From Vision to Audio and Beyond: A Unified Model for Audio-Visual
Representation and Generation

Kun Su !

Abstract

Video encompasses both visual and auditory data,
creating a perceptually rich experience where
these two modalities complement each other. As
such, videos are a valuable type of media for
the investigation of the interplay between au-
dio and visual elements. Previous studies of
audio-visual modalities primarily focused on ei-
ther audio-visual representation learning or gener-
ative modeling of a modality conditioned on the
other, creating a disconnect between these two
branches. A unified framework that learns repre-
sentation and generates modalities has not been
developed yet. In this work, we introduce a novel
framework called Vision to Audio and Beyond
(VAB) to bridge the gap between audio-visual
representation learning and vision-to-audio gener-
ation. The key approach of VAB is that rather than
working with raw video frames and audio data,
VAB performs representation learning and gener-
ative modeling within latent spaces. In particular,
VAB uses a pre-trained audio tokenizer and an
image encoder to obtain audio tokens and visual
features, respectively. It then performs the pre-
training task of visual-conditioned masked audio
token prediction. This training strategy enables
the model to engage in contextual learning and
simultaneous video-to-audio generation. After
the pre-training phase, VAB employs the iterative-
decoding approach to rapidly generate audio to-
kens conditioned on visual features. Since VAB is
a unified model, its backbone can be fine-tuned for
various audio-visual downstream tasks. Our ex-
periments showcase the efficiency of VAB in pro-
ducing high-quality audio from video, and its ca-
pability to acquire semantic audio-visual features,
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Figure 1. VAB is a unified audio-visual model capable of support-
ing various audio-visual tasks within a single framework.

leading to competitive results in audio-visual re-
trieval and classification.

1. Introduction

When presented with a video which audio has been muted,
we have the ability to mentally hallucinate the correspond-
ing sound based on our knowledge. This mental process
encompasses the association of audio with visual elements
and the creative aspect of sound imagination. In the field
of artificial intelligence, we have witnessed the emergence
of foundational models in the domains of vision and lan-
guage (Wang et al., 2022; Yu et al., 2022; Alayrac et al.,
2022) which are capable of supporting both the association
and generation of content. In the realm of audio and vision,
however, it remains relatively unexplored whether similar
models can be proposed.

Creating a general-purpose audio-visual model poses sig-
nificant challenges. First, raw video and audio signals are
both high-dimensional and time-dependent data, creating
an intricate scenario for comprehension of their joint events
and necessitating extensive training computations. Existing
contrastive learning and masked autoencoder-based audio-
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visual learners (Gong et al., 2022b; Huang et al., 2022a)
are deterministic models that cannot support generative pur-
poses, and the reconstruction loss is made on the level of
image and spectrogram patches. The state-of-the-art audio
generative frameworks (Kreuk et al., 2022; Copet et al.,
2023; Mei et al., 2023), on the other hand, usually perform
modeling on the latent space and sophisticated models are of-
ten essential to generate high-quality audio, requiring multi-
stage modeling (Dhariwal et al., 2020; Garcia et al., 2023;
Agostinelli et al., 2023). It remains uncertain whether we
can employ similar self-supervised representation learning
techniques in the latent space while consistently producing
high-quality audio.

To address these challenges, we introduce an innovative
audio-visual framework ‘Vision to Audio and Beyond’
(VAB), which is an efficient unified audio-visual framework
capable to learn to associate audio with visual signals and
enables vision-to-audio generation within the same model.
At its core, this framework involves a pre-training task of
predicting masked audio from visual inputs. In order to
facilitate the learning of audio-visual representation and au-
dio generation, we perform the pre-training task within the
latent space instead of using raw images and audio spec-
trograms. Specifically, we tokenize the audio data into
discrete tokens utilizing a public open pre-trained neural
audio codec and extract frame-level visual features from a
self-supervised pre-trained image encoder. During VAB pre-
training, we employ an encoder-only multi-way transformer
to predict masked audio tokens from visual features using
a variable masking scheme. After completion of the pre-
training phase, the VAB model can function as a uni-modal
or multi-modal encoder, and it is prepared for fine-tuning in
cross-modal retrieval and classification tasks. Meanwhile, it
can also support zero-shot visual-conditioned audio genera-
tion through efficient parallel decoding strategies.

We conduct comprehensive experiments across a range of
downstream tasks to demonstrate our approach and its ad-
vantages. These tasks include vision-to-audio generation (on
VGGSound), audio-visual event classification (on AudioSet-
20K, AudioSet-2M, VGGSound), audio-to-video and video-
to-audio retrieval (on AudioSet, VGGSound, MSR-VTT),
and audio-only classification (on ESC-50, SPC). Our exper-
imental results showcase that the VAB model can efficiently
produce high-fidelity audio from silent video, achieving a
speedup of 17 times than the state-of-the-art autoregressive
approach. Furthermore, the representations learned from
VAB yield competitive outcomes across various classifica-
tion and retrieval tasks. In summary, our contributions are
as follows:

* We propose a first-of-its-kind audio-visual foundation and
unified framework, named VAB, that supports both audio-
visual representation learning and visual-conditioned audio

generation in the latent space.

* VAB model can efficiently generate 10 seconds of high-
quality audio from visual inputs with the power of parallel
decoding. To the best of our knowledge, this is the first
employment of parallel decoding on the task of vision-to-
audio generation.

» Comprehensive experiments demonstrate that the founda-
tion VAB model could be fine-tuned for various audio-
visual downstream tasks and achieve state-of-the-art per-
formances in audio-visual retrieval, audio-visual event clas-
sification, and audio-only classification.

2. Related Work
2.1. Video to Audio Generation

Generating audio given video stream has garnered growing
interest, in particular as generative models have advanced
rapidly in recent years in both visual and audio domains.
Efforts exploring various facets of the connections between
audio and videos have emerged. Earlier works proposed to
leverage the semantic alignment between audio and videos
with the goal of generating natural sounds from objects or
scenes depicted in the video (Owens et al., 2016; Mehri
et al., 2016; Zhou et al., 2018). Subsequently, several stud-
ies have focused on the generation of music from videos,
capitalizing on both temporal and semantic correlations
between music signal characteristics and human body move-
ments (Su et al., 2020b; Gan et al., 2020; Su et al., 2020c;
2021; Liu et al., 2024b). More recently, we have seen the
emergence of more versatile video-to-music (Di et al., 2021;
Su et al., 2023a) or video-to-audio (Iashin & Rahtu, 2021;
Sheffer & Adi, 2023; Mei et al., 2023) generation meth-
ods designed for in-the-wild videos. These approaches are
based on generative modeling within discrete tokenized au-
dio and music signals to yield higher-fidelity audio outputs.
In parallel, diffusion-based vision-to-audio modeling has
been introduced as well (Su et al., 2023b; Luo et al., 2023).
Such generative models are also designed to specialize for
generation and are not suitable for broader audio-visual un-
derstanding and tasks. In our work, our objective is not
only to achieve high-quality audio generation from video
but also to facilitate cross-modal representation learning, i.e.
a foundation and unified model, encompassing both audio
and visual modalities.

