Under review as a conference paper at ICLR 2026

U2-BENCH: BENCHMARKING LARGE VISION-LANGUAGE
MODELS ON ULTRASOUND UNDERSTANDING

Anonymous authors
Paper under double-blind review

ABSTRACT

Ultrasound is a widely-used imaging modality critical to global healthcare, yet its interpreta-
tion remains challenging due to variability in image quality caused by operator dependency,
noise, and anatomical complexity. Although large vision-language models (LVLMs) have
demonstrated impressive multimodal capabilities across natural and medical domains, their
performance on ultrasound remains largely unexplored. We introduce U2-BENCH, the
first comprehensive benchmark to evaluate LVLMs on ultrasound understanding across
classification, detection, regression, and text generation tasks. U2-BENCH aggregates
7,241 cases spanning 15 anatomical regions and defines 8 clinically inspired tasks, such
as diagnosis, view recognition, lesion localization, clinical value estimation, and report
generation, across 50 ultrasound application scenarios. We evaluate 23 state-of-the-art
LVLMs, both open- and closed-source, general-purpose and medical-specific. Our results
reveal strong performance on image-level classification, but persistent challenges in spatial
reasoning and clinical language generation. U2-BENCH establishes a rigorous and unified
testbed to assess and accelerate LVLM research in the uniquely multimodal domain of
medical ultrasound imaging.

1 INTRODUCTION

Ultrasound (US) is one of the most widely used imaging modalities in global healthcare — essential in
obstetrics, emergency medicine, cardiology, and low-resource settings — while its interpretation remains
notoriously difficult (Hewson & Bedforth, 2023). Compared to modalities such as computed tomography (CT),
magnetic resonance imaging (MRI), positron emission tomography (PET), and whole-slide imaging (WSI),
which offer higher spatial resolution, consistent image quality, and standardized anatomical views, ultrasound
is real-time and low-cost but highly operator-dependent and frequently affected by imaging artifacts (Sharma
et al., [2021)). In addition, in contrast to these modalities, US is dynamically presenting three-dimensional
(3D) anatomies in image sequences. Therefore, accurate interpretation of US demands not only visual pattern
recognition in the images, but also an understanding of anatomy and capturing of dynamic spatial-context
reasoning, typically requiring extensive prior domain expertise (Wang et al.,2022). These challenges have
limited the applicability of earlier artificial intelligence (AI) models. However, recent advances in medical
large vision-language models (LVLMs) have shown promise in overcoming these barriers (Chen et al., [2024b;
Xia et al., 2024; [Huang et al., 2025)), potentially offering a robust multimodal understanding of complex,
noisy, and context-rich ultrasound data.

While progress in medical LVLM has been rapid, most previous models and benchmarks focus on those less
noisy and static imaging modalities (Ji et al.,|2022; Huang et al.,[2023;|Sivasubramaniam et al.,|2024), leaving
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Question: ... identify the primary location of any
visible lesion(s)...Consider the lesion’s center location
or most prominent area...
Option: upper left, upper right, lower left...
| Output: center

Breast
Question: .. generate a concise and informative
radiological report based strictly on the visual
findings...

‘ Thyroid

Format: strings, which is the report.
Output: reveals subcutaneous echogenicity
consistent with... Heart
Question: ...determine the endocardial point of the
right ventricle. Consider the structure's center or
most prominent area when deciding its location...
Option: upper left, upper center, not visible...
Output: upper center

Liver
Question: ...Consider key features such as:
parenchymal echogenicity ..., estimate the
corresponding fat value....
Format: an integer between 0 and 85
Output: 30
Fetus.

Question: ... generate a concise and informative.
caption that accurately describes the key anatomical
structures and any significant findings visible in the
provided ultrasound image...

Format: a single string constituting the image
caption.

Output: Fetal phantom ultrasound image showing...

Cervix
Question: .. assess whether the abnormality present
in this Ul d image includ i
evidence consistent with a polycystic ovary....
Options: Not-visible, Visible
Output: Visible

skin
Question: ... examine the provided skin ultrasound
image, evaluate the identified
lesion or abnormality based on key sonographic
characteristics...
Option: benign, malignant
Output: benign

Musculoskeletal System
Question: ... determine the primary location, relative
to the image boundaries, for each visible
structure listed in aponeurosis...
Option: upper left, upper center, not visible...
Output: upper center
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Figure 1: Examples of the 8 benchmark tasks in U2-BENCH across diverse anatomical regions. Each
callout, consisting of the question prompt, expected output format, and sample output, highlights a representa-
tive ultrasound application scenario of the corresponding task. Tasks involve disease diagnosis (DD), view
recognition and assessment (VRA), lesion localization (LL), organ detection (OD), keypoint detection (KD),
clinical value estimation (CVE), report generation (RG) and caption generation (CG).

the complexities of ultrasound largely unaddressed. Prior efforts in ultrasound Al are typically based on small,
task-specific datasets (Xiao et al.,[2023)), such as fetal plane identification or pathology
segmentation (Indelman et al., [2024; [Ravishankar et al.}[2023). As model capabilities grow, a public, balanced
benchmark for ultrasound understanding is needed to evaluate whether emerging LVLMs can generalize
beyond static medical vision tasks, to those requiring spatial reasoning and contextual understanding of
anatomical structures.

To address these challenges, we introduce U2-BENCH, the first benchmark holistically evaluating current
LVLM:s for ultrasound understanding across diverse tasks and anatomies. The dataset we use comprises 7,241
cases across 15 anatomical regions, involving breast, heart, lung, etc, covering 8 diverse clinical tasks and
50 application scenarios. Each task belongs to one of the four categories: (1) classification (i.e., disease
diagnosis, view recognition and assessment), (2) detection (i.e., lesion localization, organ detection, keypoint
detection), (3) regression (i.e., clinical value estimation), (4) text generation (i.e., report generation, caption
generation). Samples are selected to ensure balance across data sources, anatomies, and task types, to enable
robust evaluation and alleviate dataset-specific bias. Several examples in our U2-BENCH are shown in Fig. [I]

We benchmark 20 LVLMs, including both open- and closed-source, general-purpose and medical-specialized
models, on a diverse set of US tasks. U2-BENCH makes the following key contributions:

¢ Comprehensive Dataset: We release the first publicly available benchmark comprising 7,241
ultrasound cases spanning 15 anatomies and 8 clinical tasks, covering 50 application scenarios. Each
case is annotated with task-aligned labels in a unified format and paired with carefully designed
prompts, enabling standardized and reproducible evaluation.
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* Task Suite and Evaluation: We define an eight-task taxonomy spanning disease diagnosis, view
recognition and assessment, lesion localization, organ detection, keypoint detection, clinical value
estimation, report generation, and caption generation. Each task reflects real-world clinical work-
flows and is paired with standard evaluation metrics. We also introduce an aggregate metric to
provide a unified assessment of each model’s overall capability in ultrasound understanding.

* Empirical Insights: We conduct the first large-scale evaluation of LVLMs on ultrasound, uncovering
consistent trends across model families: models achieve strong performance on image-level disease
diagnosis and clinical value estimation tasks, but degrade on spatial reasoning tasks such as view
recognition and organ detection. Clinical report generation tasks remain particularly challenging.
Performance gains from model scaling can be limited, and compact models occasionally outperform
larger ones on certain tasks, suggesting that targeted training may be more impactful than scale alone
in ultrasound understanding.

2 RELATED WORK

Large Vision-Language Models. LVLMs such as GPT-4V (OpenAl, [2023)), Claude (Anthropic, [2024),
Gemini (Anil et al., 2023), DeepSeek-VL (DeepSeek-Al et al., [2024), LLaVA (Liu et al., 2023a)), Qwen-
VL (Bai et al.}[2023b), and MiniGPT4 (Zhu et al., 2023) have emerged as general-purpose multimodal systems
capable of handling tasks like image captioning, visual question answering, and multimodal reasoning. These
models are trained on large-scale image-text pairs (Sharma et al., 2018} Schuhmann et al., [2022), and their
performance has been extensively evaluated in domains such as question answering, mathematics, and
science (Chen et al.,[2021;|Sun et al.| |2023; [Wang et al.,|2023;|Huang et al., 2022} |Liu et al., 2023b). However,
their clinical reliability remains underexplored.

To address this gap, several medical-specialized LVLMs have been proposed. MiniGPT-Med (Wu et al.|
2023b)) focuses on X-ray, CT, and MRI for tasks such as medical report generation, VQA, and disease
identification. RadFM (Wu et al.|[2023a) further supports both 2D and 3D modalities. MedDr (He et al., 2024))
extends to radiology, pathology, dermatology, retinography, and endoscopy, introducing a retrieval-augmented
diagnosis strategy. Lingshu (Xu et al., [2025) is a recent medical LVLM that covers multiple imaging
modalities. Yet, these models exclude ultrasound. Med-Gemini (Team, [2024) and MedGemma (Sellergren:
et al.,[2025) span numerous modalities including ultrasound, though their capability in this domain is limited
to caption generation.

Multimodal Benchmarks for Large Vision-Language Models. Several benchmarks assess general-
domain LVLMs. MMBench (Liu et al., [2023c), MMT-Bench (Ying et al., 2024}, and SEED-Bench (Li
et al., [2023a)) evaluate general-domain LVLMs through bilingual multiple-choice questions, large-scale visual
reasoning tasks, and generative comprehension across image and video VQA, respectively. However, these
benchmarks emphasize general-purpose visual understanding and omit clinically grounded evaluation.

Early medical VQA datasets like VQA-RAD (Lau et al.,[2018)), VQA-Med (Ben Abacha et al.,[2019), and
PathVQA (He et al.l 2020) offer radiology or pathology image—question pairs but are not designed for
evaluating LVLMs. GMAI-MMBench (Chen et al., 2024a) introduces a large-scale VQA-style benchmark
for medical LVLMs, yet it contains only about 1.4k ultrasound cases primarily focused on classification
and segmentation on 6 anatomies, and does not evaluate broader model capabilities such as clinical value
estimation or structured report generation. In contrast, our U2-BENCH focuses exclusively on ultrasound
and includes a diverse set of clinically meaningful tasks and anatomical regions. We have also included a
comparison with existing ultrasound foundational datasets in Appendix [A]
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Figure 2: Distribution of benchmark tasks across 15 anatomical regions in U2-BENCH. The colored
boxes next to each anatomy name indicate the benchmark tasks available for that anatomy, with each color
corresponding to one of the eight core tasks (legend shown on the right). The blue bar represents the total
number of samples for each anatomy region, with its length proportional to the sample count. Multiple
tasks may share samples from the same anatomical region, depending on annotation availability and clinical
relevance.

3 U2-BENCH

Overview. U2-BENCH is designed to holistically assess the capabilities of LVLM in ultrasound tasks.
Section [3.1]introduces the eight clinically inspired tasks involved in our evaluation, which reflect essential
diagnostic and reasoning abilities in ultrasound understanding. Section[3.2]details our benchmark construction
pipeline, including dataset curation, preprocessing, and task-specific prompting. Section [3.3] summarizes the
statistical property of the resulting dataset, which comprises 7,241 cases across 15 anatomies.

3.1 TASK DEFINITIONS

U2-BENCH focuses on four core capabilities: classification, detection, regression, and text generation, to
systematically evaluate the performance of LVLMs on ultrasound-related tasks. We define eight tasks based
on common ultrasound use cases, designed to probe a range of multimodal abilities, including anatomy
recognition and clinical reporting. The task set was informed by typical sonography workflows and refined
with input from domain experts to ensure practical relevance. Together, these tasks provide a structured
benchmark for assessing LVLM performance across diverse ultrasound application scenarios. The eight tasks
are as follows:

Disease Diagnosis (DD). This task requires the model to identify the presence and severity of a disease
condition, such as grading in the Breast Imaging Reporting and Data System, based on the appearance of
the ultrasound image. The task evaluates the ability of LVLMs to extract high-level semantic features and
generate clinically aligned diagnostic predictions.

View Recognition and Assessment (VRA). In clinical practice, accurate diagnosis relies on the clear
presentation of anatomical structures from specific angles, referred to as ultrasound standard planes. This task
evaluates the ability of a model to assess image quality and classify scans into standard planes corresponding
to different anatomical structures, such as the fetal head or abdominal long axis.

Lesion Localization (LL). Given a diagnostic image, the LVLM is asked to identify the location of a lesion,
such as a suspicious breast mass, by selecting from nine predefined spatial categories such as upper left,
center, or lower right. This task evaluates the spatial reasoning, saliency alignment, and ability to detect subtle
structural abnormalities of LVLMs.
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Organ Detection (OD). This task involves identifying the presence and boundaries of target organs in
the ultrasound field of view, such as liver, kidney, or nerve. It assesses coarse-grained visual recognition
under challenges unique to ultrasound, such as acoustic shadowing, inter-patient variability, and orientation
ambiguity from manual probe handling.

Keypoint Detection (KD). In measurement tasks such as fetal biometry and adult echocardiography, precise
localization of anatomical landmarks is critical for deriving clinically meaningful measurements. This task
evaluates the fine-grained spatial understanding and geometric reasoning ability of the model, which are
essential for tasks like skeletal length and chamber size estimation.

