
Under review as a conference paper at ICLR 2024

COMPENSATING FOR NONLINEAR REDUCTION WITH
LINEAR COMPUTATIONS IN PRIVATE INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Increasingly serious data privacy concerns and strict regulations have recently
posed significant challenges to machine learning, a field that hinges on high-
performance processing of massive user data. Consequently, privacy-preserving
machine learning (PPML) has emerged to securely execute machine learning tasks
without violating privacy. Unfortunately, the computational cost to securely execute
nonlinear computations in PPML models remains significant, calling for new
neural architecture designs with fewer nonlinear operations. We propose Seesaw,
a novel neural architecture search method tailored for PPML. Seesaw exploits
a previously unexplored opportunity to leverage more linear computations and
nonlinear result reuse, in order to compensate for the accuracy loss due to nonlinear
reduction. It also incorporates specifically designed pruning and search strategies to
efficiently handle the much larger design space including both nonlinear and linear
operators. Compared to the previous state-of-the-art PPML for image classification
on ImageNet, Seesaw achieves 1.68× less latency at 71% iso-accuracy, or 4.59%
higher accuracy at iso-latency of 1000K ReLU operations.

1 INTRODUCTION

Machine learning (ML) has become an indispensable and ubiquitous technology in contemporary data-
driven applications, with deep neural networks achieving remarkable success in complex tasks such
as image/video classification and natural language processing LeCun et al. (2015). The effectiveness
of ML hinges on massive training data and extensive computational resources to efficiently process
large network models. Consequently, ML tasks start to be outsourced to remote servers and deployed
on cloud computing systems Aliyun; Amazon Web Services; Azure; Baidu; Cloud; OpenAI (2023).
While cloud-based ML services bring a new revolution, this deployment model has also raised serious
concerns regarding the privacy of user data, such as health/medical records, financial status, and
location information, which must now be sent to public cloud platforms and suffer from leakage risks.

In response to the growing privacy concerns associated with ML applications, privacy-preserving
machine learning (PPML) solutions have been proposed to securely store and process users’ sensitive
data without compromising confidentiality and integrity. State-of-the-art PPML frameworks heavily
use cryptographic primitives, including homomorphic encryption and multi-party computation, to
achieve provable security Badawi et al. (2018); Brutzkus et al. (2019); Chandran et al. (2022); Dowlin
et al. (2016); Juvekar et al. (2018); Liu et al. (2017); Mishra et al. (2020); Ng & Chow (2021); Riazi
et al. (2018); Zhang et al. (2023). However, despite extensive algorithm and system optimizations,
their computational cost is still several orders of magnitude higher than the original plaintext models,
resulting in unacceptably long execution latency that restricts their practical usage in time-sensitive
scenarios like online inference. The high processing overheads are primarily associated with nonlinear
operators (e.g., activation functions such as Sigmoid and ReLU), which involve complex secure
multi-party computation protocols Yao (1986) with heavy cryptographic computations (e.g., AES
encryption) and frequent communication between the user and the cloud.

Great efforts have thus far been made to alleviate the nonlinear computational cost in PPML, such
as developing more efficient protocols for nonlinear operators Ghodsi et al. (2021); Lou et al.
(2021); Mishra et al. (2020), or reducing the number of such operations through pruning and neural
architecture search (NAS) Cho et al. (2022a;b); Ghodsi et al. (2020); Huang et al. (2022); Jha et al.
(2021); Kundu et al. (2023a;b). Nevertheless, almost all prior techniques simply started with an

1

Under review as a conference paper at ICLR 2024

existing network architecture, and only focused on reducing the amount of nonlinear operators while
struggling to minimize the corresponding negative accuracy impact. This approach inevitably causes
increasing accuracy degradation when more nonlinear computations are reduced, suffering from the
fundamental tradeoff between model accuracy and execution latency.

Our contributions. In this work, we aim to break this tradeoff, by exploiting opportunities to use
additional computations and data orchestration to compensate for accuracy loss due to nonlinear
reduction. Specifically, we propose two approaches: (1) adding more linear operations to the model
to recover its decreased representation capacity; (2) reusing the results of the remaining nonlinear
operators as much as possible through introducing residual shortcut links to the model topology.
Although adding such linear and aggregation computations would increase the execution latency
in the insecure case, the overheads in the PPML scenario are negligible compared to the dominant
nonlinear cost, therefore exhibiting a unique opportunity.

We thus design Seesaw, a one-shot NAS method that leverages the above compensation ideas to
automatically search for optimized neural network architectures for PPML. Besides the existing
problem of determining how to selectively enable nonlinear operations under a given nonlinear
budget, Seesaw needs to further deal with several new challenges. First, it must decide the amounts
of extra linear computations and data reuse to add, in order to achieve a balance between sufficient
representation capacity and overfitting avoidance. We propose novel pruning and NAS techniques to
solve this issue. Second, it also needs an efficient search and training strategy, because the overall
design space is significantly enlarged with the additional computations. We present a novel search
strategy with a modified loss function. When evaluated on the CIFAR100 and ImageNet datasets
under a wide range of nonlinear budgets, Seesaw is able to push the Pareto optimal frontier between
the model accuracy and the execution latency. Compared to the previous state-of-the-art Kundu et al.
(2023a), Seesaw achieves 1.68× latency reduction at iso-accuracy, or 4.59% accuracy at iso-latency.

2 BACKGROUND

Privacy-preserving machine learning (PPML) aims to address the challenges of processing private
user data on proprietary ML models, while not revealing any sensitive information to malicious
participants during the computation. We focus on PPML inference. More specifically, privacy is
protected if (1) the user learns no knowledge of the ML model except for the inference result of her
own input data; and (2) the model owner gains no information about the user data.

