state/output. The center-stable manifold of
the spurious equilibria is characterized, and both an ISS-type
and accelerated convergence properties are formally proven. The
paper then presents numerical simulations to demonstrate the
presence of accelerated convergence for the general case in Sec-
tion 5. The simulations show how initialization affects conver-
gence when compared to the non-overparameterized gradient
flow, both when the gradient is perfectly and imperfectly known.
Finally, in Section 6 the contributions of this paper are sum-
marized and possible future directions of work are discussed. A
preliminary version of this work was previously published (de
Oliveira et al., 2024b), but the proofs appear here for the first
time, and the discussion is significantly deepened. All proofs of
the main results are provided in the appendix for the clarity of
the main text, and proofs of minor results can be found in the
arXiv version of this paper (de Oliveira, Siami, & Sontag, 2024a).

2. Theoretical background

Throughout this paper, let R, and R, be the set of nonnega-
tive and strictly positive real numbers respectively. For n € N, let
S} and S | be the set of symmetric positive semi-definite (PSD)
and positive definite (PD) n-by-n matrices, respectively. Given a
matrix A € R™", A is said to be Hurwitz if all its eigenvalues have
negative real part.

2.1. The LQR problem as policy optimization

We begin by presenting results from (Rautert & Sachs, 1997),
which serve as groundwork upon which we derive our new re-
sults. We also emphasize that despite the reliance of the following
results on the knowledge of the system matrices, the gradient
expression derived in this section holds great value for analysis,
as demonstrated, for example, in Fazel et al. (2018), Hu et al.
(2023), Mohammadi et al. (2022), where it forms the basis for
theoretical guarantees regarding convergence rate and accuracy
in model-free scenarios.

Consider the following linear system:

2{x=Ax+Bu

y=Cx ’ ()

where A €¢ R B € R™™ and C € R™" are the system
matrices, with (A, B) assumed controllable and C assumed full
rank (Rautert & Sachs, 1997, Assumption 2). Let K := {K € R™" |
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Kn-1

Fig. 2. Graphical representation of a linear feedforward neural network (LFFNN)
with an input layer y € R" with n neurons, hidden layers z' € R* with «;
neurons, and output layer u € R™ with m neurons. The computation of the
network is done for each layer as z = K;z;_;, with z° = y and z" = u, where the
matrices K; represent, in the figure, the presence and weight of edges between
neurons of layer i — 1 and layer i. The resulting input-output expression for the
LFFNN then becomes u = Ky ... Kyy.

A+ BKC is Hurwitz}, then the objective is to determine an output
feedback u = Ky, K € K, that minimizes

JUK) = By, [ / X0 Ox(D) @)
0

+ u(t)TRu(t)dt],

with given positive definite cost matrices R € STX™ and Q € S,
and for xo sampled from a probability distribution Aj. Throughout
this paper we refer to K* as the unique solution to the LQR
problem.

In Rautert and Sachs (1997, Theorem 3.2), the authors provide
the following expression for the gradient V] with respect to the
feedback matrix K:

VJ(K) = 2(B" Py 4+ RKC)LCT, (3)

where for any K € K, Px and Lg are the unique positive definite
solutions of the following Lyapunov equations

Px(A + BKC) + (A + BKC) " P
+CTKTRKC+Q =0 (4)
Li(A + BKC)" 4 (A + BKC)Lg + Xy = 0, (5)

respectively, and the matrix Xy = Ey;~x, [xoxg] depends on the
distribution of initial conditions Ay, and is assumed to be of full
rank. From these, we can define the set of desired/optimal values
of K as 7 := {K € K | VJ(K) = 0}. With these results established,
we next look at key literature results on overparameterization.

2.2. Overparameterization - properties and formulation

The optimization landscape of the gradient flow of a linear
neural networks is usually studied in terms of least square/linear
regression problems, stated as follows: let Y = [y1,y2, ..., Vil
and U = [uq, Uy, ..., U] be the column concatenation of (pos-
sibly noisy) k input-output pairs sampled from an unknown
function K that one wants to approximate using a linear neural
network K. Although arguably a simple formulation, the resulting
gradient system is the object of study of many papers in the
literature (Bah et al., 2022; Chitour et al., 2023; de Oliveira et al.,
2023, 2024b; Eftekhari, 2020; Kawaguchi, 2016; Min et al., 2021,
2023).

For some search space of neural networks K, defined as ap-
propriate to the problem, an optimal neural network K* € K
minimizes J(K) = ||U — K(Y)||, where K(Y) = [K(y1), ..., K(vk)],
and for some norm | - ||. A linear feedforward neural network
(LFFNN) (depicted in Fig. 2) is a feedforward neural network with
linear activation functions between layers, and has: an input layer
with n neurons; N — 1 hidden layers, each with x; > max(m, n)
neurons, fori = 1, ..., N—1; and an output layer with m neurons.
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Then, in the specific case of a LFFNN, and being K; € R“i**i-1 the
ith layer parameter matrix, the function to be minimized becomes
J(Ky,...,Kn)=|lU =Ky ... K Y]

For this problem, and under some reasonable assumptions
on the ranks of Y and U, and on the dimensions of the K;s
(see Kawaguchi (2016), and Assumptions 1 and 2 in Chitour
et al. (2023) and references therein, or a previous work from the
authors (de Oliveira et al., 2023)), the following can be summa-
rized from the literature about the optimization landscape of this
problem:

Proposition 1. Consider a linear regression problem solved with a
LFFNN with N layers and trained through gradient flow. Assume U
and Y are full column rank and that all hidden layers are wider than
the number of inputs and outputs (i.e. all hidden layers have more
neurons than the input and output layers), then:

(1) the problem is generally non-convex and non-concave;

(2) all local minima are global minima;

(3) there are no local maxima;

(4) in the special case where N = 2, all critical points are either
global minima or strict saddles (i.e. the Hessian at that point
has at least one strictly negative eigenvalue);

(5) the solution exists for any initial condition and always con-
verges to a critical point of the dynamics;

(6) if N = 2, the solutions converge to a global optimum for all
initializations but a set of Lebesgue measure zero.

Proof. Items (1) to (4) are studied in Baldi and Hornik (1989) for
the single hidden layer case, and Kawaguchi (2016) generalized
these results to the arbitrarily deep case. Properties (5) and (6)
are proved in Panageas and Piliouras (2017) for the analogous
discretized problem (i.e. gradient descent). In Appendix A we will
show how to adapt these proofs to the continuous-time (i.e. flow)
case. An independent proof of (5) and (6) was provided in Chitour
et al. (2023) for the specific problem of linear regression and
under an additional assumption on the loss function (“distinct
critical values”).

Furthermore, other works in the literature establish useful
properties of overparameterized linear neural networks when
compared to equivalent non-overparameterized formulations. In
Min et al. (2021), Tarmoun et al. (2021) the authors study the
speed of convergence of the gradient flow in overparameterized
linear neural networks solving linear regressions, showing that
depending on the initialization of the algorithm, the convergence
rate can be arbitrarily increased. In Min et al. (2023) the au-
thors extend their results to a more general class of optimization
problems, although the required assumption of convexity of the
non-overparameterized problem makes it so that their results are
not immediately applicable to the LQR problem.

In our previous work (de Oliveira et al., 2023), we provide
some insights on the loss of robustness in training overparam-
eterized linear neural networks through gradient flow, and show
how judicious restrictions on the set of initializations might cir-
cumvent this problem.