2.2. Audio-visual Representation Learning

The process of learning representations for audio and vi-
sual data has been explored through both supervised and
self-supervised approaches. In earlier studies, deep neural
networks were trained on annotated audio-visual pairs us-
ing supervised methods (Ngiam et al., 2011; Kim et al.,
2013; Nagrani et al., 2021; Liu et al., 2024a). Subse-
quently, self-supervised learning approaches have harnessed
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the correspondence between audio and visual data to ac-
quire representations (Aytar et al., 2016; Arandjelovic &
Zisserman, 2017; 2018), which are then employed in vari-
ous downstream tasks such as audio-visual classification and
retrieval (Chen et al., 2020; Gemmeke et al., 2017; Dong
et al., 2023). Among these methods, contrastive learning
and masked autoencoder based approaches applied to au-
dio and visual signals have emerged as effective learning
paradigms (Ma et al., 2020; Morgado et al., 2021; Gong
et al., 2022b; Huang et al., 2022a). Audio-visual contrastive
learning capitalizes on the similarity between audio-visual
pairs within the same video and across different videos, us-
ing them as self-supervised signals to define a discriminative
objective (Ma et al., 2020; Morgado et al., 2021). In contrast,
masked autoencoder methods draw their inspiration from
context-aware learning in natural language processing, e.g.,
BRNN (Berglund et al., 2015) and BERT model (Devlin
et al., 2019), and have since been extended to encompass
other signals types, including skeleton sequences (Su et al.,
2020a), images (He et al., 2022), videos (Tong et al., 2022),
audio (Huang et al., 2023). The combination of these two
paradigms demonstrates cumulative improvements in audio-
visual representations (Gong et al., 2022b; Huang et al.,
2022a; Georgescu et al., 2023). Current audio-visual rep-
resentation learning mainly utilizes raw video frames and
audio spectrogram data as input, aiming to incorporate max-
imal available information. However, it presents challenges
in modeling, due to the high dimensionality and intricate
patterns of the raw data. In this work, we seek to explore an
alternative approach by leveraging latent audio tokens to en-
able both representation learning and generative modeling.

2.3. Masked Generative Modeling

Multiple works have incorporated masked generative mod-
eling within their frameworks. MaskGIT (Chang et al.,
2022) proposed to utilize a bidirectional transformer for
token modeling and introduced parallel decoding which en-
hances inference speed for image generation. MAGE (Li
et al., 2023b) unified image generation and representation
learning through a masking-based approach. Subsequently,
Muse (Chang et al., 2023) extended MaskGIT’s capabilities
to text-to-image generation. In addition, Magvit (Yu et al.,
2023) leveraged a multi-task learning paradigm to efficiently
generate video. In the realm of audio, Vampnet (Garcia et al.,
2023) employed a two-stage approach to masked acoustic
token modeling, achieving unconditional music generation.
Furthermore, SoundStorm (Borsos et al., 2023) showcased
its capability to rapidly generate high-quality speech from
text. Compared to these prior studies, the aim of this study
is to unify audio and vision as vision-to-audio generation
and various audio-visual tasks.
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Figure 2. Pre-processing (left) and masked audio token prediction
pre-training (right) of VAB framework.

3. Methods

In this section, we detail the design of Vision to Audio
and Beyond (VAB) framework and its capability of gener-
ating high-quality audio from silent video and acquiring
semantic audio-visual representations for subsequent tasks.
We first describe VAB pre-processing stage that consists of
converting raw audio and visual signals into latent spaces
through the utilization of a pre-trained audio neural codec
and image encoder. With audio tokens and frame-level vi-
sual features as inputs, we outline VAB components that
facilitate self-supervised pre-training stage centered around
masked audio token prediction conditioned on visual fea-
tures. At this stage VAB establishes its representation and
learns to generate audio for video. In a subsequent stage,
we elaborate on how the pre-trained VAB model is lever-
aged for vision-to-audio generation and fine-tuning across
various downstream tasks.

3.1. Audio and Video Transformation into Latent Spaces

There are two primary motivations for converting audio and
video frames into latent spaces. First, prior research (Kreuk
et al., 2022; Copet et al., 2023; Mei et al., 2023) indicates
that performing generative modeling within latent spaces
enhances training convergence and facilitates the generation
of high-quality audio samples. Second, operating on raw
video frames instead of latents, entails significantly longer
sequences and places a substantial computational burden.
For instance, a ten-second video at 1fps results in 1960
patches when employing a standard Vision Transformer
(ViT) (Dosovitskiy et al., 2020). For such number of patches
even employment of tubelets does not result in significant
relief and therefore more compact representation through la-
tents could be advantageous. We thus have utilized a frozen
pre-trained image encoder, such as CLIP (Radford et al.,
2021), to extract frame-level features and serve as latents.
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This choice enables a significant reduction in the length of
visual sequences and benefits the semantic features obtained
from image-text pre-training. In fact, we discovered that
these well-established image-text features can be adapted to
capture audio-video relationships effectively, thereby miti-
gating the potential information loss associated with com-
pressed audio tokens. Indeed, we use CLIP image encoder
to extract frame-level features at a rate of 1fps, resulting in
10 seconds of video features V € R10%4 where d is the
dimension of CLIP image features.

To transform audio waveforms into tokens, we explore two
off-the-shelf pre-trained neural codec variants, DAC (Kumar
et al., 2023) and Encodec (Défossez et al., 2022). DAC and
Encodec are both trained in a fully self-supervised manner
on reconstruction tasks without reliance on any labels and
provide audio tokens that represent compressed versions of
the original signals. Both DAC and Encodec use K residual
vector quantization (RVQ) to encode 1D audio waveform
A, € RT= (16kHz) into audio tokens A € NX*5 where
K is the number of residual codebooks and S = T,/d,,
dg, = 320 is the downsample factor for both codec. A 10
seconds audio results in A € NX*300 tokens in total. In
DAC, it comprises K = 12 codebooks. These codebooks
constitute a hierarchy wherein codes in lower levels repre-
sent coarse acoustic features, while codes in higher levels
capture finer acoustic details. On the other hand, the En-
codec contains only K = 4 codebooks, exhibiting poorer
audio reconstruction quality compared to the DAC (See
Appendix D.1). To conduct a comprehensive study, we ex-
plored the use of both DAC and Encodec tokens. During
VAB pre-training, we employed the first four levels of au-
dio tokens 4, = A%*5% for both DAC and Encodec. For
the remaining 8 levels of DAC tokens, we followed Vamp-
net (Garcia et al., 2023), applying an additional coarse-to-
fine model solely for the purpose of audio generation.

It is important to emphasize that both audio tokens and
frame-level visual features are extracted before the VAB
pre-training, which enables us to model temporal and audio-
visual relationships during the pre-training process more
efficiently.

3.2. Conditional Masked Audio Token Prediction

Masking: Given audio tokens A. and visual features V/,
we employ visual-conditioned masked audio tokens pre-
diction as the VAB pre-training task. First, we randomly
mask the audio tokens using a masking strategy with vari-
able masking ratios. Specifically, we sample the masking
ratio M, from a truncated Gaussian distribution centered
at 0.55 with std = 0.25, left truncated by 0.5 and right
truncated by 1. It is important to have a variable and reason-
able portion of masked audio tokens to enable learning both
the representation and the generation. We reuse the code-
book embeddings in neural codecs and add a new [MASK]

token. The masked audio tokens 4,, € N%%00 are em-
bedded and summed to obtain masked audio embeddings
Aemp € R00:demowhere dpy, is the embedding dimension.
The visual features V' are projected linearly to the same di-
mension as depp to have visual embeddings Ve, and to add
modality-specific embeddings F,, and F, to Ve and Aepp,
respectively. We then concatenate the visual and audio em-
beddings to form the final input sequence = = [V, AL ]
where V! V;zmb + E,U, Aémb = Aemb + Ea-

emb —

Multiway Transformer Encoder: The architecture of VAB
is similar to the Multiway Transformer Encoder (Bao et al.,
2022; Wang et al., 2022) where each transformer layer con-
tains a bi-directional multi-head attention shared for audio
and visual embeddings, layer normalization, feed-forward
networks, and residual connections. For VAB model with
N layers, we use modal-specific feed-forward networks for
the first N; layers and shared feed-forward networks for
the rest of Ny = N — Nj layers. The shared bi-directional
self-attention allows audio and visual embeddings to asso-
ciate with each other during training. The modal-specific
feed-forward networks can be considered experts in learning
information specifically for audio or vision so that we can
use the first N;-th layers as either audio or visual encoders
for single modality tasks. The upper-level joint feed-forward
networks are useful for the more challenging vision-to-audio
generation. Finally, multiple linear projection heads are used
to predict each level of masked audio tokens.

