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Abstract
Query-focused summarization (QFS) aims to001
produce summaries that answer particular ques-002
tions of interest, enabling greater user control003
and personalization. While recently released004
datasets, such as QMSum or AQuaMuSe, fa-005
cilitate research efforts in QFS, the field lacks006
a comprehensive study of the broad space of007
applicable modeling methods. In this paper008
we conduct a systematic exploration of neu-009
ral approaches to QFS, considering two gen-010
eral classes of methods: two-stage extractive-011
abstractive solutions and end-to-end models.012
Within those categories, we investigate exist-013
ing methods and present two model extensions014
that achieve state-of-the-art performance on015
the QMSum dataset by a margin of up to 3.38016
ROUGE-1, 3.72 ROUGE-2, and 3.28 ROUGE-017
L. Through quantitative experiments we high-018
light the trade-offs between different model019
configurations and explore the transfer abili-020
ties between summarization tasks. We also021
perform human evaluation that suggests the022
best models produce more comprehensive and023
factually-consistent summaries compared to024
a baseline model. Code and checkpoints are025
made publicly available: https://github.026
com/anonymized027

1 Introduction028

Text summarization aims at transforming long doc-029

uments into short snippets that contain only the030

most important information from the source docu-031

ment. The field has seen substantial progress driven032

by the availability of large-scale models pre-trained033

on vast amounts of data (Devlin et al., 2019; Lewis034

et al., 2020), the development of summarization-035

specific pre-training strategies (Zhang et al., 2020;036

Zhao et al., 2020), and computationally efficient037

neural architectures (Zaheer et al., 2020).038

The majority of recent research efforts in text039

summarization assume an unconstrained setting040

in which models are given only a source docu-041

ment as input and are expected to generate a gen-042

eral summary covering the salient aspects from the 043

source. The performance of such models has been 044

evaluated on benchmark datasets spanning vari- 045

ous domains: news articles (Nallapati et al., 2016; 046

Narayan et al., 2018; Fabbri et al., 2019a), legal 047

documents (Sharma et al., 2019), scientific writ- 048

ing (Cohan et al., 2018), or creative writing (Kryś- 049

ciński et al., 2021; Chen et al., 2021). However, it 050

has been shown that summarization in an uncon- 051

strained setting is an ill-defined task where multiple 052

generated summaries are equally relevant (Kryscin- 053

ski et al., 2019). This in turn hinders the ability 054

to evaluate and understand the models’ content 055

selection capacity. In addition, such generic sum- 056

marization models lack control mechanisms that 057

would allow end users to customize summaries to 058

their particular needs and expectations. 059

Query-focused summarization (QFS) is a subtask 060

within text summarization that focuses on generat- 061

ing summaries where the summary content is tai- 062

lored to a user-specified query that is passed along- 063

side the source document as input to the model. 064

Each source document can be associated with mul- 065

tiple unique queries inquiring about different in- 066

formation from that document. In this setting, end 067

users are enabled to explicitly specify their prefer- 068

ences for the summary, and the relevance of the out- 069

put summary may be evaluated more precisely with 070

respect to the input query. Research on this task has 071

been accelerated by the recently introduced high- 072

quality datasets, such as QMSum (Zhong et al., 073

2021b) and AQuaMuSe (Kulkarni et al., 2020). 074

In this work we conduct a systematic, ex- 075

ploratory study of different approaches to query- 076

focused text summarization, considering both two- 077

step and end-to-end neural methods. We present 078

two models, RELREG and SEGENC, which achieve 079

state-of-the-art ROUGE scores on the QMSum 080

dataset by a margin up to 3.38 R-1, 3.72 R-2, and 081

3.28 R-L. The RELREG model uses a two-step ap- 082

proach to solving the problem, where the first step 083
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extracts content relevant to the given query and084

