
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GGSD: GENERATING GRAPHS VIA SPECTRAL DIFFU-
SION

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we present GGSD, a novel graph generative model based on 1) the
spectral decomposition of the graph Laplacian matrix and 2) a diffusion process.
Specifically, we propose to use a denoising model to sample eigenvectors and
eigenvalues from which we can reconstruct the graph Laplacian and adjacency
matrix. Using the Laplacian spectrum allows us to naturally capture the structural
characteristics of the graph and work directly in the node space while avoiding the
quadratic complexity bottleneck that limits the applicability of other diffusion-
based methods. This, in turn, is accomplished by truncating the spectrum, which,
as we show in our experiments, results in a faster yet accurate generative process,
and by designing a novel transformer-based architecture linear in the number of
nodes. Our permutation invariant model can also handle node features by con-
catenating them to the eigenvectors of each node. An extensive set of experiments
on both synthetic and real-world graphs demonstrates the strengths of our model
against state-of-the-art alternatives.

1 INTRODUCTION

Generating realistic graphs by learning from a distribution of real-world graphs has gained increas-
ing attention from researchers in many fields due to its wide range of applications. For instance,
synthetic graph generation plays a crucial role in drug design Gómez-Bombarelli et al. (2018); Li
et al. (2018a); You et al. (2018a) as well as in network science Watts & Strogatz (1998); Leskovec
et al. (2010); Albert & Barabási (2002).

Seminal graph generation approaches date back to the 1960s and rely on simple stochastic processes,
limiting their ability to capture complex dependencies seen in real-world networks. For example,
the Barabási-Albert Albert & Barabási (2002) and Kronecker Leskovec et al. (2010) graph models
are specifically designed to generate graphs belonging to specific families and lack the ability to
learn directly from observed data. While these models may excel in capturing a set of predefined
properties, they are often unable to represent a wider range of aspects observed in real-world graphs.
In addition, in several domains, network properties are largely unknown, which further limits the
applicability of these techniques. For instance, the Barabási-Albert model Albert & Barabási (2002)
allows to create graphs that exhibit the scale-free nature found in empirical degree distributions,
however it is unable to capture other facets of real-world graphs, e.g., community structure. While a
flurry of new models attempting to address these shortcomings have been introduced by the network
science community (see Drobyshevskiy & Turdakov (2019) for a recent review), these methods
often lack the ability to learn to mimic the characteristics of a given dataset. This in turn limits the
expressivity and fidelity of generated graphs and thus the range of possible applications of graph
generative models.

In this paper, we introduce a new model for generating GRAphs via SPectral diffusion (GGSD).
The ideas underpinning our approach are 1) to represent the graph using the eigendecomposition of
its Laplacian matrix and 2) to use a diffusion-based approach to learn to sample sets of eigenvalues
and eigenvectors from which a graph adjacency matrix can be reconstructed. Doing this allows us
to work directly in the space of nodes while overcoming the computational bottleneck (quadratic in
the number of graph nodes) of other methods that follow a similar approach Vignac et al. (2022). By
limiting the number of eigenvalues and eigenvectors used to reconstruct the graph adjacency matrix,
we reduce the complexity of the iterative denoising process to be linear with respect to the number

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

of nodes while, at the same time, having a representation tablet to encapsulate graph structural
characteristics. Moreover, unlike other models conditioned on spectral representations Martinkus
et al. (2022), our model also allows us to robustly condition the generation of new graphs on desired
spectral properties (subsets of eigenvalues and/or eigenvectors) at inference time.

The remainder of this paper is structured as follows. Section 2 reviews the related work, while
Sections 3 introduces the necessary background on denoising diffusion models. We introduce our
graph generative model in Section 4, and we present the experimental evaluation against state-of-
the-art alternatives in Section 5. Finally, Section 6 concludes the paper.

2 RELATED WORK

In contrast to the image and text domains, where the development of generative models is well
understood and established, graphs introduce a series of additional challenges.

The first issue is the non-uniqueness of graph representations, i.e., if a graph contains n nodes, there
exist up to n! possibly distinct adjacency matrices that serve as equivalent representations of the
same graph, since there is no reason to prefer a particular node order. Ideally, a generative model
should assign equal probability to each of these n! adjacency matrices. Another crux lies in the
size of the output space, which is quadratic in the number of nodes, and that quickly becomes a
bottleneck when dealing with large graphs. Graph generative models should also be able to consider
the existence of dependencies and relationships between nodes and edges, rather than treating them
as independent, e.g., in social networks the likelihood of two nodes being connected is often higher
when they have common neighbors. Finally, standard machine learning techniques designed for
continuously differentiable objective functions are unsuitable to be directly applied to discrete graph
structures Guo & Zhao (2022).

Seminal graph generative model approaches seek to address these problems, yet focus only on the
generation of graphs displaying a limited set of structural characteristics. These initial methods
rely on identifying common characteristics in real-world graphs, such as degree distribution, graph
diameter, and clustering coefficient Faloutsos (2008), and then generate synthetic graphs through the
application of a set of heuristic rules Leskovec et al. (2010); Leskovec & Faloutsos (2007); Erdős
et al. (1960); Albert & Barabási (2002). Although these models can produce synthetic graphs with
the given desired features, they are limited in their ability to generate node features as well as novel
structural patterns.

A breakthrough in this field has been marked by the recent progress in deep learning models
such as Variational Auto Encoders (VAEs) Kingma & Welling (2013), Recurrent Neural Networks
(RNNs) Zaremba et al. (2014) and Generative Adversarial Networks (GANs) Goodfellow et al.
(2014). In this context, we encounter models commonly referred to as general-purpose deep graph
generative models, such as GraphRNN You et al. (2018b) and GRAN Liao et al. (2019), which ex-
ploit deep architectures to learn the graphs distribution. Even though they represent a step forward in
the field of generative graph models, most of them are limited by exclusively focusing on the graphs
structure. Further, approaches of this type adopt evaluation metrics based only on graph statistics,
like degree distribution or clustering coefficients, and thus overlook or omit the assessment of the
generated node features.

Node and edge features are instead considered in a number of methods developed specifically for the
generation of molecules, indeed one of the most promising application scenario for modern graph
generation approaches. Models falling in this domain, referred to as molecule graph generative
models, exploit deep architectures such as GAN in De Cao & Kipf (2018) or RNN in Popova et al.
(2019) as well as other generation strategies (e.g., graph normalizing flows Luo et al. (2021)) or the
combination of different approaches. For instance, Shi et al. (2020) combines the advantages of both
autoregressive and flow-based methods.

Nevertheless, there are other deep learning approaches beyond molecule graph generative models
that are capable of generating graphs with node and edge features - even though the evaluation itself
is often still based on a molecule generation task. For instance Simonovsky & Komodakis (2018)
and Grover et al. (2019) propose general deep generative models for graphs based on variational
autoencoders. The main drawback of these architectures is that they are specialized and limited to
small-scale graphs with low-dimensional feature space Yoon et al. (2023).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Another category of graph generative models takes cues from the score-based generative modeling
work of Song & Ermon (2019) to define diffusion models for graphs. For instance, in Huang et al.
(2022) the authors propose a forward diffusion process, specifically a continuous-time generative
diffusion process for permutation invariant graph generation. Similarly, Niu et al. (2020) introduce
a different diffusion model named Edge-wise Dense Prediction Graph Neural Network (EDP-GNN),
which uses Gaussian noise and uses thresholding to address the issue of generating a discrete valued
adjacency matrix from continuous values. Crucially, the proposed method cannot fully capture node-
edge dependencies. A similar score-based generative model for graphs, where both node features
and adjacency matrix are created, is presented in Jo et al. (2022). Finally, Vignac et al. (2022)
suggest an alternative approach where a discrete diffusion process is used to generate graphs with
discrete node and edge features. This is similar to Haefeli et al. (2022), however the latter can only
be applied to unattributed graphs.