Such properties for linear neural networks/ overparameterized
linear regressions could be useful if they held in the context
of feedback control design. Motivated by these results, the next
section looks at how one can extend these important results
for the policy optimization LQR problem, and consequently to
feedback control design.

3. Feedback control through LFFNNs

Let K = (K1, K, ..
an input layer, and an output layer. Let Ky, K5, ..

., K,) be a LFFNN with N — 1 hidden layers,
., Ky be the
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weight matrices of each layer with K; € R*1*" K, € R*2*¥1 and
so forth, with Ky € R™*N-1 where «; € Z" is the dimension
of the ith hidden layer. Furthermore, we are interested in the
overparameterized case, i.e. k; > max(m, n)foralli=1,...,N—
1. For an input y € R" of the LFFNN, its output u € R™ is given
by u = K(y) = KyKy_1 - - - K3K7y, and its structure is as depicted
in Fig. 2. By choosing K as the output feedback law, the closed-
loop dynamics of the LTI system (1) becomes x = Ax + BK(Cx) =
(A+ BKy - - - K1C)x, and the LQR problem cost becomes

J(K) = trace (PxXy) , (6)

where for a given K, Pg is the unique solution of the following
Lyapunov equation:

Px(A+BKy ... KiC)+ (A+ BKy ... KC) P
+ (Ky...KiC)"RKy ... K;C+Q = 0. (7)

The notation J(K) and J(K1, K3, . .., Ky) are used interchangeably
when the goal is to emphasize the dependency on the linear
neural network K or on its parameters (K, ..., Ky). With this,
consider the following problem definition.

Definition 1. Let K be a LFFNN, and A, B, and C be as in (1).
Define K := {K | (A + BKy ...K;C) is Hurwitz} and let R € STX™
and Q e STX" be given symmetric positive definite matrices.
Solving an overparameterized formulation of the model-free LQR
problem consists in finding a K* € K that solves

min J(K) := trace (Px Xy)
Kek

s.t. (7).

Then, a gradient flow for the overparameterized model-free
LQR problem is defined for each i = 1,...,N and any fixed
“learning rate” n > 0 by imposing the following dynamics for
the parameter matrices K; that compose Ky

aJ
MoK

and a candidate solution to the overparameterized model-free
LQR problem is obtained by initializing the gradient flow at some
Ko € K and selecting whichever point the solution converges
to (assuming it converges to a point). It is evident that an equi-
librium of the gradient flow dynamics (8) is not necessarily the
global optimum of the overparameterized poLQR, and a better
understanding of the landscape of the problem is required before
one can discuss the optimality of a solution obtained in such a
manner. Nonetheless, K; = 0 for all i = 1,..., N is a necessary
condition for global optimality, which makes the equilibria of
(8) natural candidates for a optimal solution. Henceforth in this
paper, it is assumed n = 1, although comparisons between
the proposed formulation and other formulations that explore
variable values for n could prove to be an interesting future
direction of work.

Regarding the computation of the gradients of | with respect
to the matrices K;, consider the following result:

K = (8)

Lemma 1. LetB; := BKy ... K1 and R := K.} ... KyRKy ... Ky

forie{l,...,N=1},CG:=K;_1...K1Cforie {2,...,N},By :=B,
Cy :=C, and Ry :=R. Then

Vie] = 2IB{ Px + RiKiGlLkC;", (9)
where Py is the solution of (7), Lk is the solution of

Lg[A+BKy ... K;C]"

+ [A+BKy...KiCllx + Zo =0, (10)
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and Xy relates to the distribution of initial conditions, being equal to
the covariance matrix if the initialization is random Gaussian with
zero mean, or equal to the identity for uniformly sampled unitary
vectors.

Notice that we presented the results so far for arbitrary full-
rank C to keep the comparison with the results from (Rautert &
Sachs, 1997), however moving forward we will assume full state
feedback for the system, that is C = I, and initializations in the
unit sphere, that is Xy = I. We next look at what can be said
regarding convergence guarantees for the proposed problem.

3.1. A conservation law for the overparameterized model-free LQR
problem

Notice that, relative to the weight matrix of each hidden layer,
the derivative of the cost J relative to each parameter matrix,
given by (9) follows an iterative structure that allows the charac-
terization of a conservation law that is satisfied by any solution.
Such conservation law follows a very similar structure as the
ones characterized for overparameterized linear regression (see
for example Lemma 2.3 of Chitour et al. (2023)). This property is
given in the following lemma:

Lemma 2. For a gradient flow dynamics (8) used for solving the
overparameterized model-free LQR problem (poLQR) presented in
Definition 1, and for any i from 1 to N — 1, the following quantity is
invariant along any solution (Ky(t), ..., Ky(t)) initialized in KC:

i =KiK," — K} Kis1
=(KiK;," — <1111<i+1)t:07 (11)

where C; are constant matrices of appropriate dimensions. We refer
to the set (C1, ..., Cn_1) as the set of invariants of a given solution.

A similar conservation law is leveraged to prove many of
the properties of the overparameterized gradient flow for linear
regressions, as can be seen from Lemma 2.3 in Chitour et al.
(2023), Lemma 1 in Min et al. (2021), Lemma 2.1 of Bah et al.
(2022), and others. The fact that such property also holds for
the more general Linear Quadratic cost when overparameterized
motivates the search presented in this paper for other useful
properties that might hold for this case.

With this, and knowing that the LQR cost function is a rational
function (see, for example, a discussion in Sontag (2022), section
4.3) the following result regarding the global convergence of
solutions of (8) can be stated:

Theorem 1. Any solution of the gradient flow (8) initialized in
K (defined as in Definition 1): exists; is precompact; remains in K
for all time; and converges to a critical point of the gradient flow
dynamics.

This result not only guarantees invariance of the set of stabiliz-
ing neural networks and global convergence of solutions but also
demonstrates how the invariance obtained in Lemma 2 can be
used to extend results from the literature on overparameterized
linear regressions to the context of the overparameterized model-
free LQR problem. We next look at the case with N = 2, i.e. a
single hidden layer, to enunciate an even stronger convergence
result.

3.2. Feedback control design with a single hidden layer

Consider now the case where N = 2 (single hidden layer). The
literature on overparameterized linear regression is rich in results
for this case, and this section aims to show that the main ones
also hold for the design of optimal state feedback controllers.
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We begin by proving that any critical point that is not a
global minimum of the problem is necessarily a strict saddle. This
result is, then, used to prove almost everywhere convergence to
the global minimum of the problem. Then we characterize all
critical points to discuss some intuition behind the problematic
set of initializations, that is the set of initializations that do not
converge to the global minimum. Let 7 be defined as in Section 2,
then consider the following result:

Theorem 2. Let (Ki, Ky) be an equilibrium point of the gradient
dynamics (8), then either

e The point (K, K;) is a global minimum of the system, i.e.
KKy € T or

e The point (Kq, K3) is a strict saddle of the dynamics, i.e. the
Hessian evaluated at (K1, K3) has at least one negative eigen-
value.

Because Theorem 2 guarantees that the critical points are
either strict saddles or global minima, and Theorem 1 guarantees
convergence to a critical point, we can apply Corollary 4 provided
in Appendix A to get the following Corollary:

Corollary 1. For all initializations but a set of Lebesgue measure
zero, the solution of the overparameterized gradient flow (8) con-
verges to a point (Kq, K3) such that K;K; € T, that is, almost all
solutions initialized in K converge to an optimal feedback matrix and
minimize (6).