the next step synthesizes the extracted fragments085

into a coherent summary. The SEGENC method086

follows an end-to-end framework in which individ-087

ual document segments are separately encoded to088

avoid the computational bottleneck of long input089

documents, and the decoder jointly attends to all090

encoded segments when producing the summary.091

Through quantitative studies, we compare our mod-092

els with other baselines and discuss the trade-offs of093

the end-to-end methods and pipelined approaches.094

We also perform human evaluation to understand095

the qualitative differences between the models. To-096

gether with this manuscript, we share the code base097

and model checkpoints to enable future research in098

this area.099

2 Related Work100

2.1 Query-Focused Summarization101

Query-focused summarization aims to generate102

a summary of a given text conditioned upon a103

query. Initial work in this area centered around104

unsupervised extractive approaches (Wan et al.,105

2007; Litvak and Vanetik, 2017) due to the lim-106

ited availability of task-specific training data (Dang,107

2005). More recent work has taken advantage of108

the relationship between query-focused summa-109

rization and the more data-rich task of question an-110

swering for extractive summarization (Egonmwan111

et al., 2019), reranking documents within a retrieval112

pipeline (Su et al., 2020), and abstractive summa-113

rization (Su et al., 2021; Baumel et al., 2018; Xie114

et al., 2020). Xu and Lapata (2020) introduce a115

pipeline consisting of a relevance estimator filter116

followed by query-focused evidence and centrality117

estimators, while other work converts generic sum-118

marization dataset to query-focused training data119

(Xu and Lapata, 2021a) or performs latent query120

modeling (Xu and Lapata, 2021b).121

Recently, several query-focused summarization122

datasets have been introduced, which can be fur-123

ther divided into short-document datasets, whose124

source document length does not exceed the in-125

put limits of standard pretrained models, and long-126

document datasets. Within short-document, query-127

focused summarization, AnswerSumm (Fabbri128

et al., 2021c) is composed of summaries of answers129

to queries from StackExchange forums, while Wik-130

iHowQA (Liu et al., 2018a) proposes the task131

of answer selection followed by the summariza-132

tion of individual response articles to queries from133

the how-to site WikiHow. Within long-document 134

summarization, WikiSum (Liu et al., 2018a) con- 135

sists of Wikipedia article titles as queries, the 136

first paragraph of the article as the summary, and 137

documents referenced by the article as the input. 138

AQuaMuSe (Kulkarni et al., 2020) is a query- 139

focused multi-document summarization dataset 140

with user-written queries and human-verified long- 141

answer summaries from the Natural Questions 142

dataset (Kwiatkowski et al., 2019), and QMSum 143

(Zhong et al., 2021b) is a manually-curated dataset 144

for query-focused dialog summarization. QMSum 145

and AQuaMuSe are of particular interest to our 146

study due to the combined challenges of query- 147

focused and long-document summarization and the 148

presence of high-quality, curated query-summary 149

pairs. 150

Recent work on QMSum has introduced task- 151

specific denoising objectives for meeting sum- 152

marization (Zhong et al., 2021a), generated final 153

fine-grained summaries based on multiple coarse- 154

grained steps (Zhang et al., 2021a), and treated the 155

extractive text of an extractive-abstractive model 156

as a latent variable (Mao et al., 2021). Zhang et al. 157

(2021b) analyze the challenges of long dialogue 158

summarization such as the input length, the role of 159

queries, and domain adaptation. Our work builds 160

on QA-motivated methods and presents two ap- 161

proaches yet to be applied in query-focused summa- 162

rization that each achieve state-of-the-art results, in- 163

cluding a two-step model and an end-to-end model. 164

2.2 Long Document Summarization 165

Long document summarization addresses the set- 166

ting where source document length exceeds the 167

input limits of standard pre-trained models. Ap- 168

proaches to this task can largely be divided into two 169

categories: two-step extractive-abstractive frame- 170

works, which first extract a subset of the text 171

as input to an abstractive model, and end-to-end 172

models, which process the input within a single 173

model. The two-step pipeline has been applied to 174

topic-focused Wikipedia summarization (Liu et al., 175

2018b; Liu and Lapata, 2019; Perez-Beltrachini 176

et al., 2019), low-resource summarization (Bajaj 177

et al., 2021), and single-document summarization 178

Chen and Bansal (2018). End-to-end approaches 179

address the input-length problem using sparse- 180

attention models. Beltagy et al. (2020) introduce 181

the Longformer, consisting of local attention as 182

well as global attention between select input tokens. 183
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Other approaches make use of dynamic attention184

