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ABSTRACT

Federated learning (FL) must support unlearning to meet privacy regulations.
However, existing federated unlearning approaches may overlook the overlapping
information between the unlearning and remaining data, leading to ineffective
unlearning and unfairness between clients. We revisit this problem through the
lens of memorization, showing that only unique memorization information from
the unlearning dataset should be removed, while shared patterns should remain.
Subsequently, we propose the Grouped Memorization Evaluation, a metric that
distinguishes memorized from shared knowledge at example level, and introduce
Federated Memorization Eraser (FedMemEraser), a pruning-based method that
resets redundant parameters carrying memorization information. The experimen-
tal results demonstrate that our method closely matches the retraining baselines
and effectively eliminates memorization information compared to other unlearn-
ing algorithms.

1 INTRODUCTION

Federated learning (FL) has become a popular machine learning paradigm in recent years (McMahan
et al., 2017). It enables collaborative model training without sharing raw data, where participants
train locally and exchange only model updates. An essential requirement of federated learning is
federated unlearning (FU) (Kairouz et al., 2021). This concept is referred to as the right to be
forgotten (RTBF) (Liu et al., 2022), as mandated by privacy regulations such as the General Data
Protection Regulation (GDPR) (Voigt & Von dem Bussche, 2017) and the California Consumer
Privacy Act (CCPA) (Harding et al., 2019). Consequently, incorporating unlearning mechanisms
into FL is essential to maintain user privacy and meet legal requirements.

A straightforward approach for federated unlearning is to retrain the federated learning model.
However, retraining involves significant computational and communication costs. Consequently,
performing unlearning directly on the original model is a more efficient way. Several federated
unlearning (FU) techniques have been proposed to address this challenge. For example, perturb-
ing information representations can facilitate unlearning. Gu et al. (2024) fine-tune the original
model using a randomly labeled unlearning dataset to compromise the learned representations. Fur-
thermore, historical information can also support unlearning. FedRecovery (Zhang et al., 2023)
employs differential privacy and historical updates to make the unlearning data indistinguishable.
Additionally, gradient ascent is another widely adopted strategy. Halimi et al. (2022) apply this
technique to reverse the learning process, incorporating a l2 norm constraint to prevent arbitrary up-
dates. FedOSD (Pan et al., 2025) modifies the loss function and addresses gradient conflicts during
unlearning to retain generalization performance. Besides, the loss function optimization based on
the Fisher Information Matrix (FIM) (Liu et al., 2022) has proven effective in guiding unlearning.

However, existing federated unlearning algorithms may overlook the overlapping learnable infor-
mation between the unlearning and remaining clients. For example, Pan et al. (2025) and Halimi
et al. (2022) attempt to eliminate the influence of the entire unlearning dataset, including the over-
lapping information. Such removal or oversight can result in ineffective unlearning and unfairness
among clients. As illustrated in Figure 1, under a CIFAR-10 Non-IID setup with class 1 data, the
embedding features of the unlearning client (light red) still exhibit substantial overlap with those
of the remaining clients (light green and blue) in the retrained model. Moreover, the overlapping
data points are correctly classified and not forgotten, even if the data come from the unlearning
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client. This indicates that overlapping data encode general, shared knowledge derived from both the
unlearning client and the remaining clients. Therefore, the overlapping portion may substantially
contribute to the model’s generalization performance, and its removal could potentially degrade the
overall generalization capability of the model. Furthermore, non-overlapping information from the
unlearning dataset may be overlooked and inadvertently retained in the unlearned model in unlearn-
ing. On the other hand, unlearning overlapping information may undermine the contributions of
clients that provide similar information, while clients contributing distinct information remain unaf-
fected. For example, as illustrated in Figure 1, removing overlapping features may lead to a more
significant performance degradation for remaining client 1 (light blue) compared to remaining client
0 (light green), since client 1 provides more overlapping features. This can result in inconsistent
performance shifts across the remaining clients and introduce unfairness.
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Figure 1: Embedding feature distribution (only class 1) of clients on original model (Left) and
retrained model (Right).

To address these problems, we revisit the federated unlearning problem. From a memorization per-
spective, the overlapping features represent shared and generalized information found in both the
unlearning and retained datasets. In contrast, the non-overlapping features are unique and memo-
rized information provided in corresponding datasets. Based on this insight, we find the key dif-
ference at the information level between the original model and the retrained model lies in the
memorization information contained within the unlearning dataset. Therefore, we propose feder-
ated memorization unlearning, which demonstrates that only the unique memorization specific to
the unlearning dataset needs to be removed, rather than the entire unlearning dataset. Given
the lack of a reliable memorization metric in unlearning, we propose a novel evaluation metric based
on the memorization score (Feldman & Zhang, 2020), enabling finer-grained assessment of unlearn-
ing effectiveness. In addition, we present a novel federated unlearning method which only removes
the memorization information: FedMemEraser. We identify redundant parameters as the primary
carriers of memorization information, making them key targets for removal in unlearning. As a
result, we retain the overlapping information in the unlearned model to preserve generalization per-
formance and ensure fairness among clients. In the experiment, we demonstrate that our approach
closely matches the retrained baselines and outperforms other baselines in unlearning efficacy, gen-
eralization performance, and client fairness.

Specifically, our contributions can be summarized as follows:

• We redefine the federated unlearning problem from the perspective of memorization and
demonstrate that overlapping or shared information, should not be unlearned.

• We propose Grouped Memorization Evaluation, a novel metric that can measure mem-
orization information at example level, thereby enabling a fine-grained assessment of un-
learning efficacy.

• We introduce the Federated Memorization Eraser, a method designed to selectively only
remove memorization information during unlearning. This approach preserves shared,
overlapping knowledge, thereby maintaining generalization performance and promoting
fairness across clients.
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2 RELATED WORKS

2.1 MACHINE UNLEARNING

Machine unlearning (MU) aims to selectively remove the influence of specific training samples from
a trained model, making it behave as if those samples were never included (Cao & Yang, 2015).
While retraining from scratch guarantees exact removal (Wang et al., 2024), it is prohibitively ex-
pensive for large deep models, motivating more efficient MU methods. According to the taxonomy
of machine unlearning (Li et al., 2025), approaches fall into exact and approximate unlearning. A
notable exact method is SISA (Bourtoule et al., 2021), which partitions data into shards and re-
trains only the affected sub-model upon deletion. Approximate unlearning includes gradient-based
methods such as negative gradient descent (Jang et al., 2022), random label perturbation (Fan et al.,
2024), and influence function-based approaches (Guo et al., 2019; Golatkar et al., 2020), which
leverage the Hessian or Fisher information to revert models toward an unlearned state.

2.2 MEMORIZATION EFFECT

Recent studies (Zhang et al., 2021; Feldman, 2020; Feldman & Zhang, 2020) reveal that DNNs
often memorize specific details instead of learning general patterns, impacting generalization, se-
curity, and privacy, and closely relating to unlearning. Feldman (2020); Feldman & Zhang (2020)
propose the memorization score to measure memorization and find the long-tail theory: DNNs tend
to memorize atypical examples, which aid generalization but also increase privacy risks. Empir-
ical evidence (Carlini et al., 2023; 2019) shows that memorization drives privacy vulnerabilities.
Maini et al. (2023) locate memorization within a small subset of neurons across layers and show
that frequent parameter updates mitigate it.

3 PRELIMINARIES

3.1 FEDERATED LEARNING

Federated learning (McMahan et al., 2017; Konečný et al., 2016; Shokri & Shmatikov, 2015) al-
gorithm f is a distributed learning framework that enables the training of a global model ΦG by
iteratively aggregating knowledge from multiple distributed K clients C = {Ck | k ∈ K} without
transferring their local datasets D = {Dk | k ∈ K}. All local datasets Dk are drawn from the
data distribution D. At the core of FL lies an algorithmic process where each client Ck trains a
local model Φk on its private dataset Dk and periodically communicates the resulting parameters
or gradients to a central server. The server then aggregates these updates with specific aggregation
algorithms such as Federated Averaging Aggregation (McMahan et al., 2017), to generate the shared
global model ΦG ← f(D), which is subsequently redistributed to the clients for further training.

3.2 FEDERATED UNLEARNING

Federated unlearning is a subfield of machine unlearning that satisfies the requirements of privacy
regulations and user rights in the distributed environment. It focuses on deleting the data locally and
removing the influence of data from the global model and all local models (Liu et al., 2024).
Definition 1. Federated Unlearning. We define that D = {Dk | k ∈ K} is the set of all local
datasets of clients that includes unlearning datasets Du and remaining datasets Dr. It is worth
noting that D = Du ∪Dr. The global model ΦG is trained on D with federated learning algorithm
f that ΦG ← f(D). Thus, the unlearned global model ΦGu

should satisfy:

M
ΦGu←A(ΦG,Du)

(ΦGu
(D)) ≃ M

ΦGr←f(Dr)
(ΦGr

(D)), (1)

where A is the federated unlearning algorithm, ΦGu
and ΦGr

are the unlearned global model and
the retrained global model respectively, generated by the unlearning process ΦGu

← A(ΦG, Du)
and the federated learning retraining ΦGr

← f(Dr). The M denotes a measurement of the model
output distribution, such as accuracy. Moreover, D is the underlying data distribution that all local
dataset Dk are sampled from it. The unlearning dataset Du, the remaining dataset Dr, and the test
dataset Dtest are sampled from the distribution D.
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Therefore, we conclude that the goal of federated unlearning is to use A to produce an unlearning
model ΦGu

that has a similar output distribution to the retrained model ΦGr
on the underlying

data distribution D. Furthermore, federated unlearning may involve different unlearning targets that
depend on requests. Generally, the participants in FL can request to unlearn examples, classes and
clients. In this paper, we focus on client unlearning. Therefore, the unlearning dataset is defined
as Du = {Dk}k∈Ku

, while the remaining dataset is given by Dr = {Dk}k∈Kr
. Here, Ku and Kr

denote the index sets corresponding to the unlearning clients and the remaining clients, respectively.

4 UNDERSTANDING MEMORIZATION IN FEDERATED UNLEARNING

Even if the unlearning dataset and the remaining dataset do not share the same individual exam-
ples, they may still contain overlapping learnable information at the informational level as shown
in Figure 1. This raises a key question: Should the unlearning process remove the overlapping
information? We argue that overlapping or shared information should not be unlearned.

4.1 DEFINITIONS

Formally, we define the information that learned from the remaining dataset Dr as Fr, learned from
the unlearning dataset Du as Fu:

Fr = E(Dr)

Fu = E(Du),
(2)

where E(·) is a information extracting process.