More recently, Martinkus et al. (2022) with their SPECTRE network and Luo et al. (2023) take a
different approach by considering the graph spectra, thus leveraging the inherent ability of the low
frequency portion of the spectrum to capture global structural characteristics of the corresponding
graph. Although similar to our method, SPECTRE focuses on generating an adjacency matrix condi-
tioned on a set of eigenvectors, which may or may not have been generated themselves. Our method
instead only generates eigenpairs from which the adjacency matrix is recovered. As a result, unlike
SPECTRE, our method is capable of generating graphs that respect a set of given spectral properties
(see Subsection 5.4). GSDM Luo et al. (2023), on the other hand, proposes to reduce the complex-
ity by performing diffusion just on the eigenvalues and optionally on the node features, while the
eigenvectors used to reconstruct the final adjacency matrix are uniformly sampled from the training
set. DiGress Vignac et al. (2022) is also closely related to our model, however its complexity is
quadratic in the number of nodes of the graph, making it unsuitable to work on large graphs.

Our approach is also related to recently introduced latent graph diffusion models, which employ
an autoencoder architecture to map nodes and edges of a graph to latent space where the diffusion
process takes place Yang et al. (2024); Zhou et al. (2024). While these approaches aim to learn a
low-dimensional embedding of the graph nodes, we rely instead on the well-established concept of
spectral embedding Luo et al. (2003), with eigenvectors providing a low-dimensional embedding of
the graph nodes and eigenvalues capturing global structure information.

3 DENOISING DIFFUSION MODELS

Denoising Diffusion Probabilistic Models (DDPMs) are a class of generative models inspired by
considerations from non-equilibrium thermodynamics. In particular, diffusion models in deep learn-
ing were first introduced in Sohl-Dickstein et al. (2015) yet popularized only in 2020 Ho et al.
(2020). They operate by iteratively introducing noise to an input signal and then learning to de-
noise it thus generating new samples from the corrupted signals. Specifically, the idea is to destroy
the structure in a data distribution through an iterative forward diffusion process (noising) and then
learn a reverse diffusion process (denoising). This reverse process restores structure in the data, thus
yielding a tractable generative model of the data.

Given a data point sampled from a real but unknown data distribution x0 ∼ q(x), we define a
forward noising process q producing a sequence of noisy samples x1, . . . ,xT as a Markov Chain
given by q (x1, . . . ,xT | x0) =

∏T
t=1 q (xt | xt−1), with the diffusion kernel defined as:

q (xt | xt−1) = N
(
xt;

√
1− βtxt−1, βtI

)
. (1)

Note that, if we define ᾱt =
∏t

s=1 (1− βs), we can reformulate Eq. 1 as a single step

q(xt | x0) = N
(
xt;

√
ᾱtx0, (1− ᾱt) I

)
. (2)

In the reverse diffusion process, the goal is to recreate the true sample from a Gaussian noise input
xT ∼ N (0, I) by sampling from q (xt−1 | xt), the true denoising distribution. In order to run the
reverse diffusion process, we need to learn a model pθ, often referred to as score model, to approxi-
mate these conditional probabilities. As Feller (1949) showed, in the case of Gaussian distributions
the diffusion process reversal has the same functional form of the forward process. From this it

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

PPGN
Generator

PPGN
Generator

PPGN
Discriminator

Graph Predictor

(same model)

Spectral Diffusion

Figure 1: GGSD pipeline. During the spectral diffusion process (left) the neural network is trained
to predict the denoising steps for the eigenvectors ϕ and eigenvalues λ of the graph Laplacian. The
second stage of our method is the graph predictor (right), where we train a Provably Powerful Graph
Network (PPGN) Maron et al. (2019) (similar to what was done in SPECTRE Martinkus et al.
(2022)). Given the eigenvalues and eigenvectors generated, it predicts the adjacency matrix.

follows that the reverse diffusion process kernel can be defined as
pθ(xt−1 | xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) , (3)

where θ are the parameters of the reverse diffusion kernel at each time step, which can be learned
using a neural network. If we fix the variance to a constant βt (i.e. Σθ(xt, t) = βtI), we only
need to learn the distance between the means of two Gaussian distributions, i.e., between the noise
added in the forward process and the noise predicted by the model. This leads to a variational lower
bound loss expressed in terms of the Kullback–Leibler (KL) divergence between the posterior of the
forward process and the parameterized reverse diffusion process.

4 OUR METHOD

Consider an undirected unweighted graph G = (V, E), where V is the set of n nodes connected
by the edge set E . Recall that for a graph with adjacency matrix A, the graph Laplacian L is
defined as L = D − A, where D is the diagonal degree matrix. Finally, let Φ and Λ be the
orthonormal matrix of eigenvectors (as columns) and the diagonal matrix of eigenvalues given by
the eigendecomposition L = ΦΛΦ⊤, respectively. In the following sections, we use λ to denote
the vector of eigenvalues of the graph Laplacian.

The fundamental intuition underpinning our model is that we can represent the graph connectivity
with (possibly a subset of) the eigenvectors Φ and the corresponding eigenvalues λ of the graph
Laplacian. The connection between the spectrum of the graph Laplacian and the structural properties
of the underlying graph is well known and studied. For example, it is well established that the low
frequency portion of the spectrum captures the global structural characteristic of the graph, while
the high frequencies are essential in the reconstruction of local connectivity patterns Chung (1997).

Fig. 1 shows an overview of the proposed pipeline. This is made of two main components, namely
1) a spectral diffusion process that generates a set of eigenvalues and eigenvectors from which an
approximation of the Laplacian matrix can be reconstructed and 2) a graph predictor, which outputs
a binary adjacency matrix from the (noisy) Laplacian reconstruction. The two components are
discussed in detail in the following subsections.

4.1 SPECTRAL DIFFUSION

Moving from the Laplacian to its spectrum reduces the double row-, column-covariance with respect
to node permutations of the Laplacian matrix, to a single covariance over the rows of the eigenvec-
tor matrix. To address this covariance, we represent the eigenvector matrix as a series of spectral
embedding of the nodes, i.e., we interpret the i-th component of the j-th eigenvector as the j-th
component of the i-th node embedding, or alternatively, we see the rows of Φ as vectors. To this we
add the eigenvalues λ as a global graph descriptor. We can then define the reverse diffusion step as

pθ(Φt−1,λt−1|Φt,λt) = N
(
{Φt−1,λt−1};µθ (Φt,λt, t) , σ

2
t I
)

(4)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Cross
Attention

Cross
Attention

Figure 2: The score model takes as input the noisy eigenvector matrix and eigenvalues at time t and
predicts the noise of the data to be used in the denoising step. The k node feature eigenvectors Φ0

t
are projected through an MLP to a d dimensional space. The sequence of k eigenvalues is given as
input to a 1D convolutional layer, which outputs d features for each eigenvalue. Both eigenvectors
and eigenvalues go through a series of L layers composed of two multi-head cross-attention blocks,
one updating the eigenvectors conditioned by the eigenvalues and one updating the eigenvalues
conditioned on the eigenvectors. After each layer, we apply a residual block ⊕, which adds to the
layer input the updated values scaled and shifted by time-dependent factors. Finally, ΦL

t and λL
t are

projected to a k dimensional space through an MLP and a 1D convolution.

where the normal distribution is over the product set of the spectral embeddings and the global
spectral descriptor.