mechanisms (Zhao et al., 2020; Manakul and Gales,185

2021; Cui and Hu, 2021), sliding window strate-186

gies (Liu and Chen, 2021), and other mechanisms187

to introduce sparsity into the model (Huang et al.,188

2021; Liu et al., 2021). Izacard and Grave (2021)189

concatenate the outputs of multiple encoders as in-190

put to a generator component for the task of open191

domain question answering. In our work we build192

on these models for query-focused summarization193

and perform extensive hyperparameter ablations,194

achieving state-of-the-art results over other two-195

step and end-to-end models.196

3 Methodology197

We present existing methods and propose model-198

ing extensions to address the challenges of query-199

focused summarization.200

3.1 Two-Step Approaches201

Two-step approaches consist of an extractor model,202

which extracts parts of the source document rele-203

vant to the input query, and an abstractor model,204

which synthesizes the extracted segments into a205

final summary. We consider score-and-rank extrac-206

tor models, which first score each source passage207

for relevance to the query and then rank the pas-208

sages in descending order of relevance, with the209

concatenated and truncated results passed to the210

abstractor. In this work we present two types of211

scoring models: single-encoder models and dual-212

encoder models, which we describe below. All213

two-step approaches share the same abstractor, a214

BART-large model.215

3.1.1 Single-Encoder Models216

Single encoder models concatenate a query and217

source passage as input to the scoring function218

that produces the similarity score. Those models219

benefit from full cross-attention between query and220

passage, resulting in richer data representations.221

MARGE (Xu and Lapata, 2021a) is a single-222

encoder, Masked ROUGE extractor that aims to223

improve upon low-resource query-focused summa-224

rization by synthesizing query-focused data from225

more resource rich, generic summarization datasets.226

This model is trained to predict the relevance of227

each passage in the source document with respect228

to a query, where the proxy for relevance is the229

ROUGE overlap between the passage and the ref-230

erence summary. For training on generic summa-231

rization datasets, MARGE uses pseudo-queries 232

that are created by masking content words in the 233

reference summaries. 234

When performing inference using real queries, 235

certain query words (e.g., wh-words) are masked to 236

better align the queries to the pseudo-queries from 237

the training process. Following Xu and Lapata 238

(2021a), we apply MARGE trained for masked 239

relevance prediction on Multi-News (Fabbri et al., 240

2019b) without training on our target dataset. 241

RELREG Motivated by the retrieval component 242

of MARGE, we propose the RELREG (RELe- 243

vance REGression) model, which trains a relevance 244

prediction model directly on QFS data using the 245

original, non-masked query. Like MARGE, this 246

model is trained to predict the ROUGE overlap 247

between a source passage and the reference sum- 248

mary, using only the passage and query as input. A 249

single-encoder model jointly encodes the delimiter- 250

separated query and passage, and the final layer of 251

the model outputs the predicted relevance value. 252

3.1.2 Dual-Encoder Models 253

Dual-encoder models separately encode a query 254

and source passage before calculating the cosine 255

similarity between the embeddings to compute the 256

relevance score. This class of models offers com- 257

putational benefits, as passage embeddings may be 258

precomputed and stored for a given input, while the 259

single-encoder model must be run over all passages 260

should a new query be introduced. 261

DPR (Karpukhin et al., 2020) is a dual-encoder 262

model that separately encodes queries and passages 263

into an embedding space optimized for calculating 264

semantic similarity between the two, showing im- 265

proved results over traditional vector-space models. 266

We fine-tune a DPR extractor model directly on 267

the target dataset. As opposed to other locators that 268

optimize with respect to the continuous ROUGE 269

overlap, DPR uses the ROUGE score between the 270

passage and reference summary to identify binary 271

positive and negative passages and optimizes the 272

negative log likelihood of the positive passages. 273

RELREGTT (RELevance REGression Two 274

Tower) is a more computationally-efficient version 275

of RELREG that uses a dual-encoder architecture 276

to predict ROUGE-based relevance scores. This 277

model is implemented with a backbone architecture 278

of Sentence-BERT (Reimers and Gurevych, 2019), 279

using a shared-parameter encoder for each of the 280
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query and passage and a special token appended281

to each input that identifies it is as either query or282

passage, following the suggested best practices of283

Reimers and Gurevych (2019). The final output284

for the model is based on the inner product of the285

pooled embeddings for the query and passage.286

3.2 End-to-End Approaches287

Two-step pipelines depend on the strength of the288

retrieval component, and may still fail to capture289

all relevant content despite an ideal retriever, due290

to length limitations of the generation component.291

This motivates our experiments on end-to-end mod-292

els that can incorporate longer input texts.293

BART (Lewis et al., 2020) As a baseline end-294

to-end model, we consider BART, an encoder-295

decoder Transformer model pre-trained using a296

denoising objective. BART is composed of a bidi-297

rectional encoder module and an autoregressive de-298

coder model that attends to the encoder’s final layer299

outputs. Due to the quadratic memory complexity300

of the encoder’s full self-attention mechanism, the301

model input size is limited to 1024 tokens. In our302

experiments, we prepare the input to BART by303

concatenating the query, a delimiter token, and the304

source document, and then truncating the combined305

text to the model’s input size.306

LED To circumvent the input size limitations of307

the BART model, we include the Longformer308

Encoder-Decoder (Beltagy et al., 2020) (LED)309

in our study LED replaces the quadratic self-310

attention mechanism of traditional Transformers311

with a memory-efficient version that combines lo-312

cal attention with sparse global attention. The ar-313

chitecture allowed us to run experiments with input314

sizes up to 16384 tokens. Based on insights from315

the original work on tuning the model to the QA316

task, we configure the global attention mechanism317

to span the entire query.318

SEGENC We also consider a simpler form of319

sparse attention in the encoder based solely on320

windowed local attention, combining elements of321

LED with Fusion-in-Decoder (FiD) (Izacard and322

Grave, 2021), a model for open-domain question323

answering. In our Segment Encoder (SEGENC)324

model, the source document is split into fixed-325

length overlapping1 segments, each of which is326

1We use segments that are 50% overlapping, though other
configurations may be considered.

separately appended to the query and encoded us- 327

ing a standard Transformer model. Similar to FiD, 328

these encodings are then concatenated into a sin- 329

gle embedding sequence and passed to a decoder 330

model that generates the summary. Since there is 331

no cross-attention between the encoded segments, 332

the attention mechanism scales linearly in the num- 333

ber of segments and hence the length of the source 334

document. Nonetheless, the decoder can attend to 335

all encoded segments jointly, enabling the encoder- 336

decoder architecture to operate in an end-to-end 337

fashion. This model is motivated by two hypothe- 338

ses: 1) query-relevant sections within a source doc- 339

ument are often small enough to be processed by 340

standard Transformer models (e.g. 1024 tokens), 341

and 2) each query-relevant section may be under- 342

stood independently of other sections, removing 343

the need for cross-attention between the segments. 344

3.3 Data 345

QMSum (Zhong et al., 2021b) is a query-focused 346

dialogue summarization dataset consisting of 1,808 347

query-summary pairs over 232 meetings from prod- 348

uct design, academic, and political committee meet- 349

ings, all conducted in English. QMSum also in- 350

cludes additional annotations such as topic segmen- 351

tations and highlighted text spans associated with 352

reference summaries. We leverage the provided 353

span annotations to run oracle experiments. 354

AQuaMuSe (Kulkarni et al., 2020) is a query- 355

focused multi-document summarization dataset 356

consisting of 5,519 query-long answer sum- 357

mary pairs from the Natural Questions question- 358

answering dataset (Kwiatkowski et al., 2019) and 359

associated input documents from the Common 360

Crawl2. Input documents for the original dataset 361

were selected based on embedding similarity with 362

respect to the summary, and hyperparameters can 363

be chosen to control the level of semantic overlap 364

between the input document set and the summary. 365

Data replication details are found in the Appendix. 366

3.4 Experiment Setup 367

Implementation Models were implemented 368

using the PyTorch (Li et al., 2020) and Hug- 369

gingface (Wolf et al., 2019) libraries. Model 370

weights were initialized from pre-trained 371

checkpoints available through the Hugging- 372

face Model Hub3. All BART models were 373

2https://commoncrawl.org/
3https://huggingface.co/models
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Lexical Overlap b/w
Extractors and References