Currently, there are mainly two approaches to realize PPML. Hardware-based trusted execution
environments (TEEs) can protect sensitive data Hunt et al. (2018); Hynes et al. (2018); Kim et al.
(2020); Kunkel et al. (2019); Li et al. (2021); Tramer & Boneh (2019), but TEEs are vulnerable to side
channels, weakening their security Chen et al. (2019); Wang et al. (2018). Cryptography-based PPML
protects data privacy using modern cryptographic primitives Damgård et al. (2012); Gentry (2009);
Yao (1986). They offer theoretically provable, strong security guarantees. Our work optimizes the
execution latency of crypto-based PPML solutions while minimizing the accuracy impact.

2.1 CRYPTOGRAPHIC PRIMITIVES AND PPML PROTOCOL

Existing PPML algorithms have used various cryptographic primitives to best match different com-
putation patterns in ML applications. Fully Homomorphic Encryption (FHE) Gentry (2009) is
a technique that allows for applying arbitrary functions composed of addition and multiplication
on encrypted data (e.g., user data or model weights). FHE is useful in PPML as linear operators
(matrix multiplications, convolutions, etc.) account for a majority of computations in modern ML
models. Previously, CryptoNets Dowlin et al. (2016), HCNN Badawi et al. (2018), TAPAS Sanyal
et al. (2018), LoLa Brutzkus et al. (2019), and Faster CryptoNets Chou et al. (2018) have explored
the application of FHE in PPML. Unfortunately, the computational complexity of FHE is quite high
and can result in several orders of magnitude slowdown compared to insecure computing.

Another way to support linear computations is Secret Sharing (SS) Damgård et al. (2012). PPML
typically assumes two parties, the user and the model owner. SS transforms the data of each party
into randomly split shares. Each share is hold by one party, and each party only sees its own share but
not the full value, ensuring data privacy. Addition of two encrypted values, as well as multiplication
between an encrypted value and a plaintext number, can be done locally with only simple operations.

2

Under review as a conference paper at ICLR 2024

Therefore, the linear operators that involve the encrypted user data and the plaintext weights can be
done efficiently. Gazelle Juvekar et al. (2018) and DELPHI Mishra et al. (2020) have used SS to
replace FHE for higher online processing speed. Nevertheless, FHE is still needed during offline
pre-processing to prepare the share values.

The remaining challenge is handling nonlinear operators such as ReLU and MaxPool. Garbled
Circuit (GC) Yao (1986) takes the encrypted boolean representations of the two parties’ input
data, and securely computes an arbitrary boolean function composed of AND and NOR gates. Most
existing PPML systems use GC to compute nonlinear operators Juvekar et al. (2018); Liu et al. (2017);
Mishra et al. (2020); Mohassel & Zhang (2017); Rouhani et al. (2018). GC processing requires heavy
cryptographic computations (e.g., AES encryption) and frequent communication between the two
parties, and thus incurs significant overheads compared to insecure nonlinear processing.

PPML protocol. In this work, we follow the overall execution flow of the state-of-the-art PPML
system, DELPHI Mishra et al. (2020). The protocol consists of two phases: an offline pre-processing
phase, and an online inference phase. During offline pre-processing, we use FHE algorithms to
generate the secret shares that will be used by the online SS scheme to compute the linear operators.
Specifically, for a linear operator yi = Wi ·xi, the user and the model owner each randomly samples
a vector, ri and si, respectively. The user sends Enc(ri) (encryption of ri) to the model owner, who
homomorphically computes Enc(Wi · ri − si) using FHE. The user receives and decrypts this result
to keep Wi · ri − si. We also generate the GC boolean function for the nonlinear operators. For
example, the user creates a GC function f(a) = ReLU(a + (Wi · ri − si)) − ri+1 for the ReLU
operator xi+1 = ReLU(yi), and sends it to the model owner.

In the online inference phase of a linear operator, the two parties start with each holding a share of
the input, i.e., ri by the user and xi − ri by the model owner. These shares are either from the results
of the previous operator, or the user calculates xi − ri and provides it to the model owner if this is
the first layer. The model owner then evaluates Wi · (xi − ri) + si on its share. The user already has
Wi · ri − si from the pre-processing phase. We can verify that these two values are exactly the shares
of the output, i.e., summed up to Wi · xi = yi. Thus we have maintain the induction condition.

For nonlinear operators, the online inference uses GC. We use ReLU as an example, xi+1 =
ReLU(yi). The model owner has the GC function f(a) from the offline phase. It sets a to its share
of yi, i.e., a = Wi · (xi − ri) + si, and then evaluates f(a) (involving heavy computation and
communication) to obtain ReLU(yi)− ri+1 = xi+1 − ri+1, which is a valid share of the input to
the next operator. The user holds the other share ri+1.

2.2 RELATED WORK

In the above PPML protocol, SS has made the online computations of linear operators almost as
cheap as the original insecure processing, and GC offers general compute capability to support
unmodified nonlinear operators to ensure the same accuracy level. However, the use of GC causes
severe communication overheads, which become the main performance bottleneck (over 300× slower
than linear computations in DELPHI Garimella et al. (2022)). It is therefore necessary to focus on
reducing the cost of nonlinear operators to speed up the PPML processing.