Clinical Value Estimation (CVE). This task involves predicting continuous clinical parameters derived from
ultrasound images, such as lesion size, left ventricular ejection fraction, or liver fat percentage. It covers both
anatomical and functional indicators relevant to diagnosis, treatment planning, and longitudinal monitoring,
and evaluates whether the model can perform image-to-value regression by mapping visual inputs to clinically
meaningful quantitative outputs.

Report Generation (RG). The model is prompted to generate a structured clinical report based on visual
input, following the format of example reports provided in the prompt. This task evaluates the ability of
LVLM to perform medical language generation and produce outputs that align with standard ultrasound
reporting practices.

Caption Generation (CG). The model is asked to generate a concise anatomical description of a diagnostic
image, guided by example captions provided in the prompt. This task evaluates basic visual-language
alignment and the ability to verbalize structural features in a clinically appropriate manner of LVLM.

3.2 DATA CURATION AND PROCESSING

In this section, following the approach of previous benchmark constructions |(Chen et al.| (2024c)); Xu et al.
(2023); Zhong et al.| (2023), we outline the three key steps used to build U2-BENCH: (1) data collection and
sampling (2) data cleaning, format unification and quality verification, and (3) task-specific prompt design.
Figure 3] summarizes the data processing pipeline.

Data Selection and Sampling. We construct U2-BENCH by sampling 7,241 ultrasound studies from 40
licensed datasets. These datasets were selected to represent a wide range of diagnostic tasks, anatomical
regions, and clinical contexts. While the original datasets were independently curated and clinically annotated,
we performed standardization, sampling, and quality checks to ensure consistency across tasks and enable
reliable, reproducible benchmarking. Some datasets contribute to multiple benchmark tasks based on their
available annotations and clinical relevance.

To reflect real-world clinical data distributions and prevent data leakage, we adopt a task-specific, patient-level
sampling strategy. Sampling is performed at the subject level rather than the image level to preserve intra-
patient consistency. Importantly, during the sampling stage, datasets corresponding to clinically high-priority
but data-sparse tasks were intentionally oversampled based on guidance from collaborating clinicians. To
ensure anatomical coverage, we include data from 15 anatomical regions: fetus, thyroid, breast, heart, liver,
cervix, carotid artery, musculoskeletal system, kidney, prostate, skin, lung, pancreas, brachial plexus, and
colon.

Data Cleaning, Format Unification, and Quality Verification. All data in U2-BENCH are standardized
into a unified format to support consistent parsing and evaluation across the dataset. Ultrasound scans are
converted to a uniform image format. For video sequences, a small number of representative frames are
sampled per study to control evaluation cost while retaining key diagnostic content. Task-relevant metadata,
including anatomy labels, measurements, and reports, is preserved in a structured schema. Segmentation
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Figure 3: Overview of the U2-BENCH construction pipeline. The benchmark is built through three stages:
(1) data gathering from 40 licensed ultrasound datasets spanning 15 anatomical regions, (2) task definition
across 8 clinically inspired tasks grouped into four core capabilities: classification, detection, regression,
and text generation, (3) data preprocessing, including annotation standardization, metadata unification,
image/frame selection, and quality verification. This unified pipeline ensures benchmark consistency and
clinical relevance across diverse ultrasound scenarios.

masks are converted to bounding boxes. Texts are translated into English using a medically guided translation
pipeline, with ambiguous terms resolved via a curated glossary and final verification by clinicians.

To ensure the reliability of U2-BENCH, we adopt both automated and manual quality assurance procedures
during data preparation.

(1) Automated Filtering. During data preprocessing, we systematically check for missing labels, inconsistent
or invalid annotations, and corrupted or unreadable files. Samples that fail these checks are discarded.

(2) Manual Verification. A team of 10 annotators manually reviewed all cases using a cross-validation
protocol, where each data point was independently assessed by at least three annotators. Specifically, an
engineer first check the validity of the metadata in the json file, then a biomedical expert independently
checked for label-image consistency, measurement units and standardized anatomical terminology. A
clinician then performed a final review of the diagnostic consistency on all processed cases while writing the
task-specific prompts.

Task-Specific Prompt Designing. To ensure consistent model behavior and fair comparability across tasks,
we design structured prompts for each of the 50 application scenarios, consisting of three components: (1)
a clinical role definition to set context and expertise, (2) a task-specific instruction aligned with standard
sonography workflow, and (3) an output format specification, such as classification options, value ranges, or
reference output examples. Detailed prompts are included in Appendix [D] An ablation study on the impact of
prompt design is presented in Section[5.2}
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3.3  STATISTICS

U2-BENCH comprises 7,241 ultrasound studies spanning 8 benchmark tasks and 15 anatomical regions.
Table [5)in Appendix [C]details the number of cases per task. Classification and detection constitute the largest
shares, with 2,999 and 2,921 cases, respectively, while generation and regression tasks provide targeted
evaluation of report synthesis and clinical value estimation.

Figure [2] summarizes the distribution across anatomical regions. Thyroid and breast ultrasound together
account for more than one-third of all cases. This is because of their high clinical prevalence and broad
diagnostic utility. Many anatomies support multiple tasks - for instance, fetal ultrasound is used for classifica-
tion and regression - enabling multi-task evaluation within a unified anatomical context. This composition
ensures broad coverage across modalities, tasks, and body regions, supporting robust and clinically grounded
assessment of LVLM performance.

4 EXPERIMENT

4.1 EVALUATION SETTINGS

We evaluated U2-BENCH on 20 LVLMs, both open-source and closed-source. A detailed list of the exact
model versions evaluated and additional experimental details are provided in Appendix C, with the full
implementation and hyperparameter configurations available in our public code repository. Detailed prompts
are given in Appendix

4.2 EVALUATION PROTOCOL

We employed standard metrics aligned with clinical relevance and prior LVLM benchmarks. Classification
tasks were evaluated with accuracy and F1 score. For detection-related tasks, we initially evaluated models
using the ground-truth bounding box or coordinate outputs. However, many LVLMs failed to reliably generate
valid coordinates or follow bounding-box formatting instructions. To enable stable and comparable evaluation
across models, we therefore simplified the detection tasks into a 9-class position-classification formulation,
where each region corresponds to a coarse spatial sector of the image. Under this formulation, detection tasks
utilized accuracy as the metric to assess localization correctness. Regression tasks report Root Mean Squared
Error (RMSE), Mean Absolute Error (MAE), and percentage within tolerance (%-_tol). Generation tasks were
assessed with BLEU-4 as percentage, ROUGE, and BERTScore (Zhang* et al.,[2020) to capture both lexical
and semantic similarity. All metrics were computed using ground-truth labels from the original dataset and
standardized outputs with the format specified by the prompts across models to ensure fair comparison.

U2-Score. We design a quantitative score to provide an overall evaluation metric for the ultrasound
understanding capability of a model. The U2-SCORE is defined as a weighted combination of the metrics
across all tasks, which is mathematically equivalent to computing a case-level average, consistent with prior
work (Chen et al.,[2024a). This can be formulated as:

N
U2-Score := Zwtdt, where w; = L, andd; <1 (D)
t=1 Zj U

where N represents the number of tasks, w; is the corresponding task weight, which is computed from the
proportion of the sample number n; of the ¢-th task. This can mitigate the imbalance issue of sample size in
different tasks. Here, d; denotes the value of the selected metric of the ¢-th task. More details are included in

Appendix[C]
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4.3 EVALUATION RESULTS

We present a comprehensive comparison of multimodal models on the U2-BENCH benchmark (Table[T),
aiming to identify key performance trends across tasks and model types. A more detailed example cases and
error analysis is included in Appendix [C]

Closed-Source Models Lead. Closed-source models continue to dominate, with Dolphin-V1 achieving the
highest overall score of 0.5835, substantially outperforming all other models. The next strongest proprietary
model, GPT-5, reaches a U2-Score of 0.3250, followed by Gemini-2.5-Pro-Preview at 0.2968. While the
best open-source model, DeepSeek-VL2, attains a competitive score of 0.2630, the gap to closed-source
systems remains significant. These results highlight that despite rapid advances in open-source approaches,
closed-source models still benefit from access to larger proprietary datasets and tailored optimization, giving
them a clear performance edge.

Task Difficulty Varies Significantly. Image classification tasks remain the most tractable, with Dolphin-V1
achieving the highest accuracy of 0.682 on DD, and several other models exceeding 0.48. In contrast, spatial
reasoning and text generation remain difficult: no model surpasses 0.160 accuracy on KD, and all models fall
below 7.5 BLEU on RG. Regression tasks are also challenging; only the closed-source Qwen-Max reduces
RMSE to 0.1248, while all open-source models remain above 0.1675.

Scaling Brings Diminishing Returns. Within the Qwen-2.5-VL family, scaling from 3B to 72B parameters
yields consistent performance gains. While larger models achieve lower CVE RMSE, improvements in
language generation and spatial reasoning tasks plateau, suggesting that excessive scaling may lead to
overfitting on superficial visual patterns, ultimately harming clinical text generation capabilities.

Domain-Specific Models Excel in Reasoning. Medical-domain models such as MedDr show competitive
performance on reasoning tasks (e.g., CVE RMSE = 0.214; CG BERT = 81.21), outperforming many general-
purpose systems in structured clinical evaluation. Similarly, MedGemma-4B-it achieves the second-best CVE
performance (RMSE = 0.167), highlighting the advantage of domain adaptation for quantitative reasoning.
However, these models still lag behind larger general multimodal models on visual classification. For example,
Qwen-72B achieves a DD F1 of 0.456, compared to MedDr’s 0.312. This suggests that domain-specialized
models are particularly effective for semantic and reasoning-heavy tasks, while general-purpose models retain
an edge in coarse-grained visual recognition.

4.4 LIMITATIONS AND FUTURE OUTLOOK FOR ULTRASOUND LVLMSs

While existing LVLMs demonstrate impressive general multimodal capabilities, our results reveal fundamental
limitations in ultrasound-specific perception and clinical reasoning.

Weak Perception of Ultrasound Structures. Models struggle with recognizing relative spatial relationships
between anatomical structures, as reflected by their poor performance on detection tasks, and often fail to
capture subtle echogenicity patterns that are essential for clinical diagnosis. This likely stems from the lack of
large-scale ultrasound-specific image—caption pretraining data and the inherently noisy, heterogeneous nature
of ultrasound imaging. Improving perception would require curated ultrasound datasets, ultrasound-aware
pretraining objectives, and architectures or adapters with explicit spatial-reasoning capabilities.

Clinical Ultrasound Tasks Are Far More Complex Than Generic Vision-Language Tasks. Ultrasound
spans more than 15 clinical subspecialties, each with distinct anatomical structures, scanning planes, and
diagnostic criteria. For example, fetal biometry requires standardized abdominal circumference (AC) or head
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Table 1: Results of different models on the U2-BENCH. We utilize green (1st), blue (2nd), and yellow
(3rd) backgrounds to distinguish the top three results within different models. The “U2-Score” column
represents the quantitative score defined in Section[d.2] To calculate the U2-SCORE for random guessing, the
BLEU scores are taken to be zero.

Models DD VRA LL oD KD CVE RG cG U2-Score +
] Acc.T  F1T | Ace.?  FIT | Ace.! | Ace.T | Ace.T | RMSE] MAE| %_tol{ | BLEU% | Rouge%s] BERT%1 | BLEU% | Rouge’%s| BERT% 1
Random Guessing 04143 04135 | 03195 03184 | 0.1118 | 0.0680 | 0.1120 | 05472 04352 18.776
Medical-Specific Models
MiniGPT-Med 03468 02828 | 0.1800  0.1048 | 0.1728 | 0.1789 | 0.0840 | 03056 02600 332259 | 64700  20.1300  74.6900 | 302000 477500  80.5000 02375
MedDr 04508 03118 | 02071 01214 | 00720 | 0.0881 | 0.0000 | 02144  0.1786 382642 | 27998 13.5060 722050 | 334939  49.6236  81.2078 02373
MedGemma-4B-it 05005 04336 | 03071 01520 | 02750 | 0.0858 | 0.0200 | 0.1667 0.1316 550962 | 1.5360 150348 740205 | 48777 359803  76.7859 0.2668
Lingshu-7B 04589 02755 | 02625 01490 | 0.1265 | 02005 | 0.1140 | 02581  0.1908 27.8302 | 1.9974 157764 67.8138 | 4.0058 123106 62.0800 0.2704
Open-Source Multimodal Models
Qwen-2.5-VL-3B-Instruct | 0.4503 03591 | 02097  0.1492 | 0.0696 | 0.0649 | 0.0894 | 0.5008 04519 189055 | 3.5018 150327 728419 | 27.6748 447618  79.8849 0.2095
Qwen-2.5-VL-7B-Instruct | 0.4821  0.3860 | 02181  0.1665 | 0.0750 | 0.0704 | 0.1000 | 04646 04337 197115 | 3.7100 155600 731500 | 29.4400  47.0000  81.1500 02235
Qwen-2.5-VL-32B-Instruct | 0.4812  0.3860 | 02864 02071 | 0.1700 | 0.0755 | 0.0880 | 03414 03015  27.4038 | 1.1900 13.0100  68.1400 | 147700  38.6800 773900 02449
Qwen-2.5-VL-72B-Instruct | 0.4895 04556 | 02559  0.1789 | 0.1150 | 0.0660 | 0.0860 | 03224 02733  37.9370 | 3.0900 150600 72.6600 | 28.1600  44.2800  80.9100 0.2421
DeepSeck-VL2 04126 03190 | 02268  0.1111 | 02950 | 0.1682 | 0.1320 | 02956 02505 123355 | 7.4700 205400 753800 | 11.4200 348500  77.2400 0.2630
InternVL3-9B-Instruct 04447 03716 | 0.1926  0.1083 | 03000 | 0.1416 | 0.0940 | 02429  0.1733  50.8738 | 2.1600 147000 722100 | 215900  43.1300  80.9800 0.2566
LLaVA-1.5-13B 04321 03055 | 0.1731 00755 | 0.1700 | 0.1259 | 0.1100 | 02307  0.1976  24.7964 | 6.2400 18.5800 737900 | 108300  29.4000 755000 02378
Phi-4-Multimodal-Instruct | 0.3686  0.1148 | 02452 00537 | 0.0350 | 0.0815 | 0.1600 | 02249 02006 16.1972 | 3.2700 165800 732700 | 3.8700 229800  73.0800 02168
Mistral-Small-3.1-24B-Inst. | 0.4359 00936 | 0.1964 00664 | 0.1300 | 0.0910 | 0.1060 | 0.1675  0.1331 459459 | 1.8000 149000 717200 | 207700 421200  80.7400 0.2356
Closed-Source Multimodal Models

