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Abstract

Topic models help understand document col-001
lections, but they don’t always identify the002
most relevant topics. Classical probabilistic003
and anchor-based topic models offer interactive004
versions that allow users to guide the models005
towards better topics. However, such interac-006
tive features have been lacking in neural topic007
models. To correct this lacuna, we introduce a008
user-friendly interaction for neural topic mod-009
els. This interaction permits users to assign a010
word label to a topic, leading to an update in011
the topic model where the words in the topic012
become closely aligned with the given label.013
Our approach encompasses two distinct kinds014
of neural topic models. The first includes mod-015
els where topic embeddings are trainable and016
evolve during the training process. The second017
involves models where topic embeddings are018
integrated post-training. To facilitate user inter-019
action with these neural topic models, we have020
developed an interactive interface that enables021
users to engage with and re-label topics. We022
evaluate our method through a human study,023
where users can relabel topics to find relevant024
documents. Using our method, user labeling025
improves document rank scores, helping to find026
more relevant documents to a given query when027
compared to no user labeling.028

1 Topic Models Need Help029

Topic modeling is an unsupervised machine learn-030

ing method for analyzing a set of documents to031

learn meaningful clusters of related words (Boyd-032

Graber et al., 2017). Despite decades of new mod-033

els that purport to improve upon it, the most popular034

method remains Latent Dirichlet Allocation (Blei035

et al., 2003a, LDA), which is two decades old.036

This venerable model is still the workhorse for037

those who use unsupervised analysis to discover038

the structure of document collections in digital hu-039

manities (Meeks and Weingart, 2012), bioinformat-040

ics (Liu et al., 2016), political science (Grimmer041

and Stewart, 2013), and social science (Ramage042

Topic: Dengue outbreak in Asia
Query: What countries are seeing an outbreak?
No topic labeling
Topic 0: ‘dengue’, ‘vaccine’, ‘sanofi’, ‘deng-
vaxia’, ‘phillipines’, ‘vaccination’
Topic 1: ‘virus’, ‘countries’, ‘new’, ‘according’,
‘dr’, ‘pandemic’
Topic 2: ‘time’, ‘get’, ‘however’, ‘gonaives’,
‘haiti’, ‘town’, ‘stud’
After topic labeling
Topic 0: ‘dengue’, ‘vaccine’, ‘sanofi’, ‘deng-
vaxia’, ‘phillipines’, ‘vaccination’
Topic 1: ‘virus’, ‘countries’, ‘new’, ‘according’,
‘dr’, ‘pandemic’
Topic 2: ‘india’, ‘genotype’, ‘denv’, ‘asian’,
‘study’, ‘singapore’

Table 1: This figure demonstrates the capability of inter-
active topic modeling in refining topics. Initially, ‘Topic
2’ does not align with the query. Before the labeling,
the topic words, as generated by the ETM, show that
while the first two topics correlate with the task, ‘Topic
2’ is unrelated. After the labeling, the updated ’Topic 2’
now closely aligns with the user-specified label, ‘india’,
showcasing how I-NTM adapts in real-time to user input,
giving greater relevance and accuracy in topic represen-
tation.

et al., 2009b). However, if you look at the com- 043

puter science literature, topic modeling has been 044

taken over by neural approaches (Zhao et al., 2021), 045

such as the embedded topic model (ETM) (Di- 046

eng et al., 2020) and contextualized topic models 047

(CTM) (Bianchi et al., 2020). We review LDA and 048

neural topic models in Section 2. 049

So what explains this discrepancy? A sceptic 050

would posit that there is not sufficient evidence 051

to support the claims that neural topic models are 052

substantially better either in terms of runtime, ease- 053

of-use, or on human-centric methods (Hoyle et al., 054

2021). In addition to these legitimate concerns, 055

there are also functional lacunae: abilities “classic” 056
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topic models have that neural models lack. Neural057