Let A, be the set of all unmasked audio tokens and VAB
model parameters 6. The objective of the pre-training is to
minimize the negative log-likelihood

iy =— Y logp(a|Ay, V. 0) (1)
Ya€An,

The overview of VAB pre-processing and pre-training is
shown in Fig 2.

3.3. Zero-Shot Video-to-Audio Generation

After VAB pre-training, audio tokens can be generated us-
ing efficient iterative decoding similar to previous masked
generative modeling approaches (Chang et al., 2022; Li
et al., 2023b; Garcia et al., 2023). Specifically, we initial-
ize all audio tokens by [MASK] tokens and feed them into
the VAB model along with the visual features V/, similarly
to pre-training. For each decoding iteration ¢t € [0, 7],
the process involves predicting the token for the remaining
masked audio token to obtain d;. Subsequently, we compute
a confidence score z by incorporating the prediction log-
probabilities and introducing temperature-annealed Gumbel
noise

z(dy) = log(p(dr)) + a - g, )

where g; represents an independently and identically dis-
tributed (i.i.d) sample drawn from Gumbel noise, and «
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Figure 3. After the pre-training phase, VAB allows for zero-shot video-to-audio generation (left). Moreover, it can undergo representation
adaptation fine-tuning to facilitate cross-modal retrieval through contrastive loss (middle) and accommodate classification tasks by

incorporation of a linear classifier (right).

signifies the temperature that undergoes linear annealing,
gradually reducing to 0 as the number of sampling itera-
tions progresses. Following this, we sort the set of sampled
tokens based on their confidence scores and determine the
k lowest confidence tokens to re-mask in the subsequent
sampling iteration. Specifically, the number of tokens to
be re-masked, denoted as k = v(ﬁ)N , where N repre-
sents the total number of tokens, and ~ follows a cosine
schedule so that fewer masked audio tokens are replaced in
the early iterations, while more masked audio tokens will
be replaced in the later iterations. Additionally, classifier-
free guidance (Ho & Salimans, 2022) is also employed to
achieve better visual adherence.

As a result, the sampled audio tokens are ready to be de-
coded by DAC or Encodec to generate audio waveforms.
For DAC, the quality of the audio tokens decoded by coarse
levels turns out to be insufficient (Agostinelli et al., 2023;
Su et al., 2023a; Garcia et al., 2023). Therefore, we train an
additional coarse-to-fine model to generate fine-level audio
tokens Ay conditioned on coarse tokens A.. The coarse-
to-fine model architecture is a bi-directional transformer
encoder as well. In comparison to the coarse model in the
previous stage, we do not use modal-specific feed-forward
networks, and we use all levels of audio tokens instead of
coarse-level tokens as inputs. We train the model using
masked audio token prediction, but only fine-level audio
tokens would be masked and predicted. Formally, training
the model 6., minimizes the objective

los=— Y logp(alAju, Ac,V,0cr).  (3)
Va€Af m

During inference, generated coarse audio tokens and visual
features will be used as the conditions and iterative decoding
will be used in coarse-to-fine again for generation. Unlike

autoregressive generation, which generates tokens one by
one, our approach generates them simultaneously. This
significantly reduces the total number of inference steps
while still achieving, and in some cases even surpassing, the
performance of the autoregressive approach.

3.4. Adaptation of VAB for Retrieval

After VAB pre-training, the learned representation is
amenable for adaptation to a variety of audio-visual tasks
through fine-tuning. We therefore proceed to fine-tune the
first N1 modal-specific layers of the VAB model using the
contrastive loss, aiming to align audio and visual modalities
for retrieval tasks. While it might seem logical to apply
masked prediction and contrastive loss concurrently dur-
ing the VAB pre-training, our early experiments revealed
that such a training strategy led to failure of both tasks and
could not converge. Additionally, we observed that initializ-
ing contrastive training from scratch on the first Ny layers
required more training epochs to converge to a similar per-
formance as the one initialized from pre-trained VAB with
masked audio token prediction. Furthermore, fine-tuning
for masked audio token prediction initiated from the con-
trastive pre-training model did not aid the convergence of
masked audio tokens prediction (See Appendix C.3). As
a result of these insights, we apply contrastive training as
fine-tuning task after the masked prediction pre-training
phase. Specifically, we run two forward passes to obtain au-
dio and visual output features from audio tokens and visual
features, separately. The audio tokens are not masked at this
stage. The resulting output features are then average-pooled
and normalized. We fine-tune the model using the standard
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contrastive loss L.

1 XN
le = fﬁ§log

where s; ; = |\af||T|\ij||, a® and v°¢ are audio and video
representations, and 7 is the learnable temperature value
initialized with 0.05.

exp S; /T
D ki €XD Sik /T + €XP Si /T

.G

3.5. Adaptation of VAB for Classification

The latent representation can be adapted to additional tasks,
for example, classification. For uni-modal classification
tasks, we provide audio tokens or visual features as inputs
to the first N; modal-specific layers of the VAB model.
For audio-visual joint classification, we use both audio to-
kens and visual features as inputs and concatenate them
into a joint sequence as in VAB pre-training. Similar to
the contrastive fine-tuning, we do not mask audio tokens.
We average-pool the output features of the /V; layers and
add a linear classifier for fine-tuning all classification tasks.
While fine-tuned VAB pre-trained model achieves reason-
able performances in the classification tasks, we found that
the contrastive fine-tuned VAB model could serve as a better
initialization for classification fine-tuning (Appendix C.4).
This advantage may stem from the fact that both retrieval
and classification tasks do not require masking of audio
tokens, thereby enabling a more seamless transfer of knowl-
edge. This effect is particularly evident in audio-only and
audio-visual classification tasks.

4. Experiments

Implementation. We conduct pre-training of VAB using
a combination of AudioSet (Gemmeke et al., 2017) and
VGGSound (Chen et al., 2020), two common extensive
audio-visual datasets sourced from YouTube. For AudioSet,
we are able to gather about 1.57M videos from the original
AudioSet-2M, since not all of them are available. In the
case of VGGSound, we use the VGGSound training set
comprising about 177K videos. To extract audio tokens, we
use off-the-shelf pre-trained Encodec and DAC models, pro-
cessing audio at 16kHz sampling rate. For video frames, we
adopt the pre-trained eva-CLIP image encoder, as employed
in BLIP (Li et al., 2023a; Fang et al., 2023), to extract CLIP
embeddings at a rate of 1fps. Both audio tokens and CLIP
embeddings were pre-processed and stored prior to train-
ing the VAB model. Our experimentation encompassed
two model sizes: VAB-Encodec/VAB-DAC, employed for
reporting and comparison across all tasks, and VAB-DAC-
Test, used for ablation studies and in-depth analysis. Both
VAB-Encodec and VAB-DAC models comprise a total of 24
layers, with each layer consisting of 1024 dimensions and
16 attention heads (403M params). The first 12 layers are
dedicated to modal-specific experts (253M params). For the

Methods FAD| KLD| Speed(s)d
SpecVQGAN 6.63 3.78 7.2
IM2WAV 6.32 2.54 289.5
Diff-Foley 6.40 3.15 44
FoleyGen 2.59 2.89 6.9
VAB-DAC (Ours) 3.24 2.84 1.3
VAB-Encodec (Ours) 2.69 2.58 0.4

Table 1. Quantitative evaluation for video-to-audio generation on
the VGGSound test set. Values in bold indicate the best value.