Span Overlap b/w
Extractors and Golden Spans

Model Top-1 Top-5 Top-15 All All
R-1 R-2 R-L x̄ R-1 R-2 R-L x̄ R-1 R-2 R-L x̄ R-1 R-2 R-L x̄ Precision Recall

GOLD SPANS 15.00 3.80 11.10 60 20.89 6.05 15.04 218 19.62 5.99 14.28 386 16.09 5.60 12.47 660 0.75 1.00
LEAD 8.17 0.98 6.30 82 12.84 1.69 9.17 309 13.13 1.81 9.21 463 8.77 1.79 6.77 978 0.09 0.20
DPR 11.31 1.99 8.72 34 17.46 2.86 12.21 156 15.38 2.74 10.64 394 9.75 2.23 7.42 932 0.22 0.27
RELREGTT 23.67 3.34 15.66 82 16.13 3.35 11.18 413 9.65 2.58 7.31 930 9.16 2.52 6.99 994 0.07 0.24
MARGE 7.13 0.72 5.81 20 13.76 1.39 10.22 92 14.85 1.74 11.09 269 9.21 1.52 7.16 896 0.15 0.21
RELREG 24.57 4.33 16.57 88 17.52 4.11 12.21 418 10.56 3.04 8.06 884 9.62 2.87 7.47 989 0.11 0.28

Table 1: Performance of extractor models on the QMSum validation set. The left section presents the lexical overlap
between the utterances retrieved by extractor models and the reference summaries, evaluated by means of ROUGE-1
(R-1), ROUGE-2 (R-2), and ROUGE-L (R-L) metrics. Segments of the section focus on the lexical overlap between
the highest ranked 1 (Top-1), 5 (Top-5), 15 (Top-15) utterances, and all utterances truncated to a 1024 token limit
(All). The table also includes the average word counts of all extracted utterances, denoted as x̄. The right section
shows the span overlap between the utterance spans retrieved by the extractor models and those collected from
human annotators by the authors of QMSum. The performance is evaluated by means of Precision and Recall scores
and uses the highest ranked utterances truncated to the limit of 1024 tokens.

based on the facebook/bart-large374

checkpoint, the LED-model was based on the375

allenai/led-large-16384 checkpoint,376

which itself is based on BART-large.377

Training & Inference Models were trained for378

10 epochs with final checkpoints selected based379

on the average of ROUGE-{1, 2, L} (R-1, R-2, R-380

L) scores achieved on the validation set. Gradient381

checkpointing (Chen et al., 2016) was used for the382

LED and SEGENC models to reduce the memory383

footprint. Model outputs were decoded using beam384

search with 4 beams. To ensure high consistency385

of results, all experiments in §4 were repeated 5386

times with results averaged across runs.387

Evaluation Models were automatically evalu-388

ated using the ROUGE-{1, 2, L} metrics (Lin,389

2004) included in the SummEval toolkit (Fabbri390

et al., 2021b). Models were also manually evalu-391

ated by hired human annotators. Annotators were392

hired through the Amazon Mechanical Turk plat-393

form. Workers were selected from English speak-394

ing countries and offered an hourly rate of approx-395

imately 12 USD. The study was conducted on 50396

model generated examples chosen at random from397

the test set of QMSum.398

4 Results & Analysis399

In this section, we first analyze the effects of model-400

specific architectural and hyperparameter choices401

on the performance of two-stage (§4.1) and end-to-402

end models (§4.2). Next, we study the task-specific403

knowledge transfer capabilities of different pre-404

training strategies in §4.3. Lastly, we conduct a405

final evaluation and comparison of all discussed406

models in §4.4. All experiments and analyses pre- 407

sented in this section were conducted on QMSum. 408

4.1 Two-Stage Approaches 409

For two-stage models, we first focus on evaluat- 410

ing the extractor component and comparing perfor- 411

mance to baseline heuristics. We quantify extractor 412

performance using two metrics: 1) lexical over- 413

lap between the extracted utterances and reference 414

summaries, computed using R-1, R-2, and R-L 415

metrics, 2) span overlap between the extracted and 416

golden spans included with QMSum represented by 417

Precision and Recall scores, with results shown in 418

Table 1. In both cases, we first order utterances of 419

the conversation according to the scores assigned 420

by the extractor models, then concatenate the ut- 421

terances and finally truncate the result to 1024 to- 422

kens (excluding the space reserved for the query) 423

to mimic the input length limits of downstream ab- 424

stractor models; we present those numbers as the 425

All columns in the table. For the lexical overlap, 426

we also show the scores for the best 1 (Top-1), 5 427

(Top-5), and 15 (Top-15) utterances. 428

The results show that the best-performing extrac- 429

tor model is RELREG closely followed by REL- 430

REGTT in the Top-1 evaluation and DPR in the 431

Top-5, Top-15, and All cases. We note that both 432

the RELREG and RELREGTT models tend to se- 433

lect longer utterances than the other extractors; the 434

regression-based training mirrors the ROUGE over- 435

lap score which favors longer, more informative 436

utterances. However, despite their strong perfor- 437

mance in extracting top-matching utterances, the 438

results also expose a considerable gap between 439

model-based approaches and human annotations 440

when considering the entirety of extracted spans. 441
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Model R-1 R-2 R-L
DPR 32.79 9.82 28.91
RELREGTT 32.65 9.00 28.57
MARGE 31.90 9.10 28.17
RELREG 33.43 9.77 29.40
RELREG (256) 34.67 11.53 30.66
RELREG (512) 32.22 10.29 29.49

Table 2: Performance of two-step models on the QM-
Sum validation set, divided into dual-encoder and single-
encoder extractors. Input segment lengths are indicated
in parentheses, and otherwise the model operates on
utterance-level input.