Doubao-1.5-Vision-Pro-32k | 0.5580 02597 | 02922 02147 | 0.1700 | 0.0729 | 0.1240 | 03664 03377  33.1731 | 0.7100 6.6450 724000 | 8.6400 333000  78.4200 0.2587
GPT-4o-Mini 04924 03784 | 01922  0.1272 | 0.1357 | 0.0846 | 0.0960 | 02267  0.1976 192308 | 4.9400 17.5200 741300 | 117300 362900  77.5300 0.2388
GPT-4o 04928 04132 | 0.1504  0.0974 | 0.1161 | 0.0850 | 0.0840 | 03712 03527 157895 | 2.6800 147700 733500 | 337700 499600 815800 0.2253
GPT5 05366 04500 | 04573 03550 | 02662 | 0.1767 | 0.1080 | 03097  0.1878 361867 | 1.0641 87440 668302 | 79669 233116 722203 03250
Gemini-1.5-Pro 03781 02247 | 0.0909  0.0476 | 02700 | 0.0661 | 0.0980 | 02772 02205 407051 | 0.5800 9.9400  70.5500 | 285800 459200  80.0200 0.1999
Gemini-2.0-Pro-Exp 04925 04194 | 0.1648 01323 | 0.1714 | 0.0945 | 0.0820 | 0.1945  0.1498 533333 | 0.2600 69200 402400 | 311800 486000  81.6000 0.2438
Gemini-2.5-Pro-Preview 04256 03112 | 02098 01493 | 02709 | 02714 | 02518 | 02937 02672 344970 | 5.5030 180180 744930 | 150110 380070  75.9890 0.2968
Claude-3.7-Sonnet 02121 00449 | 0.1453  0.0479 | 0.1356 | 0.0540 | 0.0760 | 0.1764  0.1500 360215 | 0.6900 122300 68.7400 1.2900 166600 71.6600 0.1596
Qwen-Max 04566 02676 | 0.1925 00871 | 0.1606 | 0.0761 | 0.0940 | 0.1248  0.0843  69.2308 | 3.5000 170200 739600 | 306700  49.0000 825500 0.2445
Dolphin-V1 06819 05155 | 0.6943 05821 | 04775 | 0.6003 | 05080 | 02430 02273 386458 | 3.2193 151170 727287 | 540634 760111 929601 0.5835

DD = Disease Diagnosis; VRA = View Recognition and Assessment; LL = Lesion Localization; OD = Organ Detection;
KD = Keypoint Detection; CVE = Clinical Value Estimation; RG = Report Generation; CG = Caption Generation.

circumference (HC) views, while cardiac ultrasound relies on parasternal long-axis or apical four-chamber
views. A clinically useful LVLM must therefore understand specialty-specific anatomy, follow established
scanning protocols, and reason according to diagnostic workflows.

5 ANALYSIS

5.1 INSTRUCTION FOLLOWING ANALYSIS

Table [2] shows that contemporary models are already highly adept at parsing prompts and adhering to output
specifications: six of the seventeen systems achieve a perfect score on the DD benchmark. The remaining
models lag only slightly behind. The medical-oriented MiniGPT-Med (Alkhaldi et al.;,[2024) and MedDr (He
et al.| [2024) deliver middling results, while Qwen-3B and Qwen-72B (Bai et al.,[2023b) close the gap rapidly
as their parameter counts increase. Claude-3.7 (Anthropic} [2025)) score of 0.942 is largely attributable to
occasional formatting omissions. For every non-perfect model, the deviation from the maximum is under
six percentage points, and no systematic failures are observed. We also note that some models occasionally
refuse to answer due to internal safety constraints, producing responses such as “insufficient information” or
“I cannot provide medical advice”, rather than simply failing to follow instructions.

Table 2: Instruction following comparison across different models.

Task Models
MiniGPT-Med MedDr Qwen-3B  Qwen-7B  Qwen-32B  Qwen-72B  Dolphin-V1 DeepSeek InternVL LLaVA Phi-4 Mistral Doubao-1.5 GPT-40 Gem-2.0 Gem-2.5 Claude-3.7
DD 0.952 0.961 0.968 0.983 0.996 1.000 1.000 1.000 0.993 0987 0998  0.999 1.000 1.000 0.997 1.000 0.942
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5.2 PROMPT WITH OR WITHOUT ANATOMY

We investigate whether explicitly naming the anatomical region in the prompt significantly changes the
diagnostic accuracy of LVLMs in ultrasound. To this end, we treat the two prompt variants as paired
conditions applied to the same set of inputs and evaluate the statistical significance of their differences using
McNemar’s test.

Specifically, for each image x;, we generate two prompts:

With anatomy: “You are a radiologist analysing a {anatomy} ultrasound image, please analyze...”
No anatomy: “You are a radiologist analysing an ultrasound image, please analyze...”

Each prompt-image pair is forward-passed through the model five times, with the final prediction determined
by majority vote. This produces paired outcomes (y, y¥ithout) for each image. Experiment was conduced
on 521 breast and thyroid studies from our dataset, the following paired contingency table presents the result

for model Gemini-2.0-Pro-Exp:

Table 3: Effect of anatomy tokens in prompt design. Paired outcomes of 521 samples comparing prompts
with and without anatomy tokens. Each entry shows the number of samples in that outcome combination.

No-anatomy prompt

With-anatomy prompt Correct Incorrect
Correct 209 (both correct) 64 (only anatomy correct)
Incorrect 26 (only no-anatomy correct) 222 (both incorrect)

McNemar’s exact test yields a test statistic x2 = 16.04 with p = 6.2 x 1075, providing strong evidence that
the two conditions differ. Specifically, prompts with anatomy tokens achieve an accuracy of 52.4% versus
45.1% without, a gain of +7.3 percentage points.

The McNemar test confirms that the inclusion of anatomy information in the prompt significantly improves
diagnostic accuracy, rejecting the null hypothesis of no difference between prompt types.

6 CONCLUSION

Ultrasound is essential to global healthcare but remains difficult to interpret. We present U2-BENCH, the
first benchmark for evaluating LVLMs on ultrasound understanding. It includes 7,241 cases across 15
anatomical regions and defines 8 clinical tasks for 50 application scenarios. Evaluating 20 LVLMs, we
find their strong performance in classification but persistent challenges in spatial reasoning and clinical text
generation, suggesting a future direction for improving LVLMs on ultrasound interpretation.

10



Under review as a conference paper at ICLR 2026

Reproducibility Statement We have taken extensive measures to ensure the reproducibility of our work.
The benchmark dataset (7,241 ultrasound cases across 15 anatomies and 8 tasks) is publicly available on
HuggingFace, and the complete evaluation toolkit is released anonymously at|https://anonymous.4open|
science/r/U2-Bench-F781/VLMEVALKIT/| Detailed descriptions of dataset curation, preprocessing, and
quality verification procedures are provided in Section 3.2 and Appendix C-D, including sampling strategies,
annotation protocols, and prompt templates. The full list of models evaluated, along with task-specific
metrics and the aggregate U2-Score formulation, is given in Section 4.2 and Appendix C. For reproducibility
of theoretical and statistical analyses (e.g., McNemar test for prompt design), contingency tables and test
statistics are reported in Section 5.2.
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APPENDICES

Within this supplementary material, we elaborate on the following aspects:
Appendix [A} More Related Work and Future Work

Appendix [B} Safeguarding

Appendix [C} More Evaluation Details

Appendix [D} Prompt Details

Appendix [E} Dataset Details and License

USAGE OF LLM

LLMs were used in this work as a writing and editing assistant. Specifically, they helped polish the language
of the manuscript for clarity and conciseness, suggested alternative phrasings, and formatted some LaTeX
tables. LLMs were not used for research ideation or experimental design, but were used to assist coding and
prompt design.
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A LIMITATIONS AND FUTURE WORK

A.1 MORE RELATED WORK

Ultrasound Foundation Models. Several ultrasound-specific models such as USFM (Jiao et al.} 2024),
UltraSAM (Meyer et al., 2024), and EchoFM (Kim et al., [2024) pretrain visual backbones using self-
supervised or segmentation-oriented objectives. BiomedCLIP (Zhang et al., |2023)), Fetal-CLIP (Maani
et al., [2025)), and EchoCLIP (Christensen et al., 2024) explore vision—language pretraining in biomedical
domains, but are often narrow in scope (e.g., fetal or cardiac imaging only), require fine-tuning, and lack the
general-purpose zero-shot capabilities of LVLMs. Our benchmark evaluates generalist LVLMs directly, across
a diverse range of ultrasound tasks, without task-specific adaptation. Table ] gives a detailed comparison of
existing benchmarks and datasets.

Table 4: Comparison of U2-BENCH with existing benchmarks and foundation model datasets.

Dataset / Benchmark #Tasks #Anatomies #Val US Cases Multimodal Free-text Output Public Available
USFM (Jiao et al.|[2024) 3 12 22,421

UltraSam (Meyer et al.| 2024)f 2 58 14,000

Fetal CLIP (Maani et al.|[2025) 4 Fetal -

EchoCLIP (Christensen et al.[[2024) 5 Cardiac 21,484

EchoFM (Kim et al.[[2024) 4 Cardiac -

GMAI-MMBench (Chen et al.|2024a)* 2 5 ~ 1,800

U2-BENCH (Ours) 8 15 7,241

TUltraSam’s US-43d is composed of public datasets, but not released as a unified benchmark.
* We only count the statistics of the ultrasound part of the GMAI-MMBench dataset for a fair comparison.

A.2 LIMITATIONS

Ethical and Applicability Considerations. U2-BENCH is designed as a research-oriented benchmark and
is not intended for clinical deployment or diagnostic decision-making. Any real-world application of models
evaluated on this benchmark would require separate validation and regulatory approval. Although all data
sources are licensed or publicly available and de-identified where applicable, we acknowledge that not all
ethical and demographic dimensions of fairness can be fully accounted for at this stage.

Evaluation Scope. The benchmark focuses on key task categories relevant to ultrasound interpreta-
tion—such as anatomical recognition, diagnostic classification, and structured report generation. While these
tasks are representative and grounded in clinical utility, they do not exhaust the full landscape of sonographic
applications. The evaluation metrics used (e.g., accuracy, BLEU) may not capture the full subtlety of expert
clinical judgment, especially in edge cases.

Ultrasound-Specific Challenges. Ultrasound imaging is highly operator-dependent and subject to artifacts
such as shadowing, speckle, and angle variation. Variability in scanning protocols and lack of standardized
definitions (e.g., for ”standard planes”) can complicate model training and evaluation. These modality-specific
challenges are inherent to ultrasound and reflect real-world complexities rather than flaws in the benchmark
design.

A.3 FUTURE WORK

Extending Dataset Diversity and Robustness. While U2-BENCH aggregates data from a broad range
of sources, further expansion to include more institutions, device types, and global populations would
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improve its representativeness. Future iterations of the benchmark will explore domain adaptation, adversarial
robustness, and performance under distribution shifts to better simulate deployment conditions in varied
clinical environments.

Model Generalization and Multimodal Reasoning. Current LVLMs still struggle with fine-grained spatial
tasks, consistency across subgroups, and robust generation of clinically meaningful language. In future work,
we aim to incorporate richer contextual information (e.g., patient history, multi-view inputs) to better assess
models’ multimodal integration capabilities and real-world reasoning performance.

Video-Based and Real-Time Evaluation. U2-BENCH currently operates on frame-based inputs to ensure
comparability across models. However, clinical ultrasound interpretation often involves dynamic, probe-
controlled acquisition. Extending the benchmark to include video sequences, real-time tasks, and longitudinal
case studies will be a major step toward closing the simulation-to-clinic gap.

