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ABSTRACT

Deep Reinforcement Learning (DRL) has demonstrated impressive results in do-
mains such as games and robotics, where task formulations are well-defined.
However, few DRL benchmarks are grounded in complex, real-world environ-
ments, where safety constraints, partial observability, and the need for hand-
engineered task representations pose significant challenges. To help bridge this
gap, we introduce a testbed based on the pump scheduling problem in a real-
world water distribution facility. The task involves controlling pumps to ensure
a reliable water supply while minimizing energy consumption and adhering to
the system’s constraints. Our testbed includes a realistic simulator, three years of
high-resolution (1-minute) operational data from human-led control, and a base-
line RL task formulation. This testbed supports a wide range of research direc-
tions, including offline RL, safe exploration, inverse RL, and multi-objective op-
timization.

1 INTRODUCTION

The pump scheduling problem involves determining when to operate pumps to meet fluctuating wa-
ter demands while efficiently respecting operational constraints. Scheduling strategies vary with the
characteristics of the system, such as the network topology or variations in electricity prices. For
example, in regions with variable energy prices, pumps can run during off-peak hours, with storage
tanks supplying water during peak periods (Candelieri et al., 2018). Although energy dominates
pump operation costs (Nault & Papa, 2015; Abdelsalam & Gabbar, 2021), constraints such as lim-
iting pump switching frequency to protect infrastructure and ensuring water storage turnover for
quality must also be addressed.

Several optimization techniques, such as Bayesian Optimization (BO) (Candelieri et al., 2018),
Branch-and-Bound (BB) algorithms (Costa et al., 2016; Menke et al., 2016), Genetic Algorithms
(GA) (Abiodun & Ismail, 2013; Luna et al., 2019), and Model Predictive Control (MPC) (Castelletti
et al., 2023), have been applied to this problem. However, these approaches have important limi-
tations. The population-based optimization of GA and the combinatorial search of BB incur high
computational costs, restricting their application to small-scale networks using precomputed daily
schedules based on historical water consumption patterns, without real-time adaptability. BO en-
ables fine-grained decisions, but lacks dynamic foresight to consider the impact of actions in future
states. MPC, while predictive, relies on accurate system models, which are vulnerable to unmodeled
dynamics, hampering its robustness in complex networks. Recent works (see e.g. Hajgató et al.,
2020; Seo et al., 2021) explore Deep Reinforcement Learning (DRL), highlighting its potential as
a data-driven solution with advantages in real-time adaptability and scalability for complex water
distribution systems.

Reinforcement learning (RL) (see details in Sutton & Barto, 2018) is a decision-making framework
in which an agent learns from interactions with the environment to maximize cumulative returns.
Some works have extended RL applications to diverse domains, including autonomous driving (Liu
et al., 2021), robotics (Gu et al., 2017; Nair et al., 2018), video games (Lample & Chaplot, 2017;
Mnih et al., 2013; Wurman et al., 2022; Vinyals et al., 2019), dialogue systems (Jaques et al., 2019),
and more (Levine et al., 2020). Despite its success, RL research is based primarily on virtual en-
vironments such as games (Machado et al., 2018) and control simulators (Tassa et al., 2018). In
these virtual scenarios, the reward function that shapes the agent’s objective(s) and the observation
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space that defines the agent’s possible knowledge about the environment’s state are given. In con-
trast, real-world problems often pose significant challenges, such as defining these representations
to support agent decisions (Nair et al., 2018). Despite the potential of RL, relatively few real-world
based scenarios are accessible to the research community.

This work aims to help bridge the gap between real-world applications and RL by introducing a
testbed based on the pump scheduling problem in a water facility. We provide a real-world system
simulator and logged sensor data regarding pump operation, collected over three years at one-minute
intervals from a human-led operation. Alongside these, we detail the operational constraints defined
by hydraulic experts and describe the current human-led scheduling strategy. We also established
a baseline representation of the RL task, including observation features and a reward function, and
highlighted research opportunities enabled by these tools. Our goal is for this testbed to serve as
a real-world benchmark for diverse RL approaches, including offline RL, safe exploration, inverse
RL, multi-objective RL, and state representation learning. The main contributions are summarized
below:

• We release an RL testbed grounded in real-world conditions, comprising a water distribution
system simulator, three years of human-led operation data sampled at one-minute intervals, and
the implementation of offline RL algorithms.

• We describe the operational characteristics of the water distribution system, including key con-
straints, the current human scheduling strategy, and a baseline RL task formulation that allows
agents to minimize energy consumption while respecting safety and operational requirements.