This shows a promising topic for future work in442

this matter. We also notice that despite the simplic-443

ity of the LEAD heuristic, which extracts the first k444

utterances in their original order, it remains compet-445

itive with the data-driven extractor models when we446

consider the All case. An extended version of this447

study, which includes the lexical overlap between448

extracted spans and input queries is presented in449

Table 8 in the Appendix.450

Next, we analyze how the performance of the451

extractor components carries over to the final sum-452

marization task. For the best-performing model,453

we additionally test the effect of varying the input454

segment size used during training and inference455

between 256 and 512 tokens. Validation-set results456

for all models are reported in Table 2.457

We find that DPR slightly outperforms REL-458

REGTT for dual-encoder models. Among459

single-encoder models, RELREG outperforms460

MARGE by over a full R-1 point, which may ex-461

plained by RELREG using more direct supervision462

based on an in-domain query, rather than creating463

synthetic queries from an external dataset using464

masking. We find that the single-encoder REL-465

REG outperforms the best dual-encoder model;466

the cross-attention term in the single-encoder REL-467

REG model allows it to better attend to the query468

when determining relevance. Intuitively, the order-469

ing of results corresponds to the span overlap recall470

with the gold spans; the ability of the extractor to471

select produce high-recall rankings directly affects472

abstractor performance. We see that increasing the473

input segment length used in training and inference474

for RELREG improves at 256 tokens but decreases475

at 512 tokens, suggesting that a balance is found476

between including additional context for ranking477

versus enabling a greater number of shorter seg-478

ments that may capture more diverse content from479

the source.480

Model Input Attn R-1 R-2 R-L
BART 1024 1024 32.42 9.62 28.37

256 31.55 8.89 27.62
4096 512 32.25 9.27 28.29

1024 32.16 9.05 28.27
256 31.79 8.97 27.75

LED 8192 512 32.76 9.38 28.65
1024 32.85 9.26 28.73
256 31.94 9.16 27.73

16384 512 32.88 9.82 28.90
1024 32.98 9.60 29.08
256 35.35 10.37 30.91

4096 512 35.25 10.36 30.85
1024 34.36 9.85 30.13
256 36.51 11.36 31.87

SEGENC 8192 512 36.68 11.71 32.08
1024 35.48 10.97 31.21
256 37.21 12.14 32.67

16384 512 37.47 12.47 32.95
1024 36.30 11.71 32.01

SEGENC-D 16384 512 36.68 11.97 32.35

Table 3: Performance of end-to-end models on the QM-
Sum validation set, across varying input and attention
window sizes (in number of tokens). SEGENC-D is a
variant of SEGENC in which the segments are disjoint
rather than overlapping; this ablation was evaluated on
the best-performing SEGENC hyperparameters.

4.2 End-to-End Approaches 481

We explore hyperparameter choices for two end- 482

to-end architectures described in §3.2: the Long- 483

former Encoder-Decoder (LED) and Segment En- 484

coder (SEGENC). For both models, we consider dif- 485

ferent choices for input size (4096, 8192, or 16384 486

tokens) and attention window size4 (256, 512, or 487

1024 tokens). For SEGENC, we also consider two 488

different segmentation strategies: overlapping seg- 489

ments (50% overlap) and disjoint segments. Val- 490

idation set results for both models and a baseline 491

BART model are reported in Table 3. 492

We notice that both the LED and SEGENC ben- 493

efit from increasing the input size and perform best 494

with the input limit set to 16,384 tokens. The op- 495

timal attention window for LED is 1024, while 496

SEGENC performs best with an attention window 497

of 512 tokens. For SEGENC, using overlapping seg- 498

ments improves performance compared to using 499

disjoint segments, suggesting that the additional 500

context provided by the former approach is helpful 501

for locating relevant content. The SEGENC model 502

achieves the highest performance out of the end- 503

to-end architectures with ROUGE scores of 37.47 504

R-1, 12.47 R-2, and 32.95 R-L on the validation set. 505

The results also highlight that while the 506

4For SEGENC, attention window size is equivalent to seg-
ment size.
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Model R-1 R-2 R-L
No Transfer 34.42 9.62 28.37
AnswerSumm 34.36 9.64 30.22
AQuaMuse 34.57 9.78 30.42
WikiHowQA 33.08 9.03 28.48
CNNDM 33.87 9.36 28.48
WikiSum 34.73 9.80 30.54

Table 4: QMSum validation-set performance of the end-
to-end BART models first fine-tuned on related summa-
rization tasks and then further fine-tuned on QMSum
data. The model indicates the task first fine-tuned on,
and input is truncated to 1024 tokens.