Next, we define the overlapped part as Fg and the non-overlapping information in the unlearning
dataset as Fm. These could be represented as:

Fg = Fr ∩ Fu

Fm = Fu − Fg.
(3)

We can explain this from the memorization perspective. Insights from memorization theory (Feld-
man, 2020; Feldman & Zhang, 2020) suggest that memorization information represents unique,
non-shared patterns. Therefore, in our unlearning paradigm, the non-overlapping information Fm

could be considered as the memorization information of the unlearning dataset Du. In contrast, the
overlapping information Fg reflects shared patterns present in both Du and Dr.

From this perspective, we formally define Fm as memorization or non-overlapping informa-
tion, and Fg as shared or overlapping information.

4.2 FEDERATED MEMORIZATION UNLEARNING

Intuitively, we can understand the information contained in ΦG and ΦGr
as follows:

E(Dr ∪Du) = Fu ∪ Fr = (Fu − Fg) ∪ Fr = Fm ∪ Fr,

E(Dr) = Fr.
(4)

Therefore, the difference in information between ΦG and ΦGr
is given by:

E(Dr ∪Du)− E(Dr) = Fm. (5)

This implies that removing Fm from the original model ΦG results in an unlearned model ΦGu that
contains the same information as the retrained model ΦGr . Intuitively, considering that both ΦGu

and ΦGr only depend on the information Fr derived from Dr, their resulting output distributions
should be similar:

M(ΦGu
(D)) ≃M(ΦGr

(D)), (6)

which is consistent with Definition 1.

Thus, we formally propose our federated memorization unlearning definition:
Definition 2. Federated Memorization Unlearning. Federated memorization unlearning refers to
the process of removing specific memorization information Fm in unlearning dataset Du. Given a
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global model ΦG, the goal is to obtain an unlearned model ΦGu
such that the influence of Fm is

effectively removed:
ΦGu ← A(ΦG, Fm). (7)

Furthermore, the unlearned model ΦGu should perform similarly to the retrained model ΦGr on the
entire data distribution D. This implies that we aim to develop an unlearning algorithm A and an
unlearned model ΦGu that satisfy:

M
ΦGu←A(ΦG,Fm)

(ΦGu(D)) ≃ M
ΦGr←f(Dr)

(ΦGr (D)), (8)

where M denotes a measurement of output distribution similarity.

5 MEMORIZATION-BASED FEDERATED UNLEARNING METRICS

According to the discussion in Section 4, the memorization perspective discloses that the primary
difference between the unlearned model and the original model is that the unlearned model has
removed the memorization information associated with the unlearning dataset. Thus, it is essential
to verify the presence of memorization information to validate the unlearning results.

However, we find that existing metrics are insufficient for evaluating memorization in unlearning
and in some cases, they fail even to assess unlearning itself. Specifically, distance-based metrics
cannot distinguish the retrained model from the original model. Moreover, performance metrics
on the entire dataset are difficult to confirm finer-grained unlearning. Furthermore, backdoor-based
evaluation is invalid, as forgetting a backdoor trigger does not necessarily imply successful unlearn-
ing of the target data. These empirical observations are consistent with prior studies (Thudi et al.,
2022; Zhang et al., 2024). Further details are provided in Appendix G.

Therefore, since no effective measurement of memorization exists in the context of federated un-
learning, we propose a novel unlearning metric specifically designed to evaluate memorization. Di-
rect evaluation of the memorization information Fm is challenging. Therefore, we move to the
example level and indirectly assess whether the examples with memorization information have
indeed been forgotten, to validate the unlearning process.

Specifically, we develop an evaluation based on the memorization scores (Feldman, 2020). Grouped
Memorization Evaluation aims to describe the performance of subgroups categorized by varying
memorization scores within the unlearning dataset. The Unlearning Memorization Score of each
example (xi, yi) in the unlearning dataset Du can be determined using:

mem(f,Dr, Du, (xi, yi)) = Pr
ΦG←f(Dr∪Du)

[ΦG(xi) = yi]−
1

J

J∑
j=1

Pr
Φj

Gr
←f(Dr)

[Φj
Gr

(xi) = yi], (9)

where Du refers to the unlearning dataset, which consists of local datasets from clients who request
unlearning and the set Dr denotes the remaining dataset after excluding Du. To mitigate random-
ness, J retrained models ΦGr are generated without Du, and the final measurement reflects the
difference in the probability of correct classification, Pr[Φ(xi) = yi], with and without the presence
of Du. Generally, examples with high memorization scores contain more unique and memo-
rization information.

Subsequently, the examples in the unlearning dataset Du can be divided into different subgroups
{Tp} based on their memorization scores:

Tp = {(xi, yi) ∈ Du | mem(xi,yi) ∈ (τp, τp+1]}, (10)

where τ is the predefined threshold and (τp, τp+1] is the unlearning memorization score section of
group Tp. In this work, we partition the subgroups by sorting the memorization scores from highest
to lowest.

Next, we can apply any metric M (such as model accuracy) to evaluate the unlearning effect across
different subgroups, as follows:

∆MTp = | M
ΦGu←A(ΦG,Du)

(ΦGu , Tp)− M
ΦGr←f(Dr)

(ΦGr
, Tp), | (11)
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where p denotes the index of the memorization subgroup Tp and ∆MTp
is the unlearning difference

on the specific subgroup Tp. Evaluating these memorization score subgroups enables a more fine-
grained assessment of the unlearning effect.

In essence, examples with high memorization scores in Du correspond to the memorization infor-
mation Fm in our Definition 2. The common performance metrics can then be applied to these
subgroups to more precisely characterize the effect of unlearning.

6 FEDERATED UNLEARNING BASED ON MEMORIZATION ERASER

6.1 INTUITION

For a well-trained model, the information learned from data is encoded in its parameters. Based on
the Definition 2, removing memorization information can achieve unlearning effectively. Therefore,
pruning parameters that capture memorization information offers a potential unlearning strategy.
This comes the first question: how to locate the memorization information in the parameter space.
Previous studies (Torkzadehmahani et al., 2024) have identified important parameters relevant to
unlearning dataset, based on large gradients and activations. However, these important parameters
may capture both shared information Fg and memorization information Fm in the unlearning dataset
Du. In contrast, we hypothesize that redundant parameters with respect to the remaining dataset
Dr appear to retain memorization information unique to the unlearning dataset. The redundant
parameters refer to the parameters that are not important with respect to the remaining dataset Dr.
At the information level, this corresponds to Fm = (Fr ∪ Fu) − Fr. Evidence from federated
backdoor attacks (Zhang et al., 2022) further supports this view, showing that backdoors embedded
in redundant parameters persist longer. After pruning, the model ΦGu

requires post fine-tuning
on the remaining dataset to reconstruct the learned representations, as the pruning process directly
disrupts the original representational structure.

6.2 FEDMEMERASER

The Federated Memorization Eraser (FedMemEraser) is a federated unlearning method that focuses
on eliminating memorization. In general, our approach comprises three stages: locating memoriza-
tion parameters, resetting memorization parameters, and fine-tuning the network on the remaining
dataset.

Overview. In the locating stage, we utilize the average gradient updates from the remaining clients
to identify redundant parameters with minimal updates. Next, we employ the original initialization
method to reset the memorization parameters. Finally, we fine-tune the unlearned model on the
remaining clients to restore generalization performance. We present the algorithm in Appendix D.

Stage 1: Memorization location. As discussed in intuition, redundant or infrequently updated pa-
rameters are prone to retain memorization information. Therefore, we define the set of memorization
parameters Θum as:

Θum = {θ ∈ ΦG | ḡr(θ) < γ}, (12)
where θ denotes a parameter in the global model ΦG, ḡr(θ) represents the average gradient update
of parameter θ, and γ is a predefined gradient threshold. The average gradient update ḡr(θ) is
computed by aggregating the gradients submitted by the remaining clients, and is given by:

ḡr =
1

|Kr|
∑
k∈Kr

gk, (13)

where Kr denotes the index set of remaining clients and gk is the gradient update of client k.

In practice, the threshold γ is determined based on a predefined percentage ρ of parameters to be
reinitialized. Hence, ρ serves as the main hyperparameter in controlling unlearning.

Stage 2: Memorization parameters re-initialization. Since memorization information may not
be completely removed by some optimization technologies, we directly choose to reset the mem-
orization parameters. Rather than setting these parameters to zero, we reinitialize them using the
original parameter initialization strategy. Specifically, we apply Kaiming Uniform Initialization He
et al. (2015) to the convolutional layers and the linear layers.
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Stage 3: Fine-tuning on the remaining dataset. The final fine-tuning stage follows the standard
training procedure, except that only the remaining clients participate. At the t′-th round of fine-
tuning, the model aggregation is expressed as:

Φt′

Gu
=

1

|Kr|
∑
k∈Kr

Φt′

k , (14)

where Φt′

k denotes the local model of client k at round t′, and Kr is the index set of remaining
clients.

The final global model ΦGu
is the unlearned model, which effectively removes the influence of the

unlearned clients while preserving the generalization performance.

7 EXPERIMENT

7.1 EXPERIMENT SETUP

Dataset and Model Architecture. We evaluate our methods on three benchmark datasets: CIFAR-
100, CIFAR-10 (Krizhevsky et al., 2009), EMNIST (Cohen et al., 2017). For CIFAR-100 and
CIFAR-10, we employ a ResNet-34 model and ResNet-18 model (He et al., 2016), which can effec-
tively process color images. EMNIST is processed using a VGG-9 network (Simonyan & Zisserman,
2014).

Baselines. During the evaluation, we select Halimi et al. (Halimi et al., 2022), Liu et al. (Liu et al.,
2022), FedRecovery (Zhang et al., 2023), FedAU (Gu et al., 2024), and FedOSD (Pan et al., 2025)
as the baselines. More detailed information can be found in Appendix E.1.

Evaluation Methods. We evaluate federated unlearning along four key dimensions: 1) Unlearning
Efficacy: we employ Grouped Memorization Evaluation as discussed in Section 5 to quantify the
effectiveness of unlearning; 2) Generalization Performance: we measure model test accuracy to
assess generalization performance; 3) Local Fairness: we apply local fairness (Shao et al., 2024)
as the degree to which the utility changes of remaining clients deviate from their average after
unlearning, where lower variance indicates fairer outcomes. 4) Time Analysis: we examine how
test performance changes during unlearning and compare it with the trajectory observed under full
retraining along the time dimension. We provide specific explanation in Appendix E.2.

Implementation Details. We adopt the FedAvg framework with 10 clients. Our experiments focus
on the case where a single client requests unlearning, under both IID and Non-IID settings. In the
IID case, each client randomly samples from the global dataset to form its local data. For the Non-
IID case, we follow previous work (Gao et al., 2024; Su & Li, 2023) and partition data using a
Dirichlet distribution with concentration parameter α = 0.5. More details of the implementation
can be found in the Appendix E.3.