• We benchmark state-of-the-art offline RL algorithms using the proposed simulator and task for-
mulation, demonstrating that policies trained solely from logged data can surpass human-led op-
eration in energy efficiency by up to 6%.

2 WATER DISTRIBUTION SYSTEM OVERVIEW AND OPERATIONAL
CONSTRAINTS

Raw Water Source

TreatmentTreated
Water

Reservoir

Distribution Network

Water Distribution System1 2

47m
50m

Storage Tanks

57m

NP1

NP2

NP3
NP4

Safety bound
53m Water turnover

Figure 1: Water distribution system overview. The system has four pumps with fixed speed
(ON/OFF) and two elevated water storage tanks.

Figure 1 provides an overview of the water distribution system analyzed in this work. The system
draws and treats raw water from wells, which is then stored in a reservoir. In the water utility,
four distribution pumps (NP1 to NP4) of varying capacities are available to pump water through
the network to two elevated storage tanks. These pumps operate using start/stop control; speed or
throttle control is not employed, and pumps operate individually, although parallel operation is used
during periods of exceptionally high demand.

The pump scheduling considers multiple factors, including water demand forecasts, energy con-
sumption, water quality, and supply security, to determine which pump is most suitable at any given
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time. The tanks are approximately 47 meters above the pump station, have identical dimensions,
and are effectively treated as a single tank with a total storage volume of 16 000 m³ and a maximum
water level of 10 meters. This results in a geodetic height differential of 47− 57 meters between the
pumps and the storage tanks.

In the water distribution system, human-led operation follows a strategy (policy) to handle pump
scheduling. As shown in Figures 2(d), 2(e), 2(f), the operation fills the tank to a high level before
the peak in water consumption (see Figures 2(a), 2(b), 2(c)), and then they let it decrease through-
out the day to provide water turnover in the tanks and keep its quality. Safety protocols require
maintaining a minimum tank level of 3 meters to ensure operational robustness against unexpected
events. Figures 2(g), 2(h), 2(i), show the average daily pump switch per month. Each pump switch,
either ON to OFF or OFF to ON, increments a counter by +1. Thus, we could say that the current
pump operation generally uses each pump at most once a day. Although it is difficult to measure
the impact of a strategy in preserving the system’s assets, the idea is to minimize the amount of
switching and provide a distribution of pump usage. Finally, in Figures 2(j), 2(k), 2(l), we show the
electricity consumption, where, given the pump settings, we observe the prioritization of pump NP2.

3 THE PUMP SCHEDULING PROBLEM AS A REINFORCEMENT LEARNING
TASK

Real-world RL problems, such as pump scheduling, often exhibit partial observability: the agent
receives noisy or incomplete observations given the limited number of sensors and hidden variables
influencing the system’s dynamics. Theoretically, such problems are Partially Observable Markov
Decision Processes (POMDPs) (Sutton & Barto, 2018), with observations ot ∈ O generated from
states st ∈ S via an unknown observation function Ω : S 7→ O. However, practical approaches
often cast these tasks as MDPs by approximating the Markov property. Techniques like frame
stacking (Mnih et al., 2015) and recurrent neural networks (e.g. LSTMs) (Hausknecht & Stone,
2015) enrich observations with temporal context, enabling agents to infer hidden dynamics from
history. In this work, we adopt this approximation, defining the observation space O explicitly
while noting that the observation function Ω remains unspecified. The task is thus formulated as a
POMDP but approximated as an MDP with the tuple (O,A,P,R, γ), where:

• O is the observation space that approximates the hidden state space S;

• A is the action space;

• P : O×A×O 7→ [0, 1] is the transition probability, giving the likelihood of moving from
observation o to o′ after action a ∈ A;

• R : O ×A 7→ R is the reward function;

• γ ∈ [0, 1] is the discount factor, balancing immediate and future rewards.

The agent’s objective is to learn a policy π : O 7→ A that maximizes the expected discounted reward
J(π) = E[

∑T−1
t=0 γtr(ot, at)], where T is the length of the episode and r(ot, at) is the reward

given observation ot ∈ O and action at ∈ A. Based on the daily cycle of water consumption, we
set T = 1440 timesteps, corresponding to one day of operation with decisions taken at 1-minute
intervals. The observation space O includes sensor-derived features such as tank level and water
consumption, while the action space includes four pumps, each with different flow rates Q (m³/h)
and power consumptions kW (kW/h), and a no-operation option (NOP with Q, kW = 0). The
reward function aims to supply water while maintaining safe tank levels and limiting energy use and
pump switching.

