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Abstract001

Large Language Models (LLMs) often ex-002
hibit deficiencies with complex reasoning tasks,003
such as maths, which we attribute to the dis-004
crepancy between human reasoning patterns005
and those presented in the LLMs’ training data.006
When dealing with complex problems, humans007
tend to think carefully before expressing the008
solutions. However, they often do not articulate009
their inner thoughts that involve their intentions,010
chosen methodologies, etc. Consequently, in011
training data collected from human sources,012
critical insights essential for bridging reason-013
ing steps may be absent. To bridge this gap,014
we proposes inserting insights between consec-015
utive reasoning steps, which review the status016
and initiate the next reasoning steps. Unlike017
prior prompting strategies that rely on a single018
or a workflow of static prompts to facilitate rea-019
soning, insights are proactively generated to020
guide reasoning processes. We implement our021
idea as a reasoning framework, named Think-022
ing Before You Speak (TBYS), and design a023
pipeline for automatically collecting and filter-024
ing in-context examples for the generation of025
insights, which alleviates human labeling ef-026
forts and fine-tuning overheads. Experiments027
on challenging mathematical datasets verify the028
effectiveness of TBYS. Source code attached029
will be released upon publication.030

1 Introduction031

OpenAI’s O1 (OpenAI, 2024) demonstrates the po-032

tential of leveraging long chains of thought (CoT)033

(Wei et al., 2022) to enhance the reasoning capabil-034

ities of large language models (LLMs). Through035

its generated reasoning, O1 exhibits advanced cog-036

nitive skills, such as problem decomposition, er-037

ror identification, and correction – processes that038

continuously guide thinking toward accurate so-039

lutions. Inspired by this, various test-time scal-040

ing (Snell et al., 2024; Zhang et al., 2025) ap-041

proaches were proposed, such as using prompts042
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Figure 1: A simplified example to compare the reason-
ing trace of human (and our TBYS) against one from
conventional training data, where human and TBYS ex-
cel with a flow of insight-driven reasoning that is more
comprehensible. On the other hand, the training set
example adds to the difficulty of learning, since it is not
always simple to re-engineer the connection between the
consecutive steps behind the succinct reasoning logic.
TBYS proactively fill reasoning gaps with insights rep-
resenting intention, explanation, or justification, etc.
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like “Wait,” (Muennighoff et al., 2025) to stimulate043

self-correction, “Wait, using Python” to encourage044

coding (Li et al., 2025a), or fixed workflows of045

prompts to structure inferences (Hong et al., 2024).046

However, these methods suffer from task and LLM047

sensitivity: they rely heavily on specific problem048

structures and serendipity to succeed. As a result,049

they are most effective when paired with reinforce-050

ment learning techniques (e.g., rejection sampling)051

to filter suboptimal cases, but are ill-suited for di-052

rect application to scale reasoning at test time.053

This paper introduces a novel prompting054

paradigm called proactive prompting, where an055

LLM proactively generates prompts to steer its056

own reasoning steps, rather than passively reacting057

to predefined prompting patterns. This approach058

demonstrates particular advantages in complex rea-059

soning tasks – such as advanced mathematics prob-060

lems – where the proactive generation of “inner061

thoughts” (critical for guiding reasoning) is often062

absent from final reasoning outputs in conventional063

training data.064

To validate this paradigm, we develop a rea-065

soning framework named Thinking Before You066

Speak (TBYS), which iteratively inserts a proactive067

prompt – termed the insight – before each reason-068

ing step to explicitly define the status and the goal069

of that step. Figure 1 contrasts a TBYS reasoning070

process with that in conventional training data (with071

which LLMs are trained). TBYS mirrors human072

inner-thinking patterns, producing more explain-073

able reasoning traces that facilitate LLM learning074

and offering greater educational values for human075

readers.076

In the remainder of this paper, we detail the077

TBYS reasoning framework in Section 2. Since078

TBYS relies on iteratively generating insights to079

guide reasoning, the quality of these generated in-080

sights is critical to its accuracy. To address this, we081

employ in-context learning with examples retrieved082

from a library of insight exemplars. Section 3 de-083

scribes our pipeline for automatically collecting,084

filtering, and selecting example insights for this li-085

brary. Section 4 briefly reviews prior related work.086

Finally, Section 5 evaluates TBYS against strong087

baselines on challenging datasets, demonstrating088

significant performance improvements and better089

accuracy-overhead trade-offs. We further conduct090

ablation studies to validate the contributions of key091

components.092
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Figure 2: The TBYS reasoning framework (Section 2)
and insight library construction (Section-3).