Following DDPM Ho et al. (2020), we train a neural network to predict the denoising step. We
design the backbone of our spectral diffusion process of Eq. 4 as a neural network composed of
a sequence of layers containing a pair of multi-head attention blocks Vaswani et al. (2017), one
operating on the eigenvectors conditioned on the eigenvalues and one operating on the eigenvalues
conditioned by the eigenvectors. This choice allows us to achieve both a node permutation invariant
model and to let the eigenvectors and eigenvalues condition each other on the prediction of the de-
noising step. Moreover, this model can easily handle node features X by simply concatenating them
to the eigenvectors of each node. Fig. 2 shows the overall structure of the proposed neural network.
Note that the conv1d layer is applied to the eigenvalues, which are invariant with respect to node
permutations, while the diffusion process itself acts in an invariant way on node embeddings, which
are permutationally covariant. As a consequence, the whole process is permutationally invariant.

Crucially, our model allows us to reduce the memory footprint of the diffusion component from
O(n2) to O(kn), where n denotes the number of graph nodes, by fixing the maximum number of
eigenvectors to k, resulting in a faster generative process. For this reason, for larger graphs, we
perform diffusion on a subset of k eigenvectors. In this case, after the denoising diffusion process,
we obtain a subset Φ̃ of columns of Φ with the corresponding subset of eigenvalues λ̃, which allows
for an approximated reconstruction of L̃ = Φ̃Λ̃Φ̃ ≈ L, from which the adjacency matrix can be
inferred. In addition, since the eigenvector associated with the null eigenvalue does not contribute
to the reconstruction of the Laplacian matrix, we can safely ignore it in the generation process.

It should be noted that the optimal number of eigenvalues/eigenvectors (k) to use is not fixed. We de-
termined its range through preliminary analyses on the SBM and Planar datasets (see Appendix D),
and in general, we treat it as a hyper-parameter of the model. Interestingly, our experiments reveal
that the eigenvectors corresponding to the smallest eigenvalues (lowest frequencies) do not consis-
tently offer more information about connectivity or result in better reconstructions of the original
adjacency matrix.

4.2 GRAPH PREDICTOR

The main drawback of considering a subset of the eigenvectors is the introduction of noise on the
reconstructed adjacency matrix. We adopt a strategy similar to the one proposed in SPECTRE Mar-
tinkus et al. (2022) to predict a binary adjacency matrix starting from a noisy reconstruction. We
train a l-layer Provably Powerful Graph Network (PPGN) Maron et al. (2019), which takes as input
the generated eigenvectors Φ̃ scaled by the square root of the eigenvalues λ̃ as node features as well

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Comparison with other graph generative models using MMD metrics (the smaller, the
better) on synthetic datasets.

Community-Small Planar Stochastic Block Model (SBM)

Deg. ↓ Clus. ↓ Spect. ↓ Orb. ↓ Deg. ↓ Clus. ↓ Spect. ↓ Orb. ↓ Deg. ↓ Clus. ↓ Spect. ↓ Orb. ↓

GraphRNN 0.0271 0.1072 0.0520 0.1469 0.0096 0.2985 0.0389 1.4022 0.0178 0.0151 0.0104 0.0351
GRAN 0.0013 0.0843 0.0282 0.0201 0.0202 0.2985 0.0248 0.1964 0.0135 0.0149 0.0034 0.0352
DiGress 0.0096 0.1035 0.0506 0.0372 0.0005 0.0178 0.0020 0.0115 0.0166 0.0246 0.0064 0.1327
GSDM 0.0099 0.0446 0.0131 0.0155 0.0220 0.0222 0.0096 0.0371 0.2295 0.2280 0.1578 0.2876
GDSS 0.0107 0.1060 0.0450 0.0356 0.0701 0.3025 0.0403 1.0345 0.2658 0.0442 0.0551 0.2780
SPECTRE 0.0079 0.1067 0.0460 0.0250 0.0008 0.0859 0.0147 0.0058 0.0044 0.0118 0.0015 0.0140

GGSD 0.0016 0.0590 0.0153 0.0142 0.0007 0.1881 0.0125 0.0047 0.0005 0.0115 0.0045 0.0289

as the noisy adjacency matrix Ã = D̃− L̃ and predicts the binary adjacency matrix

A(Φ̃, λ̃) = σ(PPGNl(Ã, Φ̃Λ̃
1
2)), (5)

where σ is a sigmoid activation function and PPGNl is a sequence of PPGN layers. We train this
network with two losses: 1) a reconstruction loss on the eigenvectors Φ̃gt and eigenvalues λ̃gt of
the reduced spectrum of the training graphs with adjacency matrix Agt and 2) an adversarial loss on
the generated adjacency matrix A(Φ̃, λ̃), i.e.,

Lrec = BCE(Agt,A(Φ̃gt, λ̃gt)) and Ladv = log(D(Agt)) + log(1−D(A(Φ̃, λ̃))) , (6)

where BCE is the standard binary cross entropy loss and D is a discriminator network composed
of a sequence of PPGN layers followed by a global pooling for the final graph-level classification.
Note that, unlike in SPECTRE Martinkus et al. (2022), this refining step is not generative, meaning
that the output is deterministic and depends solely on the input eigenvectors/values.

5 EXPERIMENTAL EVALUATION

Datasets. We compare the performance of our model against that of state-of-the-art alternatives on
both synthetic and real-world datasets. As commonly done in the literature, we use three synthetic
datasets and two real-world datasets. The synthetic datasets we consider are (i) Community-small
(12 ≤ |V | ≤ 20), (ii) Planar (|V | = 64), and (iii) Stochastic Block Model (SBM) (2-5 communities
and 20-40 nodes per community). The real-world datasets are both from the molecular domain,
namely (i) Proteins (100-500 nodes) Dobson & Doig (2003) and (ii) QM9 (9 nodes) Ruddigkeit
et al. (2012); Ramakrishnan et al. (2014). Detailed descriptions of all datasets can be found in
Appendix A.

Evaluation Metrics. We assess the ability of the models to generate graphs with structural char-
acteristics close to those of the training graphs by following the methodology outlined in Liao et al.
(2019), which aims to address the difficulties of measuring likelihoods when evaluating autoregres-
sive graph generative models reliant on orderings. In particular, we adopt the approach proposed
by You et al. (2018b) and Li et al. (2018b) and used by many others Krawczuk et al. (2020) as
well. Our evaluation centers on contrasting the distributions of graph statistics between the gen-
erated and actual graphs. Specifically, we consider the following key graph statistics: 1) degree
distribution (Deg.), 2) clustering coefficient (Clus.), 3) eigenvalues of the normalized graph Lapla-
cian (Spec.), and 4) the occurrence frequency of all 4-node orbits (Orb.). Moreover, for QM9, we
follow the literature and evaluate the quality of the generated graphs by computing the validity of
the generated molecules, their uniqueness, and their novelty w.r.t. to the molecules in the training set
and vicerversa Samanta et al. (2020); Guo & Zhao (2022). Detailed information on the evaluation
metrics used can be found in Appendix B.

Baselines. We evaluate the effectiveness of our model by comparing it against a number of well-
established graph generative models as well as some recently developed deep graph generative mod-
els. In particular, we consider GraphRNN You et al. (2018b), GRAN Liao et al. (2019), DiGress Vi-
gnac et al. (2022), SPECTRE Martinkus et al. (2022), GDSS Jo et al. (2022) and GSDM Luo et al.
(2023). For the molecule generation task we also include GraphVAE Simonovsky & Komodakis
(2018).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Comparison on real datasets with other graph generative models. Left: on Proteins dataset
using MMD metrics (the lower, the better) and mean ± standard deviation (over 10 folds). Right:
on QM9 molecules dataset based on (V)validity, (U)niqueness, and (N)ovelty metrics (the higher,
the better). Method values denoted by ∗ are taken from Martinkus et al. (2022) while by † from
Vignac et al. (2022).