models are often a “take it or leave it” proposition:058

if the results do not match what you want, a user059

(particularly a non-expert in machine learning) has060

little recourse. In contrast, the probabilistic topic061

modeling literature has a rich menu of options to062

improve topic models: works involving labeling063

topics through images using neural networks, us-064

ing a sequence-to-sequence model to automatically065

generate topics, or using unsupervised graphical066

methods to label topics (Aletras and Mittal, 2016;067

Aletras and Stevenson, 2014; Alokaili et al., 2020).068

Pleple (2013) designed an interactive framework069

that allows the user to give live feedback on the top-070

ics, allowing the algorithm to use that feedback to071

guide the LDA parameter search. Choo et al. (2013)072

developed an interactive interface for LDA for user-073

driven topic modeling. Unfortunately, these im-074

provements are not currently available for neural075

topic models.076

Making neural models interactive requires two077

things: models to support interactivity and an inter-078

face to allow users to make changes to the model.079

This paper provides both and applies them both080

to models by directly updating topic embeddings081

(ETM, NVDM) or by adding topic embeddings in082

after training CTM. To use I-NTM interactively—083

based on the topic label from the user—we embed084

the label in the embedding space and move the085

corresponding topic embedding closer to the label.086

We detail the two different types of "moving" in087

Section 3.1. This adjusts the center of the topic em-088

bedding: throwing out unrelated words, prioritizing089

words that are “close” to the users’ label.090

While there have been many previous works for091

interactive labeling, our work introduces a way092

of improving topics through a natural way of la-093

beling that is typically done a posteriori. We call094

this method Interactive Neural Topic Modeling or095

I-NTM. Additionally, we provide a user-friendly096

interface that allows for such interactions.097

To demonstrate the efficacy of our interactive098

labeling method and interface, we conduct a human099

study using the CTM backend of I-NTM. CTM was100

chosen since it showed to find the most diverse and101

coherent topics out of the three models we provide102

support for. We find that if a user has a specific103

task for a corpus, I-NTM quantitatively helps users104

quickly identify more documents relevant to their105

information needs, as we will see in Section 4.2106

2 Best of Both Worlds: Neural Word 107

Knowledge and Bayesian Informative 108

Priors 109

This section reviews topic models: how they 110

are useful to practitioners, their shortcomings, 111

and motivate our attempt to ameliorate this with 112

embedding-based interactions. 113

2.1 Latent Dirichlet Allocation 114

Topic models are exemplified by latent Dirichlet 115

allocation LDA (Blei et al., 2003b). LDA posits a 116

generative story for how the data came to be and 117

uses probabilistic inference to find the best explana- 118

tion for the dataset (Griffiths and Steyvers, 2004a). 119

Often, one of the first steps of using the output of a 120

topic model is to name the topics. Either by select- 121

ing top words through a Markov chain Monte Carlo 122

algorithm (Griffiths and Steyvers, 2004b; Hofmann, 123

2017) or through manual generation of descrip- 124

tive topics (Mei et al., 2006; Wang and McCallum, 125

2006). 126

For probabilistic models, however, this is not 127

the end of the story. The Bayesian framework— 128

through the use of informed priors—encourages 129

the incorporation of expert knowledge into interac- 130

tive topic models. This can either represent a dic- 131

tionary (Hu et al., 2014b), word lists from psychol- 132

ogy (Zhai et al., 2012), or the needs of a business 133

organization (Hu et al., 2014a). This feedback to 134

a model helps match a user’s information needs 135

or reflect world knowledge and common sense. 136

Of course, one could move to a fully supervised 137

model (Blei and McAuliffe, 2007), where every 138

training document has a topic label. But this re- 139

quires substantially more interaction with the user 140

than giving feedback on a handful of topics—full 141

supervision requires hundreds or thousands of la- 142

beled examples. But these interactive models are 143

not without their faults. First, they’re slow; prob- 144

abilistic inference—whether with MCMC methods 145

or variational inference—struggles to update in the 146

seconds required to satisfy the best practices of 147

an interactive application. Second, while one of 148

their goals is to incorporate the knowdge of users, 149

they completely ignore the vast world knowledge 150

available “for free” from representations trained on 151

large text corpora. 152

2.2 Neural Topic Models 153

Neural topic models have emerged as a powerful 154

alternative to probablistic models. These models 155
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Figure 1: Visual representation labeling a new topic with out method, like in Table 1. Our method moves the
embedding center for the topic closer to the new label word, in this case, India.