7.2 EVALUATION RESULTS

Unlearning Performance. Table 1 presents the performance of the unlearned model ΦGu
, pro-

duced by different unlearning algorithms, across various memorization subgroups within the local
dataset Du of the unlearning client. Basically, this table directly demonstrate that our method most
closely approximates the performance of the retrained model, particularly within the subgroup with
the highest memorization scores. For example, in the evaluation of CIFAR-100 under Non-IID
conditions, the classification accuracies of the retrained model ΦGr across the five memorization
subgroups are 21.74%, 22.90%, 26.09%, 29.13%, and 65.28%, respectively. In comparison, our
method achieves accuracies of 27.25%, 27.39%, 29.71%, 30.43%, and 63.44% on the same sub-
groups. This highlights the underlying consistent classification patterns shared by our model and the
retrained baseline. However, other unlearning baselines fall significantly short of the performance
of the retrained model, particularly in high-memorization groups.

7
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Table 1: Performance comparison of FedMemEraser vs. retrained and other baseline models

Accuracy by Unlearning Memorization Score Subgroup (%) (∆ ↓) Unlearning Dataset
Acc. (%) (∆ ↓)

Test Dataset
Acc. (%) ↑

Local Fairness
(10−3) ↓Group (95%,100%] Group (90%,95%] Group (85%,90%] Group (80%,85%] Group (0%,80%]

CIFAR-100 IID
Halimi et al. 51.47 ±0.19 (28.27) 54.93 ±0.19 (27.86) 52.93 ±0.19 (16.53) 55.20 ±0.00 (7.60) 82.77 ±0.11 (8.37) 78.89 ±0.09 (2.48) 52.56 ±0.05 23.83 ±0.08

Liu et al. 47.47 ±0.68 (24.27) 43.60 ±2.14 (16.53) 50.80 ±1.99 (14.40) 55.07 ±2.12 (7.47) 87.52 ±1.09 (3.62) 81.99 ±1.08 (0.62) 57.17 ±0.97 7.41 ±1.53

FedRecovery 60.67 ±3.94 (37.47) 61.60 ±2.14 (34.53) 57.87 ±0.68 (21.47) 58.40 ±1.18 (10.80) 86.70 ±0.58 (4.44) 83.22 ±0.58 (1.85) 55.01 ±0.23 7.83 ±2.39

FedAU 59.87 ±1.47 (36.67) 59.73 ±1.51 (32.66) 62.53 ±1.91 (26.13) 60.13 ±3.79 (12.53) 86.60 ±1.34 (4.54) 83.04 ±0.97 (1.67) 53.15 ±0.02 7.26 ±1.09

FedOSD 54.00 ±1.18 (30.80) 47.87 ±1.32 (20.80) 52.53 ±3.35 (16.13) 57.20 ±2.04 (9.60) 85.72 ±0.50 (5.42) 81.21 ±0.51 (0.16) 58.55 ±0.14 7.67 ±0.21

Ours 30.80 ±0.86 (7.60) 28.67 ±1.64 (1.60) 39.20 ±1.73 (2.80) 48.53 ±2.22 (0.93) 89.47 ±0.27 (1.67) 80.80 ±0.24 (0.57) 63.33 ±0.31 5.20 ±1.36

Retrained Baseline 23.20 ±9.62 27.07 ±5.85 36.40 ±2.90 47.60 ±1.18 91.14 ±0.68 81.37 ±0.51 62.29 ±0.58 6.46 ±1.81

CIFAR-100 Non-IID
Halimi et al. 50.87 ±5.71 (29.13) 43.04 ±5.91 (20.14) 45.80 ±3.69 (19.71) 46.23 ±4.85 (17.10) 64.16 ±3.52 (1.12) 64.08 ±3.80 (2.78) 61.92 ±1.17 87.06 ±13.33

Liu et al. 43.33 ±0.41 (21.59) 36.09 ±1.55 (13.19) 34.35 ±0.35 (8.26) 33.48 ±1.42 (4.35) 64.07 ±0.85 (1.21) 61.73 ±0.92 (0.43) 58.02 ±0.55 54.98 ±8.93

FedRecovery 42.90 ±3.02 (21.16) 42.17 ±3.09 (19.27) 42.61 ±5.64 (16.52) 42.17 ±3.60 (13.04) 61.72 ±3.32 (3.56) 60.93 ±3.12 (0.37) 48.02 ±0.69 110.96 ±21.35

FedAU 52.46 ±1.96 (30.72) 47.54 ±1.79 (24.64) 41.30 ±2.22 (15.21) 39.42 ±5.96 (10.29) 57.43 ±2.57 (7.85) 56.75 ±2.07 (4.55) 46.68 ±0.97 71.90 ±13.28

FedOSD 56.09 ±4.43 (34.35) 43.19 ±3.69 (20.29) 42.46 ±4.41 (16.37) 38.26 ±3.09 (9.13) 62.30 ±2.42 (2.98) 61.53 ±2.47 (0.23) 59.59 ±0.79 88.11 ±22.91

Ours 27.25 ±1.25 (5.51) 27.39 ±2.22 (4.49) 29.71 ±1.68 (3.62) 30.43 ±2.48 (1.30) 63.44 ±0.69 (1.84) 60.37 ±0.74 (0.93) 62.99 ±0.53 42.78 ±6.56

Retrained Baseline 21.74 ±9.33 22.90 ±8.58 26.09 ±4.00 29.13 ±1.28 65.28 ±1.22 61.30 ±0.26 63.89 ±0.28 23.92 ±5.25

CIFAR-10 IID
Halimi et al. 58.27 ±0.19 (45.47) 82.27 ±0.19 (47.87) 92.13 ±0.38 (14.53) 94.00 ±0.33 (1.87) 97.84 ±0.07 (1.28) 94.89 ±0.04 (4.58) 74.72 ±0.09 6.74 ±0.05

Liu et al. 53.33 ±1.80 (40.53) 70.00 ±1.13 (35.60) 76.53 ±1.86 (1.07) 87.07 ±0.94 (5.06) 98.33 ±0.24 (0.79) 93.16 ±0.25 (2.85) 68.13 ±0.24 1.23 ±0.25

FedRecovery 73.87 ±4.76 (61.07) 85.47 ±3.30 (51.07) 91.87 ±3.60 (14.27) 94.27 ±1.64 (2.14) 97.51 ±0.99 (1.61) 95.55 ±1.35 (5.24) 70.81 ±0.82 8.73 ±2.47

FedAU 77.87 ±6.71 (65.07) 78.67 ±6.88 (44.27) 82.93 ±2.17 (5.33) 83.60 ±3.22 (8.53) 91.67 ±2.53 (7.45) 89.09 ±1.78 (1.22) 62.48 ±1.20 6.04 ±1.76

FedOSD 66.80 ±4.09 (54.00) 83.47 ±1.47 (49.07) 91.87 ±0.38 (14.27) 91.07 ±2.00 (1.06) 97.05 ±1.03 (2.07) 94.51 ±1.00 (4.20) 70.39 ±0.34 6.27 ±0.69

Ours 20.27 ±1.54 (7.47) 50.40 ±3.44 (16.00) 70.93 ±2.29 (6.67) 85.60 ±0.86 (6.53) 98.66 ±0.20 (0.46) 90.56 ±0.35 (0.25) 74.97 ±0.27 0.91 ±0.07

Retrained Baseline 12.80 ±9.34 34.40 ±19.80 77.60 ±14.71 92.13 ±5.58 99.12 ±0.62 90.31 ±0.16 74.79 ±0.38 0.09 ±0.01

CIFAR-10 Non-IID
Halimi et al. 45.02 ±0.44 (32.87) 44.44 ±0.44 (23.78) 45.33 ±0.66 (19.78) 58.06 ±0.89 (15.65) 84.27 ±0.18 (7.89) 79.16 ±0.15 (1.25) 65.49 ±0.13 172.45 ±1.63

Liu et al. 73.68 ±13.07 (61.53) 61.97 ±13.91 (41.31) 61.21 ±11.47 (35.66) 61.35 ±9.64 (18.94) 88.94 ±4.81 (3.22) 84.94 ±5.88 (4.53) 68.22 ±2.71 219.91 ±103.08

FedRecovery 43.61 ±1.17 (31.46) 42.88 ±3.12 (22.22) 44.55 ±0.58 (19.00) 51.33 ±2.31 (8.92) 81.55 ±1.99 (10.61) 76.92 ±1.48 (3.49) 62.45 ±2.14 148.91 ±28.94

FedAU 77.10 ±11.57 (64.95) 67.45 ±8.10 (46.79) 69.00 ±4.62 (43.45) 69.17 ±3.56 (26.76) 85.24 ±4.83 (6.92) 82.38 ±5.32 (1.97) 61.38 ±0.49 107.94 ±46.10

FedOSD 73.68 ±4.19 (61.53) 61.50 ±1.01 (40.84) 61.37 ±0.79 (35.82) 66.67 ±1.01 (24.26) 94.38 ±0.53 (2.22) 89.18 ±0.43 (8.77) 73.59 ±0.18 80.27 ±1.17

Ours 23.99 ±2.86 (11.84) 27.86 ±1.81 (7.20) 39.72 ±0.66 (14.17) 47.57 ±2.18 (5.16) 88.80 ±1.17 (3.36) 80.16 ±0.81 (0.25) 74.43 ±0.78 44.12 ±5.20

Retrained Baseline 12.15 ±8.80 20.66 ±14.61 25.55 ±18.07 42.41 ±10.43 92.16 ±4.27 80.41 ±0.09 74.93 ±0.32 30.78 ±6.58

EMNIST IID
Halimi et al. 66.67 ±0.98 (19.28) 86.06 ±0.42 (12.16) 95.56 ±0.34 (4.27) 97.72 ±0.08 (2.28) 99.80 ±0.04 (0.20) 96.67 ±0.11 (0.57) 92.64 ±0.03 2.85 ±0.05

Liu et al. 62.22 ±1.70 (14.83) 90.50 ±1.47 (7.72) 98.83 ±0.00 (1.00) 99.17 ±0.24 (0.83) 100.00 ±0.00 (0.00) 97.13 ±0.18 (0.11) 92.90 ±0.05 5.30 ±0.54

FedRecovery 74.78 ±0.75 (27.39) 89.17 ±0.76 (9.05) 96.11 ±0.86 (3.72) 98.11 ±0.34 (1.89) 99.77 ±0.10 (0.23) 97.32 ±0.12 (0.08) 92.56 ±0.05 2.61 ±0.59

FedAU 69.56 ±3.68 (22.17) 84.83 ±3.08 (13.39) 89.00 ±3.09 (10.83) 93.94 ±1.23 (6.06) 98.78 ±0.41 (1.22) 94.21 ±0.81 (3.03) 88.57 ±0.47 3.29 ±0.21

FedOSD 69.06 ±1.88 (21.67) 87.67 ±2.13 (10.55) 96.61 ±1.85 (3.22) 97.61 ±1.11 (2.39) 99.87 ±0.12 (0.13) 96.73 ±0.65 (0.51) 92.62 ±0.40 2.85 ±0.22

