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ABSTRACT

Large Language Models (LLMs) and strong vision models have enabled rapid
research and development in the field of Vision-Language-Action models that en-
able robotic control. The main objective of these methods is to develop a generalist
policy that can control robots with various embodiments. However, in industrial
robotic applications such as automated assembly and disassembly, some tasks,
such as insertion, demand greater accuracy and involve intricate factors like con-
tact engagement, friction handling, and refined motor skills. Implementing these
skills using a generalist policy is challenging because these policies might inte-
grate further sensory data, including force or torque measurements, for enhanced
precision. In our method, we present a global control policy based on LLMs that
can transfer the control policy to a finite set of skills that are specifically trained to
perform high-precision tasks through dynamic context switching. The integration
of LLM:s into this framework underscores their significance in not only interpret-
ing and processing language inputs but also in enriching the control mechanisms
for diverse and intricate robotic operations.

1 INTRODUCTION

The advent of Large Language Models (LLMs) and strong vision models, triggered the development
of strong Vision-Language Models (VLMs). These strong Foundation Models (FMs) are powered
by the strength and versatility of the transformer model (Vaswani et al., [2023). More recently, in
the dynamic realm of industrial robotics, works based on these FMs, such as Octo, RT-X, PaLM-E
(Ghosh et al.; |Collaboration et al., |2023}; Driess et al., [2023)) showcases sophisticated technological
prowess and heightened operational efficiency. This signifies a radical overhaul in robotics, where
theoretical models are skillfully intertwined with practical robotic applications, thereby unlocking
new, unprecedented capabilities.

Specific methods such as Octo (Ghosh et al.), RT-2 (Brohan et al.| [2023), PaLM-E (Driess et al.,
2023) and ChatGPT for Robotics (Vemprala et al., [2023)) showcase ingenious methods to decode
the complex learned tokens in LLMs such as TS5 (Raffel et al., [2019), GPT-3 (Brown et al.| [2020)
and PaLLM (Chowdhery et al.||2022), to generate control actions for robots with minimal fine-tuning.
This expansion from the initial fortes of LLMs in language processing to the complexities of robotic
contexts illustrates their immense potential. The versatility and robustness of LLMs are crucial in
reshaping robot manipulation, navigation, and interaction, presenting groundbreaking solutions to
tasks previously deemed unfeasible. The unique challenges these models encounter, such as data
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scarcity, task variability, and the demand for real-time responsiveness, are extensively explored by
Wang et al.| (2024) in their survey. This survey offers a thorough insight into the current landscape
and future prospects of foundation models and LLMs in robotics.
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Figure 1: We introduced a user-friendly industrial assembly model based on natural language prompt
and LLM, which is easily adaptable to new environments and modular in adding or adjusting com-
ponents to meet specific needs. The modular nature is evident in the system’s inputs and outputs.
Regarding input flexibility, the model is designed to support various types of specialized skills’ NN
models

The implications of these advancements are especially significant in industrial assembly, where
robots are expected to perform complex, high-precision tasks. Foundation models, with their en-
hanced decision-making, planning, and execution abilities, are pivotal for the intricate demands of
industrial assembly. These models herald a shift towards smarter, more adaptive, and more effi-
cient industrial processes, enabling robots to tackle complex and unstructured tasks that surpass the
limitations of conventional automated systems. Our proposed method presents an approach that pro-
cesses natural language-based goals from an assembly pipeline, such as ”Carefully grasp the yellow
plug and insert it into the appropriate socket.” to output control instructions based on image observa-
tions. In principle, our solution comprises a centralized goal-conditioned model that initiates readily
available independent specialized skills by handing over the control to specialized models based on
context switching. The centralized module is responsible for inferring the skill to be executed and
moving the robot to an initial pose, enabling the specialized control model (skill model) to perform
precise manipulation. Specifically, the model outputs two control signals, namely:

1. 7 Degree of Freedom (7DoF) pose for the default “move” action.