Notice that Corollary 1 is proven without needing to character-
ize the set of initializations that converge to a saddle. Such points
are hard to characterize for an arbitrary saddle, although we can
provide a characterization of the critical points themselves as
follows:

Lemma 3. For the gradient flow (8) with N = 2 and k1 = k >
max(m, n), and for any set of parameter matrices (K, K,) such that
K;K; € K, the following are equivalent:

(1) The point (K, K;) is an equilibrium of (8), i.e. K; = K, 2[BT
Px + RKzKl]LK =0, and kz = Z[BTP[( + RKzKl]L](K]T =0.

(2) Let Vi = 2[B"Px + RK;KilLg, then, there exist an SVD
ViJ(IK) = X @7, and orthogonal matrices I, Ik, €
R*** such that: (a) Ky = I'x, Zx, @' and K, = ¥ X, I“KT2 are

SVDs of K1 and K; and (b) £ X = 0and X, X = 0.

From this Lemma, we can characterize the product K)K; at
critical points in terms of low-rank approximations of K* (the
optimal LQR feedback matrix) as in the following corollary

Corollary 2. Let K* be the optimal value of K € K that minimizes
the LQR cost (2). If (Kq, K3) is a critical point of the gradient flow
dynamics (8) with a N = 2, then there exists an SVD of K*

. . . I* 0 o T
w3 2[5

with its singular values not necessarily in any order, such that
Cro ol | ZF 0] [@pT
KoKy = [¥F, ¥ ] [ 0 0} [(q);)T .

As an immediate consequence of Lemma 3 and the consequent
Corollary 2, one can notice that there is a finite number of values
that the cost function (6) can have at any critical point of the
gradient flow dynamics. This characterizes a finite number of sets
of critical points, as a function of the number of possible low-rank
factorization of K*. Despite that characterization, however, it is
still hard to compute the center-stable manifold of the saddles,
as we hope to illustrate next.
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For some p < min(m, n), let KI;‘ denote a rank-p factorization
of K* and let the set of all (K, Ky) such that K,K; = Ky be
given by 7, = {(Ki,K2) | KaKi = Kj}. It is evident that for
any (Ki,Ky) € T,, (K, Kx(1/p)) € T, as well for any u # 0,
and therefore 7, is continuous and unbounded. However, it is also
easy to see that there exist two (K;, K,) € 7, and (Ky, K;) € 7, for
which there exist no p # 0 such that (K, K) = (uKq, (1/0)Ks).

The degrees of freedom for points in 7, come from the fact
that multiple different values of X, Xx,, Iy, and Ik, exist such
that KK = K;. However, necessary and sufficient conditions
on these matrices for the equality to hold do not exist to the
authors’ knowledge, which makes an analytic characterization of
all points in a given set 7, difficult. This difficulty also explains
why characterizing the center-stable manifold of the saddles is
hard. Assume that for a given (Ki, K;) € 7, the center-stable
manifold of that point is known, then to extend it to a “neigh-
borhood” of the point in 7,, one would need to be able to: first
characterize all points arbitrarily close to (Ki, K3); and second
derive how that characterization reflects in the characterization
of the center-stable manifold of a point in 7).

In this section, we have collected powerful results about the
convergence of the gradient flow solution for the general problem
and the single hidden layer case. These results provide some
guarantee to the behavior of the solution but also illustrate some
of the fundamental challenges of understanding deep and wide
optimization formulations. We will follow up in the next section
with a complete analysis of a simpler version of the problem, in
the hopes of illustrating better some of the intuition derived from
the results from this section.

4. Analysis of the single-input/single-state case with one
hidden-layer

To provide a better intuition behind the results given in the
previous section, we now study a simple example of the consid-
ered problem. Assume N = 2, n = m = 1, but x; =: « arbitrary.
The case where the parameters take these values is referred to as
“the vector case”, and if k = 1 then it is referred to as “the scalar
case”.

For the vector case, the system in consideration is of the
form of (1) with A,B € R and x,u : R, — R. Without loss
of generality, assume x(0) = 1, B = 1, and denote A = a
to emphasize its scalar nature. Furthermore, assume the scalar
weights for the cost (6) are givenby Q = q>0andR=r > 0,
and the parameters to be optimized by K; = k; € R“*! and
K, = k, e R, Furthermore, the valid parameter space is
defined as K = {(ki, ko) € R x R | a+kyk; < 0}. Assuming
a feedback of the form u = kpkix, with (k1, k) € K results in

J(k1, ko) = Exyex, [/oo x(t)Zq + u(t)Zrdt}
0

= Expex, [/N xX(t)Y(q + (kzkl)zr)dt]
0

= Expey [X(0)](q + (kaky)’r) (12)
X /w ez(a+k2k1 )tdt
0
kykq)?
=_(Q+(2 1)r). (13)
2(a + kokq)
Taking the gradient with respect to k; and k; gives
Vi J(k, kz) = f(kq, ka)ky (14)
VioJ(k1, k2) = f(kq, ka)ki (15)
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Fig. 3. Phase Plane for the gradient flow dynamics for the scalar case described
in Section 4, drawn for a stable A. The blue arrows depict the vector field at
different points of the state space. The black hyperbolas are the new equilibria
introduced by the condition f(kq, k;) = 0, with f(-) as in (14) and (15). The red
hyperbolas are the borders of the set of (ki, k) such that a + kyk; < 0O, that is,
such that the closed loop is stable. The blue dashed lines are composed of the
points that satisfy d(kq, k) = 2,/|k* |, while the green dashed line is the set for
which d(kq, k;) = 0 where d(kq, k) is as defined in Proposition 2.

where
r(kaokq)? + 2arksk; — q
2(a+ kyki)?

which, in turn, results in the following dynamics for the param-
eters

ki = —f(ki, k)ky (16)
—f (K, ka)k{ . (17)

flki ka) = —

kz

Notice that, similar to the observation made in de Oliveira et al.
(2023) for the vector case in linear regression, the vector dy-
namics of this problem is a simple nonlinear reparameterization
of a linear dynamics. This means that inside K, the phase plane
should be that of a saddle with an inversion in the direction of
the flow whenever f < 0, and an extra equilibrium set given by
{(k1, k) € K | f(kq, kz) = 0}. This can be observed graphically for
the scalar case in the plot given by Fig. 3.

The new equilibrium set given by f(k1, k») = 0 can be studied
explicitly, this condition is satisfied for any (k{, k;) € K that
solves r(kykq)? 4+ 2ark,k; — g = 0. The solutions to this quadratic
equation are

koki = —a+ /@ + q/r = K} (18)

kzkl = —a-— \/m = k*_a (19)

with k% ¢ K leaving k* as the only viable solution, which
coincides with the optimal solution of the LQR problem for the
scalar system, since from the theory on this problem one can
write

kiox = —R'BP,
where P is the solution of
ATP+PA—PBR'BTP+Q =0,

which results in K5, = k% since P > 0.