Observation space: The observation at time t, denoted ot ∈ O, comprises the following features:
the tank level lt ∈ [47, 57] (meters), the water consumption ct (m³/h) at time t, the time of day (step)
t ∈ [0, 1439] (minutes), the month m ∈ 1, . . . , 12, the previous action at−1 ∈ A, the cumulative run
time of pumps pt ∈ [0, 1439]4 (minutes) and the turnover of the water tank w(t) ∈ {0, 1} within the
current episode. These features are designed to provide the agent with sufficient information about
the hidden state to select actions that optimize the reward function. Observations are updated by
simulating every 1-minute timestep, and the features are chosen to:
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• Capture the current state of the system via the level of the tank (lt) and the consumption of water
(ct);

• Model temporal consumption patterns using the time of day (t) and month (m) to reflect daily and
seasonal variations;

• Promote balanced pump usage and minimize switching by tracking the previous action (at−1) and
cumulative runtime (pt);

• Promote daily turnover in the water stored in the tanks to preserve its quality through the binary
feature (wt).

Action space: The action space A represents the agent’s control options on the pump system,
defined as A = { NP1, NP2, NP3, NP4, NOP}. The actions correspond to activating one of four
pumps, each with different flow rates (Q, in m³ / h) and power consumption (kW , in kW/h), ordered
as NP1 > NP2 > NP3 > NP4 in both metrics, or selecting no operation (NOP), where Q, kW = 0.

Reward function: The reward function, defined in Eq.1, is designed to balance multiple subgoals:
(i) maximize pump operation efficiency, (ii) maintain safe tank levels, (iii) penalize frequent pump
switching and distribute usage across pumps, and (iv) promote daily water turnover in the tanks.

rt =

{
exp

(
−kWt

Qt

)
− Cψt +Dw(t)− ln (pt(at) + P ) if Qt > 0,

Cψt +Dw(t)− ln (pt(at) + P ) if Qt = 0 ,
(1)

where:

• exp
(
−kWt

Qt

)
promotes energy efficiency by favoring higher flow Qt per power kWt;

• −Cψt enforces safety constraints, penalizing tank levels outside safe bounds;

• Dwt encourages daily water turnover to maintain quality;

• − ln(pt(at)+P ) discourages prolonged pump use and frequent switching, where pt is the cumu-
lative runtime of the active pump (selected by at) and P is a switching penalty.

The constants C and D are weighting parameters (set both as 10), and the terms ψt, wt, and P are
defined as:

• Tank level constraint:

ψt =


min (|lt − 50|, 1) if lt < 50 (shortage risk),
1 if lt = 57 (overflow),
0 otherwise,

(2)

• Water turnover:

wt =

{
1 if wt−1 = 0 and 50 ≤ lt < 53,

0 otherwise,
(3)

• Switching penalty:

P =

{
1 if at = at−1 or Qt = 0 or pt(at) = 0,

30 otherwise (pump switch),
(4)

Although we show in the following sections that this task formulation can lead to policies that satisfy
the objectives, its hand-crafted design may not ensure optimality (Hayes et al., 2021), motivating fu-
ture exploration of state representation and reward learning techniques discussed with further details
in Section 6.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 2: Overview of human-led water system operation. (a–c) Water consumption. (d–f) Tank
level profiles. (g–i) Pump switching. (j–l) Electricity usage.
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4 INTEGRATING THE WATER SYSTEM SIMULATOR INTO THE RL LOOP

In RL, an agent selects an action a given an observation o, receives a reward r, and transitions to a
new observation o′. This process forms a transition tuple τ = ⟨o, a, r, o′⟩, and a complete episode
consists of a sequence of T such transitions, i.e. episode =

∑T−1
i=0 τi. Figure 3 illustrates how this

interaction loop is modeled for the pump scheduling problem using our simulator.

The simulator takes logged water consumption data at time t as input, since this cannot be syn-
thetically generated during new interactions. It also requires an initial condition for the tank
level and other features that define the observation o. In the provided codebase, actions are
derived from logged human data, although any control policy can be employed. A pump ∈
{NP1,NP2,NP3,NP4} is considered ON if either its power consumption kWNP#(t) or flow rate
QNP#(t) are nonzero. If both values are zero for all pumps, the corresponding action is defined as
NOP (no operation).

Demonstrations
Water Consumption (t)

Water
Distribution
Simulator

Transition
<o, a, r, o'>

NP1

NP2

NP3

NP4

Replay Memory Observation

Tank Level (t+1) kW, Q, H (NP#)

Learning
Method

Actions

Figure 3: The dynamics of a POMDP and the RL learning process through the water distribution
system simulator.