Theoretical Foundations and Causality. Our current benchmark is designed for practical performance
evaluation. Future work will incorporate diagnostic reasoning audits, causal probing methods, and uncertainty
quantification frameworks to deepen our understanding of LVLM behavior in high-stakes medical applications.

Standardization in Ultrasound AI. There is a growing need for community consensus on annotation
standards, task definitions, and evaluation protocols in ultrasound AIl. We hope U2-BENCH can serve as a
starting point for these conversations and will actively evolve in response to feedback from both clinical and
technical communities.
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Table 5: Summary of annotated datasets used in U2-BENCH, grouped by core capability and task. The
“Case Number” column indicates the number of samples per task, while “Total” reflects the overall count
when available. More details about the datasets are included in Appendix@

Capability Task Case Number Source Dataset Total
Breast Lesion Detection in Ultrasound Videos (Lin et al.|[2022}; Breast Ultrasound Images Dataset Al-Dhabzani et al.] 2020';
Dermatologic Ultrasound Images for classification (Laverde Saad et al.|2021}; Knee ultrasound dataset in a population-based
DD 1411 cohort (Novin et al.][2023}; KFGNet (NeuronXJTU & palkia1998][2023}; GDPHSYSUCC ; LEPset ;
’ COVID-BLUES Wledemdnn et al.|2025}; Ultrasound Guided Regional Anesthesld Tyagi et al.|2024); Ultrasound Breast Images for
Breast Cancer (Sairam]2020}); Algerian Ultrasound Images Thyroid Dataset: AUITD 2020]; Auto-PCOS classification 2.999

Classification 'ml 5004
FETAL PLANES DB ‘Burgm Artizzu et al.]|20201; FPUS23 (Prabakaran et al.{|2023); CAMUS (Leclerc et al.|2019}; Knee ultrasound
dataset in a population-based cohort (Novin et al.}[2023}; Thyroid (Kronke et al.|2022); ACOUSLIC-AI (Sappial[2024}; INU-IFM

@; Carotid Artery Ultrasound and Color Doppler (Pahuni Choudharyl[2023]; Auto-PCOS classification (Maroual[2020]; African
VRA 1588 Fetal Standard Plane (Sendra-Balcells et al.] 2 3 ; DDTI MUS (Leclerc et al.J2019]; CUBS (Meiburger et al.|
> [2021}; COVID-BLUES (Wiedemann et al.[[2025]; Dataset of B-mode fatty Tiver ultrasound i 1mages ; The Open Kidney
Ultrasound Dataset \|m H MlLI'O Ultrasound Prostate Segmentation Dataset (Shao & Brisbane]2024}; Breast Ultrasound
Images Dataset (Al-Dhabyani et al.[[2020}; Knee ultrasound dataset in a population-based cohort (Novin et al.} ; Polycystic Ovary
Ultrasound Images Dataset (Wisesty et al. ||2018]

DDTI dPedraza et al.. "2015] Micro-Ultrasound Prostate S ion Dataset ‘Shao & anbane"2024|; Breast Ultrasound Images

LL 503 Dataset {Al-Dhabyani et al.|2020); KFGNet (NeuronXJTU & palkia998|[2023]; BrEaST (PawlowsKa ct al.| 2024
. The Open Kidney Ultrasound Dataset dSmgla et al.||2023}; Echogenic g .112023); FALLMUD (FALLMUD}; 2021
Detection ob Lo18 CAMUS (Ceclerc etal.J2019); HCI8 van den Heuvel et al.|2018}; Thyroid Kron ¢ et al. ; CCA (BT et al.J2024]; Ultrasound g
> Guided Regional Anesthesia (Tyagi et al.|2024); C-TRUS Dataset \| COUSLIC-AI (Sappial[2024}; PSFHS
020

024| JNU-IFM 1Lu etal. I 2022}; US slmulatlon & segmentation (Vitale et al.
KD 500 Unity Imaging Collaborative @m Shln"2023l

Regression CVE 501 CAMUS 4Leclerc et al.] 2019'; CUBS dMelburger et al.l 2021 l; HC18 dvan den Heuvel et al.l 2018}; ACOUSLIC-AI dSappla] 2024'; 521

Dataset of B-mode fatty liver ultrasound images (Byra et al.[|2018

] RG 600 Chinese Ultrasound Report Dataset (Li et al.||[2024)
Generation  ~c5 200 FPUS23 (Prabakaran ct al.|2023]

800

Overall Total 7,241

B SAFEGUARDING

This study involves secondary use of de-identified, publicly available or licensed ultrasound datasets for the
purpose of benchmarking machine learning models. All data used in U2-BENCH are either publicly released
with appropriate usage permissions or obtained through official licensing agreements. No personally identifi-
able information is used, and all experiments are conducted in accordance with relevant data protection and
ethical guidelines. Human annotators involved in quality assurance were trained to follow data confidentiality
protocols, and no clinical decision-making was involved at any stage of this work.

C MORE EVALUATION DETAILS

C.1 DATASETS USED

In Table

C.2 EXPERIMENT SETTING

We conducted experiments on U2-BENCH with both open-source and closed-source LVLMs. Uniform
prompts were applied across all models. The evaluation was executed on 32 NVIDIA A800 GPUs over a
period of approximately two weeks, using the OpenCompass VLMEvalKit (Duan et al.,[2024), with additional
support from a unified framework (XiaohuMini, [2025). All models were tested with temperature 0.7.

Evaluated Models. We evaluated 23 LVLMs, spanning both open-source and closed-source systems, and
including both general-purpose and medical-specialized variants.

¢ Qwen2.5-VL Series (Yang et al.,[2024): This includes Qwen2.5-VL-3B-Instruct, Qwen2.5-VL-7B-
Instruct, Qwen2.5-VL-32B-Instruct, Qwen2.5-VL-72B-Instruct
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* Medical-Specific Open-Source Models: MiniGPT-Med (Wu et al., [2023b), MedDr (He et al.,
2024)), Lingshu, MedGemma-4B (Anil et al.| 2023)).

e Other Open-Source Models: Phi-4-Multimodal-Instruct-5.6B (Abdin et al., 2024)), InternVL3-
9B-Instruct (Zhu et al., [2025)), LLaVA-1.5-13B (Liu et al.| 2023al), Mistral-Small-3.1-24B-Instruct-
2503 (Jiang et al., 2023)), DeepSeek-VL2 (DeepSeek-Al, 2024

* Closed-Source Models: GPT-4o0-Mini, GPT-40-2024-08-06 (OpenAll 2023), GPT-5, Gemini-
1.5-Pro (exp-02-05), Gemini-2-Pro (exp-02-05), Gemini-2.5-Pro-Preview (exp-02-05) (Anil et al.}
2023)), Claude-3-Sonnet (20250219) (Anthropic, [2024)), Qwen-Max-2025-01-25 (Bai et al., [2023a)),
Doubao-1.5-Vision-Pro-32K-250115 (ByteDance, [2024)), Dolphin-V1 (Model developed by Dolphin
Al)

* Random Guessing: implemented by uniformly sampling from the valid answer set for each
classification task.

C.3 JUSTIFICATION OF U2-SCORE WEIGHTING

Table 6: Task-specific evaluation metrics and weights. The corresponding weight w, and metric used for
overall score aggregation for each task.

t 1 2 3 4 5 6 7 8
DD VRA LL OD KD CVE RG CG

wy 02 02 007 027 0.07 0.07 0.08 0.04
d; Acc. Acc. Acc. Acc. Acc. 1-RMSE BLEU-4 BLEU-4

The U2-Score summarizes model performance across the eight benchmark tasks in U2-BENCH through a
weighted aggregation:

N

U2-Score := Z wy - dy, where w; =

Tt
~ dt S [07 1} (2)
t=1 Zj nj

Each task ¢ is associated with a weight w; proportional to its number of annotated examples n;, and a
normalized evaluation score d; representing performance on that task. This formulation ensures that the final
score reflects both task competence and dataset composition.

The weighting design of U2-Score is rooted in data-driven representation of ultrasound practice. All bench-
mark tasks are constructed from licensed and publicly available datasets sourced through a comprehensive
and systematic search. As a result, the sample distribution across tasks captures the structure of real-world
ultrasound data availability and usage. Tasks with greater sample counts typically correspond to more
standardized, clinically widespread, and institutionally supported workflows—such as disease diagnosis and
view recognition. Conversely, tasks with fewer examples often reflect more specialized applications or less
frequently annotated modalities.

By aligning task weights with dataset size, the U2-Score encodes the practical significance and maturity
of each task in the public ultrasound domain. This approach also promotes reliable aggregate evaluation,
as scores are more robustly informed by tasks with greater data coverage. The resulting metric balances
comprehensiveness with grounded applicability, supporting fair and reproducible model comparison in the
current landscape of ultrasound Al research.
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C.4 ERROR ANALYSIS

Diagnosis Task (DD)

Accuracy: 0.05 (1/20 models correct)
Reference Answer: 4A
Model Responses:

gemini-2.5-pro-preview-03-25: 5
Do-3B: 2

gpt-40-2024-08-06: °3’
doubao-1.5-vision-pro-32k-250115:
Insufficient information provided to
determine BI - RADS category. Please
describe the sonographic characteristics of
the lesion in the image.

MedDr: 5

qwen-max-2025-01-25: 3

local_model: 2
claude-3-7-sonnet-20250219: 4C
gemini-2.0-pro-exp-02-05: 4C
deepseek-vl2: 4B
qwen2.5-vl-3b-instruct: 2
Qwen2.5-VL-7B-Instruct-Pro: 4A
gemini-1.5-pro-latest: 2
Qwen2.5-VL-32B-Instruct: 4B
InternVL3-9B-Instruct: 4B
Phi-4-multimodal-instruct: I cannot
synthesize the sonographic characteristics
of the lesions or make a BI-RADS
assessment without the actual ultrasound
images or a detailed description of the
findings. If you provide the relevant details

or images, I would be able to assist you
with the assessment.

LLaVA-1.5-13B-HF: '2’
Mistral-Small-3.1-24B-Instruct-2503: 3

Do-7B: The anatomical component most
vividly portrayed is the breast.

gpt-40-mini: 2

Figure 4: Ultrasound image for Diagnosis Task
40: case001273

Prompt: You are a radiologist analyzing a breast
ultrasound image. Your task is to synthesize the
sonographic characteristics of any identified lesions
(or lack thereof) into a final ACR BI-RADS (Breast
Imaging Reporting and Data System) assessment
category.

BI-RADS Ultrasound Assessment Category
Definitions
-’2’ (Benign): Findings are definitively benign (e.g.,
simple cysts, intramammary lymph nodes, stable
surgical implants/changes). 0% likelihood of
malignancy. Requires routine screening follow-up.
-3’ (Probably Benign): Findings have characteristic
benign features but are not definitively benign (e.g.,
presumed fibroadenoma, complicated cyst). Very low
likelihood of malignancy (j2%). Short-interval (e.g.,
6-month) follow-up is typically recommended.

- ’4A’ (Low Suspicion for Malignancy): Findings
warrant biopsy but have a low probability of
malignancy (2% to <10%).

- ’4B’ (Moderate Suspicion for Malignancy): Findings
warrant biopsy with an intermediate probability of
malignancy (;,10% to <50%).

- ’4C’ (High Suspicion for Malignancy): Findings
warrant biopsy with a high probability of malignancy
((50% to j95%), without the classic features of
Category 5.

-’5’ (Highly Suggestive of Malignancy): Findings
have classic malignant features (e.g., irregular
spiculated mass). Very high probability of malignancy
(>95%). Biopsy is required, and definitive action
should be taken regardless of pathology results if
discordant.