leverage deep learning techniques to capture com-156

plex relationships and representations within tex-157

tual data, offering several advantages over tradi-158

tional methods. One of the key strengths of neural159

topic models is their proficiency in generating co-160

herent and interpretable topics. This is primarily161

due to their use of nonlinear functions, which are162

more adept at closely matching the observed distri-163

bution of words and topics in the data.164

One popular architecture for neural topic165

modeling is the Variational Autoencoder (VAE)166

based topic model. VAE-based models, such as167

NVDM (Miao et al., 2016) encode documents into168

continuous latent spaces, enabling a smoother and169

more expressive representation of topics. For this170

model, we add topic embeddings directly to the171

latent space of the model, creating learnable topic172

embeddings similar to the topic embeddings inher-173

ently found inETM.174

Neural models capture data nuances by learn-175

ing distributed representations of words and top-176

ics. This leads to topics that are not only more177

semantically meaningful but better aligned with hu-178

man interpretations. ETM takes advantage of these179

representations by associating each topic with an180

embedding. These embeddings can be learned by181

the model or pre-trained word embeddings may be182

used. Like traditional topic models, each document183

has a vector connecting it to the K latent topics.184

While a traditional topic model would have a full185

distribution over the vocabulary, the kth topic in186

ETM is a vector αk ∈ RL—just like words in the 187

embedding space. ETM induces a per-topic distribu- 188

tion over the vocabulary from this representation. 189

Moreover, neural models can handle large-scale 190

text corpora efficiently and can adapt to different 191

domains or utilize the knowledge of large language 192

models (LLM). In CTM researchers sought to lever- 193

age the knowledge of LLM for better word represen- 194

tations. One such method is to combine the tradi- 195

tional BOW method with word embeddings from a 196

LLM to develop contextualized embeddings which 197

lead to better topic models (Bianchi et al., 2020). 198

The symbolic meaning of traditional BOW is lost 199

after a single neural layer, so they hypothesize that 200

contextualized embeddings would improve this. As 201

CTM are one of the best neural topic models, we 202

decide to extend CTM to be interactive as well and 203

use it as the focus for our human study. 204

3 Interactive Neural Topic Modeling 205

In this section, we explore the rationale and method- 206

ology behind modifying labels in neural topic mod- 207

els, focusing on two primary mechanisms: learn- 208

able topic embeddings and topic embeddings added 209

in post-training. These methods offer similar, yet 210

distinct approaches to refining topic models. Tradi- 211

tional topic models often suffer from the absence 212

of explicit labels, leading to potential mismatches 213

between documents and topics or the generation 214

of incoherent topics. This can lead to situations 215
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Vocab Size Coherence Diversity

ETM
2565 0.19 0.81
3572 0.17 0.85
10830 0.11 0.92

I-NTM
(ETM)

2565 0.14 0.84
3572 0.10 0.88
10830 0.10 0.94

I-NTM
(CTM)

2565 0.21 0.91
3572 0.18 0.92
10830 0.15 0.95

Table 2: Interactivity improves downstream classifica-
tion tasks and the overall diversity of topics. In some
cases, topic coherence decreases since coherence im-
proves with general topics and we are labeling topics.
Topic coherence and topic diversity, varying vocabulary
sizes for ETM and various I-NTM models on the BETTER
dataset. Our both models under I-NTM outperform stan-
dard ETM in terms of topic diversity and topic coherence