Proteins

Deg. ↓ Clus. ↓ Spect ↓ Orbit ↓

GraphRNN 0.0065±0.0011 0.1658±0.0088 0.0170±0.0009 0.8142±0.0273
GRAN 0.0569±0.0056 0.1622±0.0092 0.0146±0.0007 0.3430±0.0363
GSDM 0.3792±0.0041 0.4653±0.0089 0.3024±0.0032 0.9589±0.0285
GDSS 0.0653±0.0063 0.4160±0.0089 0.0706±0.0021 0.8168±0.0118

SPECTRE 0.0082±0.0021 0.0988±0.0071 0.0066±0.0004 0.0328±0.0039

GGSD 0.0014±0.0003 0.0856±0.0066 0.0059±0.0007 0.0296±0.0066

QM9

Val.↑ V.& U.↑ V.& U.& N.↑

GraphVAE∗ 0.5570 0.4200 0.2610
DiGress† 0.9900 0.9523 0.3180

GDSS 0.8335 0.8281 0.7257
SPECTRE∗ 0.8730 0.3120 0.2910

GGSD 0.966 0.864 0.847

Experimental Setup. To maximize the robustness of the experimental results, we follow a slightly
different experimental setup compared to previous works. Specifically, for the synthetic datasets, we
decided to create a larger set of test graphs: 200 graphs for Planar and SBM, and 100 graphs for
community-small. Accordingly, we let each model generate an equivalent number of graphs (200
for Planar and SBM, 100 for community-small) to compute the MMD measures. Due to the limited
number of graphs in the Proteins dataset (see Appendix A), we also followed a different and more
robust protocol to evaluate the generated graphs on this dataset. Rather than utilizing a single subset
of the dataset as a test set, we created 10 folds (identical for each method) allowing us to report the
average of each metric (± standard deviation) over the 10 folds. Further detailed information on the
model settings and training setup, both for our model and the baselines, is provided in Appendix C.

5.1 EVALUATING THE GENERATED GRAPHS

Synthetic Datasets The experimental results for community-small, SBM, and Planar are shown
in Table 1. In this table, we report the MMD metrics for the graph statistics, where the smaller
the statistics, the better. The results of our method (GGSD) are chosen from those obtained using
either the lower or upper range of eigenvalues. Specifically, for the Planar, the results refer to the
16 smallest eigenvalues, whereas for the community-small dataset and SBM we used the largest
ones, 8 and 32 respectively. The best performance is highlighted in bold, while the second-best
value is underlined. Overall, our model consistently achieves the best or second-best results across
all datasets, with the exception of Clus. in Planar and Spect. in SBM and Planar. We posit that
the lower performance on planar graphs may be related to the behaviour of the eigenvectors of
this type of graphs. Note in fact that there is no clear class structure in this dataset but rather the
graphs are related by the (hard) property of planarity. Indeed, graphs with similar spectra can lie on
opposite sides of the discrimination boundary, i.e., between planar and non-planar graphs. As such,
the addition or removal of an edge connecting local substructures can easily break the planarity of
the graph without significantly affecting its spectral representation. Finally, although not shown in
the table, it is worth noting that our method achieves 100% uniqueness on both SBM and Planar.
Real-world Datasets Results for real-world dataset generations on Proteins and QM9 are reported
in Table 2, left and right, respectively. Also in this series of experiments, we achieve good perfor-
mance. Again, we selected the best results from either the highest or lowest frequencies. Notably,
for the Proteins dataset, we utilized the 16 smallest eigenvalues, while for QM9, we used the entire
spectrum. The Proteins dataset is especially challenging due to the size of the graphs, which can
reach 500 nodes. For this dataset, GGSD ranks as the best in all metrics Table 2 (left). QM9, on
the other hand, is composed by small graphs of up to 9 nodes, with both node and edge features. In
Table 2 (right), it is important to note that the last column is of particular interest as it summarizes
all values, where we emerge as the second top performer.

5.2 GRAPH PREDICTOR ABLATION

Given that the “Graph Predictor” is trained using a discriminative loss, one may think that it is this
component that is doing all the “heavy lifting” of the graph generation task, while the “Spectral
Diffusion” may be just producing noisy data.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

To assess that this is not the case, we designed an experiment training our model to predict all the
eigenvectors and eigenvalues on the community-small dataset. The small size of the graphs in this
datasets allows us to generate all the eigenvectors Φ and eigenvalues λ and reconstruct the exact
Laplacian L = ΦΛΦ⊤ and the (almost) binary adjacency matrix A = D − L, where D is the
diagonal of the Laplacian. To obtain a binary adjacency matrix, we further threshold A to get the
actual edges of the generated graph (i.e., every entry above 0.5 is considered an edge).

In Table 3 we show three different configurations of our method: 1) “Only Diffusion”: we use the
technique we just described, in which the graph is constructed directly from the generated Φ and
λ without using the “Graph Predictor”; 2) “Noise + Predictor”: we give as input to the “Graph
Predictor” noise drawn from a Gaussian distribution; 3) “Diff. + Prediction”: this is the full model
used in all the other experiments. For each configuration, we provide results for two cases: 1) using
the full set of eigenpairs - all eigenbasis to train the model, and 2) using a subset of the eigenpairs -
model trained using the 8 largest eigenvalues and their corresponding eigenvectors.

Reconstructing the graph directly from the Laplacian (referred to as “Only Diffusion”) using the
complete spectrum yields the best results. Conversely, using either random noise or the reconstructed
Laplacian as input to the Predictor results in significantly inferior outcomes. This suggests that the
“Spectral Diffusion” part of the network is responsible for the actual generation process. On the
other hand, if we consider a truncated eigenbase for the training phase, the Predictor becomes useful
as it helps to refine the results further.

To provide a comprehensive overview, we also provide some qualitative examples in Figure 3, com-
paring the eigenvectors generated by the diffusion module of GGSD with those of the Laplacian
computed on the adjacency matrix predicted by the PPGN module. In smaller graphs, the eigenvec-
tors are almost perfectly preserved, while only minor local differences emerge in larger graphs. In
contrast, the generative approach used by SPECTRE fails to maintain the relationship between the
conditioning eigenvectors and the final generated graph.

G
en

er
at

ed
Φ

0
C

om
pu

te
d

on
A

ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7 ϕ8

GGSD

G
en

er
at

ed
Φ

C
om

pu
te

d
on

A

ϕ1 ϕ2

SPECTRE

G
en

er
at

ed
Φ

0
C

om
pu

te
d

on
A

ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7 ϕ8

G
en

er
at

ed
Φ

C
om

pu
te

d
on

A

ϕ1 ϕ2 ϕ3 ϕ4

Figure 3: Left column: Comparison of the eigenvectors generated by the diffusion module of
GGSD with the eigenvectors recomputed on the Laplacian computed on the adjacency matrix pre-
dicted by the PPGN module on the Community (top) and SBM (bottom) datasets. The models have
been trained with the 8 smallest eigenvectors. In the smaller dataset (Community) the diffusion
generates nearly perfect eigenvectors. In the more challenging SBM dataset we can notice that the
generated eigenfunction are slightly different from the one computed on the predicted graph while
preserving the overall structure. Right column: comparison of the interpolated eigenvectors that
SPECTRE uses to condition the PPGN module to the actual eigenvectors of the generated graph. In
this case the eigenvectors structure is completely lost in the generative process.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Ablation of the Graph Predictor network on the community-small dataset.