Recently there have been various proposals to address this issue. Some designs change the nonlinear
operator computations from ReLU to more crypto-friendly alternatives. DELPHI Mishra et al. (2020)
replaced part of the nonlinear operators with linear approximation to exploit the latency-accuracy
tradeoff, using neural architecture search (NAS) techniques. SAFENet Lou et al. (2021) also used
NAS to apply approximation, but at more fine granularity to reduce the accuracy impact. Circa Ghodsi
et al. (2021) reconstructed ReLU into a sign test (by GC) plus a multiplication (by SS), in order to
reduce the processing cost. Other solutions reduce (i.e., prune) the amount of ReLU operators in
existing neural network structures. CryptoNAS Ghodsi et al. (2020) rearranged the ReLU operators
and used a macro-search algorithm, ENAS, to search for a network with fewer nonlinear operators.
Sphynx Cho et al. (2022a) instead used micro-search approaches to design its building blocks more
thoroughly to achieve higher accuracy. DeepReDuce Jha et al. (2021) pruned the model in a more fine-
grained manner at the channel level, and further improved accuracy through knowledge distillation.
SNL Cho et al. (2022b) was inspired by the parameterized ReLU and realized pixel-level ReLU
pruning. SENet Kundu et al. (2023a) proposed the concept of ReLU sensitivity, which distinguished
the importance of different nonlinear operators and realized automated ReLU pruning.

3

Under review as a conference paper at ICLR 2024

Sep Conv
input

Conv

Dilated Conv

Skip Connect

ADD

…

ReLU

Identity

𝛽!
𝛽"

𝛽#
𝛽$

(a) Sampling block.

Conv

ADDConv

Conv

ReLU
……

𝛽!

𝛽"

𝛽#

input1

input2

inputn

(b) Aggregation block.

Figure 1: Main building blocks of the Seesaw search space. The nonlinear ReLU operator is always
placed after an element-wise ADD to save nonlinear computations.

3 DESIGN

Previous PPML designs that aimed to reduce the nonlinear cost (Section 2.2) suffered from a
common limitation: they merely reduced the ReLU operators without reconsidering the overall
network architecture. This inevitably decreases the representation capacity of the model. Since the
representation capacity is jointly determined by both the linear and nonlinear operators, our key idea
is to compensate for the accuracy loss caused by reduced nonlinear operators, by (1) adding more
linear operators in the model, and (2) reusing the remaining nonlinear outputs as much as possible.
We thus propose Seesaw, a one-shot NAS method to automatically search for crypto-friendly model
architectures for PPML, with the best accuracy under the given budget for nonlinear operators, i.e.,
the ReLU budget.

3.1 DESIGN SPACE

Seesaw uses two ways to compensate for the loss of nonlinear operators. Accordingly, two building
blocks are added to its search space, as illustrated in Figure 1.

Figure 1a shows a sampling block, which substitutes a traditional Conv-ReLU block by enabling
multiple parallel branches with various linear operators Szegedy et al. (2015; 2016). The branches
can be convolutions with different kernel sizes (e.g., 1 × 1, 3 × 3, 5 × 5), depth-wise separable
convolutions, dilated convolutions, pooling, or even a direct skip connection. These independent
branches enhance the model representation capacity by extracting multiple and different scales of
features. While Sphynx Cho et al. (2022a) and CryptoNAS Ghodsi et al. (2020) also used up to four
linear operators in a block, our sampling block is designed to contain much more branches to increase
the expressivity. Note that all branches keep the original data shape and size, so their outputs can be
weighted and combined with an element-wise ADD. The final ReLU may be pruned, i.e., replaced
with an Identify operator, to meet the overall ReLU budget, as described in Section 3.3.

Figure 1b shows an aggregation block, which aggregates the outputs of previous ReLU operators in
the model. The goal of such aggregation is to maximally reuse the limited ReLU outputs remained
in the pruned model, not only by the immediately succeeding block, but also potentially by all the
following blocks, as shown in the overall supermodel in Figure 2. This helps prevent feature loss and
overfitting Szegedy et al. (2015; 2016). Aggregating the ReLU outputs at different positions of the
neural network like this is also another way to introduce extra nonlinear nature to the model. Each
of these previous ReLU outputs first passes a convolution kernel to reduce the resolution. Then an
element-wise ADD operator aggregates these data before feeding them to the final ReLU activation.

We point out two key points in both building blocks. First, both blocks place the (possible) nonlinear
ReLU after an ADD operator. In contrast to the CONCAT operators used in CryptoNAS Ghodsi
et al. (2020) and Sphynx Cho et al. (2022a), ADD results in a smaller data size after aggregation, and
thus reduces the amounts of nonlinear operations for the following ReLU. Actually, because Seesaw
intentionally employs a large number of branches, using CONCAT would lead to significantly higher
cost for each ReLU (by a factor equal to the branch count), and thus limit the total number of ReLU
operators allowed in the model. We present a detailed comparison in Section 4.2 to demonstrate the
benefit. Second, in both blocks, the branches are accumulated according to certain learnable weight
parameters βi,j . We incorporate the training of these weights into the overall training process rather
than separately determining them afterwards, as discussed later in Section 3.3. The weighted output
also helps stabilize the training process, by suppressing the gradient explosion or vanishing issues.

4

Under review as a conference paper at ICLR 2024

input output×𝐿
Sample
blocks
×𝑚!

Aggregation
block

Sample
blocks
×𝑚"

Aggregation
block

Sample
blocks
×𝑚#

Aggregation
block

Figure 2: Supermodel architecture of Seesaw. There are L units in total. Each unit contains mi

sampling blocks followed by an aggregation block. The units are densely connected.