where documents are associated with topics that216

they should not be (Ramage et al., 2009a) or top-217

ics that just do not make sense (Newman et al.,218

2010). Also, they require users to manually ana-219

lyze the topics found and then use labels such as220

the Business topic. Non-technical users also use221

a similar process when using topic models: they222

inspect the topics, find the topics relevant to their223

use case, and label them accordingly. Thus, since224

labeling is a natural way people have already been225

interacting with topic models, we use labeling to226

both improve topics and help guide the model to227

relevant topics for the users. We will dissect two228

key methods in I-NTM for updating topics, depend-229

ing on the underlying model used. The first method230

involves learnable topic embeddings, that is models231

that have or can have learnable topic embeddings.232

The second method is post-training adjustments,233

where topic embeddings are added in and modified234

after the model has been trained. These methods235

offer a suite of neural topic models to use interac-236

tively. By combining learnable topic embeddings237

and post-training adjustments, I-NTM provides a238

robust and flexible framework for users to interact239

with and guide the development of neural topic240

models.241

3.1 Adjusting Learnable Topic Embeddings242

In this section, we explore the first of two primary243

methods for updating topics in neural topic models:244

models that have or can have learnable topic em-245

beddings. As discussed above, for ETM and NVDM246

we induce a topic distribution from word represen- 247

tations and a topic embedding. These models fall 248

under the type of neural models where topic em- 249

beddings are or can be directly represented in the 250

model and therefore changed. To make the topic 251

modeling interactive, we allow for the users to ad- 252

just the underlying embedding for each topic, thus 253

“moving” the topic closer to the word embeddings 254

they desire. We will discuss what this looks like 255

in terms of users’ actions in a moment, but for the 256

moment we assume that this can be expressed as a 257

vector 258

αk⃗
new = λ(wk⃗ − αk⃗

old) + (1− λ)αk⃗
old (1) 259

where αold
k is the topic embedding generated by 260

the model and wk is the word embedding associ- 261

ated with the topic the user inputs. That is, if the 262

user wants a topic of food, the topic embedding is 263

moved toward the word embedding corresponding 264

to food. The weight of adjusting the topic embed- 265

ding towards the new label, can be tuned through 266

the parameter λ, which determines how close the 267

topic embedding is moved. 268

Following the example in Table 1, Figure 1 269

shows the topic and word embeddings before and 270

after the adjustment of Topic 2. The words sur- 271

rounding Topic 2 before adjusting the label, do not 272

at first seem to be relevant to the question. Af- 273

ter labeling of Topic 2, as India, we see the topic 274

embedding, is close to the words “india”, “denv”, 275

and “scientist”, which are more likely to be rele- 276

vant to the question and to reveal more relevant 277

documents. 278

3.2 Adding Adjustable Topic Embeddings 279

After Training 280

ETM and NVDM have trainable embeddings, but 281

what about models that cannot or adding them neg- 282

atively affects training? In such cases, the idea 283

is to introduce a form of topic embedding post- 284

training, to enhance the model’s performance and 285

interpretability. We can simulate the effect of an 286

embedding by creating a weighted average over the 287

words that constitute a topic. This weighted aver- 288

age essentially serves as a stand-in for a physical 289

topic embedding. Our interactive framework sup- 290

ports these types of models. In this case, the topic 291

embedding is a proxy for a physical embedding 292

to change the topics. CTM falls into this category. 293

Here, given a new label wl for a topic ti, the distri- 294

bution over words for t is updated to have higher 295
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Figure 2: Human study interface for I-NTM, using CTM as the neural model. Users can see the given topics that
are found for a set of tasks/requests and can change the label to better fit their needs. Additionally, the assigned
documents for each topic are shown and users can select which documents are most relevant.