Ours 53.06 ±1.86 (5.67) 94.33 ±0.85 (3.89) 99.50 ±0.14 (0.33) 99.83 ±0.00 (0.17) 99.97 ±0.02 (0.03) 97.19 ±0.11 (0.05) 93.50 ±0.06 0.70 ±0.15

Retrained Baseline 47.39 ±1.95 98.22 ±1.23 99.83 ±0.14 100.00 ±0.00 100.00 ±0.00 97.24 ±0.01 93.60 ±0.01 0.18 ±0.03

EMNIST Non-IID
Halimi et al. 58.13 ±0.20 (37.56) 64.69 ±0.15 (2.22) 79.33 ±0.21 (8.63) 94.78 ±0.06 (2.30) 99.25 ±0.01 (0.58) 93.48 ±0.02 (0.50) 88.82 ±0.01 45.02 ±1.24

Liu et al. 49.88 ±6.62 (29.31) 64.04 ±6.05 (2.87) 84.87 ±3.43 (3.09) 95.93 ±1.57 (1.15) 99.76 ±0.11 (0.07) 93.56 ±1.04 (0.58) 88.75 ±0.46 136.33 ±41.18

FedRecovery 67.00 ±9.32 (46.43) 77.64 ±9.97 (10.73) 87.92 ±4.45 (0.04) 95.68 ±0.87 (1.40) 99.62 ±0.15 (0.21) 95.60 ±1.62 (2.62) 87.80 ±0.57 46.23 ±20.40

FedAU 69.95 ±7.48 (49.38) 67.37 ±6.25 (0.46) 84.55 ±4.80 (3.41) 95.97 ±2.06 (1.11) 99.78 ±0.09 (0.05) 94.43 ±1.43 (1.45) 87.60 ±0.98 31.94 ±16.40

FedOSD 57.55 ±7.34 (36.98) 64.98 ±6.20 (1.93) 85.49 ±3.92 (2.47) 96.22 ±1.62 (0.86) 99.80 ±0.03 (0.03) 93.93 ±1.18 (0.95) 88.99 ±0.40 58.99 ±12.85

Ours 33.33 ±0.76 (12.76) 63.50 ±1.43 (3.41) 85.45 ±1.22 (2.51) 96.59 ±0.06 (0.49) 99.80 ±0.01 (0.03) 93.16 ±0.24 (0.18) 89.21 ±0.10 19.35 ±1.41

Retrained Baseline 20.57 ±13.60 66.91 ±6.01 87.96 ±2.41 97.08 ±0.71 99.83 ±0.04 92.98 ±0.17 89.18 ±0.06 18.73 ±2.73

We report accuracies of the unlearned model ΦGu on memorization subgroups Tp of the unlearning dataset Du

and the test dataset Dtest, along with the local fairness metric. Subgroups are defined by percentile ranges of
unlearning memorization scores (e.g., (95%, 100%] contains the top 5% memorization examples). Accuracy
differences ∆ from retrained baselines are shown in blue, with the smallest differences and the best test, fairness
performance highlighted in red.

Generalization Performance. Table 1 also reports the generalization performance across datasets
and distribution conditions. Across all scenarios, our method consistently achieves the highest test
accuracy on Dtest, demonstrating strong generalization. In CIFAR-100 IID, it reaches 63.33%, far
surpassing all baselines. Similar trends appear in other settings, where our method outperforms other
unlearning baselines and approaches the retrained baseline generalization performance. These re-
sults support Section 4: by removing only memorization while preserving overlapping information,
our method enables effective unlearning without harming generalization.

Local Fairness. Local fairness measures the variance in loss changes across the remaining local
datasets compared to their average after unlearning. A lower variance indicates that the unlearning
process induces similar performance changes for all remaining clients, thereby ensuring unlearning
fairness. Table 1 shows that our method achieves the highest fairness in several scenarios because
it avoids deleting overlapping information, thereby preventing significant performance degradation
for clients providing such overlapping information. Specifically, for CIFAR10, we achieve fairness
scores of 0.91× 10−3 and 44.12× 10−3 under IID and Non-IID conditions, respectively, compared
to the retrained baselines 0.09× 10−3 and 30.78× 10−3, also outperforming other baselines.

Time Analysis. Figure 2 illustrates the test accuracy dynamics in training epochs for both retraining
and our proposed unlearning method. Compared to retraining, our unlearning method achieves
the highest test accuracy in significantly less time, showing around 50% time improvement. This is
especially notable in the CIFAR-100 IID scenario (Figure F4a), where our method rapidly converges
in 20 epochs, while retraining methods take nearly four times longer to stabilize. These practical
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Figure 2: Efficiency comparison between unlearning and retraining.

results illustrate the time efficiency of our method. For other baselines applying different methods,
we qualitatively analyze time complexity. FedRecovery (Zhang et al., 2023) is the fastest because
it utilize historical data, trading space for time. In the case of FedAU (Gu et al., 2024), it retrains
only the final classification layer, which requires minimal computation time. In contrast, the method
proposed by Liu et al. (2022) employs a complex optimization procedure, demanding more time.
Finally, both the methods of Halimi et al. (2022) and FedOSD (Pan et al., 2025) include a post-
training stage, resulting in a similar time consumption compared to our approach.

7.3 ABLATION STUDIES

We conduct ablation experiments to analyze the factors influencing FedMemEraser.

Effect of Pruning Ratio. Fine-tuning alone (ρ = 0%) fails to unlearn, leaving large accuracy gaps
in high-memorization groups. A moderate pruning ratio (ρ = 40%) achieves performance close
to retraining with a 50% time improvement. The high pruning (ρ ≥ 60%) may cause excessive
forgetting and converge toward retraining time and behavior. More details have been provided in
Appendix F.1.

Effect of Data Distribution. Our method remains robust across diverse Non-IID settings, match-
ing retraining performance. Notably, only fine-tuning suffices for unlearning when no information
overlaps between unlearning and remaining dataset. See Appendix F.2 for details.

Impact of Parameter Selection Strategy. We compare our redundant parameter selection strategy
with other parameter selection strategies (Fan et al., 2024; Torkzadehmahani et al., 2024). The
results indicate that our strategy achieves a better balance between generalization performance and
unlearning performance. Detailed results are provided in Appendix F.3.

Impact of Unlearning Multiple Clients. We demonstrate that our method remains effective when
multiple clients request unlearning. We provide detailed results in Appendix F.4.

7.4 EXTRA DISCUSSION

Relationship between Parameters and Information. We attempt to investigate the relationship
between parameters and information representation. Our experiments show that important parame-
ters mainly encode shared/generalized information, whereas redundant parameters are more closely
tied to memorization. The results are presented in Appendix H.1.

Loss surface of the shortest unlearning path. We examine the loss surface of the shortest unlearn-
ing path. The analysis reveals that the original and retrained models lie in different loss basins. Even
small perturbations to the original parameters sharply increase loss. This implies that unlearning is
inherently closer to a partial re-training process, highlighting the necessity of performance recovery.
We provided details in Appendix H.2.

8 CONCLUSION

By distinguishing between shared and memorized information, we argue that effective unlearning
should target only memorization information, preserving model generalization and the contributions
of other clients. To this end, we introduced FedMemEraser, a novel approach that selectively re-
moves memorization parameters, achieving robust and efficient unlearning. Our findings offer both
theoretical insights and practical strategies for strengthening federated unlearning.
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APPENDIX A STATEMENT ON THE USE OF LARGE LANGUAGE MODELS
(LLMS)

The authors confirm that large language models were used only for text improvement purposes (in-
cluding grammar, clarity, and stylistic refinement). No part of the conceptual development, experi-
mental design, analysis, or substantive content of the paper relied on LLM assistance. All scientific
contributions are entirely the work of the authors.

APPENDIX B REPRODUCIBILITY STATEMENT

For reproducibility, we provide detailed descriptions of datasets, model architectures in the main
text. Moreover, we provide the algorithm in Appendix D and implement details in Appendix E.3.
With these, our method and experiment results can be easily reproduced. Upon acceptance, we will
release our code and instructions to fully reproduce our results.

APPENDIX C NOTATIONS

Table C1: Table of notations.

Symbol Description

K The set of client indices.

Ku The set of unlearning client indices.

Kr The set of remaining client indices.

Ck The client corresponding to index k.

D The underlying data distribution.

Dk The local private dataset of the client with index k.

D The set of all local datasets from all clients.

Du The set of all local datasets from unlearning clients with indices in Ku.

Dr The set of all local datasets from remaining clients with indices in Kr .

Dtest The test dataset that simulates the unseen data.

f The federated learning algorithm.

A The federated unlearning algorithm.

ΦG The global model.

ΦGu The global unlearned model.

ΦGr The global retrained model.

M The performance measurement method, e.g., accuracy.

Fg(Φ) The overlapped information that Φ learns from both Du and Dr .

Fm(Φ) The non-overlapping information that Φ only learn from Du.

τ The pre-defined threshold to split memorization score groups.

Tp The group of examples categorized by the memorization score at index p.

θ The partial parameters in model Φ.

gk The gradient update of client Ck on its local dataset Dk.

γ The predefined gradient threshold.

ρ The predefined percentage gradient threshold.

α The concentration parameter of a Dirichlet distribution.
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APPENDIX D ALGORITHM DESCRIPTION

In this subsection, we give the completed pipeline of our unlearning method in Algorithm 1.

Algorithm 1 FedMemEraser

Input: Trained global model ΦG; remaining clients {Ck | k ∈ Kr} and its index set Kr; drop ratio
ρ (or threshold γ); local learning rate λ.

Output: Unlearned model Φu
G.

▷ Stage 1: Locate memorization parameters.
1: Server broadcasts ΦG to all remaining client {Ck | k ∈ Kr}.
2: Initialize local model Φk ← ΦG for each client Ck that k ∈ Kr.
3: Calculate gradient update

gk = ∇Φk
L(Φk, Dk)

for each client Ck in {Ck | k ∈ Kr}.
4: Compute average gradient of remaining clients {Ck | k ∈ Kr}:

ḡr =
1

|Kr|
∑
k∈Kr

gk

5: Select redundant parameters:

Θum = {θ ∈ ΦG | ḡr(θ) < γ},

or equivalently choose the lowest ρ parameters by |gr(θ)|.
▷ Stage 2: Reset memorization parameters.

6: Re-initialize Θum using the original scheme (e.g., Kaiming Uniform for conv/linear) and denote
the reset model as Φ0

Gu
.

▷ Stage 3: Fine-tuning on remaining clients.
7: for t← 0 to tend do
8: Server broadcasts Φt

Gu
to remaining clients {Ck | k ∈ Kr}.

9: for all k ∈ Kr in parallel do
10: Φr0

k ← Φt
k

11: for r ← 0 to rend do
12: Update local model

Φr+1
k = Φr

k − λ∇Φr
k
L(Φr

k, Dk).