Finally, the sampling blocks and the aggregation blocks are used to construct an over-parameterized
supermodel in Seesaw (Figure 2). Each aggregation block is preceded by several sampling blocks
(i.e., mi). The output of each ReLU is forwarded to all the aggregation blocks after it through residual
connections He et al. (2016), ensuring maximal nonlinear reuse. The use of residual connections
not only avoids information loss and enables nonlinear operator reuse, but also speeds up training
by preventing vanishing gradients. Several prior designs like CryptoNAS Ghodsi et al. (2020) and
Sphynx Cho et al. (2022a) also used residual connections and mainly followed existing topologies
like ResNet He et al. (2016) and NASNet Zoph et al. (2018). We emphasize that Seesaw uses much
more residual connections beyond the original insecure network model, and for a completely different
purpose of reusing the ReLU outputs in order to increase the representation capacity.

3.2 PRUNING METHODS

From the design space in Section 3.1, we see that the supermodel contains the following parameters:
(1) The weight βi,j of the linear operator on the j-th branch in the i-th sampling/aggregation block.
(2) The weight αi (binarized to {0, 1}) to decide the nonlinear operator (ReLU or Identity) in the
i-th sampling block. Seesaw applies pruning to the βi,j parameters of sampling blocks (but not
aggregation blocks, see Section 4.3) and the αi parameters of sampling blocks.

Pruning linear branches. Generally, we would need to prune the branches in each block to derive the
final network architecture from the over-parameterized model. The pruning approach in traditional
NAS in the insecure scenario is conservative, usually keeping only one of the multiple branches in
each block, mainly to restrict the model size and the computation demand Cai et al. (2019); Liu et al.
(2018); Wu et al. (2019). However, in PPML, the computational bottleneck does not lie in the linear
operators. Therefore Seesaw could retain more branches in each block without worrying about the
latency issue, thus increasing its representation capacity to compensate for accuracy loss.

On the other hand, pruning unimportant branches can help prevent model overfitting and improve
its generalization ability. More linear operators do not guarantee improved accuracy. This is still
an important issue in the PPML scenario. Therefore, Seesaw applies pruning to the branches in
each block. Specifically, during training, Seesaw adopts a sparsity constraint to force the branch
weights βi,j in the same block to become sparse. However, we cannot directly use the typical
L1/L2 regularization which encourages all weights to be small. As discussed above, we still want
to keep many important branches to improve the representation capacity, while only discarding
unimportant branches. Therefore, we prefer some weights to be large while the others being small,
i.e., a distribution with large variance. So we propose a new penalty function Llin to maximize the
variance of the branch weights in each block,

Llin = −
∑
i

σ2[βi,j ,∀j], (1)

where σ2 computes the variance. After finishing training, we prune the branches with weights smaller
than an empirically determined threshold, i.e., 0.001 in our experiments. Section 4.3 reveals the
relationship between the pruning threshold and the model accuracy.

Pruning nonlinear operators. We also need to prune the total number of nonlinear ReLU operators
in the model, by selectively enabling a subset of the sampling blocks to use ReLU, while the others
use Identity operators. This is controlled by the weight αi for the i-th sample block. Similar to
ProxylessNAS Cai et al. (2019), these parameters are binarized every epoch to ensure only one
between ReLU and Identity is activated while searching. The total nonlinear count of the supermodel
is calculated based on whether this weight is enabled and the size of the corresponding intermediate

5

Under review as a conference paper at ICLR 2024

data. This count is used to penalize the model if deviating from the given ReLU budget Bref,

Lnonlin =

∣∣∣∣∑i αiHiWiCi − Bref

Bref

∣∣∣∣ , (2)

where Hi, Wi and Ci are height, width and number of channels of the feature map at the i-th layer,
respectively. After training, the ReLU operators are kept or pruned according to the binarized weights.

3.3 SEARCH STRATEGY

The loss function of Seesaw incorporates the linear and nonlinear pruning methods in Section 3.2,

L = LCE + λlin × Llin + λnonlin × Lnonlin (3)

where λlin and λnonlin are weighting hyperparameters. Llin and Lnonlin are from Equations (1) and (2).
LCE is the original cross-entropy loss. Given a sampled network M and a data-label pair (X,Y), the
cross entropy between the prediction M(X) and the ground-truth label Y is LCE = CE (M(X), Y).
Such a loss function allows us to balance the model accuracy and the ReLU budget by simultaneously
optimizing the loss value and regularizing the linear and nonlinear costs.

For the network architecture search strategy, traditional NAS typically constructs an over-
parameterized supermodel encompassing all building blocks and potential branches in the search
space. This supermodel contains numerous architecture parameters (e.g., for each branch and for
each block) that must be first sampled to generate a specific network to train Cai et al. (2019); Liu
et al. (2018). The search space from which network architectures are sampled is too large, making
the training converge slowly. Some approaches try to directly train on the dataset, then optimize via a
specific search algorithm, and finally do retraining Tan et al. (2019); Zoph et al. (2018). This process
can still be computationally intensive and time-consuming.

Seesaw uses a novel search strategy, which only includes the existence of nonlinear operators (i.e., αi)
in the search space, and treats the branch weights for the large number of linear operators (i.e., βi,j)
similarly to the model weights and to be updated during training without extra sampling. This greatly
reduces the search space, accelerating the convergence when searching the best network architectures.