probability for wl and for similar words, ws:296

Pupdate(wl | ti) = Porig(wl | ti) + ∆P (wl | ti) (2)297

and for similar words,298

∆P (ws | ti) = λ · sim(wl, ws) ·∆P (wl | ti) (3)299

where ∆P (w | t) is the amount by which you in-300

crease the probability of word, w, in topic, t.301

In neural topic models, topics are typically rep-302

resented as distributions over words. Each topic303

is a blend of various words, with certain words304

having more weight or influence in defining the305

topic. Thus, when a user assigns a label to a topic,306

they are providing a semantic point of reference307

for that topic. The model is prompted to adjust the308

weights of words in the topic distribution to align309

more closely with the semantics of the label.310

3.3 User Interface311

While Equation 1 outlines a theoretical framework312

for labeling topics, its practical application hinges313

on a user-friendly interface that allows for real-time314

interaction. To address this, we have developed an315

interface, as depicted in Figure 2, which not only316

makes interactive topic modification feasible for317

neural models but also enhances user engagement318

beyond existing NTM visualizations. Our interface319

is designed with low-latency interactions in mind,320

a crucial feature for ensuring efficient topic refine-321

ment. There is immediate feedback when users322

label or re-label topics, fostering a dynamic inter-323

action where users can intuitively understand the324

impact of their inputs on the model.325

Furthermore, the interface is tailored to accom- 326

modate users without technical expertise. It allows 327

them not only to assign labels to topics but also 328

to observe, in real-time, how such labeling alters 329

the document-topic assignments. This level of in- 330

teraction is an advancement over traditional NTM 331

visualizations, which typically offer static or less 332

responsive user experiences. Users can delve into 333

the topics, peruse associated documents, and input 334

new labels via the interface. 335

The underlying system seamlessly handles the 336

complex tasks: adjusting topic embeddings, recal- 337

culating document-topic distributions, and updat- 338

ing the display to reflect these changes. This back- 339

end processing ensures that the interface remains 340

user-friendly and effective. A key feature of our 341

interface is its ability to support continuous topic 342

updates. Users can modify a topic multiple times, 343

and there is flexibility to update several topics con- 344

currently. To maintain the coherence and distinc- 345

tiveness of topics, the interface incorporates safe- 346

guards against creating duplicate topics or topics 347

with terms not found in the existing vocabulary. 348

3.4 Automatic Metrics 349

Since Dieng et al. (2020) improve topic coherence 350

and diversity compared to LDA, to check if our 351

method negatively affects them, we compare co- 352

herence and topic diversity for varying vocabulary 353

sizes between I-NTM models. Topic coherence is 354

an automated method for evaluating the semantic 355

similarity of top words in a given topic. We mea- 356

sure the normalized Pointwise Mutual Information 357
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Figure 3: Labeling topics leads to, otherwise missed,
documents to be revealed. The maximum number of
new documents, that is, a document that was not previ-
ously associated with the topic, found for each question
across all users. The range of the number of documents
found across all users is shown by the black bars.