2 The TBYS Reasoning Framework 093

TBYS utilizes a library L of high-quality insights. 094

The automatic construction of this library is de- 095

tailed in Section 3. During inference, examples 096

are retrieved from L for in-context learning. We 097

also manually define three seed examples S, each 098

containing a question and the complete reasoning 099

steps for the question with the associated insights. 100

As shown in Figure 2, TBYS employs a 101

multi-round reasoning approach. Each round 102

t consists of three steps: (1) Insight Genera- 103

tion: A preliminary insight ipret is generated 104

based on the current reasoning history Ht−1 = 105

(q, (i1, s1), (i2, s2), · · · , (it−1, st−1)), where q is 106

the question, and ii, si denote the insight and so- 107

lution step in round t, respectively. (2) Example 108

Retrieval: Each insight is defined by its two com- 109

ponents: situation (summarizing the current rea- 110

soning status) and goal (stating the intention for 111

solution step st). The situation of ipret is used to re- 112

trieve kE = 8 examples Et from library L. Using 113

these kE high-quality insights as in-context exam- 114

ples, a refined insight it is generated. (3) Solution 115

Step Generation: The solution step st is generated 116

using Ht−1 and it, then appended to Ht−1 to form 117

Ht. To signal the end of reasoning, st includes a 118

field indicating whether a confident answer to q has 119

been reached. 120
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3 Construction of the Insight Library121

As shown in Figure 2, we build the library of in-122

sights in two stages: initialization and filtering.123

Initialization: We use manually curated seed124

examples S and a dataset DS containing questions125

and their chain-of-thought solutions. First, an LLM126

is prompted to split each solution in DS into 1–3127

steps. The LLM is then prompted again to generate128

an insight it for each solution step st, consisting of129

a situation, which should represents the reasoning130

status up to that step, and a goal, which should131

offers a purpose and a guideline to stimulate the132

LLM to reproduce solution step st. All insights and133

divided solution steps are collected into an initial134

library L0.135

Filtering: To identify high-quality insights, we136

use a dataset DG (containing questions and ground-137

truth answers) and a scoring mechanism: (1) For138

each insight ii ∈ L0, maintain counters ri (correct139

uses) and wi (wrong uses). (2) Evaluate L0 by run-140

ning TBYS on each question q ∈ DG. For each rea-141

soning step for q, retrieve kF = 25 examples from142

L0 and randomly select one as a 1-shot example.143

If the reasoning yields a correct answer, increment144

ri for each ii used; otherwise, increment wi. (3)145

Rank insights in L0 by the score ri
ri+wi

log(ri+wi),146

which balances accuracy and usage coverage. Se-147

lect the top-kL examples to form L1. This process148

can be iterated (e.g., using L1 and new data from149

DG to create L2) to progressively improve the li-150

brary.151

In our experiments, the MATH-500 dataset152

(Lightman et al., 2023) serves as DS and the test-153

set, e.g MATH-500 or AIME (Zhang et al., 2023a),154

serves as DG in a test-time adaptation (Jang et al.,155

2023) manner, with kL as a variable parameter.156

4 Related Work 157

Extensive research has investigated prompt designs 158

to improve LLM reasoning, including Chain-of- 159

Thought (Wei et al., 2022), Least-to-Most (Zhou 160

et al., 2023), Self-Consistency (Wang et al., 2023b), 161

and Tree-of-Thoughts (Cao et al., 2023). Meth- 162

ods to enhance task-specific performance include 163

question rephrasing, subtask decomposition, verifi- 164

cation, and symbolic grounding (Lyu et al., 2023; 165

Xu et al., 2024; Wang et al., 2023a; Zelikman et al., 166

2022; Wang et al., 2024); factuality and faithful- 167

ness checking for reasoning chains (Wang et al., 168

2024); and separating knowledge retrieval from 169

reasoning (Jin et al., 2024). 170

Iterative prompting techniques rely on pre- 171

defined, hardcoded actions to guide reasoning, 172

such as Self-Refine (Madaan et al., 2023), IRCoT 173

(Trivedi et al., 2023), iCAP (Wang et al., 2022), 174

MetaGPT (Hong et al., 2024), and Chain of Ideas 175

(Anonymous, 2024b). 176

Memory-based methods include Buffer of 177

Thoughts (Yang et al., 2024c) distills high-level 178

guidelines from previously solved tasks and stores 179

them in a buffer for future reuse, while Skill-based 180

CoT (Didolkar et al., 2024) first predicts skill-based 181

labels for the questions. (Zhang et al., 2023b) iden- 182

tifies key concepts in questions and uses inductive 183

prompting templates to extract related concepts. 184

rStar (Qi et al., 2024) employs a self-play mutual 185

reasoning approach – augmented by Monte Carlo 186

Tree Search (MCTS) with a set of five reasoning- 187

inducing prompts – to enhance reasoning. 188

Finetuning-based methods, such as STaR (Zelik- 189

man et al., 2022), ReST-MCTS (Zhang et al., 2024), 190

and AFlow (Anonymous, 2024a), demonstrate that 191

iterative training on reasoning histories and task- 192

specific workflows of correct answers enables mod- 193

els to tackle increasingly complex problems. 194
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Figure 3: Performance comparison on MATH-500
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Figure 4: Performance comparison on AIME
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5 Experiments195