Full Set of Eigenpairs First 8 Eigenpairs

Deg. ↓ Clus. ↓ Spect. ↓ Orb. ↓ Deg. ↓ Clus. ↓ Spect. ↓ Orb. ↓

Only Diffusion 0.00134 0.05484 0.01574 0.00514 0.00936 0.09753 0.04341 0.01255
Noise + Predictor 0.04428 0.11129 0.05691 0.46051 0.06681 0.12330 0.05972 0.45137
Diff. + Predictor 0.00562 0.07887 0.02232 0.00942 0.00423 0.05464 0.01832 0.00866

4 6 8 12

Number of eigenpairs

0

2

4

6

8

10

Av
er

ag
e

er
ro

r

Community
Generated
Orthogonal

8 16 32 64

Number of eigenpairs

0

2

4

6

8

Av
er

ag
e

er
ro

r

SBM
Generated
Orthogonal

Figure 4: Performance analysis without (Generated) and with (Orthonormal) reprojecting the gen-
erated eigenvectors to an orthonormal basis. The average error represents the mean degradation of
metrics between the generated graphs and the training set. We report both the mean and the standard
deviation as error bars on 10 generations of 200 graphs. Specifically, Degree, Cluster, and Spectral
metrics are calculated between the generated graphs and the test set, then normalized by the metrics
between the training and test sets.

5.3 EIGENVECTORS ORTHOGONALITY

The general framework of DDPM cannot guarantee the orthonormality of the generated eigenvec-
tors. While in principle this might pose a problem, in practice we observed that this property is well
preserved in the generations. In Appendix E, we present both quantitative and qualitative analyses
to evaluate the orthogonality of the generated eigenvectors, demonstrating that they exhibit approxi-
mate orthonormality. Moreover, in order to test if having an exact orthonormality of the eigenvectors
brings any advantage, we tried to reproject the final generated eigenvectors to an orthonormal ma-
trix through QR decomposition before the PPGN predictor step. As reported in Figure 4, we did
not observe a clear benefit in having orthonormal basis. We argue that, even if orthonormality is a
well-known characteristic of the eigendecomposition of the graph Laplacian (indeed, of the eigen-
decomposition of any symmetric matrix), it is probably not the most important (nor essential) to
guarantee a good reconstruction of a valid graph Laplacian, which exhibits more complex properties
that need to be learned directly from data.

5.4 SPECTRAL CONDITIONED GENERATION

The spectrum of the Laplacian plays a relevant role in many applications, ranging from graph clas-
sification and mesh analysis Bai et al. (2015); Hu et al. (2014) to reconstructing the underlying
geometry of a triangulated 3D shape Cosmo et al. (2019); Marin et al. (2021). Being able to gen-
erate a graph given a target spectrum is thus an important feature of a generative method. We pose
the graph generation conditioned on a sequence of eigenvalues and/or eigenvectors as an inpainting
problem Lugmayr et al. (2022).

Eigenvalues conditioned generation In this setup, the eigenvectors at time t − 1 are computed
according to Eq. 4, while the eigenvalues are derived from the target ones through the diffusion
process (Eq. 2):

λt−1 ∼ N
(√

ᾱtλ0, (1− ᾱt) I
)
, Φt−1 ∼ N (Φt−1;µθ (Φt,λt; t) , βtI) . (7)

To validate the generation conditioned on the eigenvalues, we generate graphs of the SBM data
distribution by fixing the number of nodes as the average number of nodes of graphs containing 2
and 3 communities (70 nodes). We randomly choose one graph with 2 communities and one graph
with 3 communities from the test set, and we consider their spectra. We use these to condition the

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Donor Graph GGSD SPECTRE # gen. comm.: 2 3 4

GGSD

λ of 2 comm. 76 19 5
λ of 3 comm. 12 88 0

SPECTRE

λ of 2 comm. 93 7 0
λ of 3 comm. 96 4 0

Figure 5 & Table 4: Conditioning of the generation on the first 3 smallest eigenvectors as an in-
painting task using RePaint Lugmayr et al. (2022) (Figure). Number of communities in the graphs
generated with spectrum conditioning (Table). Higher values should appear in the bold diagonal.

generation of two sets of 100 graphs, for the 2 and 3 communities eigenvalue sequences, respectively.
The results reported in Table 4 show that spectral conditioning is able to influence the properties of
the generated graphs, while the spectral conditioning provided by SPECTRE fails to preserve this
property.

Eigenvectors conditioned generation We adopt a similar strategy for conditioning on a subset of
the eigenvectors. In this case, just the portion of k′ known eigenvectors Φ′ = [ϕ0, . . . ϕk′] at time
t−1 is computed according to Eq. 4, while the remaining eigenvectors Φ′ = [ϕk′+1, . . . ϕk] and the
eigenvalues are derived from the target ones through the forward diffusion process. The three groups
of 4 graphs in Figure 5 show the donor graphs (left) from which the first three eigenvectors were
computed, the graphs conditioned on the given eigenvectors using GGSD (center) and SPECTRE
(right). The color is the 2D color encoding of 2 of the three first eigenvectors manually selected to
highlight the different clusters. The colors from the donor graph have then been transported on the
generated graphs’ corresponding node (same node index). While GGSD is able to preserve the com-
munity structure encoded by the given eigenvectors, in SPECTRE, this information is completely
lost, causing nodes from the same community in the donor graph to randomly spread over different
communities of the generated graph. This in turn may be due to the particular generation mecha-
nism of SPECTRE. Specifically, SPECTRE learns a set of reduced orthogonal bases during training,
which are left and right-rotated according to a rotation matrix generated by a PointNetST Segol &
Lipman (2019) network based on some input (generated) eigenvalues. This requires an alignment
of the graphs to the learned bases, which makes the training more complex. Our approach, on the
other hand, is fully covariant.

6 CONCLUSION

We have introduced GGSD, a diffusion-based generative model for graphs where the spectrum of
the graph Laplacian is used to retain structural information while reducing the computational com-
plexity. Our approach has a number of advantages, from the ability to directly generate eigenvectors
and eigenvalues, to the possibility of naturally encapsulate node feature information as well as con-
ditioning the generation on target spectral properties.

Our model suffers from two main limitations. Firstly, while using low/high frequencies to recon-
struct the spectrum is theoretically grounded, in practice it would be interesting to allow the model
to select the most informative frequencies for a given dataset. We will explore this possibility in
future work. Secondly, while the diffusion model is linear, the bottleneck of our model is the PPGN-
based predictor, which has quadratic complexity. In the future, it would be interesting to investigate
alternative methods employing a sparse representation of the adjacency matrix reconstructed from
the Laplacian.

REFERENCES

Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks. Reviews of
modern physics, 74(1):47, 2002.

Lu Bai, Luca Rossi, Andrea Torsello, and Edwin R Hancock. A quantum jensen–shannon graph
kernel for unattributed graphs. Pattern Recognition, 48(2):344–355, 2015.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Fan RK Chung. Spectral graph theory, volume 92. American Mathematical Soc., 1997.

Luca Cosmo, Mikhail Panine, Arianna Rampini, Maks Ovsjanikov, Michael M. Bronstein, and
Emanuele Rodolà. Isospectralization, or how to hear shape, style, and correspondence. In
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA,
USA, June 16-20, 2019, pp. 7529–7538. Computer Vision Foundation / IEEE, 2019. doi:
10.1109/CVPR.2019.00771.

Nicola De Cao and Thomas Kipf. Molgan: An implicit generative model for small molecular graphs.
arXiv preprint arXiv:1805.11973, 2018.

Paul D Dobson and Andrew J Doig. Distinguishing enzyme structures from non-enzymes without
alignments. Journal of molecular biology, 330(4):771–783, 2003.

Mikhail Drobyshevskiy and Denis Turdakov. Random graph modeling: A survey of the concepts.
ACM computing surveys (CSUR), 52(6):1–36, 2019.

Paul Erdős, Alfréd Rényi, et al. On the evolution of random graphs. Publ. math. inst. hung. acad.
sci, 5(1):17–60, 1960.