(NPMI). NPMI is just an extension of PMI, where358

the vectors are weighted (Aletras and Stevenson,359

2013).360

For our user study, we use information retrieval361

(IR) as a metric for evaluating human labeling. IR362

focuses on retrieving documents that are relevant363

to a given query. By using IR as a metric, one364

can objectively assess how well user labeling im-365

proves the model’s ability to retrieve relevant doc-366

uments. If the user-labeled topics lead to more367

relevant documents being retrieved in response to368

a query, this indicates that the labeling process is369

effective. Additionally, IR focus on retrieving rel-370

evant documents mirrors real-world use cases of371

topic models. By using IR as an evaluation metric,372

you ensure that your assessment reflects practical373

scenarios where users rely on the model to find374

information quickly and accurately.375

3.5 Human Study376

To validate the efficacy of I-NTM, we recruit par-377

ticipants to test our model in finding more rele-378

vant documents for different information needs, ex.379

"Find documents that relate to foreign intervention380

in Cuba." Information retrieval tasks are an intu-381

itive way to measure the success of our method,382

since they involve finding relevant information spe-383

cific to a need. To verify that user labeling uncover384

more relevant documents, we compare document385

ranking scores before and after labeling and be-386

tween a control group, where no labeling is done387

and the test group, where users can label topics. 388

Setup We recruited 20 participants through the 389

online platform Prolific. 390

1. Our model I-NTM generates topics on the Text 391

REtrieval Conference (TREC) Question Clas- 392

sification dataset. We randomly selected ap- 393

proximately 1500 documents from the For- 394

eign Broadcast Information Service (FBIS). 395

2. Participants see an information need with top- 396

ics generated by our model. They can label 397

topics as they deem best 398

3. After labeling topics, they select a maximum 399

of five documents that they believe best an- 400

swer the information need 401

We limit users to five minutes per question. We 402

limit the users to select five documents to normalize 403

the results across all users and limit outliers, i.e. a 404

user taking an hour to comb through hundreds of 405

documents to achieve maximum ranking score. 406

We want to mimic real-world scenarios where 407

thousands of documents and possibly hundreds of 408

questions need to be answered, where users would 409

not have time to spend hours on each question. 410

For each user we collect the topic information and 411

document distribution before and after the human 412

interaction. Then, using the B25 algorithm (Robert- 413

son et al., 1994), an information retrieval ranking 414

function, we compare the estimated relevancy of 415

topics before and after the human interaction. We 416

use BM25 since no gold relevance annotations are 417

available for the TREC dataset and since BM25 418

works by using a bag-of-words retrieval function 419

that ranks a set of documents based on query terms 420

present in the document, this is an effective way 421

to compare retrieval performance between our two 422

groups. 423

4 I-NTM Experimental Results 424

We evaluate I-NTM on standard evaluation metrics 425

and through a human study. Our experiments con- 426

firm that an interactive topic modeling interface 427

greatly improves users’ ability to find relevant doc- 428

uments in a timely manner. 429

4.1 Labeling Improves Coherence 430

Initially, we tested I-NTM with automatic metrics 431

without human intervention, to understand how in- 432

teraction changes the coherence and diversity of 433

topics. Looking at the ETM backend, topic co- 434

herence drops with our method, but diversity is 435
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Topic Type Avg Time Docs

Cuba
Control 5∗ min 3

Interactive 2 min 5
South
Korea

Control 5 min 3
Interactive 4 min 5

Taiwan
Control 5∗ min 3

Interactive 2 min 5

Balkans
Control 5 min 3

Interactive 3 min 5

China
Control 5 min 5

Interactive 4 min 5

Table 3: Our interactive method led to document selec-
tion, with more relevant documents being selected, on
average. For the 5 different questions, the general topic
of that question, the average amount of time a user spent
on each question, and the average number of document
selected are reported. A time of 5∗ indicates they hit the
set time limit of 5 minutes per question.

higher (Table 2). This effect is dataset dependent.436

For Wikipedia, adjusting six of the topics to have437

distinct labels for classification results in a more438

diverse topic words. However, coherence typically439

improves with more general clustering topics, since440

it measure co-occurence of words in the documents441

with the topic words. So, with distinct topics, this442

can result in lower topic coherence. In contrast, the443

documents in the BETTER dataset (Table 1 and Fig-444

ure 1) are curated to be related to disaster situations.445

In this case, when topics are labeled to better fit the446

request at hand, the topic words tend to have more447

overlap, since the request is so specific. With the448

BETTER dataset, I-NTM decreases topic diversity449

but increases in topic coherence.450

Regardless, topic coherence is an imperfect met-451

ric for neural topic modeling evaluation (Hoyle452

et al., 2021). Nevertheless, we report these scores453

for coherence and diversity since this is the current454

standard for topic model evaluations.455

Human validation is viewed as the gold standard456

when it comes to topic model evaluation, thus we457

report those results in the next section.458

4.2 Human Study459

To evaluate the effectiveness of I-NTM, we con-460

ducted a human study using both a control (no label-461

ing) and interactive (allows for labeling) scenario.462

For both treatments, CTM backend of I-NTM is used.463

The control group and interactive group are given464

the same question, set of documents, and topic465

model. However, the control group is asked to find466
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Figure 4: Average BM25 document ranking scores for
each of the 5 questions averaged, over the 20 users. User
inputted topic labels find more relevant documents and
significantly improve document ranking scores

relevant documents without the ability to label any 467

topics. In contrast, the interactive group can label 468

topics and then select relevant documents. When 469

comparing the BM25 document ranking scores of 470

the control and interactive group, we find labeling 471

topics leads to more representative documents be- 472

ing revealed and chosen, when averaged across all 473

20 users (Figure 4). 474

In all cases except for Q5, there is a stark in- 475

crease in ranking scores after the update. Question 476

5 was “Find document related to Chinese economic 477

intervention in other countries” and due to a large 478

portion of the documents came from Chinese news 479

sources, it was easier to find documents discussing 480

China’s economic relations in comparison to the 481

other questions. We see further evidence of this in 482

Table 3 where Q5 had the highest average number 483

of documents selected across all control scenarios 484

and matched the interactive scenario in average 485

time taken. In contrast, the other four questions 486

took more time and selected less documents than 487

the interactive case. In the case of Q1 and Q3 488

where the time limit was reached, the users were 489

not able to find 5 related documents in time. While 490

a high number of new associated documents does 491

not necessarily correlate with an increase in docu- 492

ment ranking score, as some of the new documents 493

might be related to the general topic but not the spe- 494

cific information need, we find that labeling does 495

reveals a significant amount of documents that were 496

not previously in that topic (Figure 3). Again, we 497

see a significantly smaller number for Q5, which 498

we believe is due to the prevalence of documents 499

related to China in the dataset. 500
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5 Related Work501