Furthermore, notice that f(kq, k) > 0 for all (kq, k) € K such
that kyk; > k¥, since the positive root k% = —a++/a+q/r>0
is such that a + ki > 0, and the concavity of the parabola
is negative. Also notice that if kok; < k* then f(ki, k) < O
by a similar argument. However, notice that there is another
equilibrium to this dynamics, given by (kq, kz) = (0, 0). For this
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equilibrium, k;k; = 0 which is not the optimal solution of the LQR
problem. Such equilibrium is referred to as a spurious equilibrium
of the system and is only in K if a < 0. Still, it is convenient
to characterize a condition for which convergence to a global
minimum is guaranteed. To do so, we adapt a result from (de
Oliveira et al., 2023) to the design of feedback controllers:

Proposition 2. For the overparameterized poLQR given by Defi-
nition 1 withn = m = 1 and N = 2 (ie. the vector case), the
gradient flow solution converges to the global optimal value of the
cost function (2) if and only if the gradient flow is initialized such
that

d(ki, ky) == [lk; — kj ||> > 0.

Proposition 2 gives a necessary and sufficient condition for the
convergence of a solution to the target set 7 := {(k1, k2) € K |
k,ki = k*}. For any point in 7, the value of the cost function
J(kq, k) is the same, but that does not mean that all initializations
that converge to 7 are equivalent. It was shown in Lemma 2
that different values for the conservation law are invariant along
trajectories, so we show next how the values of this conservation
law influence the convergence through the following definition
and proposition.

Definition 2. For the overparameterized poLQR given by Def-
inition 1 withn = m = 1 and N = 2 (i.e. the vector case),
denote by ¢ := C; = kik{ — kj ko, that is, the value of the
invariant. Then, define the level of imbalance of a given solution
as ¢ := 2 trace (C?) — trace (C).

Proposition 3. For the overparameterized poLQR given by Defi-
nition 1 withn = m = 1 and N = 2 (ie. the vector case), let
(@1, (t, (K1, k2)), br, (¢, (k1, k3))) be the solution to the gradient flow
(8) initialized at (ky, ko) and let ¢y(t, (ky, ko)) = J(¢, (¢, (k1, k2)),
o1, (t, (k1, k2))) be the trajectory of the cost function (6) along a
solution. For two distinct initializations (I~<1, I~<2) and (kq, k) with
levels of imbalance given by ¢ and ¢ respectively, let
o J(ki, ky) = J(k1, ky); and

o [€] > [¢] > 0, with ky # k]

Then, for all time t > 0 it follows that ¢(t, (ki,k;)) <
@y(t, (ki, k2)). In other words, the cost converges faster to the mini-
mum value for solutions initialized with a larger level of imbalance.

Proposition 3 proves an increase in the rate of convergence
for different solutions of the system, however, it provides no
quantitative result, i.e. it does not prove that the acceleration
is unbounded. To further study advantages and trade-offs be-
tween different initializations, we next characterize the robust-
ness of the solutions, i.e. how the solutions can be expected to
behave when the gradient is computed with an associated level
of additive uncertainty.

Some intuition regarding the behavior of the solution under
disturbance can be obtained from analyzing the scalar case. One
can notice graphically from Fig. 3 that as c increases, the associ-
ated equilibrium gets closer to the border of the set of stabilizing
controllers, i.e. the red and black hyperbolas in the figure “meet
at infinity”. At first sight, this can be a problematic observation
when considering disturbances, as points in the target set can
be arbitrarily close to the border of instability. However, this
does not mean that any disturbance during the training can take
the feedback matrix to instability. In fact, let K be the border
of K (ie. the red hyperbolas), and notice from (14) and (15)
that in general, as (ki, k) — K, |f(ky, k2)] — oo, with its
direction being away from the border. This means that only a
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disturbance of infinite magnitude on the training dynamics could
take a solution initialized in K away from it.

To formalize this intuition, we prove the following “ISS-type”
result regarding solutions of the overparameterized poLQR in the
vector case when subject to additive uncertainties.

Proposition 4. For the overparameterized poLQR given by Defini-
tion 1 withn = m = 1 and N = 2 (i.e. the vector case), consider
solutions initialized in K and such that ||k, — k2T||2]t:0 > 2,/ay,
where a, = max(0, a). Furthermore, let the dynamics be disturbed
in the following form

kia = —Vi,,J + U1, (20)

where uq, uzT : RT — RX. Then for every € > 0, there exists a § > 0
such that if ||uyllse + [lu; lleo < 8 then limsup,_, , J(ka(t)kq(t)) —
J(k*) < €, where || - || is the infinity norm of a function.

Notice that the property characterized in Proposition 4 is
not input-to-state stability as it is usually defined, and is more
akin to a “input-to-cost” stability. Furthermore, due to the non-
compactness of the sets of critical points, one can even prove that
for an arbitrarily small disturbance, the state will diverge, but
will do so along a trajectory that will keep the value of the cost
bounded. Nonetheless, in some sense this still guarantees that the
solution remains “close” in the sense of the cost J(-) to the target
set, even when subject to additive disturbances.

Through this simple example, one can see how interesting
and rich the problem discussed in this paper can be, as well
as capture some of its intuition in a simpler context. The next
section investigates numerically whether the increased speed of
convergence, proven for the vector case here, might still hold for
the general problem.

5. Numerical results

In this section, we investigate empirical distinctions between
overparameterized and regular model-free LQR problems. The
simulations were done using Matlab, and all code is available
online in a repository (de Oliveira, 2025). The selected A and B
for the simulations are

[5.2373 0.3452 0.6653 0.6715 0.3288
0.3452 5.4889 0.8060 0.3889 0.5584
A=—06653 0.8060 5.0377 0.5735 0.5100 (21)
0.6715 0.3889 0.5735 5.3354 0.6667
| 0.3288 0.5584 0.5100 0.6667 5.4942
™ 0 1 0 0
B"=|(0 0 0 1 0] (22)
0 0 0 0 1

All simulations are done for a 10-neuron single hidden layer
neural network, since a single hidden layer is enough to ob-
serve overparameterization and has better convergence guaran-
tees. The choice of 10 hidden neurons was arbitrary.

For the gradient flow solution to be well-defined, a stabiliz-
ing initialization is required. Although this is a common nec-
essary condition (Fazel et al., 2018; Mohammadi et al.,, 2022),
as mentioned in the introduction, recent works in the litera-
ture (Zhang & Basar, 2023) explore the finite horizon formulation
for the LQR problem to allow for arbitrary initializations. How-
ever, while studying the effects of overparameterization on such
formulations could prove interesting, it is not in the scope of this
paper.

Therefore, to generate the synthetic results that illustrate the
distinct behaviors of an overparameterized formulation over the
non-overparameterized formulation for the poLQR, we must first
discuss the difference in the behavior of the solution based on the
initialization.
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Fig. 4. Depiction of the four different regions of the state-space based on the
expected behavior of the solution.

5.1. On the choice of initialization

Consider the phase plane of the scalar case depicted in Fig. 3
for reference. The first clear segmentation of the state space is the
one done by the red hyperbolas, i.e. between the values of (K1, K3)
such that A + BK is Hurwitz or not.

Another similar segmentation is done by the black hyperbo-
las in the same figure. Notice that any solution initialized in
between the two hyperbolas will never cross either hyperbola,
and vice-versa. This happens because at the black hyperbolas
both gradients Vi,J(Ki,K;) = 0 and V,J(K;,K;) = 0, and by
continuity of the solution, it cannot cross over.

Finally, the quadrants also separate the state space in two,
where any initialization in the second and fourth quadrants al-
ways converges to the global optimum (black hyperbola), while
initializations in the first and third quadrants can converge to the
saddle at the origin.