Algorithm 1 Seesaw network architecture search

Input: training dataset DT , validation dataset DV ,
nonlinear budget Bref

Output: optimized network architectures
1: while not converged do
2: if epoch > # warm-up epochs then
3: sample (XV , YV) from DV

4: M = nas_modules.sample()
5: L = CE(M(XV), YV)
6: L+ = λlin × Llin + λnonlin × Lnonlin
7: update(nas_modules, L)
8: end if
9: sample (XT , YT) from DT

10: M = nas_modules.sample()
11: LCE = CE(M(XT), YT)
12: update(M, LCE)
13: end while

Algorithm 1 shows the pseudocode of the
Seesaw search algorithm. Seesaw takes the
input training dataset DT , the validation
dataset DV , and the nonlinear budget Bref.
It trains the supermodel and searches the
network architecture iteratively in a contin-
uous loop until converged. In each itera-
tion, it samples a network architecture from
the search space (i.e., sample αi values at
Line 10), and uses the training dataset to
train the network weights as well as the
branch weights βi,j in the sampled model
(Lines 9 to 12). After a certain number of
warm-up training epochs, it starts to train
the architecture parameters, i.e., the NAS
modules (Lines 2 to 8). The NAS modules
are sampled to determine αi, i.e., the exis-
tence of each ReLU operator (Line 4). We
use the overall loss L from Equation (3) to
update the NAS modules (Lines 6 and 7).
The network weight parameters are now
frozen. The use of the validation set enhances the robustness of the architecture. After converged, the
optimized network architectures can be derived based on the trained supermodel.

4 EVALUATION

We compare Seesaw with several previous PPML methods, including DELPHI Mishra et al. (2020),
CryptoNAS Ghodsi et al. (2020), Sphynx Cho et al. (2022a), SNL Cho et al. (2022b), SENet Kundu

6

Under review as a conference paper at ICLR 2024

16 32 64 128 256 512

Number of ReLU Operators (K)

62.5

65.0

67.5

70.0

72.5

75.0

77.5

80.0

A
cc

ur
ac

y
(%

)

DELPHI
CryptoNAS
Sphynx
SNL

SENet
Seesaw
ResNet

Figure 3: Overall comparison results of image
classification on CIFAR100.

128 256 512 1024 2048 4096

Number of ReLU Operators (K)

55

60

65

70

75

A
cc

ur
ac

y
(%

)

Sphynx
SNL
SENet

Seesaw
ResNet

Figure 4: Overall comparison results of image
classification on ImageNet.

0 5 10 15 20 25 30

Online latency (S)

68

70

72

74

76

78

80

A
cc

ur
ac

y
(%

)

SNL
SENet

Seesaw
ResNet

Figure 5: Real latency comparison results of
image classification on CIFAR100.

0 50 100 150 200

Online latency (S)

55

60

65

70

75

A
cc

ur
ac

y
(%

)

SNL
SENet

Seesaw
ResNet

Figure 6: Real latency comparison results of
image classification on ImageNet.

et al. (2023a), as well as unmodified baseline models. The baseline models are ResNet-18 and
ResNet-34 He et al. (2016), with CIFAR100 Krizhevsky et al. (2009) and ImageNet Deng et al.
(2009). We complete the search, training, and testing on machines with an Intel Xeon Gold 6145
CPU, 8 NVIDIA PH402 GPUs, and 1 Gbps Ethernet. We leverage the DELPHI framework to perform
real performance experiments. We set 100 epochs for searching and 150 epochs for retraining with a
decreasing learning rate from 0.05 to 0. λlin and λnonlin are initialized to 0.001 and 0.1, respectively.

4.1 COMPARISON WITH STATE-OF-THE-ART

Figures 3 and 4 show the comparison between our Seesaw and state-of-the-art PPML methods,
on CIFAR100 and ImageNet, respectively. Following the common practice in previous work, we
represent the runtime latency using the number of ReLU operators. The results clearly demonstrate
the efficiency of Seesaw, in terms of the Pareto optimal frontier between the classification accuracy
and the runtime latency. The ability to achieve higher accuracy with fewer nonlinear operators makes
Seesaw a highly efficient and promising approach for PPML inference.

Specifically, on the CIFAR100 dataset (Figure 3), if we look at the accuracy level of 74% for example,
Seesaw only need about 36.8K ReLU operators, which are 1.36× and 2.71× fewer than the next best
designs, SENet and SNL. On the other hand, when doing an iso-latency comparison at 50K ReLU,
Seesaw improves the accuracy to 75.52%, which is 0.79% better than SENet and 1.45% better than
SNL. The improvements over SENet are relatively small, and sometimes Seesaw has worse accuracy
than SENet at high ReLU budgets. This is because SENet applies more fine-grained pixel-level ReLU
pruning, which reduces the accuracy loss but requires more complex search and training methods.

On ImageNet, Seesaw outperforms the other proposals more significantly. At iso-accuracy of 71%,
Seesaw saves 1.68× ReLU counts over SENet. At iso-latency of 1000K ReLU counts, Seesaw
achieves 75.75% accuracy, 4.59% higher than SENet.

7

Under review as a conference paper at ICLR 2024

32 64 128 256 512

Number of ReLU Operators (K)

60

65

70

75

A
cc

ur
ac

y
(%

)

CONCAT
ADD

Figure 7: Comparison between the ADD and
CONCAT operators on CIFAR100.

0 2 4 6 8 10 12 14
Location

0

1

V
ar
ia
nc
e

Figure 8: Branch weight variance distribution
of sampling blocks at different locations on
CIFAR100, under a ReLU budget of 36,684.

0 1 2 3 4 5 6 7
Location

0.45

0.50

0.55

W
ei
gh
t

Identity ReLU

(a) Model-1, with a ReLU budget of 36,684.