Topic modeling covers a wide range of methods for502

discovering topics within a corpus and there has503

been extensive research across these different meth-504

ods. We discuss these similar methods and contrast505

them with our own in the following seciton.506

Neural topic models With the recent develop-507

ments in deep neural networks (DNNS, there has508

been work to use these advancements to increase509

performance of topic models. One of the most com-510

mon frameworks for neural topic models (NTMS),511

described in (Zhao et al., 2021), as VAE-NTMS.512

Much research was focused on adapting VAE’s for513

topic modeling; Zhang et al. (2018); Srivastava514

and Sutton (2017) focus on developing different515

prior distributions for the reparameterization step516

of VAE, such as using hybrid stochastic-gradient517

MCMC and approximating Dirchelt samples with518

Laplace approximations. VAE-NTM also were ex-519

tended to work with different architectures, Nal-520

lapati et al. (2017) developed a sequential NTM521

where the model generates documents by sampling522

a topic for one whole sentence at a time and uses a523

RNN decoder. ETM and therefore, I-NTM use these524

advancements in VAE to update the neural model525

parameters.526

Interactive topic modeling. Interactive labeling527

of topics has been thoroughly explored for proba-528

bilistic topic models. Smith et al. (2017) compared529

labels generated by users after seeing topic visual-530

izations with automatically generated labels. Hu531

et al. (2014a) provides a method for iteratively up-532

dating topics by enforcing constraints. Mei et al.533

(2007) make the task of labeling into an optimiza-534

tion problem, to provide an objective probabilistic535

method for labeling. But there has yet to be work536

that extends this iterative process to neural-based537

topic models in an intuitive and natural sense such538

as I-NTM. There has been extensive work in the539

area of anchor-based topic modeling—where a sin-540

gle word is used to identify a topic. Lund et al.541

(2017) present “Tandem Anchors” where multi-542

word anchors are used to interactively guide topics.543

Yuan et al. (2018) developed a framework for inter-544

actively establishing anchors and alignment across545

languages. Dasgupta et al. (2019) introduces a546

protocol that allows users to interact with anchor547

words to build interpretable topic. The most similar548

and recent work to outs is (Fang et al., 2023) which549

simultaneously developed a user-interface for inter-550

active and guided topic modeling, based on Gibbs 551

sampling. While it has obvious similarities, we 552

developed the first interactive interface for neural 553

topic models and have an interface that users can 554

see in real-time their changes to the model. 555

Automatic topic modeling For a similar purpose, 556

but through a different process, many works have 557

sought to automatically generate labels (Alokaili 558

et al., 2020). Where they re-rank labels from a large 559

pool of words to label topics in a two-stage method. 560

Lau et al. (2011) uses top terms from titles and 561

subwords from Wikipedia articles to rank and label 562

topics based on lexical features. Mao et al. (2012) 563

exploit the parent-sibling relationship of hierarchi- 564

cal topic models to label the topics. Unsupervised 565

methods that differ from topic models but with the 566

same goal of clustering data also exist. LLM can be 567

prompted to cluster data with or without labels in 568

an intelligent way (Wang et al., 2023) 569

6 Conclusion and Future Work 570

We introduce I-NTM: a method and interface for 571

users to interactively update topics given by neu- 572

ral topic models. While there have been previ- 573

ous efforts to improve probabilistic topic modeling 574

through labeling, this is the first work to our knowl- 575

edge that allows interactive updating of neural topic 576

models. Especially in real-world situations, such as 577

disaster relief, the ability to improve topics through 578

labeling allows non-technical users to tailor the 579

topics to their specific needs. 580

Additionally, our user study verifies that giving 581

users the ability to label topics improves perfor- 582

mance on downstream information retrieval tasks 583

in less time, validating that more relevant docu- 584

ments are being found. 585

To take this work further and give as much flex- 586

ibility to the user as possible adding the ability to 587

guide the training of topic models by interactive la- 588

beling throughout the training, multi-word labeling 589