Christos Faloutsos. Graph mining: Laws, generators and tools. Lecture Notes in Computer Science,
5012:1, 2008.

W. Feller. On the theory of stochastic processes, with particular reference to applications. In Pro-
ceedings of the [First] Berkeley Symposium on Mathematical Statistics and Probability, pp. 403–
432, 1949.

Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato,
Benjamı́n Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,
Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven contin-
uous representation of molecules. ACS central science, 4(2):268–276, 2018.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Aditya Grover, Aaron Zweig, and Stefano Ermon. Graphite: Iterative generative modeling of graphs.
In International conference on machine learning, pp. 2434–2444. PMLR, 2019.

Xiaojie Guo and Liang Zhao. A systematic survey on deep generative models for graph generation.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(5):5370–5390, 2022.

Kilian Konstantin Haefeli, Karolis Martinkus, Nathanaël Perraudin, and Roger Wattenhofer. Dif-
fusion models for graphs benefit from discrete state spaces. arXiv preprint arXiv:2210.01549,
2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Nan Hu, Raif M Rustamov, and Leonidas Guibas. Stable and informative spectral signatures for
graph matching. In Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pp. 2305–2312, 2014.

Han Huang, Leilei Sun, Bowen Du, Yanjie Fu, and Weifeng Lv. Graphgdp: Generative diffusion
processes for permutation invariant graph generation. In 2022 IEEE International Conference on
Data Mining (ICDM), pp. 201–210. IEEE, 2022.

Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based generative modeling of graphs via the
system of stochastic differential equations. In International Conference on Machine Learning,
pp. 10362–10383. PMLR, 2022.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Igor Krawczuk, Pedro Abranches, Andreas Loukas, and Volkan Cevher. Gg-gan: A geometric graph
generative adversarial network. 2020.

Jure Leskovec and Christos Faloutsos. Scalable modeling of real graphs using kronecker multipli-
cation. In Proceedings of the 24th international conference on Machine learning, pp. 497–504,
2007.

Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos Faloutsos, and Zoubin Ghahramani.
Kronecker graphs: an approach to modeling networks. Journal of Machine Learning Research,
11(2), 2010.

Yibo Li, Liangren Zhang, and Zhenming Liu. Multi-objective de novo drug design with conditional
graph generative model. Journal of cheminformatics, 10:1–24, 2018a.

Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. Learning deep generative
models of graphs. arXiv preprint arXiv:1803.03324, 2018b.

Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, Will Hamilton, David K Duvenaud, Raquel
Urtasun, and Richard Zemel. Efficient graph generation with graph recurrent attention networks.
Advances in neural information processing systems, 32, 2019.

Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc Van Gool.
Repaint: Inpainting using denoising diffusion probabilistic models. 2022.

Bin Luo, Richard C Wilson, and Edwin R Hancock. Spectral embedding of graphs. Pattern recog-
nition, 36(10):2213–2230, 2003.

Tianze Luo, Zhanfeng Mo, and Sinno Jialin Pan. Fast graph generation via spectral diffusion. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2023.

Youzhi Luo, Keqiang Yan, and Shuiwang Ji. Graphdf: A discrete flow model for molecular graph
generation. In International Conference on Machine Learning, pp. 7192–7203. PMLR, 2021.

Riccardo Marin, Arianna Rampini, Umberto Castellani, Emanuele Rodolà, Maks Ovsjanikov, and
Simone Melzi. Spectral shape recovery and analysis via data-driven connections. Int. J. Comput.
Vision, 129(10):2745–2760, oct 2021. ISSN 0920-5691. doi: 10.1007/s11263-021-01492-6.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful
graph networks. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/
paper/2019/file/bb04af0f7ecaee4aae62035497da1387-Paper.pdf.

Karolis Martinkus, Andreas Loukas, Nathanaël Perraudin, and Roger Wattenhofer. Spectre: Spectral
conditioning helps to overcome the expressivity limits of one-shot graph generators. In Interna-
tional Conference on Machine Learning, pp. 15159–15179. PMLR, 2022.

Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, and Stefano Ermon. Per-
mutation invariant graph generation via score-based generative modeling. In International Con-
ference on Artificial Intelligence and Statistics, pp. 4474–4484. PMLR, 2020.

Mariya Popova, Mykhailo Shvets, Junier Oliva, and Olexandr Isayev. Molecularrnn: Generating
realistic molecular graphs with optimized properties. arXiv preprint arXiv:1905.13372, 2019.

Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld. Quantum
chemistry structures and properties of 134 kilo molecules. Scientific data, 1(1):1–7, 2014.

Emanuele Rodolà, Luca Cosmo, Michael M Bronstein, Andrea Torsello, and Daniel Cremers. Partial
functional correspondence. In Computer graphics forum, volume 36, pp. 222–236. Wiley Online
Library, 2017.

Lars Ruddigkeit, Ruud Van Deursen, Lorenz C Blum, and Jean-Louis Reymond. Enumeration of 166
billion organic small molecules in the chemical universe database gdb-17. Journal of chemical
information and modeling, 52(11):2864–2875, 2012.

12

https://proceedings.neurips.cc/paper_files/paper/2019/file/bb04af0f7ecaee4aae62035497da1387-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bb04af0f7ecaee4aae62035497da1387-Paper.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Bidisha Samanta, Abir De, Gourhari Jana, Vicenç Gómez, Pratim Chattaraj, Niloy Ganguly, and
Manuel Gomez-Rodriguez. Nevae: A deep generative model for molecular graphs. Journal of
machine learning research, 21(114):1–33, 2020.

Nimrod Segol and Yaron Lipman. On universal equivariant set networks. In International Confer-
ence on Learning Representations, 2019.

Chence Shi, Minkai Xu, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, and Jian Tang.
Graphaf: a flow-based autoregressive model for molecular graph generation. arXiv preprint
arXiv:2001.09382, 2020.

Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of small graphs using
variational autoencoders. In Artificial Neural Networks and Machine Learning–ICANN 2018:
27th International Conference on Artificial Neural Networks, Rhodes, Greece, October 4-7, 2018,
Proceedings, Part I 27, pp. 412–422. Springer, 2018.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learn-
ing, pp. 2256–2265. PMLR, 2015.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pas-
cal Frossard. Digress: Discrete denoising diffusion for graph generation. arXiv preprint
arXiv:2209.14734, 2022.

Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-world’networks. nature, 393
(6684):440–442, 1998.

Ling Yang, Zhilin Huang, Zhilong Zhang, Zhongyi Liu, Shenda Hong, Wentao Zhang, Wenming
Yang, Bin Cui, and Luxia Zhang. Graphusion: Latent diffusion for graph generation. IEEE
Transactions on Knowledge and Data Engineering, 2024.

Minji Yoon, Yue Wu, John Palowitch, Bryan Perozzi, and Russ Salakhutdinov. Graph generative
model for benchmarking graph neural networks. 2023.

Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay Pande, and Jure Leskovec. Graph convolutional policy
network for goal-directed molecular graph generation. Advances in neural information processing
systems, 31, 2018a.

Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. Graphrnn: Generat-
ing realistic graphs with deep auto-regressive models. In International conference on machine
learning, pp. 5708–5717. PMLR, 2018b.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network regularization.
arXiv preprint arXiv:1409.2329, 2014.

Cai Zhou, Xiyuan Wang, and Muhan Zhang. Unifying generation and prediction on graphs with
latent graph diffusion. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024.

13

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Planar SBM 2 SBM 3 SBM 4 SBM 5 Proteins

Figure 6: Visual comparison between training set graph samples and generated graph samples pro-
duced by GGSD. Each column represents a graph type (Planar, Stochastic Block Model with 2,3,4,
and 5 communities, and Proteins). Top row (Original): training set graphs. Bottom row (Generated):
graph generated by GGSD.