Choose the single most appropriate BI-RADS
assessment category from the options below.
options: ['2°,°3’, "4A’, ’4B’, ’4C’, ’5’]
Output format: only the exact text of the chosen
option from the list above. Do not include any
introductory phrases, explanations, numbering, or
formatting.
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View Recognition and Assessment Tasks (VRA)

Reference Answer: hdvb

Model Responses:
* Random Guessing: huvf
e MiniGPT-Med: hdvf
* MedDr: hdvb
¢ Qwen-2.5-VL-3B-Instruct: hdvf
¢ Qwen-2.5-VL-7B-Instruct: hdvb
¢ Qwen-2.5-VL-32B-Instruct: hdvb
¢ Qwen-2.5-VL-72B-Instruct: hdvb
¢ DeepSeek-VL2: hdvf
¢ InternVL3-9B-Instruct: hdvf
¢ LLaVA-1.5-13B: huvb
¢ Phi-4-Multimodal-Instruct: hdvf
¢ Mistral-Small-3.1-24B-Inst.: hdvb
¢ Doubao-1.5-Vision-Pro-32k: hdvb
¢ GPT-40-Mini: hdvf
¢ GPT-40: hdvb
¢ Gemini-1.5-Pro: hdvf
* Gemini-2.0-Pro-Exp: hdvb
¢ Gemini-2.5-Pro-Preview: hdvf
¢ Claude-3.7-Sonnet: huvb
¢ Qwen-Max: hdvb
* Dolphin-V1: hdvb

Prompt: You are a radiologist analyzing a fetal
ultrasound image. Your task is to determine the
fetal presentation and orientation based on the
provided ultrasound image. Specifically, identify
whether the fetal head is down(hd) or up(hu).
Additionally, determine if the fetal back is
primarily oriented towards the ultrasound probe
(vb) or towards the ultrasound probe (vf).
Choose the single best option from the options
below that accurately combines these findings.
options: "hdvb’, *hdvf’, "huvb’, huvf’ Output
format: only the exact text of the chosen option
from the list above. Do not include any
introductory phrases, explanations, numbering,
or formatting.
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Lesion Localization Tasks (LL)

Reference Answer: upper left

Model Responses:
* Random Guessing: lower right
* MiniGPT-Med: upper center
* MedDr: upper left

¢ Qwen-2.5-VL-3B-Instruct: middle
left

* Qwen-2.5-VL-7B-Instruct: upper left

¢ Qwen-2.5-VL-32B-Instruct: upper
left

¢ Qwen-2.5-VL-72B-Instruct: upper
left

¢ DeepSeek-VL2: upper right
¢ InternVL3-9B-Instruct: upper center
e LLaVA-1.5-13B: middle left

* Phi-4-Multimodal-Instruct: upper
center

* Mistral-Small-3.1-24B-Inst.: upper
left

* Doubao-1.5-Vision-Pro-32k: upper
left

* GPT-40-Mini: upper right

e GPT-4o: upper left

¢ Gemini-1.5-Pro: upper right

* Gemini-2.0-Pro-Exp: upper left

* Gemini-2.5-Pro-Preview: upper right
¢ Claude-3.7-Sonnet: upper center

¢ Qwen-Max: middle left

* Dolphin-V1: upper left

Prompt: You are a radiologist analyzing an
ultrasound image of thyroid. Your task is to
identify the primary location of any visible
lesion(s) relative to the boundaries of the
displayed image. Consider the lesion’s center
location or most prominent area when deciding.
Choose the single option from the list below that
best describes this location, even if the fit is
approximate. options: upper left, upper center,
upper right, middle left, center, middle right,
lower left, lower center, lower right, not visible
Output format: only the exact text of the chosen
option from the list above. Do not include any
introductory phrases, explanations, numbering,
or formatting.
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Reference Answer: center

Model Responses:
* Random Guessing: lower left
* MiniGPT-Med: middle right
* MedDr: center

¢ Qwen-2.5-VL-3B-Instruct: middle
right

¢ Qwen-2.5-VL-7B-Instruct: center

e Qwen-2.5-VL-32B-Instruct: center

* Qwen-2.5-VL-72B-Instruct: center

* DeepSeek-VL2: middle left

e InternVL3-9B-Instruct: lower center
* LLaVA-1.5-13B: middle right

¢ Phi-4-Multimodal-Instruct: middle
right

e Mistral-Small-3.1-24B-Inst.: center
* Doubao-1.5-Vision-Pro-32k: center

e GPT-40-Mini: lower center

* GPT-4o: center

* Gemini-1.5-Pro: lower center

* Gemini-2.0-Pro-Exp: center

* Gemini-2.5-Pro-Preview: lower center
* Claude-3.7-Sonnet: center

* Qwen-Max: middle right

* Dolphin-V1: center
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Prompt: You are a radiologist analyzing an
ultrasound image of liver. Your task is to
identify the primary location of the target organ
relative to the boundaries of the displayed image.
Consider the organ’s center location or most
prominent area when deciding. Choose the
single option from the list below that best
describes this location, even if the fit is
approximate. options: upper left, upper center,
upper right, middle left, center, middle right,
lower left, lower center, lower right, not visible
Output format: only the exact text of the chosen
option from the list above. Do not include any
introductory phrases, explanations, numbering,
or formatting.
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Reference Answer: middle right

Model Responses:

Random Guessing: upper center
MiniGPT-Med: middle left
MedDr: middle right
Qwen-2.5-VL-3B-Instruct: center

Qwen-2.5-VL-7B-Instruct: middle
right

Qwen-2.5-VL-32B-Instruct: middle
right

Qwen-2.5-VL-72B-Instruct: middle
right

DeepSeek-VL2: center
InternVL3-9B-Instruct: middle left
LLaVA-1.5-13B: center

Phi-4-Multimodal-Instruct: lower
right

Mistral-Small-3.1-24B-Inst.: middle
right

Doubao-1.5-Vision-Pro-32k: middle
right

GPT-40-Mini: center

GPT-40: middle right
Gemini-1.5-Pro: center
Gemini-2.0-Pro-Exp: middle right
Gemini-2.5-Pro-Preview: center
Claude-3.7-Sonnet: middle right
Qwen-Max: center

Dolphin-V1: middle right 29

Prompt: You are a radiologist analyzing an
ultrasound image of heart. Your task is to
identify the primary location of the key
anatomical landmark point relative to the
boundaries of the displayed image. Consider the
landmark’s precise position when deciding.
Choose the single option from the list below that
best describes this location, even if the fit is
approximate. options: upper left, upper center,
upper right, middle left, center, middle right,
lower left, lower center, lower right, not visible
Output format: only the exact text of the chosen
option from the list above. Do not include any
introductory phrases, explanations, numbering,
or formatting.
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Cardiac View Evaluation Tasks (CVE)

Reference Answer: 2CH
Model Responses:

Random Guessing: 4CH
MiniGPT-Med: 4CH

MedDr: 2CH
Qwen-2.5-VL-3B-Instruct: 4CH
Qwen-2.5-VL-7B-Instruct: 4CH
Qwen-2.5-VL-32B-Instruct: 4CH
Qwen-2.5-VL-72B-Instruct: 4CH
DeepSeek-VL2: 4CH
InternVL3-9B-Instruct: 4CH
LLaVA-1.5-13B: 4CH
Phi-4-Multimodal-Instruct: 4CH
Mistral-Small-3.1-24B-Inst.: 4CH
Doubao-1.5-Vision-Pro-32k: 2CH
GPT-40-Mini: 4CH

GPT-40: 4CH

Gemini-1.5-Pro: 4CH
Gemini-2.0-Pro-Exp: 4CH
Gemini-2.5-Pro-Preview: 4CH
Claude-3.7-Sonnet: 2CH
Qwen-Max: 4CH

Dolphin-V1: 2CH

Prompt: You are a radiologist or cardiologist
specializing in echocardiography, analyzing an
apical view ultrasound image of the human heart.
Your task is to accurately identify the specific
apical view presented in the provided
echocardiogram image. Carefully examine the
cardiac structures visible. Determine if the
image displays primarily the left ventricle and
left atrium only (indicative of a 2-Chamber view,
2CH), or if it clearly shows all four chambers:
the left ventricle, right ventricle, left atrium, and
right atrium (indicative of a 4-Chamber view,
4CH). Choose the single best option from the list
below that correctly identifies the view.

options: 2CH, 4CH

Output format: only the exact text of the chosen
option from the list above. Do not include any
introductory phrases, explanations, numbering,
or formatting.
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Reference Answer: Moderate OA
Model Responses:
* Random Guessing:
¢ MiniGPT-Med: Questionable OA
* MedDr: Moderate OA
e Qwen-2.5-VL-3B-Instruct: No OA

* Qwen-2.5-VL-7B-Instruct:
Questionable OA

* Qwen-2.5-VL-32B-Instruct: Mild OA
¢ Qwen-2.5-VL-72B-Instruct: Mild OA
* DeepSeek-VL2: Questionable OA

e InternVL3-9B-Instruct: No OA

* LLaVA-1.5-13B: No OA

¢ Phi-4-Multimodal-Instruct:
Questionable OA

e Mistral-Small-3.1-24B-Inst.: Mild
OA

¢ Doubao-1.5-Vision-Pro-32k:
Moderate OA

* GPT-40-Mini: No OA

* GPT-40: No OA

e Gemini-1.5-Pro: Questionable OA
* Gemini-2.0-Pro-Exp: Mild OA

¢ Gemini-2.5-Pro-Preview:
Questionable OA

* Claude-3.7-Sonnet: Mild OA
¢ Qwen-Max: Mild OA
* Dolphin-V1: Moderate OA
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Prompt: You are a radiologist analyzing an
ultrasound image of left/right knee.

Your task is to assess the severity of
osteoarthritis (OA) using the established
Kellgren-Lawrence (KL) grading system.
Kellgren-Lawrence (KL) Grade Mapping to
Options:

*’No OA’: Corresponds to KL Grade 0 (No
radiographic features of OA).

*’Questionable OA’: Corresponds to KL Grade 1
(Doubtful JSN and possible minute osteophytes).
*’Mild OA’: Corresponds to KL Grade 2
(Definite osteophytes and possible JSN).
*’Moderate OA’: Corresponds to KL Grade 3
(Moderate multiple osteophytes, definite JSN,
some sclerosis, possible deformity).

*’Severe OA’: Corresponds to KL Grade 4
(Large osteophytes, marked JSN, severe
sclerosis, definite deformity).

*’Total joint replacement’: Indicates the
presence of knee arthroplasty components
(prosthesis), which replaces the native joint
structures evaluated by the KL scale.

options: "Mild OA’, "Moderate OA’, "No OA’,
’Questionable OA’, ’Severe OA’, *Total joint
replacement’

Output format: only the exact text of the chosen
option from the list above. Do not include any
introductory phrases, explanations, numbering,
or formatting.
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Prompt: You are a radiologist analyzing an ultrasound image focused on the Liver.

Your task is generate a concise and informative radiological report based strictly on the visual
findings within the provided image. Your report should describe the primary organ’s appearance (size,
shape, borders/capsule), its parenchymal echotexture (e.g., homogeneous, heterogeneous,
echogenicity relative to reference structures), and identify any visible abnormalities (e.g., masses,
cysts, fluid collections, calcifications, ductal dilation). Comment on relevant adjacent structures if
visualized. Use standard radiological terminology.

Output format: Strings, that is your report.

Example: The liver morphology is full with a smooth capsule. The parenchymal echotexture is fine
and diffusely increased. Visualization of the portal venous system is suboptimal. Intrahepatic and
extrahepatic bile ducts are not dilated. The main portal vein diameter is within normal limits. The
gallbladder is normal in size and shape. The wall is smooth and not thickened. No obvious abnormal
echoes are seen within the lumen. The pancreas is normal in size and shape with homogeneous
parenchymal echotexture. The pancreatic duct is not dilated. No definite space-occupying lesion is
seen within the pancreas. The spleen is normal in size and shape with homogeneous parenchymal
echotexture. No obvious space-occupying lesion is seen within the spleen.
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Report Generation Tasks (RG) Output

Reference Answer: The liver morphology is full with a smooth capsule. The parenchymal
echotexture is fine and diffusely increased. Visualization of the portal venous system is suboptimal.
Intrahepatic and extrahepatic bile ducts are not dilated. The main portal vein diameter is within
normal limits. No focal lesions are identified.

Model Responses:
¢ Random Guessing:

e MiniGPT-Med: The liver shows normal size and contour with homogeneous echotexture.
No focal lesions or biliary dilatation noted. Portal structures appear normal.

e MedDr: The liver demonstrates normal size and contour with a smooth capsule. The
parenchymal echotexture is homogeneous with normal echogenicity. No focal lesions
identified. Intrahepatic biliary ducts are not dilated. Portal venous structures appear normal.

* Qwen-2.5-VL-3B-Instruct: The liver appears normal in size with a smooth contour. The
parenchymal echotexture is homogeneous without focal lesions. No intrahepatic biliary
dilatation is seen.

* Qwen-2.5-VL-7B-Instruct: The liver appears normal in size with a smooth capsule. The
parenchymal echotexture is homogeneous with no focal lesions. No intrahepatic or
extrahepatic biliary dilatation is seen. The portal venous structures appear normal.

¢ Qwen-2.5-VL-32B-Instruct: The liver appears normal in size with a smooth contour. The
parenchymal echotexture is homogeneous with normal echogenicity. No focal lesions such
as masses, cysts, or calcifications are identified. The intrahepatic bile ducts are not dilated.
The portal venous structures appear normal. No perihepatic fluid collection is observed.

Qwen-2.5-VL-72B-Instruct: The liver demonstrates normal size and contour with a smooth
capsule. The parenchymal echotexture is homogeneous with normal echogenicity. No focal
lesions or masses are identified. The intrahepatic biliary tree is not dilated. Portal venous
structures appear normal. No perihepatic fluid collection is seen.

DeepSeek-VL2: The liver appears normal in size with a smooth contour. The parenchymal
echotexture is homogeneous with normal echogenicity. No focal lesions are identified. The
intrahepatic bile ducts are not dilated. The portal venous structures appear normal. No
perihepatic fluid collection is observed.

InternVL3-9B-Instruct: The liver appears normal in size with a smooth contour. The
parenchymal echotexture is homogeneous without focal lesions. No intrahepatic or
extrahepatic biliary dilatation is seen. The portal venous structures appear normal.

LLaVA-1.5-13B: The liver appears normal in size with a smooth contour. The parenchymal
echotexture is homogeneous without focal lesions. No intrahepatic biliary dilatation is seen.
The portal structures appear normal.