LED model matches or slightly outperforms the507

BART baseline for higher maximum input and508

window sizes, it performs substantially worse than509

SEGENC. This observation is consistent with prior510

findings on the QMSum dataset (Zhang et al.,511

2021b). One possible explanation for the lower512

performance of LED relative to SEGENC is that513

LED must adapt its parameters for a global at-514

tention mechanism that is absent from the back-515

bone BART encoder model, whereas SEGENC re-516

lies solely on local self-attention that is aligned517

with the backbone model. This may be particularly518

relevant to QMSum given its relatively small size.519

Practitioners may wish to consider the computa-520

tional cost and efficiency of various hyperparameter521

settings. Computational complexity increases with522

both input length and attention window size (since523

attention grows quadratically in attention-window524

size). Complexity is also greater with the over-525

lapping segment strategy compared to the disjoint526

segment strategy for the SEGENC model, due to527

the greater number of resulting segments that are528

passed through the encoder and decoder modules.529

4.3 Task-Specific Transfer530

Having determined the best-performing models, we531

examine whether performance can be further im-532

proved by fine-tuning a model that has already been533

fine-tuned for a different summarization task. We534

conduct this study using the end-to-end BART on535

1024 tokens, as this model is the backbone, albeit536

in varying ways, of both our two-step and end-537

to-end models. We test the transferring capabili-538

ties of models trained on the news summarization539

task from CNN/DailyMail (Nallapati et al., 2016)540

as well as the previously-mentioned query- and541

topic-focused summarization tasks: AnswerSumm,542

AQuaMuSe, WikiHowQA, and WikiSum. We com-543

pare to fine-tuning from the original BART check-544

point, with results shown in Table 4.545

Model R-1 R-2 R-L
Baselines

DYLE 34.42 9.71 30.10
SUMMN 34.03 9.28 29.48
BART 31.87 9.08 27.50
BART-W 32.68 8.97 28.74
BART-W (Gold) 39.54 15.65 35.17

Two-stage
DPR 32.28 9.73 28.34
RELREGTT 33.02 10.17 28.90
MARGE 31.99 8.97 27.93
RELREG 34.91 11.91 30.73
RELREG-W 36.45 12.81 32.28

End-to-end
LED 34.18 10.32 29.95
SEGENC 37.05 13.03 32.62
SEGENC-W 37.80 13.43 33.38

Table 5: QMSum test-set performance of two-stage and
end-to-end models that performed best on the validation
set (Tables 2 and 3), including versions fine-tuned from
the WikiSum-finetuned checkpoint (denoted by -W). Re-
sults reported in prior work are italicized. Also included
is an extractive-oracle model that takes the gold spans
(§3.3) as input.

We find that transferring from any of the tasks 546

improves over no transfer in R-1 and R-L. Trans- 547

ferring from any of the constrained, query-focused 548

tasks outperforms transferring from unconstrained 549

news summarization. Furthermore, transferring 550

from WikiSum outperforms transfer from other 551

datasets, which aligns with other work that shows 552

the generalizability of Wikipedia as a source of 553

data for task transfer (Fabbri et al., 2021a). 554

4.4 Final Results 555

We now measure the test set performance of the 556

best-performing architectures from §4.1 and §4.2 557

in combination with the optimal transfer-learning 558

approach from §4.3. Results are presented in Ta- 559

ble 5 along with baseline models. 560

We find that RELREG and SEGENC outperform 561

existing state-of-the-art models by a substantial 562

margin, and that initializing the model from the 563

Wikisum-fine-tuned checkpoint further improves 564

performance, with the best model exceeding cur- 565

rent state-of-the-art performance by a difference 566

of 3.38 R-1, 3.72 R-2, and 3.28 R-L. Comparing 567

the best models from each category, we find that 568

the end-to-end approach outperforms the two-stage. 569

Within the two-stage dual-encoder models, REL- 570

REGTT outperforms DPR on the test set despite 571

the slightly worse performance on the validation 572

set. We attribute this variation to the small size 573

of the validation set, and our other findings re- 574
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Model Flu. Rel. Comp. Fact.
BART 4.08 3.68 3.22 3.31
RELREG-W 3.87 3.81 3.67 3.70
SEGENC-W 3.93 3.87 3.81 3.63

Table 6: Human evaluation of two best-performing mod-
els from Section 4, along with a baseline BART model.
Summaries were evaluates across four dimensions: flu-
ency (Flu.), relevance (Rel.), completeness (Comp.),
and factuality (Fact.).

main consistent across validation and test sets. The575

single-encoder RELREG outperforms the best dual-576

encoder model, with RELREG-W improving upon577

the current state-of-the-art performance by a differ-578

ence of 2.03 R-1, 3.10 R-2, and 2.18 R-L.579

5 Further Analysis580

In this section we conduct further analysis of the581

best performing models from Section 4. First, we582

offer additional insights into the performance of583

those models on the QMSum dataset through a584

human-based study. Next, we discuss the general-585

ization abilities of those models by running experi-586

ments on the AQuaMuSe dataset.587

5.1 Human Evaluation588

To gain a better understanding of the performance589

of the models on the QMSum dataset, human590

judges were hired and asked to assess the quality of591

generated summaries. Summaries were evaluated592

across four dimensions: 1) fluency, measuring their593

grammatical quality, 2) relevance, assessing their594

relevance to the input query, 3) completeness, eval-595

uating their comprehensiveness considering the in-596

put conversation and query, and 4) factuality, mea-597

suring their factual consistency with respect to the598

conversation. Scores were assigned on a Likert599

scale from 1 to 5 (best), where each example was600

evaluated by 3 judges with the final score averaged.601

Results are presented in Table 6.602

We find that the RELREG-W and SEGENC-603

W models achieved comparable performance604

across all of the evaluated dimensions, with sum-605

maries generated by SEGENC-W rated as slightly606

more complete. The BART baseline was rated607

highest in the fluency dimension, however, it was608

substantially outperformed by both of the intro-609

duced models on completeness and factuality. One610

possible explanation for the slightly lower fluency611

scores for the RELREG-W and SEGENC-W mod-612

els is that they are better able to retrieve content613

from the source, which itself may have low fluency614

Model R-1 R-2 R-L
Hi-MAP 30.34 14.82 26.86
BART 48.74 33.96 46.02
RELREG-W 54.06 38.51 51.07
SEGENC-W 63.62 51.27 61.37

Table 7: AQuaMuSe test-set performance of two best-
performing models from §4, along with a baseline
BART model and previously reported results (in ital-
ics) for Hi-MAP (Fabbri et al., 2019a) from Kulkarni
et al. (2020). Note that the version of the dataset used
for previous results would have been slightly different
due to variations in document selection parameters and
Common Crawl indices (see Appendix).