13: end for
14: Φt+1

k ← Φrend

k
15: end for
16: Compute average model of remaining clients {Ck | k ∈ Kr}:

Φt+1
Gu

=
1

|Kr|
∑
k∈Kr

Φt+1
k

17: end for
18: ΦGu

← Φtend

Gu

19: return ΦGu
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APPENDIX E EXPERIMENT DETAILS

APPENDIX E.1 BASELINES

In this subsection, we provide a detailed explanation of the unlearning baselines:

• Halimi et al. (Halimi et al., 2022) This work attempts to revert the training process via gra-
dient ascent. However, since gradient ascent can lead to an arbitrary model, the unlearned
model is restricted within a predefined threshold in terms of the distance l2.

• Liu et al. (Liu et al., 2022) Liu et al. propose a method that leverages the Fisher Information
Matrix (FIM) to estimate the inverse Hessian matrix and guide the unlearning process.

• FedRecovery. (Zhang et al., 2023) FedRecovery aims to reduce the updates related to un-
learning data by utilizing historical update storage, and applies differential privacy to en-
hance indistinguishability compared to the retrained model.

• FedAU. (Gu et al., 2024) FedAU perturbs the learned features of unlearning data by em-
ploying random labels. Through linear operations, retraining the classification layer is a
more efficient unlearning method.

• FedOSD. (Pan et al., 2025) FedOSD introduces advanced techniques to address gradient
exploration during gradient ascent and gradient conflicts during unlearning, thereby miti-
gating model utility degradation.

APPENDIX E.2 EVALUATION METHODS

Unlearning Efficacy. We employ Grouped Memorization Evaluation, as discussed in Section 6,
to quantify the effectiveness of unlearning. In this experiment, we divide the examples according
to their memorization score percentiles: (95%, 100%], (90%, 95%], (85%, 90%], (80%, 85%], and
(0%, 80%]. According to the long-tail theory (Feldman, 2020; Feldman & Zhang, 2020), only the
tail portion corresponds to memorization examples. Consequently, we regard the top 20% of exam-
ples by memorization score, i.e., those in the (80%, 100%] range, as representing memorization in-
formation. The remaining examples, in the range (0%, 80%], are considered mainly carrying shared
or generalizable information. To assess unlearning effectiveness, we compare the performance of
the unlearned model to that of a retrained model. A smaller performance difference indicates more
effective unlearning, particularly in terms of removing memorization information.

Generalization Performance. Generalization performance is typically evaluated using a test
dataset. Accordingly, we use

Accuracy(ΦGu , Dtest)

to assess the generalization capability of the model.

Local Fairness. Local fairness (Shao et al., 2024) in the context of federated unlearning is defined
as the extent to which the utility changes of the remaining clients deviate from their average after
unlearning. This definition ensures that the unlearning process induces similar performance variation
across all remaining clients, thereby promoting fairness. The performance change for a client Ck is
given by

∆Lk(ΦGu
) = L(ΦGu

, Dk)− L(ΦG, Dk).

The local fairness metric can then be expressed as

LocalFairness(ΦGu) =
∑
k∈Kr

∣∣∆Lk(ΦGu)−∆L
∣∣ ,

where ∆L is the average performance change across all remaining clients.

Time Analysis. We record the changes in generalization performance throughout the unlearning
process and compare them with the performance trajectory observed during full retraining, with
respect to the time dimension. More specifically, we compare the time taken by the unlearned model
and the retrained model to reach their respective peak generalization performance. We then report
how many times faster our unlearning approach is compared to the retrained baseline.
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APPENDIX E.3 IMPLEMENTATION DETAILS

For the federated learning experiments, we adopt the Adam optimizer with a learning rate of 1 ×
10−4, and each client performs 3 local training epochs per round. Our method is fine-tuned for 40,
30, and 20 rounds after pruning on CIFAR-100, CIFAR-10, and EMNIST, respectively.

Regarding pruning, we set the pruning ratios to 0.3 and 0.4 for CIFAR-10 under IID and Non-IID
conditions, respectively, and apply the same ratios for EMNIST. For CIFAR-100, we employ data
augmentation techniques to enhance training, which effectively compresses information into the
most important neurons while leaving more redundant parameters. Consequently, we adopt higher
pruning ratios of 0.8 and 0.85 for CIFAR-100 under IID and Non-IID settings.

APPENDIX F ABLATION STUDIES

In this section, we examine how the pruning ratio, data distribution, parameter selection, and the
number of clients affect the performance of our unlearning algorithms.

APPENDIX F.1 EFFECT OF PRUNING RATIO

In this subsection, we demonstrate how the pruning ratio ρ influences the unlearning performance.
As presented in Section 6, the hyperparameter ρ determines how many parameters of the model are
re-initialized during unlearning.

Table F2: Performance of FedMemEraser under different pruning ratios

Pruning Ratio
Accuracy by Unlearning Memorization Score Subgroup (%) (∆ ↓) Unlearning Dataset

Acc. (%) (∆ ↓)
Test Dataset
Acc. (%) ↑

Local Fairness
(10−3) ↓Group (95%,100%] Group (90%,95%] Group (85%,90%] Group (80%,85%] Group (0%,80%]

0 86.60 ±0.22 (70.71) 85.60 ±0.59 (54.61) 84.74 ±0.88 (46.89) 87.17 ±0.59 (36.47) 98.50 ±0.21 (9.12) 96.30 ±0.10 (15.89) 77.37 ±0.22 49.37 ±2.09

0.2 43.30 ±1.23 (27.41) 49.92 ±4.06 (18.93) 56.70 ±1.59 (18.85) 68.39 ±1.89 (17.69) 94.12 ±0.07 (4.74) 87.39 ±0.30 (6.98) 77.06 ±0.06 31.49 ±3.13

0.4 25.55 ±2.24 (9.66) 29.42 ±1.17 (1.57) 40.65 ±1.75 (2.80) 48.36 ±2.89 (2.34) 89.00 ±0.74 (0.38) 80.72 ±0.44 (0.31) 75.36 ±0.35 32.55 ±6.56

0.6 18.22 ±1.53 (2.33) 27.54 ±2.72 (3.45) 33.49 ±1.54 (4.36) 44.44 ±0.59 (6.26) 87.58 ±0.54 (1.80) 78.72 ±0.31 (1.69) 73.47 ±0.51 30.50 ±3.46

0.8 19.00 ±0.58 (3.11) 25.04 ±3.26 (5.95) 35.20 ±2.10 (2.65) 46.32 ±1.35 (4.38) 88.53 ±0.94 (0.85) 79.48 ±0.72 (0.93) 74.24 ±0.64 40.59 ±4.77

1 19.16 ±0.66 (3.27) 25.98 ±4.03 (5.01) 38.01 ±0.88 (0.16) 43.82 ±1.55 (6.88) 88.50 ±0.62 (0.88) 79.55 ±0.34 (0.86) 74.06 ±0.82 36.28 ±0.90

Retrained Baseline 15.89 ±8.80 30.99 ±14.61 37.85 ±18.07 50.70 ±10.43 89.38 ±4.27 80.41 ±0.09 74.93 ±0.32 30.78 ±6.58

This table represents the accuracies of the unlearned model ΦGu on the unlearning dataset Du, its subgroups
{Tp} split by memorization scores and test dataset Dtest, along with the local fairness metric across different
pruning ratios. We also denote the difference ∆ between the retrained baselines and the corresponding pruning
ratio results in blue, and have highlighted the best values in red.
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Figure F1: Efficiency comparison across pruning
ratios ρ

Table F2 illustrates the performance of the
unlearned model under different pruning ra-
tios. When ρ is 0%, it corresponds to pure
fine-tuning, which leads to unlearning failure,
as no memorization information are removed.
In this case, the accuracy gap remains very
high, reaching 70.71% on the top memorization
group. This indicates that fine-tuning alone is
insufficient for unlearning. In contrast, when ρ
equals 40%, meaning that 40% of the param-
eters are dropped, the unlearned model ΦGu

performs similarly to the retrained model ΦGr

in different subgroups of memorization scores.
This suggests that key memorization informa-
tion in the unlearning dataset Du have been
successfully forgotten, providing evidence for
our hypothesis that memorization information
are primarily stored in redundant parameters.
Moreover, the local fairness reaches 32.55, approaching the retrained baseline that ensures client-
level fairness in federated unlearning. In the time dimension, the runtime of the proposed approach
represents an improvement 50% over the retrained baseline, as shown in Figure F1.
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However, a higher pruning ratio ρ leads to excessive forgetting, resulting in accuracies that are no-
ticeably lower than those of the retrained baseline. Additionally, the unlearning times approaching
those of full retraining, as shown in Figure F1. Specifically, when ρ exceeds 60%, the unlearning
time closely approaches the retraining time. Therefore, selecting an appropriate pruning ratio ρ is
crucial. Nevertheless, the optimal value of ρ depends on the distribution of memorization informa-
tion across the model parameters, which is influenced by factors such as model architecture, data
distribution, and the federated learning setting. Consequently, ρ has to be empirically determined.

APPENDIX F.2 EFFECT OF DATA DISTRIBUTION INFLUENCE

In this subsection, we examine how data distribution influences federated unlearning. Specifically,
we explore how the discrepancy between the remaining dataset and the unlearning dataset impacts
the unlearning process.

As discussed in Section 4, the relationship between the remaining dataset and the unlearning dataset
is a critical factor in evaluating the difficulty of unlearning. Qualitatively, there are two main sce-
narios: 1) the remaining dataset and the unlearning dataset exhibit significant overlap, and 2) the
two datasets are substantially different. These relationships can be quantitatively described by the
degree of the Non-IID data. A higher degree of Non-IID data (α ↓) implies a smaller overlap be-
tween the remaining and unlearning datasets. In an extreme Non-IID scenario (α→ 0), where each
client holds data from a single, unique class, unlearning any one client results in minimal overlap. In
contrast, IID settings typically involve more shared information, which can result in greater overlap
between the two datasets in the context of unlearning.