2. Skill-based context class.

The summary of our presented method can be seen in Fig[[] The “skills” mentioned above are
small pre-trained networks specializing in fine-grained control tasks such as insertion (Fu et al.
2022; |Spector et al., [2022). We use the fine-grained skill ’grasping for insertion”, as an example of
specialized skill, to test proper context switching. Our method is modular in terms of the text and
image encoders and the type of policy used (we use a simple Multi-Layer Perceptron). In addition,
our model is modular regarding specialized skills by simply fine-tuning the context classifier and
calling the relevant policy to execute.

2 RELATED WORK

2.1 VISION-LANGUAGE-ACTION MODELING

Multi-modal data processing has emerged as a new trend of research in the deep learning community.
This is enabled by the versatility of the transformer architecture (Vaswani et al.| [2023)) to process
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tokens from various data sources. The versatility of transformers is highlighted in works such as
ViLT (Kim et al.|[2021)) and Flamingo (Alayrac et al., 2022), where tokens from images and text are
successfully processed by a large transformer model for various downstream applications. Until re-
cently, Vision-Language Models (VLMs) were studied rigorously for various applications. Notably,
works such as VisualBERT, VILBERT, MetalLM (Li et al., 2019; |Lu et al., 2019; [Hao et al., [2022)
and others, as outlined by |Gan et al.| (2022), are enabled by accelerated research in large language
models (LLMs) such as|Devlin et al.; [Brown et al.|(2020); (OpenAl et al.| (2023)); Raffel et al.|(2019)
and vision models like |Dosovitskiy et al.|(2020). VLMs are applied in multiple domains like visual
question answering Zhou et al.| (2019)); [Zellers et al.| (2021)), captioning [Hu et al., optical character
recognition |Li et al.| (2021)), and object detection|Chen et al.| (2021).

More recently, embodied VLMs, also known as Vision-Language-Action (VLA) models, have
gained popularity. These models can perform complex tasks using visual observations conditioned
on text prompts. Works such as those introduced by|Ahn et al.|(2022)); Driess et al.|(2023)); Ha et al.
(2023)); Hu et al.| (2023) augment VLMs by adding support for robotic actions. In parallel, devel-
oping expansive models for precise low-level control is an actively researched field, with significant
contributions by Brohan et al.| (2022} 2023)). These models face challenges related to scalability and
data requirements, as discussed byCollaboration et al.|(2023) and | Kalashnikov et al.[(2021). These
challenges highlight the need for a training framework that balances actionable outputs with scal-
ability. Recent studies, such as those by |[Reed et al.| (2022), Yang et al.| (2023), and [Kumar et al.
(2023)), have focused on models that map robot observations directly to actions, exhibiting impres-
sive zero-shot or few-shot generalization capabilities across various domains and robotic systems.
Notably, Bousmalis et al.| (2023) have made strides in managing different robot embodiments for
goal-conditioned tasks. The RT-X model by |Collaboration et al.| (2023) demonstrates proficiency
in language-conditioned manipulation tasks across multiple robot embodiments, signaling a move
towards more adaptable robotic systems. Very recently introduced by |Ghosh et al., Octo enables
VLAs for multiple action spaces by leveraging the versatility of the transformer architecture. This
modularity allows the adaptation of robotic FMs to different robot types by swapping the encoders
and decoders depending on the embodiment of the robot.

Our work specifically addresses the challenge of converting language and vision inputs into robotic
actions, pushing the boundaries of Transformers in robotic control. This extends beyond text-based
conditioning, as explored in studies by (Gupta et al.| (2022)), Jang et al.[ (2022), and Jiang et al.
(2022), demonstrating the models’ effectiveness across various robotic designs and task specifica-
tions. Distinguishing our research, we have developed a centralized foundational model that com-
bines multi-modality with pre-trained large models for specific sub-skills and tasks and offers flex-
ibility in incorporating new skills or tasks. This model effectively connects to language commands
and maintains robustness through feature modulation, marking a significant advancement in using
Foundation Models in robotics.