Overall Quality (OVR) Visual Relevance (REL)
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Figure 4. Human evaluations for video-to-audio generation. Left:
overall quality of the video. Right: visual relevance to the audio.

VAB-DAC-Test, all transformer layers are 768-dimensional
with 12 attention heads, totaling 20 layers, where the first
12 layers contain modal-specific experts. For pre-training of
VAB, we use AdamW optimizer with a target learning rate
of 2e-4 and a cosine scheduler. All VAB pre-training, as
well as the fine-tuning for contrastive loss, were conducted
using 1 A100 (80G) GPU. For subsequent classification
tasks, we used 1 A100 (40G) GPU. For additional details of
model architecture and training configurations, please refer
to the Appendix B.2 and B .4.

Zero-Shot Video-to-Audio Generation. We evaluated
video-to-audio generation using VGGSound test set, com-
paring our models against existing baselines: SpecVQ-
GAN (lashin & Rahtu, 2021), IM2WAV (Sheffer & Adi,
2023), Diff-Foley (Luo et al., 2023), and FoleyGen (Mei
et al., 2023). We generate 10 seconds of audio for the entire
VGGSound test set, resulting in 15546 samples. For VAB-
Encodec and VAB-DAC, we utilize 16 decoding steps and
set the classifier-free guidance scale to 5. In the case of the
DAC coarse-to-fine model, we employed 36 decoding steps.
To quantitatively assess the audio generation quality, we use
two objective metrics: FAD (Fréchet Audio Distance) (Kil-
gour et al., 2018) and KLD (Kullback-Leibler Distance).
FAD is a collection-based metric that measures the similarity
between the generated audio features and ground truth audio
features extracted by the VGGish Network (Hershey et al.,
2017) trained on AudioSet. In contrast, KLD quantifies the
individual differences between each generated audio sam-
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Methods MOS meant MOS std
SpecVQGAN 2.48 1.35
Img2Wav 2.67 1.34
Diff-Foley 2.62 1.35
FoleyGen 2.76 1.35
VAB-Encodec (Ours) 2.86 1.40

Table 2. Mean Opinion Score (MOS) for video-to-audio generation.
Values in bold indicate the best value.

ple and ground truth, based on predicted label distribution
extracted from a pre-trained PaSST model (Koutini et al.,
2021). FAD exhibits a correlation with human perception of
audio quality, while KLD reflects the underlying audio cate-
gories conveyed in the sample. Additionally, we compared
the inference speed of each video-to-audio model. The re-
ported metric is the average time required to generate one
10-second audio sample from a video using one A6000 GPU.
For SpecVQGAN, IM2WAYV, and Diff-Foley, we adopted
their open-sourced pre-trained models to generate samples.
For FoleyGen, we closely followed the publication to re-
produce the model. For further details regarding baseline
sample generation and FoleyGen implementation, please re-
fer to the Appendix E. The quantitative results are presented
in the Table 1. A key observation is that modeling using
state-of-the-art audio discrete tokens with multi-codebooks
(FoleyGen and VAB) yields superior audio quality than pre-
vious methods. With the masked audio tokens prediction
task and iterative-decoding approach, VAB achieved sig-
nificantly, of order of magnitude, faster inference speeds
compared to all previous works. While both FAD and KLD
scores are both slightly lower than the best approaches, VAB
achieves a more balanced performance in both metrics.

To gain a deeper insight into the perceptual differences be-
tween VAB generated samples and those of the baselines,
we conducted subjective evaluations through two surveys.
The first survey primarily assessed two subjective aspects
of generated audio: OVR (overall quality) and REL (vi-
sual relevance). To ensure the robustness of our findings,
we randomly selected 150 samples from a class-balanced
subset of the VGGSound test set for each method. The
study utilizes an A-vs-B human rating task, where raters are
presented with two samples: one generated by one of the
baseline models and the other by best VAB-Encodec model.
Raters provide one of five possible responses, indicating a
strong or weak preference for either A or B, or expressing
no preference. Details of the subjective study are included
in appendix A. The results are shown in Fig. 4. Notably,
VAB-Encodec model was consistently more preferred over-
all, in comparison to other methods in both questions, even
those that scored better on FAD or KLD metrics. In the
second survey, we conducted a Mean Opinion Score (MOS)
comparison across each model. Utilizing the same gener-

ated samples as in the first survey. The results, including
mean and standard deviation, are presented in the Table 2.
These MOS results further highlight the advantages of the
VAB model.

Audio-Visual Retrieval. In this task, we assess the learned
representations of VAB model for both audio-to-visual re-
trieval and visual-to-audio retrieval. We first fine-tune
the VAB model using the contrastive loss, employing the
same training dataset utilized during the pre-training phase.
To evaluate the retrieval performance, we adopt the CAV-
MAE (Gong et al., 2022b) methodology for conducting re-
trieval on audio-visual samples sourced from the AudioSet
and VGGSound evaluation set. Furthermore, we extend our
evaluation to include zero-shot retrieval on MSR-VTT (Xu
et al., 2016) test set. We feed audio tokens and visual fea-
tures through the VAB model in two separate forward passes.
Subsequently, we compute the mean-pooled and normalized
encoder outputs to derive audio and visual representations,
respectively. We then calculate retrieval recall metrics at
ranks 1, 5, and 10 (R@1, R@5, R@10) based on the cosine
similarity of these audio and visual representations. Besides
CAV-MAE, we expanded our comparison of retreival perfor-
mances by comparing VAB with two additional open-source
multi-modal alignment models: ImageBind (Girdhar et al.,
2023) and LanguageBind (Zhu et al., 2023). These models
primarily utilize images or text, respectively, as the main
modality to unify various modalities within the latent space.
The comparison results are presented in the Table 3. No-
tably, we found that VAB models performed consistently
better on Audioset and VGGSound than all of the base-
lines by a large margin (x2 improvement on AudioSet and
VGGSound). We also discovered that the video-to-audio
retrieval is generally better than the audio-to-video retrieval
for all datasets. We further observed that while Language-
Bind is known for its effective performance in text-centric
tasks compared to ImageBind, its effectiveness does not
generalize well in correlating audio and visual modalities.