From this informal analysis, one can draw Fig. 4, which can
be expected to describe the behavior of the solution to some
degree, even if not extensively. We will perform the simulations
for initializations (K1(0), K»(0)) = (K19, Ky9) such that KyKig =
nK* where K* is the optimal feedback matrix and 7 is a scalar.
Intuitively, one would expect that if > 1, then the system would
be initialized in a region of the state-space analogous to (D in Fig.
4, where 1 can be arbitrarily large and the solution still converges
to the target set. Similarly, if 1 > » > 0, the solution is in a
region analogous to (), and the closer 5 is to 0, the longer the
initialization should take to converge to the target set. Finally, if
n < 0 then it is in a region analogous to @), or if |5| is too large,
then the solution does not exist.

To be more specific, for any given desired n we compute
K* first, then compute a SVD for it as K* = ¥ X® and a
random orthogonal 10 x 10 matrix I". Then, we define K =
sign(n)/Inul 21207 and Ky = (V/Inl/uw)@XZ'2rT for p
varying from 1 to 100 defining more or less imbalanced initial-
izations for the same 7.

As mentioned before, this does not encompass all possible
behaviors for the solution of the general case with a single hidden
layer. To illustrate this fact, we will perform simulations for all
three cases described above (n > 1,1 > n > 0 and n < 0) and
a final simulation for an initialization selected specifically to not
lie in any of the regions described by the different values of 7.

After an overview of the behavior of the solution is provided,
we will investigate how overparameterization affects the conver-
gence in a scenario where the gradient is numerically estimated
from evaluations of the cost function, resulting in imprecise ap-
proximations and introducing uncertainty to the dynamics.
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Fig. 5. Simulations done for initializations with n > 1. Solutions were initialized with n =5 in (a) and with = 20 in (b). Solutions from light to dark blue depict
overparameterized solutions with different levels of imbalance i € [1, 100], and the red curve shows the non-overparameterized solution.
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Fig. 6. Simulations done for initializations with 1 > n > 0. Solutions were initialized with n = 0.9 in (a) and n = 0.1 in (b). Solutions from light to dark blue depict
overparameterized solutions with different levels of imbalance i € [1, 100], and the red curve shows the non-overparameterized solution.

5.2. Results with the exact gradient

In this section, we will discuss the numerical simulation re-
sults for the gradient flow for the case when the gradient is
perfectly known. The simulations are done for two different ini-
tializations with n > 1 (Fig. 5), two with 1 > n > 0 (Fig. 6), and
two with n < 0 (Fig. 7). Finally, two other simulations are done
with a different initialization to illustrate a distinct behavior of
the solution (Fig. 9).

For the simulations with » > 1 in Fig. 6, notice how the
overparameterized solutions (shades of blue) converge relative to
the non-overparameterized solution (red) depending on how far
from the optimum the solution is initialized. For n = 5, the slow-
est of the overparameterized solutions (lightest blue) converges
almost as quickly as the non-overparameterized solution but is
overtaken as the solutions get closer to the optimum. Nonethe-
less, with an arguably small value for the imbalance term , it is
verifiable that an overparameterized solution will converge more
quickly than the non-overparameterized one. This becomes even
more evident for the solutions initialized with n = 20, where
all overparameterized solutions converge to the optimum more
rapidly than the non-overparameterized solution. Furthermore,
notice how the solution to the overparameterized gradient flow
has a different profile than the non-overparameterized solution,
indicating that the overparameterized formulation did not simply
accelerate the convergence, but changed the behavior of the
solution.

For the simulations with 1 > n > 0 in Fig. 6, the variation
in the values of the cost function is limited by the values of J(K)
for K = K* and K = 0. Furthermore, notice that the solutions
initialized with n = 0.9 converge generally faster than the ones
initialized with n = 0.1. This happens because as  — 0, the

initialization approaches the saddle, exhibiting reduced conver-
gence rates. Despite that, however, a big enough imbalance can
always be imposed to generate a solution that converges more
rapidly than the non-overparameterized solution.

Next, for the simulations with n < 0 depicted in Fig. 7, before
we can discuss the simulation results we first need to argue that
theoretically for any initialization with n < 0 and in K, if u = 1
then the resulting solution should converge to the saddle-point
at the origin. To show this, first notice that for u = 1, ¢ = 0
by construction of the initialization. Then, notice that if n < 0,
then J(K0K19) > J(0). This can be shown theoretically, but for
the simplicity of this analysis, this was verified numerically for
this specific example. Next, since J(Ky0Kq9) > J(0) > J(K*), by
continuity any solution initialized at (K7, K29) must pass through
a point such that KygK;p = 0 before it can reach the target set
T. Finally, notice that the only point such that ¢ = 0 and that
K;K; = 0 is the origin, which is a saddle of the dynamics.

This explains the strange behavior of the solutions initialized
with ¢ = 1 and n» = —0.1 in Fig. 7, where the solution looks
like it is converging to a suboptimal value for the cost function.
However, despite theoretically converging to the saddle at 0,
the simulation solution eventually escapes it due to accumulated
errors in the numerical simulation, and reaches the global min-
imum. When looking at solutions initialized at n = —20 one
might think a priori that the same phenomenon observed when
n = —0.1 does not happen, however, if one looks at the zoomed
graph in Fig. 8(a), one can see clearly that the solution initialized
with n = —20 and u = 1 is affected by the proximity to the
saddle, although less than when initialized with » = —0.1. This
effect is even more evident if we look at Fig. 8(b), which depicts
the Frobenius norm of K(t)K;(t) along the solution with © = 1.
Notice that the norm of the matrix product approaches zero,
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Fig. 7. Simulations done for initializations with n < 0. Solutions were initialized with n = —0.1 in (a) and with » = —20 in (b). Solutions from light to dark blue

depict overparameterized solutions with different levels of imbalance x € [1, 100], and the red curve shows the non-overparameterized solution.
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Fig. 8. Simulations done for initializations with n = —20. In (a) we have a zoomed version of the right graph in Fig. 7, where the influence of the saddle in the

imbalanced solution becomes more evident. In (b) we have a plot of the Frobenius norm of the product K,(t)K;(t), showing that the solution comes very close to
K;K; = 0, but then converges to the dashed line, which is the Frobenius norm of K*.

Level of
Imbalance

n=diag([20, 0.1, -20))

Increasing
Imbalance

10°

107 102
Training Time

(a)

Level of
Imbalance

n=diag([20, 0.1, -20))

0.4895

0.489

0.4885

0.488

K)

0.4875

Cost J

0.487

0.4865

0.486

0.4855 Lo eisinie s iiiniit e
10 10" 102
Training Time

(b)

Fig. 9. Simulations done for initializations with n = diag([20, 0.1, —20]). On (a) we have the entire trajectory for the solutions and on (b) we have a zoomed version
of the plot. Notice that despite this initialization not lying in any of the pre-identified regions of the state space, many of the qualitative observations we made for

the behavior of the solution still hold.

but eventually escapes the saddle due to accumulated numerical
errors.

Finally, we present a set of simulations selected specifically
to not fit in any of the previously discussed cases. To do that,
notice that K* has three singular values, so instead of multiplying
all three by the same 7, we multiply the first one by 20, the
second by 0.1, and the third by —20. The resulting solutions are
shown in Fig. 9. Notice that despite this initialization not lying in
any of the pre-identified regions of the state space, many of the
qualitative observations made for the behavior of the solution still
hold. Furthermore, the saddle that the solutions approach in this
case is not the origin (which is an isolated critical point), but a
non-compact set of saddles, which explains why the effect of the

proximity to the saddle affects all solutions, regardless of the level
of imbalance.