Table F3: Performance of FedMemEraser across different Non-IID scenarios

Non-IID Degree
Accuracy by Unlearning Memorization Score Subgroup (%) (∆ ↓) Unlearning Dataset

Acc. (%) (∆ ↓)
Test Dataset
Acc. (%) ↑

Local Fairness
(10−3) ↓Group (95%,100%] Group (90%,95%] Group (85%,90%] Group (80%,85%] Group (0%,80%]

α→ 0

Only Fine-tuning 0.00 ±0.00 (0.00) 0.00 ±0.00 (0.00) 0.00 ±0.00 (0.00) 0.00 ±0.00 (0.00) 0.00 ±0.00 (0.00) 0.00 ±0.00 (0.00) 16.26 ±1.42 63.12 ±3.71

Ours 0.00 ±0.00 (0.00) 0.00 ±0.00 (0.00) 0.00 ±0.00 (0.00) 0.00 ±0.00 (0.00) 0.00 ±0.00 (0.00) 0.00 ±0.00 (0.00) 12.87 ±1.39 67.70 ±11.78

Retrained Baseline 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 13.92 ±0.70 98.57 ±13.90

α = 0.1

Only Fine-tuning 92.79 ±1.46 (44.40) 89.79 ±0.80 (36.56) 80.75 ±1.50 (30.49) 85.53 ±0.97 (31.14) 52.44 ±1.55 (13.40) 56.41 ±1.33 (15.11) 54.54 ±0.16 126.43 ±2.51

Ours 51.35 ±6.21 (2.96) 54.26 ±6.63 (1.03) 50.78 ±7.40 (0.52) 49.61 ±7.99 (4.78) 37.88 ±2.50 (1.16) 40.12 ±3.01 (1.18) 50.26 ±2.44 267.25 ±124.71

Retrained Baseline 48.39 ±17.43 53.23 ±16.03 50.26 ±11.31 54.39 ±6.36 39.04 ±1.45 41.30 ±2.77 51.34 ±1.35 110.65 ±45.80

α = 1

Only Fine-tuning 100.00 ±0.00 (84.93) 99.62 ±0.00 (83.47) 98.98 ±0.18 (72.93) 95.51 ±0.48 (68.84) 97.63 ±0.11 (13.36) 97.73 ±0.10 (23.54) 76.73 ±0.12 10.35 ±0.02

Ours 25.67 ±2.71 (10.60) 25.51 ±1.45 (9.36) 34.10 ±0.54 (8.05) 37.82 ±3.44 (11.15) 80.96 ±0.35 (3.31) 73.26 ±0.33 (0.93) 76.38 ±0.25 9.16 ±0.07

Retrained Baseline 15.07 ±10.66 16.15 ±11.42 26.05 ±18.42 26.67 ±18.86 84.27 ±3.14 74.19 ±0.55 77.46 ±0.42 3.70 ±0.58

α = 10

Only Fine-tuning 100.00 ±0.00 (93.00) 99.85 ±0.22 (86.76) 99.54 ±0.00 (80.36) 98.63 ±0.00 (66.67) 99.63 ±0.01 (7.05) 99.60 ±0.01 (21.84) 78.69 ±0.02 1.45 ±0.00

Ours 14.16 ±1.63 (7.16) 22.68 ±2.28 (9.59) 33.33 ±3.19 (14.15) 48.71 ±3.58 (16.75) 89.84 ±1.48 (2.74) 77.99 ±1.49 (0.23) 77.87 ±1.32 2.96 ±0.87

Retrained Baseline 7.00 ±4.96 13.09 ±9.29 19.18 ±13.61 31.96 ±21.13 92.58 ±3.36 77.76 ±0.63 78.59 ±0.38 5.57 ±7.04

This table shows the accuracies of the unlearned model ΦGu on the unlearning dataset Du, its subgroups {Tp}
split by memorization scores and test dataset Dtest, along with the local fairness metric across different Non-
IID scenarios.

Table F3 presents the results of our approach under varying degrees of Non-IID distributions using
the CIFAR-10 dataset. A Dirichlet distribution is employed to simulate data heterogeneity, where
the concentration parameter α controls the degree of Non-IIDness. Overall, our approach performs
robustly across different Non-IID scenarios. In the case where α = 10, there is significant overlap
between the remaining dataset and the unlearning dataset. Under this setting, our method achieves
performance comparable to the retrained baseline across all memorization score groups. Specifi-
cally, the accuracy of the entire unlearning dataset on the unlearned model using our method reaches
77.99%, closely matching the retrained baseline at 77.76%. Moreover, our method ensures fairness
comparable to retrained baselines. However, the fine-tuning approach fails to unlearn any informa-
tion, maintaining nearly 100% accuracy across all memorization score subgroups. This suggests that
fine-tuning alone is insufficient to remove significantly overlapping information. On the other hand,
when α → 0, indicating no overlap between clients’ data, fine-tuning alone can achieve optimal
unlearning performance. This observation is consistent with the principle of catastrophic forget-
ting (Goodfellow et al., 2013), where fine-tuning only on the remaining dataset may naturally cause
the model to forget information associated with the unlearning dataset if there is no information
overlap between them.
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(b) α = 0.1
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(c) α = 1
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(d) α = 10

Figure F2: Efficiency comparison between unlearning and retraining for different Non-IID scenar-
ios.

Due to the unlearning failure of the only fine-tuning approach, we conduct the time analysis exclu-
sively on our method. Figure F2 illustrates the comparison of test performance over time between
our method and the retrained baseline. In cases where α → 0 and α = 0.1, representing extreme
Non-IID scenarios, the behavior is relatively unstable. For more general distributions, our method
achieves approximately a 50% improvement in time efficiency compared to the retrained baseline.
This demonstrates that our method is time-efficient across various distribution scenarios.

APPENDIX F.3 IMPORTANT OR REDUNDANT PARAMETERS SELECTION

In this section, we compare different parameter selection methods. There are several existing ma-
chine unlearning methods based on the removal of important parameters, in contrast to our approach,
which focuses on the removal of redundant parameters. Important parameters are defined as those
that contribute significantly to learning, typically characterized by large gradients or large weights.
These methods aim to remove important parameters associated with the unlearning dataset Du and
require access to Du during the unlearning process. Although the unlearning dataset Du is not
accessible during the unlearning stage in our setting, and these methods are originally designed
as machine unlearning algorithms that may not be suitable for federated learning systems, we re-
lax these requirements and adopt these parameter selection methods as comparative baselines. The
methods we select included:

• SalUn (Fan et al., 2024). The SalUn Selection selects parameters with the highest gradient
magnitudes, based on the principles of saliency maps.

• Localized Strategy (Torkzadehmahani et al., 2024). The Localized Strategy Selection is
a recently proposed parameter selection method that chooses channel-wise neurons with the
highest magnitude of the weighted gradient (i.e., the product of parameters and gradients).

• Deep Layers. The Deep Layers Selection is motivated by previous studies on the struc-
tural localization of unlearning information in neural networks (Maini et al., 2023). This
method adopts the selection strategy of SalUn (Fan et al., 2024) but restricts the selection
to deep layers.

• Shallow Layers. The Shallow Layers Selection follows the same selection method as
Deep Layers Selection, but focuses on selecting parameters from shallow layers.

(Noted. we only apply the parameter selection strategies of these methods, not their completed
frameworks.)

We conduct the experiment under the CIFAR-10 IID setting and attempt to unlearn one client out
of ten clients. The results of the unlearning process are summarized in Table F4. These outcomes
highlight the trade-offs between different parameter selection strategies and their effects on both
generalization and unlearning performance across various memorization score subgroups.

Firstly, we observe that the results are relatively similar across different parameter selection strate-
gies. Specifically, the SalUn Selection approach, which ranks parameters by saliency, results in
significant drops in accuracy across all memorization score subgroups, particularly in the high-score
ranges. A similar trend is observed in the Shallow Layers Selection strategy. This suggests that
these methods tend to remove parameters that are crucial for representing the unlearning dataset Du,
often leading to excessive forgetting and degradation in performance on both the unlearning dataset
and the test dataset. For the entire unlearning dataset, the accuracies drop to 86.40% and 87.48%,
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Table F4: Performance comparison of FedMemEraser vs. baselines with different selection strate-
gies

Parameter Selection
Accuracy by Unlearning Memorization Score Subgroup (%) (∆ ↓) Unlearning Dataset

Acc. (%) (∆ ↓)
Test Dataset
Acc. (%) ↑

Local Fairness
(10−3) ↓Group (95%,100%] Group (90%,95%] Group (85%,90%] Group (80%,85%] Group (0%,80%]

SalUn 15.20 ±1.18 (2.40) 41.33 ±1.24 (6.93) 60.00 ±0.57 (17.60) 75.60 ±1.13 (16.53) 95.15 ±0.92 (3.97) 86.40 ±0.63 (3.91) 70.29 ±0.27 0.35 ±0.06

Localized 23.60 ±3.71 (10.80) 52.00 ±1.82 (17.60) 74.13 ±1.54 (3.47) 86.27 ±2.36 (5.86) 98.40 ±0.12 (0.72) 90.79 ±0.23 (0.48) 74.40 ±0.30 0.32 ±0.03

Deep 26.80 ±0.57 (14.00) 57.33 ±2.07 (22.93) 78.53 ±0.38 (0.93) 88.93 ±1.80 (3.20) 98.79 ±0.17 (0.33) 91.84 ±0.19 (1.53) 74.65 ±0.23 0.13 ±0.02

Shallow 18.80 ±3.31 (6.00) 44.00 ±1.42 (9.60) 65.87 ±0.50 (11.73) 78.00 ±3.31 (14.13) 95.61 ±0.12 (3.51) 87.48 ±0.22 (2.83) 72.87 ±0.45 0.54 ±0.08

Ours 20.93 ±1.80 (8.13) 49.73 ±1.68 (15.33) 68.00 ±1.82 (9.60) 84.67 ±1.24 (7.46) 96.96 ±0.85 (2.16) 89.36 ±0.67 (0.95) 73.67 ±0.72 0.50 ±0.05

Retrained Baseline 12.80 ±9.34 34.40 ±19.80 77.60 ±14.71 92.13 ±5.58 99.12 ±0.62 90.31 ±0.16 74.79 ±0.38 0.01 ±0.00

This table demonstrates the accuracies of the unlearned model ΦGu on the unlearning dataset Du, its subgroups
{Tp} split by memorization scores and test dataset Dtest, along with the local fairness metric across different
parameter selection methods.

compared to 90.31% for the retrained model, indicating excessive forgetting. Moreover, the test
accuracies decrease to 70.29% and 72.87%, respectively, in comparison to the baseline accuracy of
74.79%, implying reduced generalization performance. In contrast, the Localized Strategy Selec-
tion and Deep Layers Selection strategies preserve some memorization information, as evidenced
by the higher accuracies in the top memorization score group: 23.60% and 26.80%, respectively,
compared to the baseline of 12.80%.
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Figure F3: Efficiency comparison across different
parameter selection methods

These findings suggest that important parame-
ters for the unlearning dataset mainly encode
shared and general information. Removing
these parameters may disable some memoriza-
tion and shared representations, while shared
information may be recovered through fine-
tuning on the remaining dataset Dr. That is
feasible, but our proposed method demonstrates
greater precision. Unlike SalUn Selection and
Shallow Layers Selection, which tend to for-
get excessive information, and unlike Local-
ized Strategy Selection and Deep Layers Se-
lection, which retain some memorization infor-
mation, our method maintains a moderate and
balanced effect across all memorization score
subgroups. It specifically targets parameters as-
sociated with memorization. Further discussion
on the relationship between parameters and in-
formation is provided in Appendix H.1. For local fairness, all selection strategies demonstrate com-
parable performance.