due to its conversational nature. The results also 615

highlight a gap between the performance of exist- 616

ing models and perfect scores, which shows that 617

there is potential for improvement in future work. 618

5.2 Dataset Generalization 619

To test that the results from the previous section 620

generalize beyond the QMSum dataset, we evalu- 621

ated the best-performing models on AQuaMuSe, 622

another high-quality dataset for QFS that includes 623

long documents (§2.1, §3.3). Test-set performance 624

for the best-performing two-stage and end-to-end 625

models, along with a baseline BART model, are 626

shown in Table 7. Results are consistent with those 627

for the QMSum dataset (Table 5), with the best 628

end-to-end model (SEGENC-W) outperforming the 629

best two-stage model (RELREG-W), and both out- 630

performing the baseline (BART) model. 631

6 Conclusion 632

In this work, we conducted an exploratory study 633

of neural models for query-focused summarization. 634

We studied two categories of models: two-stage 635

and end-to-end, and presented two architectures, 636

RELREG and SEGENC, both of which improve 637

ROUGE performance over prior state of the art 638

by a substantial margin. We also explored task- 639

specific transfer learning, which further improved 640

model performance. Besides model performance, 641

we discussed issues of computational efficiency 642

that practitioners may factor into their modeling 643

choices. Finally, we conducted a human study sug- 644

gesting that the summaries produced by the best- 645

performing models are more factually correct and 646

complete than a baseline model by a substantial 647

margin. We hope that the analysis and modeling 648

contributions of this paper will be a resource for 649

future research on query-focused summarization. 650
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7 Ethical Considerations651

Dataset Biases QMSum and AQuaMuSe contain652

meeting transcripts and documents in English and653

thus mainly represent the culture of the English-654

speaking populace. Political or gender biases may655

also exist in the dataset, and models trained on656

these datasets may propagate these biases Addi-657

tionally, the pretrained BART model carries biases658

from the data it was pretrained on. We did not659

stress test these models for biases and request that660

the users be aware of these potential issues in ap-661

plying the models presented.662

Crowdsourcing Protocols Workers were com-663

pensated $1 per example, calibrated to equal a664

$12/hour payrate. We use the following qualifi-665

cations to recruit MTurk workers with good track666

records: HIT approval rate greater than or equal667

to 97%, number of HITs approved greater than or668

equal to 10000, and located in one of the follow-669

ing English native-speaking countries: Australia,670

Canada, New Zealand, United Kingdom, United671

States.672

Misuse Potential and Failure Mode When prop-673

erly used, the summarization models described in674

this paper can be time-saving. However, the cur-675

rent model outputs may be factually inconsistent676

with the input documents, and in such a case could677

contribute to misinformation on the internet. This678

issue is present among all current abstractive sum-679

marization models and is an area of active research.680

Environmental Cost The experiments described681

in the paper primarily make use of A100 GPUs. We682

typically used a single GPU per experiment, and the683

experiments may take up to a day when repeating684

across random seeds. The largest backbone model685

used, BART-Large, has 400 million parameters.686

While our work required extensive experiments,687

future work and applications can draw upon our688

insights and need not repeat these comparisons.689
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A Appendix1032