A DATASETS.

We utilize five commonly used datasets for graph generative tasks. Some examples of the graphs
contained in these datasets alongside a similar graph generated by GGSD are shown in Figure 6.

Community-small: A synthetic dataset consisting of 100 random community graphs, with [12, 20]
nodes.

Stochastic Block Model (SBM): A synthetic dataset from Martinkus et al. (2022) comprising 200
Stochastic Block Model graphs, each with a random selection of 2 to 5 communities and 20 to 40
nodes within each community. The probability of edges between communities is set at 0.3, while
the probability of edges within communities is set at 0.05.

Planar: A synthetic dataset from Martinkus et al. (2022) of 200 planar graphs, each containing
64 nodes. Graphs are created through the application of Delaunay triangulation to a randomly and
uniformly placed set of points.

QM9 Ramakrishnan et al. (2014); Ruddigkeit et al. (2012): This real-world dataset comprises 134k
organic molecules with a maximum of 9 heavy atoms (carbon, oxygen, nitrogen, and fluorine).
By following Simonovsky & Komodakis (2018) we allocate 10k molecules for validation, 10k for
testing, and the rest for training.

Proteins Dobson & Doig (2003): The dataset encompasses 918 protein graphs, each ranging from
100 to 500 nodes. In this representation, each protein is depicted as a graph, with nodes correspond-
ing to amino acids. Nodes are connected by an edge if they are within a distance of less than 6
Angstroms from each other.

B EVALUATION METRICS

B.1 STATISTICS-BASED

We consider the following key graph statistics: degree distribution (Deg.), clustering coefficient
(Clus.), and the occurrence frequency of all 4-node orbits (Orb.). The deviation of these metrics
between the generated graphs and the actual ones is measured using the maximum mean discrep-
ancy (MMD) You et al. (2018b). In its initial formulation, the computation of the MMD relied on
the Earth Mover’s Distance (EMD) and as a result was very slow. For this reason, as suggested
in Liao et al. (2019), we use the total variational (TV) Gaussian kernel. This in turn significantly
accelerates the evaluation process while maintaining consistency with EMD. In addition to assess-
ing node degree, clustering coefficient, and orbit counts, we also extend our evaluation to include
a spectral analysis (Spect.), following Liao et al. (2019). This involves computing the eigenvalues
of the normalized graph Laplacian, quantized to approximate a probability density. The spectral

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

comparison offers insights into the global properties of the graphs, complementing the local graph
statistics emphasized by previous metrics.

B.2 INTRINSIC-QUALITY-BASED

The validity is determined by the ratio of valid molecules to all generated molecules. For molecule
graphs, the validity in molecule generation represents the percentage of chemically valid molecules
based on specific domain rules. We measure it using RDKit sanitization1.

The novelty gauges the percentage of generated graphs that are not sub-graphs of the training set,
and vice versa. It checks if the model has successfully learned to generalize to unseen graphs and it
considers two graphs identical if they are isomorphic.

The uniqueness is defined as the ratio of unique samples to valid samples, measuring the level of
variety during sampling. To calculate uniqueness, generated graphs that are sub-graph isomorphic
to others are initially removed, and the remaining percentage represents uniqueness. For instance, if
a model generates 100 identical graphs, the uniqueness is 1/100 = 1%.

C MODEL SETTINGS AND IMPLEMENTATION DETAILS

For all datasets except for QM9, we retrained the models using the configurations recommended by
the authors, with the exception of SPECTRE Martinkus et al. (2022), for which the authors provided
the model weights. When no recommended hyper-parameters setups or model weights were avail-
able, we explored the space of hyper-parameters tuning them according to the ranges mentioned for
other datasets. Finally, for our method (GGSD), we use the k largest/smallest eigenvalues of the un-
normalized Laplacian. The values of k are experimentally determined as explained in Appendix D.
We stress that these are only a fraction of the full set of eigenvectors.

We used the unnormalized Laplacian since it yields an easier graph reconstruction by simple thresh-
olding (as explained in Section 5.2). In order to handle potential scaling issues, we simply normal-
ized the eigenvalues and eigenvectors based on the training data so as to reflect a normal distribution.

For the training of the diffusion model, we split each dataset into 90% train and 10% test, and
we train the Spectral Diffusion on the whole dataset for 100k epochs, using early stopping on the
reconstruction loss. We performed a grid search on the number of layers between 6, 9 and 12, and
selected the best model according to the degree metric computed from the graphs reconstructed
directly from the eigenvectors/values and the graphs of the training set. The sampling has been done
using DDIM with 200 steps. Moreover, we generate each sample 4 times and keep the one with the
lower deviation from orthogonality.

For the training of the Graph Predictor, we used the same splits of the Spectral Diffusion, and trained
for 100k epochs. We performed early stopping by comparing the degree distribution of the generated
graphs with the training graphs. We used 6 PPGN layers and 3 PPGN layers for the Graph Predictor
and the discriminator network respectively, except for QM9 in which also the Graph Predictor is
composed of three layers. For QM9, we let the Graph Predictor to generate also edge features,
similarly to Martinkus et al. (2022).

For all datasets, following the observations in Appendix D, we train both Spectral Diffusion and
Predictor on the 16 smallest and 32 largest eigenpairs and select the final model according to the
best average metrics on the validation set.

In order to guarantee the reproducibility of both our model architecture and results, we have made
our code accessible on an online public repository 2.

D NUMBER OF EIGENVECTORS

To evaluate which part of the spectrum is more relevant and the proper number of eigenvectors to
use, we performed an experiment. We trained our model focusing on either the smallest eigenvalues

1https://www.rdkit.org/docs/RDKit_Book.html
2Anonymized version https://anonymous.4open.science/r/grasp-D237/

15

https://www.rdkit.org/docs/RDKit_Book.html
https://anonymous.4open.science/r/grasp-D237/

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

4 8 16 32 64

Number of eigenpairs

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Av
er

ag
e

er
ro

r

Planar
Smallest
Largest

4 8 16 32 64

Number of eigenpairs

0

2

4

6

8

10

12

Av
er

ag
e

er
ro

r

SBM
Smallest
Largest

Figure 7: Performance analysis with varying numbers of eigenpairs and different spectrum parts,
for the SBM (left) and Planar (right) datasets. The average error represents the mean degradation
of all metrics between the generated graphs and the training set. We report both the mean and
the standard deviation as error bars on 10 generations of 200 graphs. Specifically, we consider the
Degree, Cluster, and Spectral metrics. For each metric, the degradation is computed as the ratio
between (1) the MMD value computed between the generated graphs and the training graphs and
(2) the MMD computed between the test graphs and the training graphs. A value of 1 indicates that
the generated graphs exhibit the same statistical difference wrt the training graphs as the test set
graphs do. The ratios computed for each metric are then averaged to get a single value indicating
the quality of the generation.

(Smallest) or the largest ones (Largest), while gradually increasing the corresponding number of
eigenvectors taken into consideration. The results obtained from two synthetic datasets, Planar and
SBM, are shown in Figure 7. Regarding the optimal number of eigenvectors, it appears that too many
eigenvectors do not yield the best results, either considering low or high frequencies. Specifically, in
the case of the Planar dataset, both smaller and larger eigenvalues exhibit the best performance with
16 eigenvectors. However, for SBM, while the optimal count for lower frequencies remains at 16,
for higher frequencies, it increases to 32. These results are not entirely surprising, considering the
inherent trade-off between the diffusion model’s capability to manage high-dimensional data and
the quantity of information (number of eigenvectors) accessible to the Predictor. All in all, it should
be noted that the selection of the number of eigenvectors can generally be regarded as a model
hyperparameter for optimization, acknowledging its potential dependence on the specific dataset.