We conclude this section of simulations with exact knowledge
of the value of the gradient with a final observation regarding
the level of imbalance. Theoretically, there is no limit to how
imbalanced one can make an initialization, however, in practice,
the more imbalanced an initialization, the stiffer the resulting
ODE, making it harder for numerical solvers for ordinary dif-
ferential equations to simulate the system. Therefore, although
the gradient flow converges “more quickly” in simulation time,
the stiff ODE starts to take longer to solve in practice if the
initialization is chosen to be too imbalanced. This poses a real-life
trade-off on how imbalanced one can make the initialization.
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Fig. 10. Simulation results for uncertain oracle. For some randomly picked
initialization, the red curve shows the time evolution of the cost function for
the vector field generated when the gradient if perfectly computed through
its closed-form expression. In light and dark blue, the gradient is estimated
numerically through evaluations of the cost function, with the light blue
trajectory being the one initialized at the same point as the red trajectory, and
the dark blue being the one initialized at the same point as the other two,
except for an imbalance factor of 10, as described in Section 5.

5.3. Results with uncertain gradient

We now look at the case where the exact value of the gradient
is unknown, and the algorithm samples the value of the cost func-
tion at different directions around the current point to estimate it
numerically. The code for this set of simulations is also available
at de Oliveira (2025).

The gradient is estimated by disturbing the cost at the current
value of (K, K3) in the direction of 20 different elementary ma-
trices, i.e. in the direction of 20 different entries of (K, K3). The
resulting estimated gradient can be viewed as the true gradient
plus a noise term. All simulations are done for the same initializa-
tion, picked randomly in a distribution around zero — this works
for our example because A was specifically selected to be stable.

The resulting solutions are displayed in Fig. 10. Notice that
the solution computed with perfect knowledge of the gradient
and no enforced imbalance (in red) converges faster than the
balanced initialization with the estimated gradient (light blue).
However, once we increase the imbalance of the initialization by
a factor of 10, the resulting solution (dark blue) converges much
quicker than even the solution without uncertainty. This indicates
that the disturbance caused by the uncertainty in the dynamics
can be overcome by the acceleration brought by imbalanced
initializations.

6. Conclusions

This paper investigated the use of linear feedforward neural
networks (LFFNNs) for computing the optimal solution of the LQR
problem. The theoretical exploration conducted yielded several
important results, as summarized below.

In Section 2 we revised key literature results on both gradient
methods for the LQR problem and for overparameterized linear
regressions, both areas that compose the main contributions of
this paper. Then, in Section 3 we introduced the overparameter-
ized policy-optimization LQR problem (poLQR) and proved the
main theoretical results of the paper regarding the convergence
of the solutions in Theorem 1. Also in this section, we deepened
our analysis of the case with a single hidden layer, proving
almost everywhere convergence to the optimal feedback matrix
in Theorem 2 and Corollary 1, and characterizing all saddles in
Lemma 3. We believe these results serve as a strong basis from
which to derive an intuitive understanding of the behavior of the
solutions of overparameterized formulations. To better develop
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such intuition, we proceeded in Section 4 with analyzing the
vector case, whose simpler setup allows for explicit computa-
tion of convergence conditions to the different critical points of
the problem. Then, in Section 5, we performed a comprehen-
sive numerical analysis of the problem, showing how different
initializations affect the convergence when compared to a non-
overparameterized poLQR formulation. The simulations illustrate
the distinct behavior the solution can present depending on its
initialization and show how the overparameterized formulation
can accelerate or decelerate the convergence of the solution to
the optimal solution of the poLQR. The simulations indicate that
a solution can be arbitrarily accelerated by increasing levels of
imbalance for the initialization, however, the stiffness of the
resulting ODE provides a practical trade-off to the acceleration.

Many open problems related to the work in this paper remain.
A natural follow-up question is how general an optimization
problem can be for an overparameterized formulation to hold the
properties characterized in this paper. Alternatively, one might
be interested in possible practical applications of properties ob-
served in this work, in which case sample and computational
complexity analysis are essential to rigorously establishing the
trade-offs of adopting such an approach in practice. A more
specific open problem lies in the characterization of the center-
stable manifold of the saddles of the overparameterized gradient
flow. In this paper, we indicated what we believe are the main
obstacles to doing so; however, if that were to be done in a future
work, it could be leveraged to state formal robustness results for
the general case and improve the general understanding of the
behavior of the solution.

Appendix A. Systems with strict saddles

We state and prove a few more general results about the
convergence of nonlinear systems with multiple equilibria.
In this section, we consider a general differential equation

x = f(x) (A.1)

evolving on an open subset X C R". We assume that f : X — R"
is continuously differentiable. The solution x(t) = ¢(t, &) of (A.1)
with initial state £ € X is defined (and in X) on a maximal interval
te (TS"““, T{™), where —oo < Ts‘“i" <0 < T < +4oo.Then x n
Jacobian matrix of f evaluated at a point x € X is denoted by J;(x).

For any subset S C X define the finite-time domain of attrac-
tion Dg(S) of S as the set of all £ € X such that T™ = +o0 and
there is some 7z > 0 such that ¢(t,&) € S for all t > 7.

We say that x € X is a strict saddle equilibrium of (A.1) if

(1) f(x) = 0 and
(2) Jp(x) has at least one eigenvalue with positive real part and
at least one eigenvalue with non-positive real part.

The following theorem and corollary generalize results for
discrete-time gradient iterations that were given in Panageas and
Piliouras (2017), which in turn generalized a result from (Lee,
Simchowitz, Jordan, & Recht, 2016) that restricted to discrete sets
of strict saddles.

Theorem 3. Suppose that x € X is a strict saddle equilibrium
of (A.1). Then there exists an open neighborhood B C X of x such
that Dr(B) has Lebesgue measure zero.

Proof. Pick any equilibrium point x € X. Next modify the vector
field f to a vector field g so that g coincides with f on an open
neighborhood of U of X and g vanishes outside a compact set
K C X. Since g has compact support, solutions are defined for
all t € R, and the map G : x — y(1, x) (time-1 map for g, where
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y is the flow of g) is a C! diffeomorphism. Since y(1,X) = X,
it follows that G(x) = X, and since G is a diffeomorphism, there
is some neighborhood V of X in which G = F, where F is the
time-1 map for f. The Center-Stable Manifold Theorem as, for
example, stated in Shub (2013), Theorem III.7, applied G restricted
to V, gives the existence of an open subset B of V and a local
center stable manifold W of dimension equal to the number of
eigenvalues with nonpositive real part, with the property that for
any x € B such that G¢(x) € V for all £ € Z, necessarily x € W.
Since F = G on V, the same property is true for F.