2.2 LLM IN ROBOTICS

With recent success LLMs, most notably the GPT family by OpenAl (Brown et al. [2020; OpenAl
et al.,2023), and the open-source Llama 2 model by Meta (Touvron et al.,[2023), researchers aim to
leverage the leap in reasoning capability for robotics applications. Examples include LM-Nav (Shah
et al.), which tackles the problem of robotic navigation from language commands by utilizing CLIP
for image and text interface, GPT-3 for text-based reasoning, and ViNG (Shah et al., 2021)), a model
for visual navigation. Similarly, VLMaps (Huang et al., 2022) utilizes LLMs to translate natural-
language commands to a sequence of navigation goals for a robot. |Liang et al.| (2023)) utilized an
LLM fine-tuned on code data to create policies for robotic manipulation tasks via Python scripts that
call task-based APIs. Song et al.| proposed an LLM-based close-loop planning scheme for mobile
robots for robust execution of multi-step tasks. ProgPrompt (Singh et al.| |2023) tackles in detail
prompting for LLMs for planning and robotic tasks with a programmatic approach.

In combination with VLA models, LLMs are used for visual-based reasoning and planning. VLA
models such as RT-1 (Brohan et al., 2022))), RT-2 (Brohan et al., 2023), and PaLM-E (Driess et al.}
2023) use tokens from pretrained LLMs as a major component in the VLA model and show impres-
sive results. Other works, such as ChatGPT for Robotics (Vemprala et al.| 2023)), use GPT-3 (Brown
et al., [2020) and clever prompting to generate actions for robots in simulated environments. Addi-
tionally, FMs, specifically LLMs, and VLMs, see active research for direct and actionable guidance,
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a topic that |Huang et al. (2023) have explored. Still, modeling real-world physical dynamic sys-
tems remains an open challenge. |Ghosh et al.| use T5-based (Raffel et al., 2019) encoder to process
language instructions.

One major consideration in this design is the ability to update the LLM used in the VLA model with
ease and minimal fine-tuning. All the aforementioned VLA models introduce various techniques
to address this issue. Our method also allows effective swapping of the LLM, which ensures the
longevity of the method in light of drastic LLM improvements in the future. In our method, we
consider this as an important design decision to ensure effective future-proofing.

3 METHODS

We introduce a centralized control model, employing the transformer architecture, that adeptly
switches between specialized control skills from a predefined set, guided by natural language objec-
tives and vision-based inputs.

This centralized controller fulfills two primary functions:

1. Direct the robot to a specified location based on the text prompts

2. Identify and predict the necessary specialized skill, such as grasping or insertion, based on
the textual prompt and the robot’s current state

The first function, which we term the general "moving” skill, doesn’t necessitate a highly precise 6
Degrees of Freedom (6DoF) pose estimation. The specialized tasks mentioned in the second function
demand greater accuracy and involve intricate factors like contact engagement, friction handling,
and refined motor skills. Additionally, they might integrate further sensory data, including force or
torque measurements, for enhanced precision. Distinct from our core model, these specialized skills
are developed independently, utilizing data specifically tailored to their requirements.

In this preliminary version of our work, we assume that these special skills work accurately, given
that the robot meets certain constraints, such as being placed in an initial position that is in the
proximity region of the manipulated object. The goal is be specified using a natural language prompt,
for example, "Carefully grasp the yellow plug and insert it into the appropriate socket.”

As outlined in Fig. 2] our transformer model accepts language instruction tokens that are encoded by
strong language models such as TS5 (Raffel et al.,[2019), BLIP (Li et al., 2022) and CLIP (Radford
et al.,[2021), that are pre-trained, frozen, and specialize in text encoding, and generate text instruction
tokens. In addition, we use pre-trained vision encoders, such as ResNet-50(He et al., 2015) or ViT
(Dosovitskiy et al.,[2020), to generate vision tokens that embed information from the observations.
For a more detailed discussion on the effect of each chosen encoder model, please refer to Section@
We pad the input with learnable “readout tokens”, as described in Octo (Ghosh et al.). In our
implementation, the transformer implements a Markovian policy, wherein the action depends solely
on the current observation and is independent of past observations. In alignment with our dual-
purpose model, we bifurcate the action into two categories: the skill action, denoted as as, which
pertains to the type of skill being executed, and the moving action, denoted as a,,, which relates to
the movement skill. The problem can be formally defined as follows:

as = 7s(s),

A = T (8),

(D

where s is the state vector that encodes information about the current state (image(t)) and the
general text prompt.