Locator Model Parameters For MARGE ex-1033

periments, we apply the original fine-tuned BERT-1034

base checkpoint from Xu and Lapata (2021a),1035

while for DPR, we fine-tune a BERT-base model1036

for both query and passage encoders following 1037

Karpukhin et al. (2020). 1038

We report results for RELREG fine-tuned from 1039

an Electra-large checkpoint (Clark et al., 2020). 1040

For a fair comparison with other metrics, we also 1041

fine-tuned RELREG from a BERT-base checkpoint. 1042

This version still outperformed DPR by about a 1043

point in R-1, R-2, and R-L, demonstrating the ad- 1044

vantage of this locator approach beyond the chosen 1045

base model. 1046

We apply RELREGTT fine-tuned from a dis- 1047

tilled RoBERTa base (Liu et al., 2019) checkpoint 1048

initially fine-tuned for the task of entailment. This 1049

approach of continuing fine-tuning from an en- 1050

tailment checkpoint is suggested by the sentence 1051

transformers library (Reimers and Gurevych, 2019). 1052

We also experimented with fine-tuning the REL- 1053

REGTT model from BERT-base and Electra-large 1054

checkpoints, but these locators did not perform bet- 1055

ter in initial experiments. 1056

Summarization Model Parameters In 1057

all experiments described in this work, 1058

the LED model was initialized from the 1059

allenai/led-large-16384 checkpoint. 1060

Two model hyperparameters, maximal input 1061

size and attention window size, were chosen 1062

through a hyperparameter search with candidate 1063

models selected based on their performance on 1064

the validation set. Best hyperparamters were 1065

found to be: 16384 maximum input size, and 1066

1024 attention window size. LED models were 1067

trained for 10 epochs, with a batch size 1, gradient 1068

accumulation set to 4 steps, and learning rate 1069

set to 0.000005. The SEGENC model was 1070

initialized from the facebook/bart-large 1071

checkpoint. The model hyperparameters, maximal 1072

input size and attention window size, were chosen 1073

through a hyperparameter search with candidate 1074

models selected based on their performance on the 1075

validation set, with results reported in the paper. 1076

Best hyperparamters were found to be: 16384 1077

maximum input size, and 512 attention window 1078

size. The SEGENC models were trained for 10 1079

epochs, with a batch size of 1 and learning rate set 1080

to 0.000005. 1081

QMSum Details QMSum contains 1,808 query- 1082

summary pairs in total, with a train/validation/test 1083

split of 1257/272/281. It is made available through 1084
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Lexical Overlap b/w
Extractors and References

Lexical Overlap b/w
Extractors and Queries

Span Overlap b/w
Extractors and Golden Spans

Model Top-1 Top-5 Top-15 All Top-1 Top-5 Top-15 All All
R-1 R-2 R-L x̄ R-1 R-2 R-L x̄ R-1 R-2 R-L x̄ R-1 R-2 R-L x̄ R-1 R-2 R-L x̄ R-1 R-2 R-L x̄ R-1 R-2 R-L x̄ R-1 R-2 R-L x̄ Precision Recall

GOLD SPANS 15.00 3.80 11.10 60 20.89 6.05 15.04 218 19.62 5.99 14.28 386 16.09 5.60 12.47 660 11.01 2.75 9.90 60 7.30 1.58 6.24 218 4.73 1.10 4.07 386 3.53 0.93 3.05 660 0.75 1.00
LEAD 8.17 0.98 6.30 82 12.84 1.69 9.17 309 13.13 1.81 9.21 463 8.77 1.79 6.77 978 4.88 0.60 4.49 82 5.51 0.72 4.71 309 3.76 0.64 3.26 463 1.70 0.37 1.55 978 0.09 0.20
DPR 11.31 1.99 8.72 34 17.46 2.86 12.21 156 15.38 2.74 10.64 394 9.75 2.23 7.42 932 12.41 3.37 11.35 34 8.08 1.74 7.00 156 4.44 0.92 3.90 394 1.97 0.50 1.82 932 0.22 0.27
RELREGTT 23.67 3.34 15.66 82 16.13 3.35 11.18 413 9.65 2.58 7.31 930 9.16 2.52 6.99 994 9.63 1.58 8.26 82 3.49 0.83 3.09 413 1.81 0.50 1.65 930 1.66 0.46 1.53 994 0.07 0.24
MARGE 7.13 0.72 5.81 20 13.76 1.39 10.22 92 14.85 1.74 11.09 269 9.21 1.52 7.16 896 7.22 0.81 6.88 20.61 6.86 0.67 6.09 92 4.70 0.61 4.20 269 1.84 0.36 1.70 896 0.15 0.21
RELREG 24.57 4.33 16.57 88 17.52 4.11 12.21 418 10.56 3.04 8.06 884 9.62 2.87 7.47 989 12.38 3.00 10.61 88 4.32 1.18 3.77 418 2.09 0.61 1.89 884 1.80 0.54 1.65 989 0.11 0.28

Table 8: Performance of extractor models on the validation set. The left and middle sections present the lexical
overlap between utterances retrieved by extractor models and the reference summaries and summary queries,
accordingly. Lexical overlap is evaluated by means of ROUGE-1 (R-1), ROUGE-2 (R-2), and ROUGE-L (R-L)
metrics. Segments of the section focus on the lexical overlap between the highest ranked 1 (Top-1), 5 (Top-5), 15
(Top-15) utterances, and all utterances truncated to a 1024 token limit (All). The table also includes the average
word counts of all extracted utterances, denoted as x̄. The right section shows the span overlap between the utterance
spans retrieved by the extractor models and those collected from human annotators by the authors of QMSum. The
performance is evaluated by means of Precision and Recall scores and uses the highest ranked utterances truncated
to the limit of 1024 tokens.

an MIT license5, which aligns with our use for1085

research purposes. Non-identifying names are used1086

in place of real names.1087

AQuaMuse Details We experiment the V3, ab-1088

stractive version of AQuaMuse, consisting of 77251089

query-summary pairs, with a train/validation/test1090

split of 5566/596/734. The original AQuaMuse pa-1091

per reported results on V2 of the dataset, which con-1092

tains a slightly different input document set due to1093

variations in the semantic overlap threshold used to1094

retrieve documents. Some input documents could1095

not be retrieved due to differences in the Common1096

Crawl index used; we use the cleaned, reproduced1097

version of the C4 dataset (Raffel et al., 2020) from1098

the Common Crawl made available by AI26. We1099

kept examples for which all input documents were1100

found, which resulted in a dataset of 6896 exam-1101

ples. The natural language questions it contains1102

are made available through an Apache 2.0 license7,1103

which aligns with our use for research purposes.1104

This dataset uses publicly available entities from1105

Wikipedia.1106

B Human Annotation Interface1107

The instructions shown to the annotators during1108

human studies are presented in Figure 11109

5https://github.com/Yale-LILY/QMSum/
blob/main/LICENSE

6https://github.com/allenai/allennlp/
discussions/5056

7https://github.com/
google-research-datasets/
natural-questions/blob/master/LICENSE
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Figure 1: Instructions presented to annotators for the human studies
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