Pick any point £ € D¢(B) and pick k = 7z > 0, without loss of
generality a positive integer, such that ¢(t,&) € B for all t > k.
Let x = ¢(k, £). Then F¢(x) = ¢(k + £,£) e Bfor all £ € Z,, and
therefore necessarily x € W. We have established that for each
£ € D(B) there is some k such that F¥, the time-k map of the flow
f, is defined at £ and satisfies FX(£) € W. It follows that D(B)
is the union of the (countably many) sets S consisting of those
points x € X such that F¥(x) € W. Thus it will suffice to show
that each set S, has Lebesgue measure zero. Note that F¥ is a local
diffeomorphism, it being a time-k map for a differentiable vector
field. (It is not necessarily a global diffeomorphism, so we cannot
argue that (FX)=Y(W) is diffeomorphic to W. In fact, preimages
may not even belong to X.) Thus, there is an open neighborhood
N of £ in X that maps diffeomorphically by F¥ into an open
neighborhood M; of Fk(&). By uniqueness of solutions in time
—k, the preimage of Mg is exactly Ne. Note that Sy is included
in the union Ny over £ € X of the sets N¢. Also, for each &,
N NSy maps diffeomorphically onto M "W, and therefore N NSy
has Lebesgue measure zero (because W has measure zero and
diffeomorphisms transform null sets into null sets). Recall that
Lindel6f's Lemma (see e.g (Kelley, 1975)) insures that every open
cover of any subset S of R" (or more generally, of any second-
countable space) admits a countable subcover. Applied to Ni, we
have a countable subcover by sets Ng,, and for each of these
Ng, N S, has measure zero, so Ny NS, = S has measure zero
aswell. =

Corollary 3. Suppose that E C X is a set consisting of strict saddle
equilibria of (A.1). Then the set Cg of points & € X whose trajectories
converge to points in E has measure zero.

Proof. For each x € E, we may pick by Theorem 3 an open
neighborhood B; € X of x such that Dg(B;) has measure zero.
The union of the sets By covers E. By Lindel6f's Lemma applied
to S = E, we conclude that there is a countable subset of balls
{Bz,, k € Z} which covers E. We claim that C; € |, Dr(Bg, ).
Since a union of measure zero sets has measure zero, this will
establish the claim. So pick any & € Cg. Thus, ¢(t,&) — X for
some x € E. Since E C Uk By, it follows that x € By, for some
k. Since By, is a neighborhood of X, this means that there is some
7z > O such that ¢(t, §) € By, for all t > ;. Therefore & € Dy(Bg, ).
This completes the proof. =

Corollary 4. Let £ be a real-analytic (loss) function from X into R,..
Let f be the gradient of £ and let the set Z of points where f(x) =0
be the union of two sets Z = M US, where M is the set of points at
which £ is minimized, and S consists of strict saddles for the gradient
flow dynamics x = —f(x). Assume in addition that every trajectory
of the gradient flow dynamics is pre-compact. Then, except for a set
of measure zero, all trajectories converge to M.

Proof. Lojasiewcz’s Theorem states that every pre-compact tra-
jectory of a real analytic gradient system converges to a unique
equilibrium. This theorem is given (Lojasiewicz, 1984) and an
excellent exposition is given in Colding and Minicozzi II (2014).
From this, one can apply Corollary 3 and conclude that the set of
initializations for which the trajectories of the system converge
to S must have measure zero. W
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Appendix B. Proofs of main results

Proof of Lemma 1. For any i between 1 and N, notice that under
closed loop withu = Ky ... K; . .. K;Cx the dynamics of the system
become

x=(A+BK,...K;...KiC)x
= (A+ BiKiG)x,

which are equivalent to a system under simple output feedback
K;, input matrix B; and output matrix C;. When computing the
partial derivatives in (8), one fixes the value of all K; for j # i,
therefore computing 9] /9K; is equivalent to computing the partial
derivative for the linear system with parameter matrices A, B;,
and single feedback matrix K;, as done in (3).

From here, the remainder of the proof is obtained by ap-
plying Theorem 3.2 of Rautert and Sachs (1997) to the system
(A, B, G, K;). We omit it due to space limitations, but it is repro-
duced in full in the arXiv version of this paper (de Oliveira et al.,
2024a). m

Proof of Lemma 2. First, notice from the definitions in Lemma 1
that for all i between 1 and N — 1

Bi = BKy ...Kit1 = Bip1Kisq (B.1)
Ci1 =Ki ... Ky = KG (B.2)

Ri=Ki, .. .KyRKy...Kis
= K\ 1Ris1Kit1. (B3)

Then notice that KiK;" = K| Ki+1, which after substituting into
LKK") = KK, + KK, results in 2(KK," — K;},Ki11) = 0,
proving the theorem. H

Proof of Theorem 1. We begin the proof by showing that K(t) :=
Kn(t)...K;(t) is precompact. To do that, notice that J(K) is non-
increasing along any trajectory, since J(K) JKy ... K1) =
—Zf\; | Vi J (K ...I<1)||§ < 0. Then, because J(K) is a proper
function, the level sets of J in the space of K are compact, which
means that K(t) lies within a compact set along any trajectory
(otherwise J(K) would increase), proving precompactness of K(t).

The next step is to show that K being bounded implies that all
K;is are also bounded. This part of the argument follows closely the
proof of Proposition 1 in Chitour et al. (2023), and of Theorem 3.2
of Bah et al. (2022), albeit done for the LQ cost rather than linear
regression. .

To show that K bounded implies K; bounded for all i, notice
that a consequence of Lemma 2 is that for any i, j between 1 and
N, there exists some constant c¢;; such that
IKilF = 11K}l + trace (Wy) . (B4)
where Wy = Y Geif i < j, Wy = — 3 _; Gif i > jand W;; = 0
if i = j. This is easily verified by taking the trace on both sides of
(11) and concatenating the resulting equations from i to j. With
this established, following relationship between K and K; can be
used:

1/N

IKillr < nill Kl + &, (B.5)

where 7; and &; depend only on the initialization of the parameter
matrices. The derivation of (B.5) can be obtained in the same way
as equation (3.1) of Bah et al. (2022) once (B.4) is established,
regardless of the different cost functions. Due to limited space,
we refer the reader to that paper for this part of the proof, or to
the arXiv version of the paper for the complete proof done for the
LQR cost function (de Oliveira et al., 2024a).
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Proof of Theorem 2. Consider the Taylor expansion of the LQR
cost as follows

J((K4-dK (K + dKq)) =
](K2K1) + Jik, (K2K1) +](/11< (KaKy)

+ Jng(KzKl)‘l' dez(
+ Jik,a, (K2K1) + hoo.t.

(KoKq), 7

K>K;p)

The expression for J”
puted by

] dK2(1<2K1 = 4trace (dK, K, BPy Lk)

and ]dK d1<2(K2K1) can be com-

dk? K2’

+ 2trace (dK{ K; RK;dKi L) ,

] dK2(1<21<1 = 4trace (K’ dK; BPy Lk)
+ 2 trace (K dK; RK>K; L) ,
and
fé/szK](KZKl) =
+ trace (2[B" Py, + RAKyK:]LxdK; K;')
+ trace (2[B" Px + RIGK: 1Ly, dK, K;' )
+ trace (2[B" Pk -+ RK;K1]LxdK, dK,') ,
where Pélq are the solution of the following Lyapunov equation
Py [A+ BIGK1 ] + [A 4 BK;Kq ] Py =
— dK[ K, [B" Pg + RK;K1]
— [B"Px + RK; K] T KpdK;

with an analogous one existing for PéKz. Due to space limitations,
we refer the reader to the arXiv version of this paper (de Oliveira
et al., 2024a) for the explicit derivation of the expressions above.
With this, define the Hessian function as

(B.6)

1
H(Ky, Kz, dKq, dK3) = Zdez(Kl, K3)

1
+ Sl Ka) + Jiarg (Ko Ka). (B.7)
With this established, let (Ki, K;) be a critical pomt of the gradient
flow, ie. K; = v,<j(1<21<1)1<T = 0and K, = K, ViJ(K:Kp) = 0
where Vi J(K;K;) is the expression in (3) computed for K = K3K;.
For the overparameterized poLQR, the conditions above hold for
any K, K, orthogonal to ViJ(K>Ky), even if ViJ(K2Kq) # O.