Audio-Visual Event Classification. In this task, we eval-
uate the quality of VAB representations in the context of
audio-visual event classification task. To accomplish this,
we employ the contrastive VAB model and fine-tune it on
three distinct datasets: 1) AudioSet-20K, 2) AudioSet-2M,
and 3) VGGSound. During the classification fine-tuning
stage, we retain the first V; layers of the model and add
a linear classification head. Our model is fine-tuned using
audio-only data (A), video-only data (V), and audio-visual
data (V+A), enabling us to evaluate both single-modal and
multi-modal representation quality. The results of the eval-
uation are presented in the Table 4. Both VAB-DAC and
VAB-Encodec exhibit competitive performances across A,
V, and V+A classification tasks, with a slight advantage
for VAB-Encodec. Notably, visual-only (V) classification
outperforms previous methods across three datasets, high-
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AudioSet Eval Subset

VGGSound Eval Subset  MSR-VTT (Zero-shot)

R@]1 R@5 R@I10 R@! R@5 R@I0 R@l R@5 R@I0

Video — Audio

LanguageBind (Zhu et al., 2023) 6.4 20.2 28.3 103 30.1 39.7 1.9 6.2 8.8
ImageBind (Girdhar et al., 2023)  22.1 432 52.6 21.6 434 52.9 7.0 18.5 252
CAV-MAE (Gong et al., 2022b) 18.8 395 50.1 148 342 44.0 133 29.0 40.5
VAB-DAC (Ours) 355 61.8 72.4 30.8 59.6 70.8 13.8  30.6 40.1
VAB-Encodec (Ours) 39.5 654 74.6 335 633 74.3 142 311 42.0
Audio — Video

LanguageBind (Zhu et al., 2023) 4.4 15.0 22.5 6.5 22.7 335 1.2 44 6.9
ImageBind (Girdhar et al., 2023)  20.8  42.6 51.6 20.7 432 534 6.0 16.9 23.7
CAV-MAE (Gong et al., 2022b) 15.1  34.0 43.0 128 304 40.3 7.6 19.8 30.2
VAB-DAC (Ours) 370 618 70.8 33.1  62.7 73.8 120 273 36.2
VAB-Encodec (Ours) 375 64.0 73.7 349  62.7 73.1 9.6 233 329

Table 3. Cross-modal retrieval results on AudioSet, VGGSound, and MSR-VTT. Values in bold highlight the best performance.

VGGSound (Acc)t

AS-2M (mAP)} AS-20K (mAP)}

Method V+A v

A V+A v A V+A v A

Audio-visual Models

G-Blend (Wang et al., 2020) - - - 418 188 324 378 221 29.1
Perceiver (Jaegle et al., 2021) - - - 442 258 384 - - -

Attn AV (Fayek & Kumar, 2020) - - - 442 257 384 - - -

CAV-MAE (Gong et al., 2022b) 655 470 595 512 262 466 420 198 377
MBT (Nagrani et al., 2021) 64.1 512 523 496 313 415 439 277 313
MAVIL (Huang et al., 2022a) 67.1 509 608 533 303 48.7 449 248 41.8
VAB-DAC (Ours) 639 554 482 470 333 362 389 283 28.8
VAB-Encodec (Ours) 652 551 513 477 335 386 387 29.0 29.0

Table 4. Comparison to previous audio-visual models on VGGSound, AS-2M, AS-20K in audio-visual (V+A), video-only (V) and
audio-only (A) classification tasks. Values in bold represent the best performance.

lighting the effectiveness of incorporating frame-level CLIP
embeddings as our visual features. Additionally, we ob-
served a notable performance gap in the audio-only (A)
when compared to the best-performing methods. This out-
come can be attributed to the fact that audio tokens repre-
sent a lossy compression of the original audio. Without
the guidance of visual features, correctly categorizing audio
becomes a more challenging task. This observation aligns
with findings in self-supervised learning in the image do-
main using quantized tokens (Li et al., 2023b). However,
as demonstrated in Appendix C.1, VAB pre-training signif-
icantly improves supervised training using visual features
and audio tokens from scratch.

Audio-only Classification. To assess the generalization of
the acquired audio representations, we further evaluate the
pre-trained VAB model by transferring it to other speech-
only or audio-only tasks outside its original domain. In
particular, we follow MAVIL (Huang et al., 2022a) and con-
duct experiments on the Environmental Sound Classifica-
tion (ESC-50) (Piczak, 2015) and Speech Commands (SPC-
v1) (Warden, 2018) datasets. In these experiments, only the
audio branch of VAB is fine-tuned. The results, presented
in Table 5, demonstrate that VAB achieves competitive per-

formance to recent supervised and self-supervised models.
These findings underscore the adaptability and transferabil-
ity of VAB, as it can seamlessly transition from audio-
visual self-supervised pre-training to audio-only down-
stream tasks.

Method ESC-50 SPC-1
AST (Gong et al., 2021) 88.7 95.5
SS-AST (Gong et al., 2022a) 88.8 96.0
Aud-MAE (Huang et al., 2022b) 94.1 96.9
MAVIL (Huang et al., 2022a) 94.4 97.4
VAB-DAC (Ours) 89.2 95.1
VAB-Encodec (Ours) 914 96.1

Table 5. Comparison with ESC-50 and SPC-1 audio only classifi-
cation accuracy.

Linear Probing To evaluate how much effort VAB model
requires to adapt to downstream tasks, we include linear
probing comparisons against full fine-tuned VAB model
and CAV-MAE model with linear probing on VGGSound
and AS-20K classification benchmark, detailed in Table
6. The findings suggest that while linear probing exhibits
lower performance compared to end-to-end fine-tuning, the
discrepancy is within a reasonable margin. Additionally,
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VGGSound (Acc)T AS-20K (mAP)1
Method V+A v A V+A v A
VAB-Encodec Linear Probe 57.6 534 4877 333 269 289
CAV-MAE Linear Probe 54.2 - - 29.8 - -
VAB-Encodec Fine-tuning 652 551 513 387 29.0 29.0
Table 6. Linear Probing comparison results.
we observed that the reduction in performance for the V+A  Acknowledgements

(audio-visual) classification task is slightly larger than that
for a single modality. This suggests that multimodal tasks
may demand more extensive adaptation efforts.

Analysis. We validated VAB structure and setup by per-
forming comprehensive studies and ablations. We include
the key outcomes of the studies in this section, and refer to
the details in the appendix due to the page limit.

Since contrastive learning and masking predictions are both
self-supervised approaches, we investigated the scenario of
applying contrastive learning as the pre-training task. When
compared with the model initialized by masked token pre-
diction in pre-training, contrastive training turns out to take
more time to converge to the same level of retrieval perfor-
mance. The experimental results and details are presented
in Appendix C.3. Furthermore, we performed ablation stud-
ies for VAB architecture, specifically whether the modal-
specific experts are critical (Appendix C.2). Indeed, we
find that using non-experts in the pre-training, significantly
degrades the performance on classification tasks. We also
investigated how masking ratio, used in pre-training task, af-
fects the performance of downstream tasks (Appendix C.5)
and studied the effect of using different visual encoders and
how it affects the VAB model performance (Appendix C.6).
Furthermore, we examined various configurations of video-
to-audio generation during inference such as classifier-free
guidance scale, masking temperature, and number of decod-
ing steps (Appendix D).

5. Conclusion

In this work, we present VAB, a general-purpose audio-
visual framework that connects audio-visual representation
learning and vision-to-audio generation, two tasks in audio-
visual learning that have been disconnected thus far. VAB
employs a pre-training of visual-conditioned masked audio
token prediction, and obtains a uniform visual-audio model.
Such an approach fosters both contextual learning and also
empowers fast and high-quality video-to-audio generation.
VAB can be adapted and lead to competitive performance
across various audio-visual downstream tasks, including
audio-visual event classification, audio-visual retrieval, and
audio-only classification.

We acknowledge the support of HDR Institute: Accelerated
Al Algorithms for Data-Driven Discovery (A3D3) National
Science Foundation grant PHY-2117997.

Impact Statement

Conditional generative and unified models, such as VAB,
have the potential to serve as a foundation for innovative
tools, technologies, and practices that empower content
creators. While our primary motivation is to aid creators
in enhancing their creative endeavors, we recognize the
imperative need for developing and deploying these models
in a manner that diligently considers the values and well-
being of creators, their communities, and society at large.