As described in Fig. [2] both policies largely share their weights and architecture but differ in their
decoder models. Both policies mentioned are deterministic and based on the Multi-Layer Percep-
tron(MLP) architecture. The policy 7, functions as a high-level controller, predicting the required
skill by classifying predefined skills as follows:

0. Terminate
1. Moving (handled by the centralized controller)
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2. Skill 1 (specialized)
3. Skill 2 (specialized)
4. Skill 3 (specialized)

“Terminate” indicates that the robot has reached its goal per the provided text prompt. When a, =
skill n, the control is handed over to the model specialized in skill n. When a4 predicts the “moving”
skill (denoted as ’17), the low-level controller’s () action is executed. Additional specialized
skills can be integrated by adding another context class and fine-tuning the classification head with
data pertinent to the new skill.

The action space of a,, is defined as a 7-dimensional vector, trained to predict a unit vector in the
direction of the delta ground truth of the desired object or task using MSE loss. It is formulated as:

Ap = [Am,Ay,Az,ARw,ARy,ARZ,g} (2)

In this formulation, Az, Ay, Az represent the translation components, while Ar,, Ar,, Ar, denote
the orientation components represented in axis-angles, and g corresponds to the opening of the
gripper. This 7-dimensional vector is trained in a supervised manner using the Mean Squared Error
(MSE) (Lyse).

We define active domain as the region that enables the successful execution of a specialized skill.
The boundary of this active domain is assumed to be an abstract threshold €. This threshold varies
for different skills and is not solely dependent on distance. For instance, when guiding a grasped
plug to a socket for insertion, the context should revert to the “grasping for insertion” specialized
skill if the plug’s position becomes unfavorable for insertion. A classifier head is trained to estimate
this abstract threshold and facilitate context switching accordingly. This multi-class classifier head
is trained using Categorical Cross Entropy loss (Le).

4 EXPERIMENTAL SETUP

We evaluate the performance of our method using three methods:

1. The quality of the move action - to evaluate the performance of m,,.

2. The accuracy of context switching - to evaluate how accurately the high-level controller
transfers from one skill to another

3. The overall system performance - This preliminary version of our work focuses on evalu-
ating the performance of the full systems only for grasping tasks. It measures the system’s
ability to accurately identify and approach the right plug according to the text prompt, en-
gage our independently trained grasping network, and grasp the plug correctly. We only
present qualitative results for this experiment, and the presentation of this specialized skill
will be included in future works.

The first method evaluates the quality of the moving action. Specifically, we measure whether the
high-level control can bring the gripper within the active domain of the ”grasping for insertion” skill.
The second method evaluates whether the model accurately switches context when it is inside the
active domain to perform “grasping for insertion”. For this particular skill, the constraints can be
summarized by Eq[3]and 4]

I[Az, Ay, Az]|| < 4lem] 3)

I[Arg, Ary, Ar,]|| < 20[deg] 4

To evaluate the robustness of our model, we introduce several perturbations to our experimental
setup:

* Plug Distractions: In addition to the four plugs initially trained on, we introduce two addi-
tional plugs of a different type into the scene to act as distractions.

* Object Distractions: We include large objects not present in the training scenes.
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Figure 2: The centralized controller architecture: In each time step, Language tokens, Observation
tokens, and the Readout token are concatenated together, where a mask is applied to ensure that the
readout token attends all other tokens but is unattended by them. The MLP classifier then determines
the appropriate skill to execute, and if the moving skill is selected, a small step is taken in accordance
with the MLP Regressor’s output.

* Missing Plug: We remove one of the four plugs to examine if its absence influences the
success rate for the remaining plugs.

* Unseen Background: We modify the background to an unseen variant.

Example scenarios for each perturbation can be seen in Fig.[3]

5 RESULTS

5.1 QUANTITATIVE RESULTS

Table[T] shows how many times the moving policy 7, successfully brings the gripper into the active
domain (as described in Section [ for the skill. We observe that the model performs well on the
plugs within the model’s training set.