This orthogonality implies that there must exist two unitary
vectors v and ¢ such that K[ ¢ =0, ¥ 'K, =0, ¢ " ViJ(KoKy) =
Ay and V(KoK )y = ¢ for some A < 0 for if no such vectors
existed and ViJ(K,K7) # 0 then K; = 0 and K, = 0 could never
hold. To prove this by contradiction, assume no such ¥ and ¢
exist, and since ViJ(K;, K;) # 0 by assumption, let ¢ and ¢
be any unitary vectors such that ViJ(K:K: )y = rpT for some
. Then notice that Koy = K V(KK )Y = KT¢A # 0 and
¢TKr = TV (KKK, = WTKT # 0, reaching contradiction.

With this, let y; and y, be any two umtary vectors such that
YK =0,Ky, =0, and y, v2 > 0 (if ;' v2 < 0, simply pick
- 1nstead) Define dK; = 1//‘)/2 and dK; = ¢y1 For this choice
of dK; and dK, notice that dK;K; = 0 and K>dK; = 0, which
implies that]!K2 =0, ](;’Kz =0, and

1 2

_’é/lﬁd[(z(KZKl) =
trace (dK, ViJ(K:K;)dK;') <A <0,

proving that the Hessian has at least one negative eigenvalue,
which implies that the spurious equilibria is a strict saddle of the
gradient flow. ®
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Before proceeding to prove Lemma 3, following the order in
the paper, we must first introduce and prove an auxiliary lemma
that will help us prove Lemma 3.

Lemma 4. Given two matrices A € RP*° and B € RY*° for
D, q,0 € N with q > o, the following two statements are equivalent

(1) ABT =0;

(2) There exist orthogonal matrices W, &, and Wg, and rectan-
gular diagonal matrices with non-negative diagonal elements
>, and Xg, such that A = ¥, X, @7, and B = Wz X3 ® " are
SVDs of A and B, and 24X, = 0.

Furthermore, in (2) we can write X4 and Xy as

00 0 0 0
Tp=[0 0 0|, Z=[0 35 0
0 00 0 0 0

where X, and Xy are diagonal matrices whose main diagonal
elements are the nonzero singular values of A and B respectively.

Due to space limitations, we refer the reader to the arXiv
version of this paper (de Oliveira et al., 2024a) for the proof. With
this auxiliary lemma established, one can prove the statement in
Lemma 3 as follows.

Proof of Lemma 3. To prove that (2)=-(1) we simply compute
[KlT ; Ky] for a (Kq, K3) that satisfies the properties in (2) and verify
that it is equal to zero. To prove that (1)=(2), apply Lemma 4
with A = ViJ(K2K;)" and B = K,', which implies that o = n <
k = q, since I'<1 = —ViJ(K;K1)TK, = 0, which allows us to write
K5 and ViJ(K;K7) as follows:

Y 0 0
VJUIGK) =% | 0 0 0|d =¥ 50, (B.8)
0 0O
[0 o o
K=w |0 X 0|N=vXD.
0 0 O

Similarly, app_lying Lemma 4 with A = ViJ(K;K7) and B = K;
gives
Vid(KoKy) = Wi, 1@ T
Ki = I, Zx, @ .

(B.9)

where ¥ and X, have the same structure as X and X, . Notice
that even if ¥; # X, they must still have the same diagonal
elements, albeit possibly in a different order. Changing the order
of the elements of ¥; and X, so they match means swapping the
columns of ¥, @, ¥, and Py,, but we can also swap the singular
vectors corresponding to the kernels of K, and K| T such that the
results from Lemma 4 still hold. As such we can assume without
loss of generality that ¥; = ¥, = ¥. Notice that this is enough to
prove that 1 — 2b, since ViJ (KoK — 1)K, = ¥, 2@ T X I' =
0 — EEK = 0 (and similarly for X7 Xy, = 0). Next, notice
that

Wi, 210 = W D&y, (B.10)
implies that
Ui Zo] =0 ED], . (B.11)

If we impose, for example, ¥, = ¥, then we must also
impose @ = @, g, . This leaves the SVD of K, intact, but changes
part of the SVD of K;. To show it still satisfies Lemma 4, consider

0 o o], i
K| =[P, @2 @5]|0 Z, 0| | =®2500)
o 0o o||n,
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which shows that the above is still a valid SVD of K{r as long
as the span of the columns of [®,, 3] is equal to the Kernel
of K;. Indeed, we know that colspace ([®1, #3]) = kernel (K;),
and since (B.11) shows that colspace (¢1) = colspace (®1k,) (by
contradiction) then we can conclude that colspace ([‘1)1,1@ q§3])
= kernel (K7) . We have, therefore, established that we can always
match the singular vectors associated with the nonzero singular
values of ViJ(K;K7) for the SVDs in (B.8) and (B.9) and still satisfy
both conditions on Lemma 4.

Next, notice that we can simply pick W3, = ¥3, @3, =
&3, since all matrices are related to the intersection of the ker-
nels and their choice is arbitrary as long as they compose an
orthonormal basis of kernel (ViJ(K;K;)) N kernel (K;) and of
kernel (ViJ(K2K1)") Nkernel (K,") respectively.

For the remaining matrices, ¥, and &, are imposed by the
SVDs of K, and K; respectively, and as such cannot be changed
arbitrarily. We can, however, freely change the columns of ¥; g,
(resp. @, k,) as long as when composed with the columns of ¥3
(resp. @3) they form a basis of the kernel of VgJ(K,K;)" (resp.
ViJ(K;Ky)). Therefore we can select ¥, g, (resp. @; g, ) to be equal
to ¥, (resp &,) without any loss of generality, completing the
proof.

Proof of Corollary 2. Let (K7, K;) be a saddle point of the gradient
flow dynamics (8) with N = 2 and assume rank (K;K;) = p <
min(m, n). Also, let K* be such that ViJ(K*) = 0. Then, let v be
any vector such that v VgJ(K,K;) = 0 and notice that

v Vi (KoKy) = v T Vi J(K*)
v RK>K; = v RK*.

Then, let [vy, ..., vp] be p linearly independent (LI) vectors such
that viT ViJ(K;Ky) = 0, a set which must exist because from
Lemma 3 the left kernel of ViJ(K2K;) has dimension p. Then,
notice that for two LI vectors u and v and full rank matrix R,
u'R and v'R must also be LI Finally, let ¥ be the matrix
whose columns are vectors composing an orthonormal base of
span(vy, ..., vp) and notice that

() KK = () Tk,

however, since K>K; is rank p, one can always pick the or-
thonormal basis that compose the columns of ¥ to be the left
singular vectors of K,K;, implying that there exist a ¢ whose
columns are orthonormal vectors such that

()T KK @F = ZF = (W) K 7.

For the remaining components of the SVD of K* we can pick
whichever eigenvectors are left since they are all a basis for the
left kernel of K;K;. W

Appendix C. Proofs for the simple example

Due to space limitations, we refer the reader to the arXiv
version of this paper (de Oliveira et al., 2024a) for the proofs of
the results for the simple example.
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