instead of single, vocabulary based labels, stronger 590

encoders, and direct access to making the adjust- 591

ments in the embedding space through embedding 592

visualizations would improve upon this presented 593

method. Finally, while we present a suite of three 594

different neural models, interactive topic modeling 595

and by extension our interface, could be extended 596

to other models such as LLMs.. 597
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Limitations598

This work we seeks to solve a key limitation in599

traditional topic models— guiding the topics of a600

model in a way that is relevant to the user. Along601

the lines of what it means to “help” identify more602

relevant topics, (Hoyle et al., 2021) discusses the603

limitations of coherence, an automatic metric for604

topic model evaluation. Topic coherence is an au-605

tomatic metric that is not validated by human ex-606

periments and thus its validity of evaluating topic607

models is limited. While our method is an attempt608

to improve interpretability of topic models, it still609

suffers from many of the problems that topic mod-610

els in general do. Topic models do not conform611

to well-defined linguistic rules and due to the non-612

compositionality of labels, from a linguistic view-613

point, can be viewed as not actually modeling top-614

ics (Shadrova, 2021).615

We recognize that with any study there are limi-616

tations, while topics are meant to be representative617

labels of the corpus, users tended to use words di-618

rectly in the query or general task, treating it more619

as a keyword match. While this is not how topic620

models are meant to be used and most likely due621

to a lack of knowledge about topic models, this622

process did work in most cases at improving the623

relevancy scores for the questions.624

Finally, the BM25 requires a query to calculate625

the scores. We used the scenario and correspond-626

ing question as the query (removing stopwords),627

however a variation in query could lead to different628

BM25 scores. While this does not change the fact629

that labeling topics on average improved BM25630

scores, it means a good query is required to effec-631

tively rank documents.632

Ethical Considerations633

The data that we used for the experiments in this pa-634

per was all human gathered by others and ourselves.635

If I-ETM was to be used in a real-word situation,636

where identifying key documents or tweets about637

a time-sensitive issue was paramount, any failures638

in the system could result in a negative outcome if639

the wrong information is disseminated. We went640

through the appropriate IRB pipeline to receive ap-641

proval for our human conducted study. The users642

were paid based on the recommendation of the Pro-643

lific platform, which bases its’ recommendation644

based on the time of the study and other studies.645

This was a rate of $12 an hour. No personal identifi-646

cation information was collected from the users, so647

there poses no threat to the participants of exposure 648

of personal information. 649
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A Example Appendix842

B Datasets843

We used the BETTER dataset and a curated844

Wikipedia dataset.1 To preprocess the data, we845

removed English stopwords and used the 0.01 and846

0.85 as the minimum and maximum document fre-847

quency, respectively.848

1https://github.com/forest-snow/mtanchor_demo

B.1 Training details 849

For all the results presented in this paper, our model 850

was trained using 4 NVIDIA RTX2080ti The I- 851

NTM model was trained for 200 epochs using 20 852

topics. The ADAM optimizer is used with a learn- 853

ing rate of 0.005.2 The rest of the details can be 854

found in the appendix. For our human study, we 855

trained a model using only 5 topics. This was due 856

to not wanting to overwhelm users with a lot of 857

topics and the limited number of documents in the 858

dataset. 859

C Models 860

We used the PyTorch implementation of ETM to 861

build our code off of.3 We used an embedding 862

space size and rho size of 300 and a hidden layer 863

size of 800. The rest of the hyperparameters are 864

the default and can be found in the original code 865

or our own. To greatly improve training time, we 866

used the pre-trained fasttext embeddings (Mikolov 867

et al., 2018). 868

D Code 869

The code will be publicly made available on our 870

Github page. 871

2we followed the other default parameters in the original
paper and can be found in our code as well.

3https://github.com/lffloyd/embedded-topic-model
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