0 2 4 6 8 10 12 14 16
Location

0.45

0.50

0.55

W
ei
gh
t

Identity ReLU

(b) Model-2, with a ReLU budget of 77,824.

Figure 9: Nonlinear operator weights of sam-
pling blocks at different locations on CI-
FAR100. The one with a larger weight be-
tween ReLU and Identity will be used.

Note that when the ReLU budget is abundant, Seesaw can even outperform the accuracy of the
original insecure ResNet models. This is expected because Seesaw uses more linear operators. In the
insecure scenario, such accuracy increases come at the cost of longer inference latency. However in
PPML, the latency is dominated by ReLU, for which Seesaw has similar or fewer operators.

Figures 5 and 6 do the above comparisons using real execution performance in terms of inference
latencies. Even with the extra cost of computing more linear operators, Seesaw can still achieve better
accuracy-latency tradeoffs compared to the baselines. The general trend in these figures is similar to
the previous results using ReLU counts.

4.2 ABLATION STUDY: ADD VS. CONCAT

We compare the performance of ADD and CONCAT operators in Figure 7. We design another
sampling block that is similar to Figure 1a but uses CONCAT instead of ADD. We then apply the
same Seesaw search algorithm to find the best network architecture under different ReLU budgets
and retrain the new models. For a fair comparison, we use the same ReLU budgets for the ADD-
and CONCAT-based models. From the figure we see that, the CONCAT-based models can achieve
good accuracies, but still not as high as the ADD-based models, exhibiting an average gap of 7.0%.
The accuracy difference is particularly significant when the ReLU budget is tight. Essentially, using
ADD operators allows for more linear operators in the model and thus higher expressivity without
consuming extra nonlinear operators, which is more efficient.

4.3 ABLATION STUDY: PRUNING METHODS

Section 3.2 introduces how to prune linear operator branches in each sampling block. In our
experiments, we initialize 27 branches of different linear operators in every sampling block. We
evaluate three different pruning schemes: keeping all branches (All), keeping a fixed number of
branches with the highest weights (Fixed-1, Fixed-4, Fixed-11), and keeping the branches whose
weights exceed the threshold (Threshold-0.1, Threshold-0.001, Threshold-0.00001).

As shown in Table 1, All does not achieve the highest accuracy, while our Threshold-0.001 method
works the best. Removing branches with low contributions reduces the risk of overfitting. Comparing
All and the several Fixed approaches, we see the effectiveness of using more linear operators for
feature extraction to improve the model representation capacity and thus the accuracy. However,

8

Under review as a conference paper at ICLR 2024

Table 1: Model accuracy comparison of pruning
methods for sampling blocks under different
ReLU budgets on CIFAR100.

ReLU Pruning method Acc. (%)

36,684

All 72.63
Fixed-1 66.52
Fixed-4 72.02

Fixed-11 72.53
Threshold-0.1 69.47

Threshold-0.001 73.83
Threshold-0.00001 73.06

77,824

All 74.33
Fixed-1 71.21
Fixed-4 72.83

Fixed-11 73.75
Threshold-0.1 70.41

Threshold-0.001 75.89
Threshold-0.00001 75.20

Table 2: Model accuracy comparison of nonlin-
ear reuse methods under different ReLU bud-
gets on CIFAR100.

ReLU Reuse method Acc. (%)

36,684
None 70.20
Half 72.64
All 73.83

77,824
None 72.53
Half 75.01
All 75.89

102,400
None 69.98
Half 75.41
All 76.95

143,360
None 72.33
Half 76.51
All 77.25

Fixed cannot adapt itself to different sampling blocks at different locations. According to Figure 8,
the branch weights of latter sampling blocks tend to have higher variances, which means fewer
branches should be retained. Therefore, different sampling blocks prefer different numbers of linear
operators, leading to the decision of using a threshold to prune the branches.

We further conduct an ablation study on the impact of nonlinear reuse residual links, i.e., input paths
of aggregation blocks. The results are listed in Table 2, where three methods are tested: using no
nonlinear reuse (None), keeping half (50%) of the residual links with the highest weights (Half), and
keeping all links (All). The results indicate that the All scheme achieves the highest accuracy under
different ReLU budgets, while None exhibits different degrees of accuracy drop from 3.4% to 6.5%.
As a result, different from sampling blocks that apply pruning, aggregation blocks in Seesaw keep all
the reuse links activated. These results underscore the efficacy of nonlinear reuse in Seesaw.

4.4 NETWORK ARCHITECTURE ANALYSIS

Finally, we illustrate the distributions of the ReLU operators in the optimized network architectures
discovered by Seesaw. Figure 9 shows the corresponding weight values for ReLU and Identity at
different sampling blocks in two networks with different ReLU budgets. The sampling blocks at the
latter stage of the network tend to have higher ReLU weights and would keep the ReLU operators.
This observation aligns with the ReLU sensitivity observed in SENet Kundu et al. (2023a). For
example, Model-1 in Figure 9a with a small ReLU budget only keeps the last two nonlinear operators.
However, Seesaw can also retain some earlier nonlinear operators to if the ReLU budget allows, in
order to boost the accuracy. For example, Model-2 in Figure 9b preserves the ReLU at location 3. In
contrast, Figure 8 shows that the variance of sampling block branch weights is likely higher towards
the backend of the network, reflecting that more linear operators are pruned under the threshold.

Combining the above two trends, we get to an interesting observation. An optimized PPML network
architecture needs to preserve sufficient nonlinearity in the latter blocks of the model, while at the
earlier stage, it can instead increase the linear computations to increase the representation capacity.
The two patterns compensate very well, once again validating the design principle of Seesaw.