5.1 Experiment settings196

We conducted experiments on two challenging197

mathematical datasets, AIME (Zhang et al., 2023a)198

and MATH-500 (Lightman et al., 2023). We com-199

pare TBYS against a simple yet very strong base-200

line: 8-shot In-context Learning (Lu et al., 2022)201

with Self-Consistency (Wang et al., 2023b).202

For the experiments, use utilize the LLM203

Qwen2.5-7B-Instruct (Yang et al., 2024a) via LLM204

API provided by Siliconflow (sil), with the fol-205

lowing configurations: max_tokens=1024, temper-206

ature=0.2, top_k=40, top_p=0.7, and n=1. The207

bge-large-en-v1.5 embedding model is employed208

for insight retrieval. Results are reported as the209

average across 8 experimental runs.210

Since coding benefits mathematical problems211

(Chen et al., 2023), when Python code blocks are212

detected in the LLMs’ responses, we invoke a cus-213

tomized sandboxed Python interpreter and append214

the output to the code block.215

5.2 Comparison216

When compared with Self-Consistency (SC), TBYS217

demonstrates comparable performance to SC using218

5 reasoning samples (SC@5) on MATH-500 (Fig-219

ure 3) and SC@7 on AIME (Figure 4). The results220

further indicate that TBYS integrates effectively221

with SC: TBYS+SC yields over 5% absolute gains222

in accuracy on MATH-500 and 7.5% on AIME.223

5.3 Overhead Analysis224

Table 1: Cost comparison to SC under similar accuracy

MATH-500 Acc. Time Prompt Completion
TBYS 0.61 52.82 18163.80 999.57
SC@5 0.61 102.56 13334.62 2217.30
AIME Acc. Time Prompt Completion
TBYS 0.22 78.15 20686.23 1559.60
SC@7 0.22 322.79 25,242.54 7,102.49

We compare the overhead of TBYS with SC@5225

on MATH-500 and with SC@7 on AIME, where226

the methods achieve comparable accuracies. The227

metrics analyzed include wall-time, number of228

prompt tokens, and completion tokens. As shown229

in Table 1, under similar accuracies, TBYS reduces230

wall-time and number of completion tokens by ap-231

proximately 1
2 on MATH-500 and 1

3 on AIME.232

While TBYS uses 46% more prompt tokens on233

MATH-500, these can be cached and typically234

much cheaper than completion tokens.235

5.4 Ablation Study 236

Table 2: Ablation Study

MATH-500 AIME
TBYS 61.17% 21.90%

- Library Construction 58.90% 19.51%
- Coding 57.00% 18.11%

8-shot 53.23% 14.99%

We conducted ablation experiments by using 237

the raw insight library L0 as L1 (without filter- 238

ing, as described in Section 3). Accuracy declines 239

were observed in both datasets. Notably, we only 240

performed one round of insight filtering (i.e., us- 241

ing L = L1), and additional filtering rounds are 242

expected to further improve accuracy. Table 2 also 243

demonstrates that coding contributes half of the ac- 244

curacy gain compared to simple 8-shot prompting. 245

5.5 Impact of Library Size 246
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Figure 5: Impact of insight library size

In Section 3, we sorted the insight library L0 and 247

selected the top-kL insights to form L1. Figure 5 248

shows that on MATH-500, TBYS achieves peak 249

accuracy with an insight library size of 50, while on 250

AIME, the optimal size is 500. This likely arises be- 251

cause AIME contains more diverse problem types. 252

6 Conclusion and Future Work 253

This paper introduces a novel proactive prompting 254

paradigm, instantiates it with the simple TBYS 255

reasoning framework, and verifies the effectiveness 256

of TBYS on challenging advanced mathematics 257

reasoning tasks. 258

Promising directions for future improvement 259

include: Automated search for optimal insights 260

(Yang et al., 2024b); Integration of long-term mem- 261

ory mechanisms (Tang et al.; Anonymous, 2025); 262

Enhancement of programming capabilities (Chen 263

et al., 2023); Enforcement of structured inference 264

processes (Li et al., 2025b; Cao et al., 2023). 265
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Limitations266

Our method incurs higher computational overhead267

compared to direct prompting, a common drawback268

among advanced prompting techniques that involve269

scaling test-time inference.270

Due to time and financial constraints (our cur-271

rent experiments take about 50 days with single272

threaded API calls), we only evaluated the pro-273

posed method on two math-domain datasets using274

a single LLM.275

Ethical Statement276

This work fully adheres to the ACL Ethics Policy.277

To the best of our knowledge, no ethical issues are278

associated with this research.279
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