¢ Phi-4-Multimodal-Instruct: The liver appears normal in size with a smooth contour. The
parenchymal echotexture is homogeneous with no focal lesions. No intrahepatic or
extrahepatic biliary dilatation is seen. The hepatic vessels appear normal.

Mistral-Small-3.1-24B-Inst.: The liver demonstrates normal size and contour with a
smooth capsule. The parenchymal echotexture is homogeneous with normal echogenicity.
No focal lesions or masses are identified. The intrahepatic biliary tree is not dilated. Portal
venous structures appear normal.
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¢ Doubao-1.5-Vision-Pro-32k: The liver appears normal in size with a smooth contour. The
parenchymal echotexture is homogeneous with normal echogenicity. No focal lesions are
identified. The intrahepatic bile ducts are not dilated. The portal venous structures appear
normal.

* GPT-40-Mini: The liver appears normal in size with a smooth contour. The parenchymal
echotexture is homogeneous without focal lesions. No intrahepatic or extrahepatic biliary
dilatation is seen. The hepatic vessels appear normal. No ascites or other abnormalities are
identified in the visualized portion of the liver.

* GPT-40: The liver appears normal in size and shape with a smooth capsule. The
parenchymal echotexture is homogeneous with no obvious focal lesions. No intrahepatic or
extrahepatic bile duct dilation is noted. The gallbladder is not clearly visualized in this
image. No ascites or other fluid collections are present. Adjacent structures are not well
visualized for further evaluation.

* Gemini-1.5-Pro: The liver appears normal in size with a smooth contour. The parenchymal
echotexture is homogeneous with normal echogenicity. No focal lesions such as masses,
cysts, or calcifications are identified. The intrahepatic bile ducts are not dilated. The portal
venous structures appear normal.

* Gemini-2.0-Pro-Exp: The liver appears normal in size with a smooth capsule. The
parenchymal echotexture is homogeneous with normal echogenicity. No focal lesions are
identified. The intrahepatic bile ducts are not dilated. The portal venous structures appear
normal where visualized.

¢ Gemini-2.5-Pro-Preview: The liver appears normal in size with a smooth capsule. The
parenchymal echotexture is homogeneous with normal echogenicity. No focal lesions such
as masses, cysts, or calcifications are identified. The intrahepatic bile ducts are not dilated.
The portal venous structures appear normal where visualized. No perihepatic fluid collection
is seen. The gallbladder and other adjacent structures are not well visualized in this limited
image. Overall impression: Normal liver parenchyma without evidence of focal lesions or
biliary dilation.

¢ Claude-3.7-Sonnet: The liver demonstrates normal size and contour with a smooth capsule.
The parenchymal echotexture appears homogeneous with mildly increased echogenicity,
suggesting possible early fatty infiltration. No focal lesions, masses, or cysts are identified.
The intrahepatic biliary tree is not dilated. Portal venous structures appear normal where
visualized. No perihepatic fluid collection is seen. Adjacent structures are not well
visualized in this limited view.

* Qwen-Max: The liver appears normal in size with a smooth contour. The parenchymal
echotexture is homogeneous with normal echogenicity. No focal lesions such as masses,
cysts, or calcifications are identified. The intrahepatic bile ducts are not dilated. The portal
venous structures appear normal. No perihepatic fluid collection is observed. The visualized
portions of adjacent structures appear unremarkable. Overall, the liver appears
sonographically normal based on this limited view.

* Dolphin-V1: The liver morphology is full with a smooth capsule. The parenchymal
echotexture is fine and diffusely increased. Visualization of the portal venous system is
suboptimal. Intrahepatic and extrahepatic bile ducts are not dilated. The main portal vein
diameter is within normal limits. No focal lesions are identified.
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To provide deeper insights into model performance on medical imaging tasks, we conduct a comprehensive
error analysis of models across four critical ultrasound image analysis tasks: measurement, classification,
segmentation, and report generation. This analysis reveals distinct error patterns and task-specific challenges
that inform future model improvements.

Numerical Regression Task Analysis Among 101 total responses, the most significant challenge is the
prevalence of descriptive responses instead of numerical values (53.47%). The model frequently generates
interpretative text such as “The principal anatomical element visualized here is unequivocally the fetus
head” rather than the expected numerical measurement (e.g., 291.4mm). This pattern suggests fundamental
misunderstanding of task requirements, where the model interprets the task as image content identification
rather than quantitative measurement.

Format violations constitute 1.98% of responses, where models provide numerical values with units (e.g.,
“113.6 mm”) despite explicit formatting constraints. Notably, 43.56% of responses follow the correct
numerical format, though accuracy assessment requires comparison with ground truth values. The high rate
of descriptive responses indicates that current vision-language models struggle with the transition from visual
analysis to precise quantitative output.

Classification Task Performance Classification tasks demonstrate superior format compliance compared
to measurement tasks, with 75.66% of responses providing valid option selections from 152 total responses.
However, two distinct error patterns emerge: explanatory responses (5.92%) where models provide justifica-
tions rather than selections (e.g., “There is no definitive view of the fetal abdomen or pelvis to determine fetal
position”), and format violations (18.42%) containing additional descriptive content alongside valid options.

The tendency toward explanatory responses reveals an interesting model behavior where excessive caution
leads to task avoidance rather than best-effort selection from available options. This suggests that models
may benefit from more explicit instructions emphasizing the requirement for definitive option selection even
under uncertainty.

Segmentation and Localization Analysis Segmentation tasks, requiring spatial reasoning for anatomical
structure localization, show moderate success with 66% valid position responses from 500 total responses.
The primary error categories include invalid position terminology (27.80%) with responses like “Not visible.”
or “Upper right.” that contain punctuation or non-standard terms, and complete task deviation (6.20%)
where models provide structural descriptions instead of positional information.

Case Study Examples: Analysis of specific segmentation cases reveals distinct model behaviors. In thyroid
lesion localization tasks, while Gemini-2.5-Pro and GPT-4o0 consistently provide concise responses (‘“‘center”),
Claude-3.7-Sonnet exhibits significant format violations. For instance, when tasked with identifying tumor
location in breast ultrasound images, Claude generated extensive explanatory text:

“This image appears to be an ultrasound showing tissue layers with varying echogenicity...
I cannot identify a clear, definitive lesion... For proper medical diagnosis, this ultrasound
should be evaluated by a qualified radiologist...”

Such responses, while demonstrating medical awareness, completely violate the specified output format
requiring only location terms. This pattern suggests that Claude prioritizes safety disclaimers over task
compliance in medical contexts.

Additionally, a concerning pattern emerges where multiple models consistently respond “center” regardless
of actual lesion position, as evidenced by reference bounding boxes indicating lesions at coordinates [0.6,
0.247] and [0.595, 0.308]. This suggests potential spatial reasoning limitations or default response bias that
could compromise clinical utility.

35



Under review as a conference paper at ICLR 2026

The relatively high success rate in spatial localization compared to numerical measurement suggests that
discrete spatial reasoning may be more accessible to current vision-language architectures than continuous
numerical estimation.

Report Generation Excellence Report generation tasks achieve the highest success rate (98%) among all
evaluated tasks, with only 2% exhibiting structural misidentification and 1% showing false findings. The
rare but critical errors include anatomical misidentification (“Top view of fetus head and thorax™ for fetal
head ultrasound) and false pathological findings (“Aneuploid fetus with abnormal facial features”). While
infrequent, such errors carry significant clinical implications, potentially leading to unnecessary medical
interventions or patient anxiety.

Cross-Task Error Pattern Analysis Task difficulty ranking from most to least challenging reveals: mea-
surement (43.56% success) > segmentation (66% success) > classification (75.66% success) > report
generation (98% success). This hierarchy reflects the increasing complexity of transitioning from free-form
text generation to structured, constrained outputs requiring precise adherence to format specifications.

Common error patterns across tasks include: (1) descriptive language substitution, most prominent in
measurement tasks where models default to interpretative text rather than required numerical values; (2)
format non-compliance, prevalent across classification and segmentation tasks despite clear formatting
instructions; and (3) task misunderstanding, where models completely misinterpret task objectives, such as
treating localization as structure identification.

Implications for Medical AI Development These findings highlight critical considerations for deploying
vision-language models in medical imaging applications. The inverse relationship between task constraint and
model performance suggests that current architectures excel at unconstrained text generation but struggle with
precise, structured outputs essential for clinical decision-making. Future developments should prioritize: (1)
enhanced instruction following capabilities for constrained output generation, (2) domain-specific fine-tuning
on medical imaging tasks emphasizing numerical precision, and (3) robust validation mechanisms to detect
and prevent false findings in clinical applications.

The analysis underscores that while large vision-language models show promise for medical imaging applica-
tions, careful task-specific optimization and human oversight remain essential, particularly for quantitative
measurements and diagnostic assessments where precision directly impacts patient care.
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D PROMPT FOR TASKS

Prompt Template used for fetal view classification (dataset 10)

You are a radiologist analyzing a fetal ultrasound image.

Your task is to determine the fetal presentation and orientation based on the provided ultrasound
image. Specifically, identify whether the fetal head is down(hd) or up(hu). Additionally, determine if
the fetal back is primarily oriented towards the ultrasound probe (vb) or towards the ultrasound probe
(vf). Choose the single best option from the options below that accurately combines these findings.

options: “hdvb’, *hdvf’, "huvb’, "huvf’

Output format: only the exact text of the chosen option from the list above. Do not include any
introductory phrases, explanations, numbering, or formatting.

Prompt Template used for heart view classification (dataset 18)

You are a radiologist or cardiologist specializing in echocardiography, analyzing an apical view
ultrasound image of the human heart.

Your task is to accurately identify the specific apical view presented in the provided echocardiogram
image. Carefully examine the cardiac structures visible. Determine if the image displays primarily the
left ventricle and left atrium only (indicative of a 2-Chamber view, 2CH), or if it clearly shows all four
chambers: the left ventricle, right ventricle, left atrium, and right atrium (indicative of a 4-Chamber
view, 4CH). Choose the single best option from the list below that correctly identifies the view.

options: 2CH, 4CH

Output format: only the exact text of the chosen option from the list above. Do not include any
introductory phrases, explanations, numbering, or formatting.
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Prompt Template used for (KL) grading (dataset 28)

You are a radiologist analyzing an ultrasound image of left/right knee.

Your task is to assess the severity of osteoarthritis (OA) using the established Kellgren-Lawrence
(KL) grading system. Kellgren-Lawrence (KL) Grade Mapping to Options:

* ’No OA’: Corresponds to KL Grade 0 (No radiographic features of OA).

¢ ’Questionable OA’: Corresponds to KL Grade 1 (Doubtful JSN and possible minute osteo-
phytes).
* ’Mild OA’: Corresponds to KL Grade 2 (Definite osteophytes and possible JSN).

* "Moderate OA’: Corresponds to KL Grade 3 (Moderate multiple osteophytes, definite JSN,
some sclerosis, possible deformity).

* ’Severe OA’: Corresponds to KL Grade 4 (Large osteophytes, marked JSN, severe sclerosis,
definite deformity).

* ’Total joint replacement’: Indicates the presence of knee arthroplasty components (prosthe-
sis), which replaces the native joint structures evaluated by the KL scale.

Choose the single best option from the following list that accurately describes the image.

options: "Mild OA’, "Moderate OA’, "No OA’, ’Questionable OA’, ’Severe OA’, *Total joint replace-
ment’

Output format: only the exact text of the chosen option from the list above. Do not include any
introductory phrases, explanations, numbering, or formatting.
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Prompt Template used for BI-RADS classification (dataset 40)

You are a radiologist analyzing a breast ultrasound image.

Your task is to synthesize the sonographic characteristics of any identified lesions (or lack thereof)
into a final ACR BI-RADS (Breast Imaging Reporting and Data System) assessment category.

BI-RADS Ultrasound Assessment Category Definitions:

* ’2’ (Benign): Findings are definitively benign (e.g., simple cysts, intramammary lymph
nodes, stable surgical implants/changes). 0% likelihood of malignancy. Requires routine
screening follow-up.

* ’3’ (Probably Benign): Findings have characteristic benign features but are not definitively
benign (e.g., presumed fibroadenoma, complicated cyst). Very low likelihood of malignancy
(j2%). Short-interval (e.g., 6-month) follow-up is typically recommended.

* "4A’ (Low Suspicion for Malignancy): Findings warrant biopsy but have a low probability of
malignancy (;,2% to <10%).

* ’4B’ (Moderate Suspicion for Malignancy): Findings warrant biopsy with an intermediate
probability of malignancy (;,10% to >50%).

* ’4C’ (High Suspicion for Malignancy): Findings warrant biopsy with a high probability of
malignancy (;,50% to j95%), without the classic features of Category 5.

*’5’ (Highly Suggestive of Malignancy): Findings have classic malignant features (e.g.,
irregular spiculated mass). Very high probability of malignancy (>95%). Biopsy is required,
and definitive action should be taken regardless of pathology results if discordant.