5 CONCLUSIONS

In this paper, we present Seesaw, a neural network structure search scheme that is tailored to
private machine learning inference. Seesaw compensates for the negative accuracy impact of reducing
expensive nonlinear operators through adding more linear computations and reusing existing nonlinear
results. It incorporates novel pruning and search approaches to efficiently determine the optimized
amounts of extra computation and data reuse. Our evaluation shows that Seesaw achieves higher
accuracy with fewer nonlinear operations compared to previous proposals.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Aliyun. Alibaba Cloud. https://ai.aliyun.com/. Accessed: August 2021.

Amazon Web Services. Deep Learning on AWS. https://aws.amazon.com/deep-learning/.
Accessed: August 2021.

Microsoft Azure. Machine Learning Service, Microsoft Azure. https://azure.microsoft.com/
en-us/services/machine-learning/. Accessed: August 2021.

Ahmad Al Badawi, Jin Chao, Jie Lin, Chan Fook Mun, Sim Jun Jie, Benjamin Hong Meng Tan, Xiao
Nan, Khin Mi Mi Aung, and Vijay Ramaseshan Chandrasekhar. Towards the AlexNet Moment for
Homomorphic Encryption: HCNN, the First Homomorphic CNN on Encrypted Data with GPUs.
arXiv preprint arXiv:1811.00778, 2018.

Baidu. Baidu AI cloud. https://intl.cloud.baidu.com/. Accessed: August 2021.

Alon Brutzkus, Ran Gilad-Bachrach, and Oren Elisha. Low Latency Privacy Preserving Inference. In
36th International Conference on Machine Learning (ICML), pp. 812–821, 2019.

Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search on target task
and hardware. In International Conference on Learning Representations, 2019.

Nishanth Chandran, Divya Gupta, Sai Lakshmi Bhavana Obbattu, and Akash Shah. {SIMC}:{ML}
inference secure against malicious clients at {Semi-Honest} cost. In 31st USENIX Security
Symposium (USENIX Security 22), pp. 1361–1378, 2022.

Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin, and Ten H Lai. SgxPectre:
Stealing Intel Secrets from SGX Enclaves Via Speculative Execution. In 2019 IEEE European
Symposium on Security and Privacy (EuroS&P), pp. 142–157, 2019.

Minsu Cho, Zahra Ghodsi, Brandon Reagen, Siddharth Garg, and Chinmay Hegde. Sphynx: A deep
neural network design for private inference. IEEE Security & Privacy, 20(5):22–34, 2022a.

Minsu Cho, Ameya Joshi, Brandon Reagen, Siddharth Garg, and Chinmay Hegde. Selective network
linearization for efficient private inference. In International Conference on Machine Learning, pp.
3947–3961. PMLR, 2022b.

Edward Chou, Josh Beal, Daniel Levy, Serena Yeung, Albert Haque, and Li Fei-Fei. Faster cryptonets:
Leveraging sparsity for real-world encrypted inference. arXiv preprint arXiv:1811.09953, 2018.

Google Cloud. Deep Learning VM, Google Cloud. https://cloud.google.com/
deep-learning-vm/. Accessed: August 2021.

Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah Zakarias. Multiparty computation from
somewhat homomorphic encryption. In Advances in Cryptology–CRYPTO 2012: 32nd Annual
Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings, pp. 643–662.
Springer, 2012.

Jia Deng, Wei Dong, Richard Socher, Li Jia Li, and Fei Fei Li. ImageNet: A Large-Scale Hierarchical
Image Database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 248–255, 2009.

Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine, Kristin Lauter, Michael Naehrig, and John Wernsing.
CryptoNets: Applying Neural Networks to Encrypted Data with High Throughput and Accuracy.
In 33rd International Conference on Machine Learning (ICML), pp. 201–210, 2016.

Karthik Garimella, Zahra Ghodsi, Nandan Kumar Jha, Siddharth Garg, and Brandon Reagen. Charac-
terizing and optimizing end-to-end systems for private inference. arXiv preprint arXiv:2207.07177,
2022.

Craig Gentry. Fully Homomorphic Encryption Using Ideal Lattices. In 41st Annual ACM Symposium
on Theory of Computing (STOC), pp. 169–178, 2009.

10

https://ai.aliyun.com/
https://aws.amazon.com/deep-learning/
https://azure.microsoft.com/en-us/services/machine-learning/
https://azure.microsoft.com/en-us/services/machine-learning/
https://intl.cloud.baidu.com/
https://cloud.google.com/deep-learning-vm/
https://cloud.google.com/deep-learning-vm/

Under review as a conference paper at ICLR 2024

Zahra Ghodsi, Akshaj Kumar Veldanda, Brandon Reagen, and Siddharth Garg. Cryptonas: Private
inference on a relu budget. Advances in Neural Information Processing Systems, 33:16961–16971,
2020.

Zahra Ghodsi, Nandan Kumar Jha, Brandon Reagen, and Siddharth Garg. Circa: Stochastic relus for
private deep learning. Advances in Neural Information Processing Systems, 34:2241–2252, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
770–778, 2016.

Zhicong Huang, Wen-jie Lu, Cheng Hong, and Jiansheng Ding. Cheetah: Lean and fast secure {two-
party} deep neural network inference. In 31st USENIX Security Symposium (USENIX Security 22),
pp. 809–826, 2022.

Tyler Hunt, Congzheng Song, Reza Shokri, Vitaly Shmatikov, and Emmett Witchel. Chiron: Privacy-
preserving Machine Learning as a Service. arXiv preprint arXiv:1803.05961, 2018.