Notably, generative models inherently learn to replicate pat-
terns and biases within their training data. Specifically, since
VAB is as a unified and foundation model, it could have the
capacity to perpetuate potential biases present in the video
and audio used for its training. These biases can be sub-
tle and challenging to detect, often eluding comprehensive
assessment by current evaluation benchmarks. As a conse-
quence, model-generated content may inadvertently express
through audio or video demeaning or offensive language,
stemming from learned associations or chance occurrences.

Upon conducting a thorough analysis of the training dataset,
we observed a skewed distribution of audio-visual events
towards a few specific categories. Furthermore, within
each genre, gender, age, or ethical groups were not con-
sistently represented. For instance, male representation
dominates certain music genres such as hip-hop and heavy
metal. These concerns extend to learned visual-audio asso-
ciations which may foster stereotypical links between video
content (such as individuals, body movements, locations,
and objects) and a limited set of audio events. Addressing
these issues necessitates fairness testing to gauge the like-
lihood of such patterns in a given model and to intervene
effectively.

In parallel with algorithmic advancements, we are actively
engaged in initiatives aimed at the comprehension and miti-
gation of the potential risks of bias inherited from training
data, issues related to cultural appropriation, and stereo-
typing. Further efforts are required to assess whether the



From Vision to Audio and Beyond: A Unified Model for Audio-Visual Representation and Generation

audio generated is contextually appropriate, a determination
that transcends technical assessments such as audio quality
or visual relevance. This endeavor mandates a profound
understanding of the social and audio context and is best
undertaken in collaboration with cultural and audio experts.
We emphasize that these concerns, among others, hold im-
portant value, on par with the algorithmic advancements
that sometimes take precedence. It is imperative to consider
the broader context in which these models operate.
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A. Human Evaluation Details

For the human study, we conducted random sampling of 150 distinct video examples from the class-balanced VGGSound
test subset, which was used in the retrieval task. This subset consists of 5 videos per class, totaling 1545 videos. In the
rating process, we presented each pair of videos to human raters and requested them to perform a side-by-side comparison
of the audio generated by the baseline models and the VAB model. Raters were asked to assess the two videos in terms of
two criteria: 1) overall quality and 2) visual relevance. Ratings were provided on a 5-point Likert scale (Strong Preference
Video 1, Weak Preference Video 1, No Preference, Weak Preference Video 2, Strong Preference Video 2). To facilitate the
surveys, we leveraged the Toloka platform, with each video pair being assessed by three individuals. The compensation for
each assignment is set at $0.05. In an effort to prevent potential perceptual biases, no background information regarding the
survey or our approach was disclosed to the participants. In total, we collected a set of 450 ratings for each comparison. The
detailed results are shown in the Figure 4.

B. Experimental Details

In this section, we offer details of our experimental settings encompassing data pre-processing, model architecture details,
data augmentation, hyper-parameters configurations of pre-training and fine-tuning. A comprehensive summary of the
training configuration can be found in accompanying Table 8. Additionally, our code and the pre-trained models will be
made accessible for reference.

B.1. Data Pre-processing

In this work, we were able to collect a total of 1573485 videos for AS-2M training dataset. It’s worth noting that, due
to data availability constraints, our dataset size is smaller than those employed in related works such as MaViL. (Huang
et al., 2022a)(2.01 million) and CAV-MAE (Gong et al., 2022b)(1.79 million). For VGGSound dataset, we obtained 177K
training videos. By combining data from AudioSet and VGGSound, our pre-training dataset encompasses approximately
1.74 million training instances. We extracted audio tracks from the videos and resampled them to 16Khz. For AudioSet
videos, we extracted video frames at a rate of 1 fps. For VGGSound videos, we initially extracted video frames at 5 fps so
that we can augment the data by randomly selecting 1 frame for each second during training.

To extract audio tokens, we explored the utilization of open-source pre-trained DAC and Encodec tokens. The DAC contains
12 codebooks, each containing 1024 tokens, while Encodec has 4 codebooks, each comprising 2048 tokens. For each audio
data sample, we adjusted the length to 10 seconds through cutting or padding and subsequently inferred the corresponding
audio tokens. It’s worth noting that both DAC and Encodec tokens operate at a rate of 50Hz. Regarding visual features,
we harnessed the image encoder from eva02-CLIP-L (Fang et al., 2023) to extract CLIP embeddings. These embeddings
possess a feature dimension 768 and are inferred for each frame. In cases where a video was shorter than 10 seconds, we
padded the embedding of the last available frame. Both the extraction of audio tokens and CLIP embedding were performed
prior to the VAB model training. During the VAB pre-training phase, the model received inputs consisting solely of audio
tokens and CLIP embeddings.

B.2. Model Architecture

We conducted experiments with VAB using both Encodec and DAC tokens. We have presented and reported the results of
VAB-Encodec and VAB-DAC in our main paper. Additionally, we introduced a smaller model variant known as VAB-DAC-
Test, designed to facilitate more efficient ablation studies and analyses, considering our limited computational resources. For
DAC tokens, we also trained an additional Coarse2Fine module tailored for audio generation purposes. The architecture and
hyperparameters of VAB-DAC-Coarse2Fine closely align with the one utilized in VampNet (Garcia et al., 2023). Detailed
information about the model architectures can be found in the accompanying table 7.

B.3. Data Augmentation

Since we pre-processed all audio tokens and visual features, we did not perform data augmentation on raw images and
audio spectrogram levels during training. In fact, we utilize three types of augmentation during the pre-training phase. The
primary augmentation technique is known as temporal mixup. Specifically, we begin by randomly selecting two pairs of
data from the training set. Subsequently, we randomly choose a breaking point within the 0 to 10-second range. The first
segment is then used for the first pair, while the second segment is assigned to the second pair. This augmentation technique,
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VAB-Encodec VAB-DAC VAB-DAC-Test VAB-DAC-Corase2Fine

Visual Features Length 10 10 10 10
Audio Tokens Length 500 500 500 500
Number of Codebooks 4 4 4 12
Codebook Dimension 128 8 8 8
Number of Tokens 2048 1024 1024 1024
Hidden Dimension 1024 1024 768 1280
Total Layers 24 24 20 16
Expert Layers 12 12 12 N/A
Attention Heads 16 16 8 20
Positional Encoding Alibi Positional Embedding (Press et al., 2021)
Number of Prediction Heads 4 4 4 8

Table 7. Model Architecture

introduced in Diff-Foley (Luo et al., 2023), has proven effective in enhancing both generation capabilities and learning
cross-modal relationships. Additionally, we apply temporal rolling to both audio tokens and visual features, akin to the
rolling of a spectrogram in the temporal axis. Finally, to facilitate classifier-free guidance during inference, we drop out
visual features with a probability of 0.1 during the pre-training phase. During fine-tuning for all tasks, we only employ the
first two augmentations.

B.4. Training Configuration and Hyper-parameters

In this section, we provide an overview of the VAB pre-training and fine-tuning configurations applied to all datasets. Due
to the computational resource constraints, we conducted all our training experiments using only 1 A100 GPU (80GB) and 1
A100 GPU (40GB). While these constraints limit the batch sizes, potentially impacting performance, it’s worth noting that
our training requirements are considerably more cost-effective compared to previous works. A comprehensive breakdown of
these configurations is presented in the Table 8.