Building on the findings outlined above, in our experiments we employed the 32 largest eigenvalues
and the 16 smallest eigenvalues - and their corresponding eigenvectors - for all datasets, except for
the community-small dataset, for which we utilized the top 8 largest/smallest eigenvalues, and QM9,
for which we used the full set of eigenpairs.

E EIGENVECTORS ORTHOGONALITY STUDY

We conducted some experiments to provide both quantitative and qualitative analyses of the or-
thogonality behavior of the generated eigenvectors. In Figure 8 (left), we show how the generated
eigenvectors deviate from forming an orthonormal basis. Here we vary the number of generated
eigenvectors between 4 and 12 for Community, and between 4 and 64 for SBM. This choice re-
flects the fact that the graphs in the Community dataset have between 12 and 20 nodes, while in
the case of SBM we observed that using more than 64 eigenvectors appears to lead to a degrada-
tion in performance (see Figure 8). As expected, increasing the number of generated eigenvectors
introduces greater deviations from orthogonality, which aligns with our findings in Appendix D.
In Figure 8 (right), we provide qualitative examples by comparing the generated eigenvectors with
those computed from the adjacency matrix predicted by the PPGN. We can observe that in simpler
datasets, such as the Community dataset, the eigenvectors are perfectly aligned. In more challenging
datasets, such as SBM, while the alignment is not exact, the overall correspondence remains good
and significant.

The two experiments described above demonstrate that the generated eigenvectors exhibit the
smoothness property and are often very similar, sometimes nearly identical, to the eigenvectors com-
puted from the final predicted graph. To further investigate this, we computed the Dirichlet energy

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

SBM 1.11 2.54 3.62 4.88 6.65 6.88 7.11 7.42 7.51 7.75 7.47 7.84 7.76 7.85 8.26 8.13
Community 1.09 2.97 3.41 4.18 4.71 5.46 5.77 6.13 6.46 6.79 6.87 7.54 - - - -

Table 5: Average Dirichlet energy computed on 500 generated graphs from the SBM and Commu-
nity datasets, trained on the lower part of the spectrum (smaller eigenvalues).

of the generated approximate eigenvectors on the final generated graph. We observed a consistent
pattern, with the energy increasing as the eigenvalues grow larger. In Table 5, we report the average
Dirichlet energy computed from 500 generated graphs in the SBM and Community datasets. We ex-
clude the first eigenvector (λ = 0) from the analysis, as it does not contribute to the reconstruction
of the Laplacian, and the diffusion process is trained only on non-zero eigenvalues.

F RUNTIME COMPARISON

Table 6: For each dataset, every method generates 100 graphs. We report the total generation time
in seconds.

Planar SBM Comm. Proteins QM9

GraphRNN 3.30 4.19 3.16 16.87 —
GRAN 8.58 48.43 2.90 205.47 —

DiGress 859.64 3882.30 70.49 OOM 68.11
GSDM 10.71 31.51 9.74 160.09 —
GDSS 81.10 160.88 456.30 3177.03 1.32

SPECTRE 1.71 3.63 0.72 OOM 0.06
GGSD 9.51 18.63 4.41 124.07 2.50

Table 6 shows the total generation time (in seconds) for our method and the baseline methods across
the datasets analyzed in this paper. For a fair comparison, we generated 100 graphs for each dataset
and method. These experiments were conducted on a computer equipped with an AMD Ryzen 7
3700X processor, 64GB of RAM, and an NVIDIA RTX 3070 8GB graphics card. We achieve a
significant speedup compared to DiGress, thus showing that we are able to overcome the computa-
tional bottleneck of diffusion-based methods which, unlike GGSD, work on a diffusion space that is
quadratic in the number of nodes of the graph. Additionally, our hardware configuration could not
register the time for large datasets like Proteins due to their space complexity. While our method

4 6 8 12
number of eigenvectors k

0.000

0.005

0.010

0.015

0.020

0.025

or
th

og
on

al
ity

 R
M

S
er

ro
r

Community

4 8 16 32 64
number of eigenvectors k

0.00

0.02

0.04

0.06

0.08

0.10

or
th

og
on

al
ity

 R
M

S
er

ro
r

SBM

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

Community SBM
k = 4

k = 64

k = 4

k = 12

Figure 8: Left: the two bar plots show the deviation of the eigenvectors generated by GGSD from
an orthonormal basis on two datasets for different numbers of eigenpairs. The deviation from or-
thogonality is computed as the average root mean squared difference of the inner product of the
eigenvectors with the identity matrix, i.e. RMS(Φ̃0) = (1

k21(Φ̃
⊤
0 Φ̃0− I)·21⊤)

1
2 , with ·2 being the

elementwise square operator and k the number of eigenvectors. Right: Qualitative results showing
the inner product of the generated eigenvectors.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

outperforms GDSS in terms of speed, it is less efficient than simpler algorithms such as GRAN and
GraphRNN.

G STABILITY OF THE SPECTRAL DECOMPOSITION OF THE GRAPH
LAPLACIAN

In the spectral graph theory literature, the instability of the Laplacian has become a true-ism. Yet,
this claim requires further qualification as several spectral approaches have shown to be robust even
under severe deformation Rodolà et al. (2017). In general, random structural perturbation can cause
major topological changes which will reflect on the eigenvectors and eigenvalues of the Laplacian
quite dramatically, but it strongly depends on the location of the actual perturbation, and it is linked
with small gaps in the eigenvalues.

From spectral perturbation theory, we note that under a perturbation E, as long as the eigenvalues
are and remain distinct, the eigenvalues of the perturbed Laplacian L̃ = L + E are perturbed by a
quantity

∆λi ≈ ϕT
i Eϕi, (8)

while the eigenvectors are perturbed by ∆Φ ≈ ΦB. Here the matrix B = (bij) is defined as:

bij =
ϕT
i Eϕj

λj − λi
. (9)

As a consequence, the mixing can become large even for small perturbations if the gap between
the eigenvalues is small, and in general only eigenvectors with close eigenvalues will mix in a
significant way. All this being said, this characterizes what happens when we perturb the graph,
which is not what is happening here. By recreating the spectrum through a stable diffusion process,
the perturbation is in the spectrum, and, in general, small perturbations of the spectrum do not cause
major topological changes in the structure (which, as we said, are associated with large spectral
variations). Let us say that the eigenvectors are perturbed by a factor of ∆Φ and the eigenvalues by
a factor of ∆Λ, then the reconstructed Laplacian is

L̃ = (Φ+∆Φ)(Λ+∆Λ)(Φ+∆Φ)T = ΦΛΦT +Φ∆ΛΦT +ΦΛ∆ΦT +∆ΦΛΦT︸ ︷︷ ︸
I order error terms

+

Φ∆Λ∆ΦT +∆Φ∆ΛΦT +∆ΦΛ∆ΦT︸ ︷︷ ︸
II order error terms

+∆Φ∆Λ∆ΦT︸ ︷︷ ︸
III order error term

, (10)

which varies smoothly with noise and does not have elements at the denominator that force the terms
to explode. Indeed, we have not observed topological instabilities in any of the datasets considered
in this study.

18

	Introduction
	Related Work
	Denoising Diffusion Models
	Our Method
	Spectral Diffusion
	Graph Predictor

	Experimental Evaluation
	Evaluating the Generated Graphs
	Graph Predictor Ablation
	Eigenvectors Orthogonality
	Spectral Conditioned Generation

	Conclusion
	Datasets.
	Evaluation Metrics
	Statistics-Based
	Intrinsic-Quality-Based

	Model Settings and Implementation Details
	Number of Eigenvectors
	Eigenvectors Orthogonality Study
	Runtime Comparison
	Stability of the Spectral Decomposition of the Graph Laplacian