Nick Hynes, Raymond Cheng, and Dawn Song. Efficient Deep Learning on Multi-Source Private
Data. arXiv preprint arXiv:1807.06689, 2018.

Nandan Kumar Jha, Zahra Ghodsi, Siddharth Garg, and Brandon Reagen. Deepreduce: Relu reduction
for fast private inference. In International Conference on Machine Learning, pp. 4839–4849.
PMLR, 2021.

Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. GAZELLE: A Low Latency
Framework for Secure Neural Network Inference. In 27th USENIX Security Symposium (USENIX
Security), pp. 1651–1669, 2018.

Kyungtae Kim, Chung Hwan Kim, Junghwan “John” Rhee, Xiao Yu, Haifeng Chen, Dave Tian,
and Byoungyoung Lee. Vessels: Efficient and Scalable Deep Learning Prediction on Trusted
Processors. In 11th ACM Symposium on Cloud Computing (SoCC), pp. 462–476, 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Souvik Kundu, Shunlin Lu, Yuke Zhang, Jacqueline Liu, and Peter A Beerel. Learning to linearize
deep neural networks for secure and efficient private inference. arXiv preprint arXiv:2301.09254,
2023a.

Souvik Kundu, Yuke Zhang, Dake Chen, and Peter A Beerel. Making models shallow again: Jointly
learning to reduce non-linearity and depth for latency-efficient private inference. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4684–4688, 2023b.

Roland Kunkel, Do Le Quoc, Franz Gregor, Sergei Arnautov, Pramod Bhatotia, and Christof
Fetzer. TensorSCONE: A Secure TensorFlow Framework using Intel SGX. arXiv preprint
arXiv:1902.04413, 2019.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep Learning. Nature, 521(7553):436–444,
2015.

Yuepeng Li, Deze Zeng, Lin Gu, Quan Chen, Song Guo, Albert Zomaya, and Minyi Guo. Lasagna:
Accelerating secure deep learning inference in sgx-enabled edge cloud. In Proceedings of the ACM
Symposium on Cloud Computing, pp. 533–545, 2021.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018.

Jian Liu, Mika Juuti, Yao Lu, and Nadarajah Asokan. Oblivious Neural Network Predictions via
MiniONN Transformations. In 2017 ACM SIGSAC Conference on Computer and Communications
Security (CCS), pp. 619–631, 2017.

Qian Lou, Yilin Shen, Hongxia Jin, and Lei Jiang. Safenet: A secure, accurate and fast neural network
inference. In International Conference on Learning Representations, 2021.

11

Under review as a conference paper at ICLR 2024

Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting Zheng, and Raluca Ada Popa.
Delphi: A cryptographic inference service for neural networks. In 29th USENIX Security Sympo-
sium (USENIX Security 20), pp. 2505–2522, 2020.

Payman Mohassel and Yupeng Zhang. Secureml: A system for scalable privacy-preserving machine
learning. In 2017 IEEE symposium on security and privacy (SP), pp. 19–38. IEEE, 2017.

Lucien KL Ng and Sherman SM Chow. Gforce: Gpu-friendly oblivious and rapid neural network
inference. In 30th USENIX Security Symposium (USENIX Security 21), pp. 2147–2164, 2021.

OpenAI. Chatgpt. https://openai.com, 2023.

M Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M Songhori, Thomas Schneider,
and Farinaz Koushanfar. Chameleon: A Hybrid Secure Computation Framework for Machine
Learning Applications. In 2018 ACM Asia Conference on Computer and Communications Security
(ASIACCS), pp. 707–721, 2018.

Bita Darvish Rouhani, M Sadegh Riazi, and Farinaz Koushanfar. Deepsecure: Scalable provably-
secure deep learning. In Proceedings of the 55th annual design automation conference, pp. 1–6,
2018.

Amartya Sanyal, Matt Kusner, Adria Gascon, and Varun Kanade. Tapas: Tricks to accelerate
(encrypted) prediction as a service. In International conference on machine learning, pp. 4490–
4499. PMLR, 2018.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1–9, 2015.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking
the inception architecture for computer vision. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2818–2826, 2016.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
Quoc V Le. Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 2820–2828, 2019.

Florian Tramer and Dan Boneh. Slalom: Fast, Verifiable and Private Execution of Neural Networks
in Trusted Hardware. In 7th International Conference on Learning Representations (ICLR), 2019.

Jinwen Wang, Yueqiang Cheng, Qi Li, and Yong Jiang. Interface-based side channel attack against
intel sgx. arXiv preprint arXiv:1811.05378, 2018.

Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian,
Peter Vajda, Yangqing Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient convnet design
via differentiable neural architecture search. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 10734–10742, 2019.

Andrew Chi-Chih Yao. How to generate and exchange secrets. In 27th Annual Symposium on
Foundations of Computer Science (sfcs 1986), pp. 162–167, 1986. doi: 10.1109/SFCS.1986.25.

Yuke Zhang, Dake Chen, Souvik Kundu, Haomei Liu, Ruiheng Peng, and Peter A Beerel. C2pi: An
efficient crypto-clear two-party neural network private inference. arXiv preprint arXiv:2304.13266,
2023.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures
for scalable image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 8697–8710, 2018.

12

https://openai.com

	Introduction
	Background
	Cryptographic Primitives and PPML Protocol
	Related Work

	Design
	Design Space
	Pruning Methods
	Search Strategy

	Evaluation
	Comparison with State-of-the-Art
	Ablation Study: ADD vs. CONCAT
	Ablation Study: Pruning Methods
	Network Architecture Analysis

	Conclusions