Regarding time efficiency, the observed trends are expected. As shown in Figure F3, our method also
demonstrates moderate runtime performance. The SalUn Selection and Shallow Layers Selection
strategies are more difficult to fine-tune due to excessive forgetting. Conversely, the Localized
Strategy Selection and Deep Layers Selection approaches retain some memorization information,
enabling quicker performance recovery.

In summary, our parameter selection method is both moderate and precise, making it particularly
suitable for federated unlearning scenarios where the unlearning dataset Du is unavailable during
the unlearning phase.

APPENDIX F.4 UNLEARNING MULTIPLE CLIENTS

In this subsection, we evaluate the effectiveness of our method in a multi-client unlearning setting.
Specifically, we simulate the removal of 2, 4, 6, and 8 clients from a federated learning system
comprising 10 clients under a CIFAR-10 Non-IID partitioning. Table F5 presents the accuracy of
the unlearned model ΦGu

across memorization-based subgroups of the unlearning dataset Du, as
well as the overall performance on Du and the general test set Dtest. It also provides the evaluation
of local fairness.
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Table F5: Performance of FedMemEraser under multiple clients unlearning scenarios

Client
Accuracy by Unlearning Memorization Score Subgroup (%) (∆ ↓) Unlearning Dataset

Acc. (%) (∆ ↓)
Test Dataset
Acc. (%) ↑

Local Fairness
(10−3) ↓Group (95%,100%] Group (90%,95%] Group (85%,90%] Group (80%,85%] Group (0%,80%]

2 Clients (ρ = 0.4)
Ours 18.44 ±1.71 (6.56) 25.06 ±0.95 (5.96) 34.26 ±1.16 (12.14) 40.68 ±0.95 (10.13) 87.11 ±0.16 (3.06) 76.89 ±0.17 (0.52) 73.17 ±0.31 88.80 ±5.52

Retrained Baseline 11.88 ±8.44 19.10 ±13.53 22.12 ±15.51 30.55 ±13.82 90.17 ±4.13 77.41 ±0.77 73.90 ±0.69 68.54 ±14.64

4 Clients (ρ = 0.4)
Ours 19.99 ±1.61 (7.47) 27.14 ±1.99 (9.32) 30.17 ±1.57 (10.57) 33.40 ±2.17 (9.79) 76.22 ±1.69 (3.65) 68.65 ±1.59 (1.22) 68.79 ±1.09 87.88 ±4.86

Retrained Baseline 12.52 ±8.93 17.82 ±12.62 19.60 ±13.89 23.61 ±16.70 79.87 ±2.41 69.87 ±0.44 68.78 ±0.30 82.42 ±10.46

6 Clients (ρ = 0.5)
Ours 18.22 ±1.01 (5.95) 22.25 ±1.43 (8.22) 24.05 ±1.23 (8.45) 27.11 ±1.79 (9.21) 67.54 ±0.29 (1.49) 62.65 ±0.31 (0.02) 64.62 ±0.35 52.73 ±8.26

Retrained Baseline 12.27 ±8.69 14.03 ±9.93 15.60 ±11.03 17.90 ±12.70 69.03 ±2.79 62.63 ±0.50 64.06 ±0.28 70.37 ±17.79

8 Clients (ρ = 0.6)
Ours 13.10 ±1.06 (6.96) 16.00 ±1.41 (6.52) 18.76 ±1.11 (8.43) 21.37 ±0.70 (9.00) 49.21 ±0.92 (0.61) 48.83 ±0.81 (0.66) 51.87 ±0.57 417.23 ±17.96

Retrained Baseline 6.14 ±4.36 9.48 ±6.75 10.33 ±7.34 12.37 ±8.75 49.82 ±2.33 48.17 ±1.44 50.86 ±1.43 119.65 ±26.38

This table shows the accuracies of the unlearned model ΦGu on the unlearning dataset Du, its subgroups {Tp}
split by memorization scores and test dataset Dtest, along with the local fairness metric across multiple clients
unlearning scenarios.
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(a) Unlearning 2 Clients
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(b) Unlearning 4 Clients
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(c) Unlearning 6 Clients
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(d) Unlearning 8 Clients

Figure F4: Efficiency comparison between unlearning and retraining for multiple clients.

The results demonstrate that our method consistently achieves effective unlearning across all config-
urations. Compared to the retrained baseline, our approach produces similar subgroup accuracies,
while maintaining competitive or superior performance on the test dataset. For instance, when un-
learning 8 clients, our method achieves a substantial reduction in high memorization group accura-
cies (e.g., 13.10% vs. 6.14% in the [95%, 100%] group), and still retains a test accuracy of 51.87%.
This trend is consistent in all unlearning cases: our approach consistently achieves similar accura-
cies on memorization-based subgroups while maintaining meaningful accuracy on the test dataset.
Furthermore, in local fairness evaluation, our approach maintains fairness levels that are largely
consistent with the retrained baselines, except in the case of unlearning 8 out of 10 clients. In this
extreme setting, removing too much learned knowledge may introduce uncontrolled randomness.

Considering time consumption, Figure F4 illustrates a clear efficiency advantage of our method
over the retraining baselines when unlearning a small proportion of clients (i.e., fewer than 50%).
However, when unlearning the majority of the knowledge from the federated learning system, the
shared information learned from the entire dataset D are disrupted. Consequently, essential patterns
are removed, causing the model to degrade toward the random state. As a result, the fine-tuning
process begins to resemble full retraining, particularly when unlearning 8 out of 10 clients. This
phenomenon underscores an extreme scenario where removing common patterns, instead of specific
memorization information, can disable the model and make the unlearning become retraining.

APPENDIX G REVISITING EXISTING FEDERATED UNLEARNING
EVALUATION METRICS

In this section, we will revisit the unlearning evaluation metrics through the lens of memorization.
Federated unlearning algorithms could be evaluated through multiple metrics. However, from the
perspective of memorization, some of these metrics are unrealizable, certain metrics prove to be
impractical, as they cannot definitively confirm that the influence of the unlearning data has been
completely removed. Within the context of the unlearning problem, retraining is the gold standard,
which basically means that all unlearned models are expected to approach the retrained model.
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Therefore, in this section, we mainly employ retrained models to analyze these metrics and initially
investigate the tasks that clients identify as unlearning targets.

APPENDIX G.1 REVISITING METRICS BASED ON PARAMETER DIFFERENCES

The parameter difference assesses the differences between the unlearned model and the retrained
model within the parameter space. If the unlearned model becomes more similar to the retrained
model, it indicates a successful unlearning result. The common parameter difference metrics include
L2 distance (Shaik et al., 2024; Wang et al., 2023), Kullback–Leibler divergence (Gao et al., 2024;
Wang et al., 2023) and cosine similarity (Liu et al., 2021; Lin et al., 2024).

However, these metrics do not consider the relationship between the unlearning data and the re-
maining data. If the unlearning dataset is closely similar to the remaining dataset, the difference in
parameters between the unlearned model and the original model may become insignificant. Addi-
tionally, this metric does not account for the stochastic nature of retraining. Models retrained on
the same remaining dataset can still reach different local optimal points. We conducted an easy
experiment to demonstrate our findings.

Experiment. In this experiment, we mainly utilize Cifar-10 (Krizhevsky et al., 2009) as the dataset
and Resnet18 (He et al., 2016) as the network architecture. Subsequently, we construct an FL
framework involving 10 clients and simulate the process of unlearning one of them. Specifically, we
begin by training an original model using all 10 clients, and to simulate the unlearning process, we
exclude the client who requests unlearning and proceed to retrain several unlearned models with the
remaining 9 clients. Here all unlearned models are retrained on the remaining clients. Finally, we
will employ different parameter difference metrics on these models to support our viewpoint with
evidence.
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Figure G5: Parameter differences measurement between models.

Table G6: Accuracies of original and retrained models

Models Training
Dataset Acc.(%)

Test
Dataset Acc.(%)

Unlearning
Dataset Acc.(%)

Original Model 95.01 76.08 99.37
Retrained Model No.0 95.60 73.96 79.06
Retrained Model No.1 95.81 74.52 80.28
Retrained Model No.2 96.02 75.31 80.49

Findings. The performance of the models is presented in Table G6. In general, all models have
successfully converged. In addition, retrained models show similar performance in the test dataset,
achieving approximately 74% precision. Their performance in the unlearning dataset is also consis-
tent, with accuracies around 80%.

In Figure G5, we illustrate three distinct distance metrics. The ’Original’ refers to the model trained
using the unlearning dataset, whereas the ’Retraining’ refers to the models trained excluding the
unlearning dataset. We create one original model and three retrained models, and then assess the
distances among them. We have the following findings:
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• There exists the significant distance between the retrained models. In Figure G5a,
It has been noted that the L2 distances among the retrained models are all close to 141.
Additionally, in Figure G5b, the cosine similarities between retrained models approaches
0. This suggests that these retrained models do not exhibit similarity in parameter space.

• The distance between the retrained models is not significant compared to the original
model. For example, in Figure G5a, the L2 distance between the retrained model no.0 and
the original model is 141.757, however, the distance between the retrained model no.0 and
no.1 is 141.913, which is not significant. If apply the KL distance, the distances of retrained
model no.0 to retrained model no.1 and the original model are both around 0.1055, which
shown in the Figure G5c. Therefore, when considering the retrained models, their distance
proves to be relatively insignificant in comparison to the original model.

Basically, our experiments demonstrate that unlearned models may not approach the retrained mod-
els in the parameter space. In fact, even retrained models themselves can differ significantly from
one another, highlighting the stochastic nature of training. While the unlearned model may success-
fully forget the unlearned dataset, it may still differ from the baseline retrained model. Additionally,
if the unlearning dataset shares a similar feature distribution with the remaining data, this can lead
to indistinguishability between the unlearned model and the original model in the parameter space.
Overall, metrics based on parameter distance are not effective for evaluating unlearning.

APPENDIX G.2 REVISITING METRICS BASED ON PERFORMANCE METRICS

Performance metrics like accuracy or loss of the unlearning dataset are commonly employed in the
unlearning task to directly assess the unlearning results. Nonetheless, these metrics for the unlearn-
ing dataset overlook the distinctions between each unlearning example. The close accuracy or loss
of the unlearning dataset, when compared to the retrained model performance, cannot guarantee the
unlearning effect for each example. In the extreme case, some unlearning algorithms may primarily
unlearn generalized examples in the unlearning dataset, resulting in similar accuracy compared to
the retrained model, but this does not remove the impact of memorization information. Further-
more, retrained models might memorize examples randomly, resulting in a significant variation in
how they perform on particular examples within the unlearning dataset. This makes it difficult for a
single retrained model to serve as a reliable baseline. Our experiment would show our findings.