Choose the single most appropriate BI-RADS assessment category from the options below.
options: [’2’,73’,’4A’, ’4B’, ’4C’,’5’]

Output format: only the exact text of the chosen option from the list above. Do not include any
introductory phrases, explanations, numbering, or formatting.

\. J

Prompt Template used for fetal abdomen (dataset 50)

You are a radiologist analyzing an ultrasound image of fetal abdomen.

Your task is to determine if the presented cross-sectional view of the fetal abdomen is technically
adequate for performing an accurate Abdominal Circumference (AC) measurement according to
standard obstetric guidelines. Identify the specific anatomical plane shown for the fetal abdomen.
Determine if this plane meets the criteria for an optimal AC measurement (correct landmarks visible,
proper transverse orientation) or if it is suboptimal (incorrect plane, missing landmarks, oblique/-
foreshortened view, presence of interfering structures like kidneys). Choose the single best option
describing the plane’s suitability for AC measurement.

options: 'none’, ’optimal’, ’suboptimal’

Output format: only the exact text of the chosen option from the list above. Do not include any
introductory phrases, explanations, numbering, or formatting.
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Prompt Template used for breast classification

You are a radiologist analyzing a breast ultrasound image.

Your task is carefully examine the provided breast ultrasound image, evaluate any identified lesions or
abnormalities based on key sonographic characteristics (including shape, orientation, margin, echo
pattern, posterior acoustic features, and associated features), synthesize these features to form an
overall impression about the likelihood of malignancy, and then choose the single best option from
the following list that accurately summarizes this assessment.

options: (normal), benign, malignant

Output format: only the exact text of the chosen option from the list above. Do not include any
introductory phrases, explanations, numbering, or formatting.

Prompt Template used for thyroid classification

~
\.

You are a radiologist specializing in head and neck or endocrine imaging, analyzing an ultrasound
image of the thyroid gland.

Your task is to carefully examine the provided thyroid ultrasound image, evaluate the overall thyroid
gland parenchyma (echogenicity, texture, vascularity), identify any focal nodules, assess the specific
sonographic features of any nodules found (including composition, echogenicity, shape, margin,
and echogenic foci), synthesize these findings to determine if the gland appears normal, contains
benign-appearing findings, or contains findings suspicious for malignancy, and then choose the single
best option from the following list that accurately summarizes this assessment.

options: (normal thyroid), benign, malignant

Output format: only the exact text of the chosen option from the list above. Do not include any
introductory phrases, explanations, numbering, or formatting.

Prompt Template used for skin cancer classification (dataset 25)

-
\.

You are a radiologist analyzing an ultrasound image of skin.

Your task is to carefully examine the provided skin ultrasound image, evaluate the identified lesion
or abnormality based on key sonographic characteristics (including its location within skin layers,
echogenicity, internal echo texture, shape, margins, size/depth, posterior acoustic phenomena, and
vascularity assessed with Doppler), synthesize these features to form an overall impression regarding
the likelihood of malignancy, and then choose the single best option from the following list that
summarizes this assessment.

options: benign, malignant

Output format: only the exact text of the chosen option from the list above. Do not include any
introductory phrases, explanations, numbering, or formatting.
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Prompt Template used for pancreas cancer classification (dataset 42)

You are a radiologist analyzing an ultrasound image of the pancreas.

Your task is to carefully examine the provided ultrasound image of the pancreas, evaluate the gland’s
echotexture, size, margins, and the pancreatic duct diameter, identify any focal lesions or masses
(noting their echogenicity, margins, size, and vascularity if Doppler is available), assess for associated
findings such as ductal dilation (including potential ”double duct” sign), vascular involvement
(encasement/thrombosis), regional lymphadenopathy, or fluid collections, synthesize these findings to
determine if there is evidence suspicious for primary pancreatic cancer versus other findings, and then
choose the single best option from the following list that summarizes this assessment.

OptiOIlS: non-pancreas cancer, pancreas cancer

Output format: only the exact text of the chosen option from the list above. Do not include any
introductory phrases, explanations, numbering, or formatting.

Prompt Template used for PCOS classification (dataset 74)

You are a radiologist analyzing an ultrasound image obtained during a pelvic examination, potentially
as part of an evaluation for Polycystic Ovary Syndrome (PCOS).

Your task is to evaluate the overall appearance of the anatomical structures presented in the ultrasound
image (primarily focusing on the ovaries and potentially the uterus). Consider sonographic features
such as ovarian size, morphology, follicle count and distribution, stromal echogenicity, as well as
any other findings that might indicate pathology. Based on this assessment, determine if the image
appears generally normal or if it displays features suggestive of an abnormality (which could include
findings consistent with PCOS or other conditions). Choose the single best option from the following
list that accurately describes this overall impression.

options: *Appears abnormal’, ’ Appears normal’

Output format: only the exact text of the chosen option from the list above. Do not include any
introductory phrases, explanations, numbering, or formatting.
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Prompt Template used for PCOS classification (dataset 74)

You are a radiologist analyzing an ultrasound image obtained during a pelvic examination. Crucially,
assume this specific image has already been determined to show some form of abnormality. Your
focus now is on the nature of that abnormality.

Your task is to specifically assess whether the abnormality present in this ultrasound image includes
clear sonographic evidence consistent with a polycystic ovary. Evaluate the visualized ovarian
structures, paying close attention to features commonly associated with PCOS, such as: increased
number of follicles, peripheral distribution of follicles, increased ovarian volume, increased stromal
echogenicity or volume. Based on whether these specific PCOS-related sonographic features are
identifiable within the overall abnormal appearance, specifies whether the ultrasound image shows
evidence/ visibility of a polycystic ovary or not. Choose the single best option from the following list.

options: 'Not-visible’, *Visible’

Output format: only the exact text of the chosen option from the list above. Do not include any
introductory phrases, explanations, numbering, or formatting.

Prompt Template used for PCOS classification (dataset 75)

You are a radiologist analyzing an ultrasound image obtained during a pelvic examination, specifically
being evaluated for features potentially related to Polycystic Ovary Syndrome (PCOS).

Your task is to carefully evaluate the provided ultrasound image for sonographic features consistent
with Polycystic Ovarian Morphology (PCOM), which is the ultrasound component relevant to PCOS
detection. Analyze the visualized ovary (or ovaries), considering criteria such as increased ovarian
volume, increased antral follicle count (e.g., > 20 per ovary), peripheral follicle distribution, and / or
increased stromal echogenicity / volume. If sonographic features consistent with PCOM are present,
select the label ’infected’, otherwise 'noninfected’. Choose the single best option from the following
list.

options: ’infected’, *noninfected’

Output format: only the exact text of the chosen option from the list above. Do not include any
introductory phrases, explanations, numbering, or formatting.
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Prompt Template used for lung parenchyma (dataset 44)

You are a radiologist or clinician skilled in performing and interpreting Lung Ultrasound (LUS),
specifically analyzing an ultrasound image of the lung pleura and parenchyma.

Your task is to carefully examine the provided lung ultrasound image, focusing on the appearance
of the pleural line and the underlying lung parenchyma, identify the presence and characteristics
of A-lines, B-lines (number, coalescence), and any consolidations according to the defined severity
scoring criteria below, and then choose the single best integer score (0, 1, 2, or 3) from the following
list that accurately reflects the observed findings.

LUS Severity Score Criteria:

e 0: Normal lung pattern. Characterized by a continuous, regular, thin pleural line with
horizontal reverberation artifacts (A-lines) below it. Sliding lung sign is typically present.

e 1: Mild interstitial syndrome. Characterized by an indented or slightly irregular pleural
line. Scattered, well-defined vertical artifacts (B-lines) are visible (typically >3 B-lines per
intercostal space but not coalescent).

e 2: Moderate interstitial syndrome or early consolidation. Characterized by a broken or
significantly irregular pleural line. Multiple coalescent B-lines (small "white lung” areas) or
small subpleural consolidations are present.

* 3: Severe interstitial syndrome or large consolidation. Characterized by dense and largely
extended confluent B-lines ("white lung” appearance occupying most or all of the screen)
with or without large consolidations.

Options: 0, 1, 2, 3

Output format: only the single chosen integer number from the list above. Do not include any
introductory phrases, explanations, numbering, or formatting.

Prompt Template used for fatty liver classification (dataset 57)

You are a radiologist analyzing a static B-mode ultrasound image displaying the liver.

Your task is to evaluate the liver parenchyma in the provided image to determine the grade of hepatic
steatosis. For this task, label 1 is assigned if the image displays features consistent with fatty liver
(which often correlates histologically with ;5% hepatocyte steatosis), while label O is assigned if
such features are absent. Based on your comprehensive assessment of these sonographic features,
determine whether the image displays sufficient evidence to be classified as showing fatty liver (Label
1) or not (Label 0). Choose the single best option from the following list that accurately reflects your
classification.

options: 0, 1

Output format: only the single chosen integer number from the list above. Do not include any
introductory phrases, explanations, numbering, or formatting.
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Prompt Template used for fetal (dataset 03)

You are a radiologist analyzing a single ultrasound image acquired during a fetal examination.

Your task is to carefully examine the provided image, identify the primary anatomical structure or
region being visualized, and determine the most appropriate description based on the standard imaging
planes used in fetal ultrasound. Choose the single best option from the following list that accurately
describes the main subject shown in the image.

options: ’fetal abdomen’, fetal femur’ fetal brain’, ’fetal thorax’, maternal cervix’, ’other’

Output format: only the exact text of the chosen option from the list above. Do not include any
introductory phrases, explanations, numbering, or formatting.

Prompt Template used for throid plane classification (dataset 37)

7
\.

You are a radiologist with expertise in interpreting neck and thyroid ultrasound images. You are
presented with a single B-mode ultrasound image focused on the thyroid gland and adjacent neck
structures.

Your task is to identify the Cardinal Anatomical Plane depicted in the provided ultrasound image.
Choose the single best option from the following list that accurately describes the image.

options: *Axial/Transverse Plane’, ’Coronal Plane’, ’Sagittal Plane’

Output format: only the exact text of the chosen option from the list above. Do not include any
introductory phrases, explanations, numbering, or formatting.

Prompt Template used for fetal (dataset 53)

7
\.

You are a radiologist analyzing a single B-mode ultrasound image obtained during a fetal assessment.

Your task is to carefully examine the provided ultrasound image frame to identify the presence or
absence of two specific anatomical landmarks: the fetal head and the maternal symphysis pubis.
Based on this identification, classify the frame’s content by choosing the single best option from the
following list that accurately describes which of these landmarks are visible. Choose the single best
option from the following list that accurately describes the frames content.

options: ’None’, ’OnlyFetalHead’, OnlySymphysisPubis’, ’SymphysisPubis+FetalHead’

Output prompt: only the exact text of the chosen option from the list above. Do not include any
introductory phrases, explanations, numbering, or other formatting.
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Prompt Template used for cartoid classification (dataset 69)

You are a radiologist analyzing an ultrasound image depicting a portion of the carotid arterial system
in the neck.

Your task is to carefully examine the provided ultrasound image, analyzing anatomical landmarks,
vessel morphology, and its position relative to other neck structures, to identify the primary carotid
artery segment shown. Choose the single best option from the following list that accurately describes
the main vessel visualized in the frame’s content. Assume ’left carotid’ and ’right carotid’ refer
generally to the common or internal carotid artery on that respective side, while ’external carotid’
refers specifically to the external carotid artery branch. Choose the single best option from the
following list that accurately describes the image.

options: ’external carotid’, ’left carotid’, 'right carotid’

Output prompt: only the exact text of the chosen option from the list above. Do not include any
introductory phrases, explanations, numbering, or other formatting.

Prompt Template used for anatomy classification

You are an expert specialized in analyzing medical ultrasound images. You are provided with a single
ultrasound image frame, which could depict various parts of the human body.

Your task is to analyze the provided ultrasound image and identify the primary anatomical region
or organ system being visualized. Choose the single best option from the following list that most
accurately represents this primary anatomical subject.

options: ’fetal’, "thyroid’, heart’, "lung’, ’liver’, ’carotid’, ’kidney’, ’prostate’, *breast’, ’other’

Output prompt: only the exact text of the chosen option from the list above. Do not include any
introductory phrases, explanations, numbering, or other formatting.
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Prompt Template used for knee classification

You are a radiologist analyzing an ultrasound image of knee.

Your task is to classify the specific anatomical view, laterality (left/right), orientation, and any specific
imaging technique or patient positioning shown in the image:

* ’left anterior suprapatellar longitudinal’: Image of the left knee, taken from the front (ante-
rior), just above the kneecap (suprapatellar), with the ultrasound probe oriented along the
long axis of the thigh/patellar tendon. Standard B-mode imaging.

* ’left anterior suprapatellar longitudinal with power Doppler’: Same view as above (left,
anterior suprapatellar, longitudinal), but with Power Doppler mode activated, typically used
to assess blood flow or inflammation.

* ’left anterior suprapatellar transverse in 30 degrees flexion’: Image of the left knee, from the
front (anterior), above the kneecap (suprapatellar), with the probe oriented across (transverse)
the thigh, and the knee bent at approximately 30 degrees.

* ’left anterior suprapatellar transverse in maximal flexion’: Same view as above (left, anterior
suprapatellar, transverse), but with the knee bent as much as possible (maximal flexion).