Pre-training Fine-tuning (Contrastive) Fine-tuning (Classification)
Model VAB-Encodec/VAB-DAC
Configuration AS-2M + VGGSound AS-2M + VGGSound AS-2M  AS-20K VGGSound ESC  SPC
Optimizer AdamW, B = 0.9, B2 = 0.95, Weight decay le-5
Base learning rate 2e-4 2e-4 le-4 le-4 le-4 le-4 le-4
Learning rate schedule Half-cycle cosine decay
Warm-up steps 100K 100K 0 0 0 0 0
Epochs 17/9 14/15 2 10 5 50 10/5
Batch size 60 108 60 60 48 60 60
GPU 1 A100 (80G) 1 A100 (80G) 1A100 (40G)
Temporal Mixup Prob. 0.5
Temporal Rolling Prob. 0.1 0.1 0.1 0.1 0.1 1.0 1.0
Class Balanced Sampling N/A N/A True False True False False
Label Smooth 0.1
Multilabel N/A N/A True True False False False
Loss Function CE CE BCE BCE BCE BCE BCE

Table 8. Training Configuration

C. Ablation Studies

C.1. Pre-training v.s. From Scratch

We use the VAB-DAC-Test to juxtapose the outcomes of training VGGSound classification from scratch against our
fine-tuning results. The results are shown in the first line of Table 9. It becomes evident that a notable disparity exists in
both single and multi-modal classification, underscoring the effectiveness of our pre-training approach.
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VGGSound (Acc.)T
Method V+A V A

VAB-DAC-Test From Scratch  54.7 52.8 38.6
VAB-DAC-Test w.o. experts 42,5 489 41.0
VAB-DAC-Test 62.4 532 445

Table 9. VGGSound classification comparisons for VAB-DAC-Test training from scratch and without modal specific experts

C.2. Modal-specific Experts

We further delve into the influence of incorporating the experts module in the first N; = 12 layers. We conducted both
masked audio tokens prediction pre-training and fine-tuning steps using the same methodology employed in the original
VAB model. The results are presented in the second line of Table 9. We found that in the absence of the experts module,
the results reveal a deterioration in audio-visual joint classification and the performance is even worse than the visual-only
outcomes. This phenomenon can likely be attributed to the longer audio tokens (500) than visual features (10) dominating
the model’s features, hindering the effective fusion of inputs from both modalities.

C.3. Choice of Pre-training task: Masked Token Prediction v.s. Contrastive

Since both masked token prediction and contrastive learning are self-supervised tasks, understanding the optimal training
order of applying these tasks becomes an intriguing endeavor. Prior research, such as CAV-MAE (Gong et al., 2022b)
and MaViL (Huang et al., 2022a), effectively utilized both MAE loss and Contrastive loss during training. However,
our experimentation revealed that simultaneous application of both losses during the pre-training phase led to failure of
convergence. This challenge may stem from the multiple forward passes to the same weights for various targets, resulting
in conflicting gradient directions. Therefore, we embark on an exploration to discern which order could prove more
advantageous. To achieve this, we trained the same VAB-DAC-Test model in two directions. In the first case, we initiated
pre-training of the VAB-DAC-Test with the masked audio token prediction task and then fine-tuned it with contrastive loss.
In the second case, we start the pre-training of the VAB-DAC-Test with contrastive loss and followed it with fine-tuning for
masked audio token prediction. Both cases employed identical hyperparameters and data. The comparison of retrieval and
generation performances are presented in Table 10. We discovered that both orders actually yielded similar losses upon
convergence and exhibited comparable performance on both tasks. Notably, the Masked Prediction — Contrastive direction
required fewer total training epochs to converge than the Contrastive — Masked Prediction direction. This observation can
be attributed to the inherent complexity of the masked audio token prediction task, which proves more challenging than
identifying audio-visual pairs, especially considering our limited batch size of 108 for contrastive learning. Therefore, we
ultimately opted for the masked token prediction task as the final pre-training task.

Training Order (training epochs) Generation VGGSound V—A Retrieval VGGSound A—V Retrieval
FAD | R@1 R@5 R@10 R@l R@5 R@10

Contrastive (29) — Masked Prediction (9) 4.14 27.7 56.4 67.5 32.5 60.8 72.3

Masked Prediction (9) — Contrastive (15) 4.18 282  56.7 68.5 305 57.6 71.2

Table 10. Retrieval and generation performances under different training orders.

C.4. Effects of Contrastive Fine-tuning on Classification Tasks

In this section, we delve into the question of whether contrastive fine-tuning can further enhance the classification tasks. The
results presented in Table 11 clearly demonstrate that models subjected to contrastive fine-tuning consistently outperform
their counterparts that underwent pre-training based solely on masked audio token prediction.

C.5. Masking Strategy

In this section, we explore how the masking ratio employed during pre-training influences the classification and generation
performances. We conducted training with VAB-DAC-Test using three different masking ratios. Our findings revealed
that employing a larger portion of masks (75%) during pre-training led to an improvement in VGGSound classification
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VGGSound (Acc.)t  AS-2M (mAP)t AS-20K (mAP)t
Method VIA VA VA V A VA V A

VAB-DAC-Test w.o. contrastive ft 56.2 535 41.0 41.6 304 30.1 244 259 159
VAB-DAC-Test w. contrastive ft 624 532 445 426 302 31.1 377 277 222
VAB-DAC w.o. contrastive ft 604 552 421 424 313 31.6 346 282 16.2
VAB-DAC w. contrastive ft 639 554 482 470 333 362 389 283 288
VAB-Encodec w.o. contrastive ft 629 546 474 467 330 357 360 275 24.0
VAB-Encodec w. contrastive ft 652 551 513 477 335 38.6 387 290 29.0

Table 11. Impact of contrastive fine-tuning on classification tasks.

performance, a trend consistent with observations made in prior MAE-based approaches. However, it’s essential to note
that this approach resulted in suboptimal audio quality for video-to-audio generation. Conversely, opting for a smaller
masking proportion (35%) failed to effectively learn both representation and generation. The detailed results are presented
in Table 12.

Masking Ratio V + A Classification (Acc.)T Generation FAD|
mean = 0.35, std = 0.25 55.2 6.04
mean = 0.55, std = 0.25 56.2 5.30
mean = 0.75, std = 0.25 57.2 6.55

Table 12. VAB-DAC-Test performances on VGGSound classification and generation using different masking ratio

C.6. Effect of Visual Encoders

Furthermore, we discuss the effect of using different visual encoders to extract features from video on the VAB model
performance. We conducted visual encoder ablation study by replacing our visual encoder with MAE, same as CAV-MAE.
We extract the frame-level features of all the video data (with same fps) by extracting the “[CLS]” token from MAE’s
pretrained ViT-Large (1024 dims) encoder, and use them in replacement of eva-CLIP features to retrain our model. To ablate,
we adopt the VAB-DAC-Test model configuration as described in Table 7 in Appendix B.2, and name it VAB-DAC-Test
(MAE). Following the same pretraining and contrastive fine-tuning procedure, we compare VAB-DAC-Test (MAE) with our
VAB-DAC-Test w. contrastive ft (Table 9) on downstream tasks including classification, retrieval and audio generation tasks.

Classification: As shown in Table 13, VAB-DAC-Test with eva-CLIP as visual encoder consistently outperforms VAB-DAC-
Test (MAE) across three datasets (VGGSound, AudioSet-20K and Audioset-2M) on Visual and Audio-Visual Classification
tasks, while slightly falling behind in Audio Classification.

Retrieval: In Table 14, we show retrieval comparison results on the VGGSound dataset. As can be seen from the table, the
performances of VAB-DAC-Test (MAE) in retrieval on both V' — A and A — V fall behind ours.

Audio Generation: When it comes to audio generation, also as shown in the leftmost column of Table 14, our VAB-DAC-
Test with eva-CLIP outperforms VAB-DAC-Test (MAE).