Perturbation Success Rate
Baseline (No Perturbation) | 33/40(82.5%)
Plug Distractions 9/19(47%)
Object Distractions 20/23(87%)
Missing Plug 26/36(72%)
Unseen Background 12/17(70.6%)

Table 1: Success Rates of Central Controller Under Various Environment Perturbations

The context switching is modeled as a multi-class classification problem (Section[3). The Fig.[cJand
Fig. 4d| show the accuracy of this multi-class classification. We see that the final context switching
accuracy is ~ 95% in validation.
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(a) Baseline scene (b) Plug Distractions (c) Object Distractions

$;/ A g

(d) Missing Plug (e) Unseen Background

Figure 3: Examples of perturbations introduced in the experimental setup to evaluate the robustness
of our model. Each sub-figure illustrates a different type of perturbation.
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Figure 4: Convergence Graphs and Context Switching Accuracy

5.2 QUALITATIVE RESULTS

In the additional materials, we upload videos of the prediction results of the trained model. We
present demo videos of reaching and the “grasping for insertion” skill. All videos can be found
in the project website: https://sites.google.com/view/roboticfm. The detailed de-
scription of the “grasping for insertion” skill is outside the scope of this work and will be presented
in future methods.
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6 ABLATION STUDY

The major contribution of our work is a unified transformer model that fuses language and image
data to generate control signals for robotic operation. We performed experiments to choose the most
effective transformer architecture. Recently as a part of the Segment Anything Model (SAM) Kir-
illov et al.| (2023)), the authors introduced a new attention mechanism termed as ”two-way attention”,
in their mask decoder. This attention mechanism differs from regular cross-attention mechanisms in
that it updates the context and inputs in each layer. We refer curious readers to this paper for more
information about this technique. Motivated by their success in performing complex segmentation
tasks, we also test a transformer network that uses a stack of two-way attention blocks described in
SAM, along with the standard transformer-decoder network that uses a stack of self-attention blocks
(Vaswani et al.| (2023)).

While using the two-way attention layers, we input the image embeddings as the ”dense tokens” and
the readout and language tokens as “sparse tokens”. The presence of two cross-attention layers in
each such layer drastically increases the memory requirement and processing time. We set the depth
of the transformers such that both mechanisms have a similar number of parameters (~ 20M). We
find that using a two-way transformer of the same size does not generalize well to points outside the
dataset and drastically reduces success rates.

The inherent modularity presented in our model opens up a discussion about the choice of image
and text encoders. Broadly speaking, we test two types of text encoders:

1. Encoders pre-trained on Vision-Language tasks such as CLIP or BLIP text encoders
2. Encoders pre-trained Language generation such as the suite of TS text encoders

Both the T5-small and CLIP text encoders show promising performance. However, CLIP outper-
forms the T5-small model due to its experience with pairing images to text. The results presented in[I]
are for the model that uses CLIP. The size of the text encoder affects the stage in the pipeline where
the data fusion begins. In other words, if the text encoder is very deep, then the image-language fu-
sion begins much later on in the pipeline. This effect becomes prominent when swapping the CLIP
text encoder for the BLIP one, which is much deeper. Specifically, the model’s performance drops
when we use the BLIP text encoder. All the text encoder tests were done while keeping the same
image encoder (ResNet-18 pre-trained on ImageNet).

To determine the best image encoder, we fix the CLIP text encoder. We try using ResNet-50 pre-
trained on ImageNet and ResNet-50 pre-trained as a part of CLIP. Unsurprisingly, the latter image
encoder shows better performance, generalization, and robustness. Table [T] presents results using
this type of image encoder.

7 CONCLUSIONS AND FUTURE WORK

This work presents a Robotics Foundation Model that uses text-based task specification and image-
based observations to generate control actions for robotic assembly tasks. The highlighting features
of our model include modularity, ease of use, and the ability to add any finite number of specialized
skills, such as insertion, to the skill library that the centralized model can control. We present a
comprehensive architecture, training protocol, and qualitative & quantitative results of the described
method.

We wish to emphasize that this project is still in the research phase. In future works, we aim to
introduce a bigger database of compatible skills and support for task specification using goal images.
Success rate improvement is also an active research topic, and implementing a full pipeline for more
complex task specifications to deal with collisions and occlusions is also under exploration. We also
plan to add datasets from various robotic setups and assembly lines to improve the generalization
ability for additional assembly tasks.
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