Experiment. In this experiment, we also utilize Cifar-10 (Krizhevsky et al., 2009) as the dataset
and Resnet18 (He et al., 2016) as the network architecture. Subsequently, we still construct an
FL framework involving 10 clients and simulate the process of unlearning one of them. Here, we
directly retrain multiple global models with the remaining 9 clients. Then we can compare the
example-level performance with these retrained models.

Findings. We evaluate the classification probability of each example within the unlearning dataset in
multiple retrained models. We illustrate the results in Figure G6. It shows the correct classification
probability of each example in the unlearning dataset on the different retrained models and these
examples are sorted by the average correct classification probability. We can find:

• Majority of examples are classified absolutely correctly. Obviously, a substantial por-
tion of the examples (examples with indices starting at 2000) are classified correctly even
if these examples are not in the remaining dataset. This suggests that there is an over-
lap between the unlearning dataset and the remaining dataset. It indicates that the shared
information will not be forgotten even using retraining.

• A portion of examples have unstable performance. Notably, there exists a portion of
examples with varying classification probabilities on different retrained models. This vari-
ability implies that some examples are more sensitive to the stochastic retraining process.

Based on these findings, traditional performance metrics, such as accuracy or loss in the unlearning
dataset, can be misleading. They fail to capture example-level differences that are critical to un-
derstanding whether individual data points have been effectively forgotten. Additionally, we notice
that some examples exhibits unstable performance. This variability in classification probabilities
is driven by rare or under-represented features in the remaining dataset (Feldman, 2020). During
retraining, models may randomly memorize the information, resulting in inconsistent performance
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Figure G6: Classification probability of unlearning examples in retrained models.

on these unstable examples. Therefore, performance metrics are not enough to measure unlearning,
especially at the example-level.

APPENDIX G.3 REVISITING BACKDOOR EVALUATION

In the context of unlearning, a backdoor evaluation is a typical assessment used to explicitly show
the outcomes of the unlearning effect. In backdoor attacks, a backdoor trigger is injected into a
portion of training data, and those are re-labeled to a pre-defined class. After the normal training,
the original model will learn backdoor features. Therefore, in the subsequent unlearning step, if
the backdoor features have been completely unlearned, the unlearning algorithm can be considered
successful. Currently, this evaluation has widely used in many works (Zhao et al., 2023; Pan et al.,
2025; Halimi et al., 2022; Li et al., 2023).

Nevertheless, it is observed that a fundamental issue in backdoor evaluation is that backdoor fea-
tures are typically irrelevant to the unlearning dataset. In our Definition 2, when utilizing backdoor
evaluation, it suggests that the backdoor features are purely memorization information and do not
overlap with the remaining information. An unlearning algorithm being able to unlearn the unlearn-
ing dataset consisting of all backdoor features does not imply that it can also unlearn a dataset that
includes intersections with the remaining information. We also conducted an experiment to support
our opinion.

Experiment. In this experiment, we still utilize Cifar-10 (Krizhevsky et al., 2009) as the dataset
and Resnet18 (He et al., 2016) as the network architecture. Subsequently, we still construct an FL
framework involving 10 clients and simulate the process of unlearning one of them. To conduct
the backdoor evaluation, we train two original models: one with the standard unlearning dataset
and the other with the backdoor unlearning dataset. After this, we proceed by fine-tuning the two
original models with the remaining clients to mimic the unlearning process and then evaluating the
fine-tuned models’ performance on the unlearning datasets.

Findings. We compare the performance of backdoor training and normal training in Figure G7.
The figure G7a shows the trend in test accuracy (solid line) and accuracy on the unlearning dataset
(dotted line) at the normal training stage with the unlearning dataset (blue background) and the fine-
tuning stage without the unlearning dataset (red background). The figure G7b is similar, but the
unlearning dataset is the backdoor dataset. Comparing the two sub-figures, we can observe:

• For normal training, fine-tuning may not remove the influence of the unlearning
dataset. A slight decrease in the accuracy of the unlearning dataset is observed at the
fine-tuning stage.

• Fine-tuning on the remaining dataset can easily unlearn the backdoor dataset. Back-
door dataset will be forgot quickly in the fine-tuning stage.
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(b) Backdoor training and fine tuning

Figure G7: Backdoor vs normal training performance comparison in the fine-tuning stage.

Obviously, backdoor evaluation overlooks the relationship between the unlearning dataset and the
remaining dataset. The unlearning dataset may share general information with the remaining data,
making it challenging to achieve effective unlearning through fine-tuning. In contrast, backdoor
datasets typically contain conflicting information relative to the remaining dataset, which can facili-
tate unlearning during the fine-tuning process. Therefore, in the evaluation of unlearning algorithms,
successful unlearning of a backdoor dataset does not necessarily indicate the overall effectiveness
of the algorithm.

APPENDIX H DISCUSSION

APPENDIX H.1 PARAMETERS AND INFORMATION REPRESENTATION

In this subsection, we investigate the relationship between model parameters and learned informa-
tion.

Currently, the interpretability of neural networks and the way parameters encode information remain
open research questions. Consequently, our analysis primarily provides a qualitative investigation
of parameter resetting in the context of unlearning memorization information from the unlearning
dataset.

According to prior interpretability studies based on saliency maps (Simonyan et al., 2014) and
activations (Selvaraju et al., 2017), parameters exhibiting large gradients or large weighted gradients
are typically considered important, as they are likely to encode information that mainly contributes
to generalization performance. In contrast, other parameters are often unimportant or redundant and
may correspond to memorization information. In the context of federated unlearning, we consider
two main parameter selection strategies as discussed earlier: 1) resetting important parameters
with respect to the unlearning dataset; and 2) resetting redundant parameters with respect to the
remaining dataset.

Table H7: Unlearning performance comparison
across different reset strategy

Memorization Score
Subgroups

Accuracy by Selection Strategy (%)

Important Parameters Redundant Parameters

Group (90%,100%] 19.00 29.60
Group (80%,90%] 24.60 42.00
Group (70%,80%] 23.60 42.20
Group (60%,70%] 24.80 49.60
Group (0%,60%] 28.52 52.37

This table presents the accuracies of the unlearned
model ΦGu on the memorization subgroups {Tp′} of
the unlearning dataset Du, with different parameter se-
lection strategies applied during unlearning under the
CIFAR-10 IID condition.

For the first strategy, resetting the impor-
tant parameters associated with the unlearning
dataset followed by fine-tuning on the remain-
ing dataset can achieve unlearning, as shown
in Appendix F.3. This works because the
fine-tuning stage helps the model to relearn
shared information while naturally forgetting
some memorization information. This forget-
ting phenomenon resembles catastrophic for-
getting Goodfellow et al. (2013), as it results
from the domain shift between the unlearning
dataset and the remaining dataset. As a result,
in this fine-tuning stage, the model can forget
some previous learned particular or memoriza-
tion information. However, if the important pa-
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rameters are not reset, fine-tuning alone may induce only minimal forgetting, and the process of un-
learning might not succeed because gradient updates mainly maintain generalization performance.

The second strategy focuses on resetting redundant parameters, which is often more appropriate. As
discussed in Appendix F.3, the first strategy might inadvertently retain some memorization infor-
mation or erase too many general or shared patterns, since unlearning is primarily driven by natural
forgetting during fine-tuning. In contrast, the second strategy explicitly targets redundant parameters
that encode memorization information, offering a more precise unlearning mechanism. Fine-tuning
subsequently enhances the forgetting effect further.

To empirically demonstrate the impact of parameter removal on different information types without
fine-tuning, we conducted a simple experiment under the CIFAR-10 IID setting. Specifically, we
reset approximately 5% of the model parameters using both selection strategies. Table H7 compares
the resulting accuracies across various memorization subgroups of the unlearning dataset. We ob-
serve that resetting important parameters degrades accuracy across all memorization subgroups, with
scores of 19.00%, 24.60%, 23.60%, 24.80%, and 28.52%, respectively. In contrast, resetting redun-
dant parameters significantly reduces performance on the most memorized subgroup (to 29.60%)
while preserving performance on less memorized subgroups (e.g., up to 52.37%). These results
support the hypothesis that important parameters primarily encode shared information, whereas
redundant parameters are more closely tied to memorization information. At the example level,
memorization examples rely on memorization information and shared information, whereas gener-
alized examples in the unlearning dataset primarily depend on shared information. Therefore, in the
context of unlearning, resetting redundant parameters is more effective and preferable to resetting
important ones.

APPENDIX H.2 LOSS SURFACE OF THE SHORTEST UNLEARNING PATH

In this section, we investigate the loss surface along the shortest path from the original model to
any retrained model. Specifically, we compute the model difference vector and use it as a direction
with a fixed step size to update the original model parameters. This simulates the unlearning process
along the shortest path, allowing us to observe changes in the loss surface.
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Figure H8: Loss surface of the shortest unlearning path

Figure H8 illustrates the loss surface during the unlearning process under CIFAR-10 Non-IID con-
dition. Notably, the loss increases sharply when deviating from the original model parameters and
gradually decreases as the model approaches the retrained state. This observation indicates that the
original and retrained models lie in different loss basins. Furthermore, even slight perturbations
to the original model can substantially degrade performance. In the context of unlearning, where
specific knowledge must be removed from the model, this suggests a high risk of impairing gener-
alization. After unlearning, the model must re-fit to the remaining data distribution.

From the perspective of the shortest path, unlearning can be interpreted as a partial re-training pro-
cess, rather than simply reverting to a previous state of the original model. In cases involving
substantial data removal, post-training or fine-tuning may be necessary to recover generalization
performance. Moreover, our unlearning process exhibits behavior similar to that of the shortest
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path, and the observed transformation of the loss surface supports the validity of our unlearning
algorithm.

26


	Introduction
	Related Works
	Machine Unlearning
	Memorization Effect

	Preliminaries
	Federated Learning
	Federated Unlearning

	Understanding Memorization in Federated Unlearning
	Definitions
	Federated Memorization Unlearning

	Memorization-based Federated Unlearning Metrics
	Federated Unlearning based on Memorization Eraser
	Intuition
	FedMemEraser

	Experiment
	Experiment Setup
	Evaluation Results
	Ablation Studies
	Extra Discussion

	Conclusion
	Statement on the Use of Large Language Models (LLMs)
	Reproducibility statement
	Notations
	Algorithm Description
	Experiment Details
	Baselines
	Evaluation Methods
	Implementation Details

	Ablation Studies
	Effect of Pruning Ratio
	Effect of Data Distribution Influence
	Important or Redundant Parameters Selection
	Unlearning Multiple Clients

	Revisiting Existing Federated Unlearning Evaluation Metrics
	Revisiting Metrics based on Parameter Differences
	Revisiting Metrics based on Performance Metrics
	Revisiting Backdoor Evaluation

	Discussion
	Parameters and Information Representation
	Loss Surface of the Shortest Unlearning Path