These results are within our expectation since MAE is a weaker visual encoder than eva-CLIP. Thereby, we justify our
choice of using a strong visual encoder to enable better generalization on both generation and understanding tasks.

VGGSound (Acc) AS-20K (mAP) AS-2M (mAP)
V+A \'% A V+A \'% A V+A \'% A
VAB-DAC-Test MAE) 559 39.1 46.2 312 159 224 390 214 31.2
VAB-DAC-Test (Ours) 624 532 445 377 277 222 426 30.2 3I1.1

Table 13. Visual encoder ablation study (MAE vs. eva-CLIP) for classification task
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Generation (FAD) VGGSound V—A Retrieval VGGSound A—V Retrieval
R@l R@5 R@10 R@l R@5 R@10
VAB-DAC-Test (MAE) 493 18.4  40.1 52.3 20.6  46.6 57.6
VAB-DAC-Test (Ours) 4.18 28.2 56.7 68.5 305 576 71.2

Table 14. Visual encoder ablation study (MAE v.s. eva-CLIP) for generation and retrieval tasks

D. Video-to-Audio Generation Analysis
D.1. Upperbound of Encodec and DAC tokens

As Encodec and DAC tokens involve lossy compression, it is imperative to ascertain the upper bound of the audio generation
quality. to achieve this, we initiated an evaluation of the FAD scores for the reconstructed audio obtained from the ground
truth Encodec and DAC tokens of the VGGSound test set. In Table 15, our findings revealed that the DAC tokens exhibited
a better FAD score when compared to Encodec tokens. However, it’s important to note that DAC, employing a larger
number of codebooks (12 levels), necessitates token modeling to be trained in two stages. Consequently, we trained the
DAC-Coarse2Fine model, following the Vampnet (Garcia et al., 2023), and assessed the FAD score while conditioning it
on the first four levels of ground truth DAC tokens. The results elucidated that with the incorporation of the additional
Coarse2Fine stage, the upper bound for DAC reached a FAD score of 1.32 with 24 decoding iterations and 1.28 with
36 decoding steps. While DAC exhibited a stronger upper bound compared to Encodec tokens, we observe that our
VAB-Encodec model consistently outperformed VAB-DAC, as shown in Table 1. We hypothesize that the reason behind this
discrepancy may be attributed to the importance of the information lost in the coarse-level DAC tokens, which strongly
influences the learning process on both representation and generation.

Encodec DAC DAC-Corase2Fine (iter 24) DAC-Coarse2Fine (iter 36)
FAD Score 1.86 0.89 1.32 1.28

Table 15. FAD score on the reconstruction of Encodec and DAC tokens for VGGSound test set.

D.2. effects of Classifier-free Guidance Scale

We conducted an exploration of different classifier-free guidance scales during inference. For this experiment, we used the
VAB-DAC model, keeping the decoding steps fixed at 16 and the masking temperature at 10.5. The results are outlined in
Table 16. We found that a classifier-free guidance value of 5 yielded the best FAD scores in our case.

Classifier-free Guidance Scale None 3 5 7 11
FAD 593 350 324 339 4.18
KLD 345 290 2.84 283 2.82

Table 16. FAD and KLD score with various classifier-free guidance scale during inference

D.3. Effect of Masking Temperature

We also investigated how the temperature parameter used in the confidence score calculation affects the quality of the
generated audio. In this study, we employed the VAB-Encodec model while keeping the classifier-free guidance scale
fixed at 5 and the decoding steps at 16. Our findings indicated that higher temperature values resulted in the generation of
higher-quality samples, as shown in Table 17.

D.4. Effect of Decoding Steps

We examined how the number of decoding steps used in the generation affects the generated audio. We employed the
VAB-Encodec model while keeping the classifier-free guidance scale fixed at 5 and the masking temperature at 10.5. Our
findings indicated that employing about 16 iterations are sufficient to obtain reasonable audio quality while more and less
might degrade the performances. The results are shown in Table 18.
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Masking Temperature 4.5 105 125 155 205 255
FAD 575 31 298 283 274 2.69
KLD 3.08 269 261 261 259 2.58

Table 17. FAD and KLD scores with various masking temperatures during inference

Decoding Iterations 8 16 36 48
FAD 352 3.1 325 332
KLD 267 265 269 271

Table 18. FAD and KLD scores with various decoding steps during inference

E. Details of Generating Samples from Video-to-Audio Generation Baselines

In this section, we describe the process of generating samples from baseline video-to-audio generation baseline methods.
For SpecVQGAN (Iashin & Rahtu, 2021), IM2WAV (Sheffer & Adi, 2023), and Diff-Foley (Luo et al., 2023), we utilized
their readily available pre-trained models for conducting inference. However, it’s worth noting that IM2WAV and Diff-Foley
were originally designed for generating audio in shorter duration and not specifically for producing 10-second audio samples.
To adapt these models for generating 10-second audio samples, we made the following adjustments. For IM2WAYV, the
original inference process generates 4-second audio. To obtain 10-second samples, we generated three non-overlapping
4-second audio segments and combined them to form the final 10-second sample. For Diff-Foley, it was originally designed
to generate 8.2-second audio. To produce 10-second audio samples, we generated two segments: one from 0-8.2 seconds
and another from 1.8-10 seconds within the same batch. Then, we padded the first sample with the last 1.8 seconds of the
second sample to achieve the desired 10-second duration.

For FoleyGen (Mei et al., 2023), we replicate the model described in the paper, utilizing our extracted Encodec tokens.
The model comprises a transformer decoder with 24 layers, each equipped with 16 heads, and featuring dimensions of
1024. We faithfully adhered to the same training strategies as outlined in the original paper and employed CLIP embeddings
at a frame rate of 1 frame per second as conditional signals. Additionally, we maintained consistency with the original
classifier-free guidance scale (cfg= 3.0) and adopted a top-k sampling approach with & = 256 for generating the final
samples for comparison. It’s worth noting that the FAD score reported in the original paper (1.65) is better than the upper
bound achieved with our Encodec tokens ground truth (1.86). This suggests that the publicly available Encodec model may
not be the optimal version. Even with the available Encodec tokens, our re-implemented FoleyGen model still surpasses
all other methods in terms of FAD score, underscoring the robustness of this state-of-the-art autoregressive approach.
However, FoleyGen, like other autoregressive methods, encounters challenges with lengthy generation times. In contrast,
our VAB-Encodec significantly accelerates the generation process by 17 times while maintaining high audio quality.

F. Limitations and Discussion

While VAB successfully bridges the gap between audio-visual representation learning and video-to-audio generation, it is
important to acknowledge its limitations. Firstly, due to storage constraints, we could only utilize visual features at a 1fps
resolution across all our data, potentially resulting in the loss of crucial visual details for audio-visual events when compared
to the 2fps resolution employed in MaViL. As a result, we do not anticipate generating perfectly synchronized audio for
videos, though we believe it could be achievable with higher visual resolution. Additionally, our use of pre-processed
frame-level CLIP embeddings has led to the omission of spatial information, which is vital for tasks such as audio-visual
localization and audio-visual question answering. Nonetheless, we believe that with increased computational resources, it
is possible to incorporate spatial features from CLIP image encoder into the model. Moreover, there still exists a notable
performance gap in classification tasks and a more advanced approach needs to be considered to further enhance the
representation learning with audio tokens. Lastly, VAB primarily focuses on video-to-audio generation. When considering
audio-to-video or audio-to-image generation, two challenges emerged. First, computational resources become a limiting
factor. Second, the image and video data in AudioSet and VGGSound contain significant noise and irrelevant information,
making it challenging to learn meaningful image or video generation from audio cues.
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