* ’left lateral longitudinal’: Image of the outer side (lateral) of the left knee, with the probe
oriented along the long axis of the structures (e.g., LCL, IT band).

* ’left medial longitudinal’: Image of the inner side (medial) of the left knee, with the probe
oriented along the long axis of the structures (e.g., MCL, medial meniscus).

* ’left posterior medial transverse’: Image of the back, inner corner (posterior medial) of the
left knee, with the probe oriented across (transverse) the structures (often used for Baker’s
cysts).

* ’right anterior suprapatellar longitudinal’: Image of the right knee, taken from the front
(anterior), just above the kneecap (suprapatellar), with the ultrasound probe oriented along
the long axis of the thigh/patellar tendon. Standard B-mode imaging.

* ’right anterior suprapatellar longitudinal with power Doppler’: Same view as above (right,
anterior suprapatellar, longitudinal), but with Power Doppler mode activated.

* ’right anterior suprapatellar transverse in 30 degrees flexion’: Image of the right knee,
from the front (anterior), above the kneecap (suprapatellar), with the probe oriented across
(transverse) the thigh, and the knee bent at approximately 30 degrees.

* ‘right anterior suprapatellar transverse in maximal flexion’: Same view as above (right,
anterior suprapatellar, transverse), but with the knee bent as much as possible (maximal
flexion).

* ’right lateral longitudinal’: Image of the outer side (lateral) of the right knee, with the probe
oriented along the long axis of the structures.

* ’right medial longitudinal’: Image of the inner side (medial) of the right knee, with the probe
oriented along the long axis of the structures.

* ’right posterior medial transverse’: Image of the back, inner corner (posterior medial) of the
right knee, with the probe oriented across (transverse) the structures.

Choose the single best option from the following list that accurately describes the image.

Options: ’left anterior suprapatellar longitudinal’, ’left anterior suprapatellar longitudinal with power
Doppler’, ’left anterior suprapatellar transverse in 30 degrees flexion’, ’left anterior suprapatellar
transverse in maximal flexion’, ’left lateral longitudinal’, ’left medial longitudinal’, ’left posterior
medial transverse’, 'right anterior suprapatellar longitudinal’, ’right anterior suprapatellar longitudinal
with power Doppler’, ’right anterior suprap#t@llar transverse in 30 degrees flexion’, ’right anterior
suprapatellar transverse in maximal flexion’, ’right lateral longitudinal’, ’right medial longitudinal’,
'right posterior medial transverse’

Output prompt: only the exact text of the chosen option from the list above. Do not include any
introductory phrases, explanations, numbering, or other formatting.
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Prompt Template used for lesion detection

You are a radiologist analyzing an ultrasound image of thyroid.

Your task is to identify the primary location of any visible lesion(s) relative to the boundaries of the
displayed image. Consider the lesion’s center location or most prominent area when deciding. Choose
the single option from the list below that best describes this location, even if the fit is approximate.

Choose the single most appropriate location from the following list:
e upper left
* upper center
e upper right
e middle left
e center
* middle right
* lower left
* lower center
* lower right
* not visible

Output format: only one or two word(s) representing the chosen location. No additional text or
formatting is allowed.
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Prompt Template used for organ detection

You are a radiologist analyzing an ultrasound image of abdominal.

Your task is to determine the primary location, relative to the image boundaries, for each visible
structure listed in liver.

* Consider the structure’s center or most prominent area when deciding its location.

* Choose the single option from the list below that best describes the location, even if the fit is
approximate.

Location Options:
* upper left
* upper center
e upper right
e middle left
* center
* middle right
* lower left
* lower center
* lower right
* not visible

Output format: only one or two word(s) representing the chosen location. No additional text or
formatting is allowed.
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Prompt Template used for keypoint detection

You are a radiologist analyzing an ultrasound image of the heart.

Your task is to determine the top inner point of the aortic valve.
» Consider the structure’s center or most prominent area when deciding its location.

* Choose the single option from the list below that best describes the location, even if the fit is
approximate.

Location Options:

* upper left

* upper center
* upper right
» middle left

* center

* middle right
* lower left

* lower center
* lower right

¢ not visible

Output format: only one or two word(s) representing the chosen location. No additional text or
formatting is allowed.

Prompt Template used for caption generation

You are a radiologist analyzing an ultrasound image focused on the {anatomy_location}.

Your task is to generate a concise and informative caption that accurately describes the key anatomical
structures and any significant findings visible in the provided ultrasound image.

Output format: A single string constituting the image caption. Output only the generated caption text
itself. Do not include any introductory phrases (like Caption:), labels, explanations, or additional
formatting.

Examples:

Examplel: Thyroid nodule in the right lobe. TI-RADS level 3, Benign.
Example2: Thyroid nodule in the left lobe. TI-RADS level 3, Benign.
Example3: Thyroid nodule in the right lobe. TI-RADS level 4, Benign.
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Prompt Template used for report generation

You are a radiologist analyzing an ultrasound image focused on the {anatomy_location}.

Your task is generate a concise and informative radiological report based strictly on the visual findings
within the provided image. Your report should describe the primary organ’s appearance (size, shape,
borders/capsule), its parenchymal echotexture (e.g., homogeneous, heterogeneous, echogenicity
relative to reference structures), and identify any visible abnormalities (e.g., masses, cysts, fluid
collections, calcifications, ductal dilation). Comment on relevant adjacent structures if visualized.
Use standard radiological terminology.

Output format: Strings, that is your report.

Example: The liver morphology is full with a smooth capsule. The parenchymal echotexture is fine
and diffusely increased. Visualization of the portal venous system is suboptimal. Intrahepatic and
extrahepatic bile ducts are not dilated. The main portal vein diameter is within normal limits. The
gallbladder is normal in size and shape. The wall is smooth and not thickened. No obvious abnormal
echoes are seen within the lumen. The pancreas is normal in size and shape with homogeneous
parenchymal echotexture. The pancreatic duct is not dilated. No definite space-occupying lesion is
seen within the pancreas. The spleen is normal in size and shape with homogeneous parenchymal
echotexture. No obvious space-occupying lesion is seen within the spleen.
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E DATASET DETAILS AND LICENSE

Table 7: Summary of Annotated Datasets Used in U2-BENCH

Dataset Anatomy Clinical scenarios Task Case License
Fetal abdomen
Fetal brain
FETAL PLANES Lctalfemur Fetal standard plane identification ~ VRA 137 CCA 4.0
DB Burgos! Fetal thorax
. €951 Maternal cervix
Artizzu et al. other
2020)
DDTI (Pedrazal  thyroid Thyro%d nodule 1dent.1ﬁcz.1t10n VRA 1o -
Thyroid nodule localisation LL
2015)
The Open Kidney . .
US Dataset (Singla ~ kidney Kidney detection VRA g CCBYNC-
Kidney Diag view identification oD SA
2023)
gztg{ :i)rcrllomen Fetal diagnostic planes identifica- VRA
FPUS23 (Prabakarai Fetal head tion RP 752 MIT
2023) Fetal legs Fetal US report generation
Echogenic (Da Cor] ~Fetal abdomen  Fetal abdominal organ detection OD 102 CCA4.0
bi)
FALLMUD (FALL; Crural muscles  Muscle detection oD 100 -
MUD)
Micro-US Prostate
Segmentation Prostate localisation VRA
Dataset  ( g Prostate Prostate Diag view identification LL 110 CeA 401
2024)
gzzx EIS) Heart ejection fraction estimation VRA CC BY-NC-
CAMUS (Leclerc Heart atrium and ventricle localisa- OD 316
2019) Heart 2CH tion CVE SA40
u Heart 4CH !
Breast Lesion
Detecti in US i
cection 1 Breast benign Breast lesion classification Diag 171 -

Videos
2022)

Brest malignant
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(Continued) Table[7]
Dataset Anatomy Clinical scenarios Task Case License
Breast US Images . . .
Dataset (AL Breast cancer level classification Diag
Dhabvani et al Breast Breast tumour localisation VRA 210 CCO: PD
2020) : Brest Diag view identification LL
Dermatologic  Ul-
trasound  Images
for classifica-  Skin Skin tumor level classification Diag 100 -
tion (Laverde Saad
2021)
Polycystic  Ovary
Ultrasound Images Polycystic Ovary Syndrome locali- .
Dataset ' OVary sation VRA 10 CCO: PDD
Carotid thickness estimation VRA

CUBS (Meiburger; Carotid Carotid detection oD 681 CCA 4.0
2021) Catotid Diag view identification CVE
Knee US dataset in Knee US KL and pain grad classifi- Diag
a population-based cation
cohort Knee Knee Diag view identification XEA 326 CCO Lo
2023) Knee lesion localisation
HCIS Fetal head lljetai Eea(é c‘:iircumference estimation 88]5 202 CCA 4.0
Heuvel et al, 2018) etal head detection

. Thyroid nodule level classification Diag
iﬂr:lgNﬂ?Itl Neug- Thyroid Thyroid nodule localisation LL 206 -
palkial998| [2023)

. m Thyroid Left T N . .
Thyroid  (Kronke o Thyroid Diag view identification VRA 563 CCBY
Thyroid right

2022)
GDPHSYSUCC Breast Breast lesion classification Diag 109 -
p022)
LEPset (Li et al, Pancreas Pancreatic cancer classification Diag 101  CCA 4.01

2023b)
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(Continued) Table[7]
Dataset Anatomy Clinical scenarios Task Case License
COVID- COVID-19 level classification Diag
BLUES Lung Lung US caption generation VRA 318  ANN4.0I
2025) Lung Diag view identification CG
Ultrasound Guided
Regional Anesthe- . . .
. - Brachial plexus  Brachial plexus detection OD 179  Non-
sia (Tyagi et al| commerical
2024)
Unity Imaging Col- CCANN
laborative  (Shuni{ Cardiac Caridac Keypoint Detection KD 500 401
2023) ’
C-TRUS
Dataset (Leeni Colon Colon wall detection oD 166 -
2075)
ACOUSLIC- Fetal abdominal Fet?l abdominal circumference esti- \O/RDA 310 CCANCSA
Al mation
(Sappia 2024) Fetal adominal OD CVE 4.01

Fetal head Fetal head detection
PSFHS 2024) gﬁt};asligublc SYM" Eetal pubic symphysis detection oD 100 CCA 4.0

Fetal head Fetal view identification VRA
JNU-IFM Fetal pubic sym-  Fetal head detection oD 202 CCBY4.0
2022) physis Fetal pubic symphysis detection
Dataset of B-mode Li teatosis classificati .
fatty liver US im- ;0o Liver fat value estimation Bgf\ 222 CCA4.01
22%?% (Byra et al, Liver Diag view identification CVE
African Fetal Stan-  Fetal abdomen
dard Plane (Sendra;  Fetal brain Fetal standard plane identification VRA 10 CCA 4.0I
Balcells et all Fetal femur
m Fetal thorax
BrEaST (Pawlowskd  Breast Breast LL LL 100 CCBY 4.0
poz4)
Ultrasound Breast
Images for Breast Breast Breast cancer classification Diag 100  CCO: PD

Cancer

(Sairam,
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(Continued) Table[7]
Dataset Anatomy Clinical scenarios Task Case License
[N simulation
and ' Abdominal Abdominal OD oD 100 -
2020)
Carotid Artery Ul- .
trasound and Color External ?arotld R N . .
Doppler (Pahuni Chpu dLeft caroth Carotid Diag view identification VRA 100 Apache 2.0
5023) right carotid
;&éjzloD Thyroid Thyroid lesion classification Diag 100 -
Auto-PCOS classi- Polycystic Ovary Syndrome classifi- Di
fication Ovary cation Vgi 218 CCA 4.0
Ploycystic Diag view identification
Auto-PCOS classi-
fication Ovary Polycystic Ovary Syndrome classifi- Diag 100 CCBY 4.0

2020)

cation

E.1 SUMMARY OF DATASET LICENSING TERMS

The datasets included in U2-BENCH span a range of open and restricted licenses. For clarity, we summarise
the licensing terms appearing in Table[7}

L]

CC0 / Public Domain (PD, PDD): Fully open; free use, modification, and redistribution without
attribution, including commercial use.

CCBY /CCBY 4.0/ CCA 4.0I: Free use with attribution; permits modification and redistribution.

CC BY-NC-SA / CC BY-NC-SA 4.0/ variants written as ANN 4.0 I, CCANN 4.0 I, CCANCSA
4.0I: Non-commercial use only; derivatives must adopt the same license.

CC BY-NC-ND: Attribution required; non-commercial; no derivatives permitted. Minor naming
variations follow the dataset providers’ release notes.

MIT License: Permissive license allowing free use, modification, and redistribution, including
commercial applications.

Apache 2.0: Permissive license with an explicit patent grant.

Non-commercial data use agreement: Access provided strictly for non-commercial research;
redistribution or reuse requires separate permission.

Unspecified / “~’: Publicly released datasets without an explicit license. Usage follows the terms
communicated by the original authors.

These variations reflect the diverse data-sharing practices in medical imaging. All usage within U2-BENCH
complies with the terms of the original dataset providers.
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