When an action a is applied to the hidden state s, the simulator computes and returns the values of
QNP#, kWNP#, and HNP# for the given timestep t (see Appendix C.2 for details). These out-
puts are then used to compute the reward r(t). In the next timestep, a new tank level is observed,
forming the next observation o′. This process creates a loop of transitions that are stored in a replay
buffer (Lin, 1992), following the Experience Replay paradigm. These collected transitions can be
used to learn a new policy π, different from the human-led control strategy, by evaluating the demon-
strations through the task representation proposed in Section 3. To learn such a policy, we include
some offline RL algorithms in our codebase, which are benchmarked in the following section.

5 BENCHMARKING OFFLINE RL ON REAL-WORLD DEMONSTRATIONS

Figure 4: Benchmark results.

In offline (batch) RL, the learning process is restricted
to logged data, such as demonstrations gathered from
human interactions with a system. This constraint of-
ten arises from the difficulty in creating accurate sim-
ulators or safety concerns related to real-world explo-
ration (Levine et al., 2020). For example, an autonomous
vehicle cannot employ trial-and-error learning in the en-
vironment due to safety risks and high costs. As a re-
sult, offline RL methods (Fujimoto et al., 2019b; Agarwal
et al., 2020; Kumar et al., 2020; Jaques et al., 2019) rely
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on the ability to exploit and generalize from static datasets
to learn policies. Recently, benchmarks have been pro-
posed to evaluate offline RL approaches in various sce-
narios (Gulcehre et al., 2020; Fu et al., 2020; Qin et al., 2022). However, these scenarios often lack
real-world constraints, such as safety, and the demonstrations, typically collected from multiple ex-
pert RL policies, offer sample diversity compared to datasets derived from a single source, such as
human-led control.

In real-world tasks, the behavior policy, that is, the policy from which samples are derived, often
exhibits a conservative approach considering exploration, and consequently, sample diversity. As
illustrated in Figures 2(d),2(e), and 2(f), human control of pump operations follows a predictable
pattern to manage tank levels. Consequently, critical scenarios such as overflow or water shortages
are underrepresented in the logged data. This makes pump scheduling an ideal case for assess-
ing the performance of offline RL algorithms using demonstrations from human interactions with
real-world systems. To establish a baseline, we benchmark several algorithms (see Appendix D for
details)—BCQ (Fujimoto et al., 2019a), DDQN (van Hasselt et al., 2016), Maxmin Q-learning (Lan
et al., 2020), and REM (Agarwal et al., 2020)—based on the experimental setup outlined in Ap-
pendix E. Using three years of data, we present the results in Figure 4, with one year of data on
water consumption reserved for policy evaluation (2012) and two years of data allocated for training
(2013 − 2014). The results reflect the average cumulative return across episodes, calculated using
the reward function defined in Equation 1.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5: Tank levels (top row) and average daily pump switches (bottom row) for the best-
performing policy of each offline RL algorithm: BCQ, DDQN, Maxmin Q-learning, and REM. All
policies successfully maintain tank levels within safety limits while enforcing conservative switch-
ing patterns compared to human-led control.

To obtain the results shown in Figure 4, we computed the average cumulative reward across 20 in-
dependently trained models for each offline RL algorithm. This was necessary to account for the in-
herent stochasticity of the learning process (Henderson et al., 2018). The dashed black line indicates
the average cumulative reward of the behavior policy, i.e., the performance of the human-led control
strategy evaluated under the proposed reward function. The results show that the median perfor-
mance (red line) of all RL algorithms falls below the behavior policy. However, the best-performing
models within each set remain competitive. This performance gap can likely be attributed to the
challenges of offline RL: the learning process is restricted to demonstrations, making it difficult for
policies to generalize beyond the observed state-action distribution. Algorithms such as BCQ and
REM exhibit more consistent results, possibly because BCQ constrains action selection to logged
data via behavior cloning, while REM stabilizes learning through full-network ensemble updates.
Notably, DDQN achieves competitive performance, despite its lower computational burden, while
the worst performance of Maxmin Q-learning might be explained by its overly conservative updates.
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Figure 5 illustrates the behavior of the best-performing policy (based on average cumulative reward)
for each algorithm. As shown in Figures 5(a),5(b),5(c), and 5(d), all learned policies maintained tank
levels within safety bounds while minimizing pump switching frequency, often adopting more con-
servative behavior than the human-led baseline. In terms of energy consumption, the best policies
achieved results comparable to or better than real-world control. Specifically, the relative energy
savings compared to human-led control were: BCQ: 4.9%, DDQN: −0.4%, Maxmin: 5.9%, and
REM: 1.3%, where positive values indicate energy reduction relative to the expert baseline.

6 RESEARCH OPPORTUNITIES ENABLED BY THE TESTBED

This testbed offers the RL community an opportunity to move beyond synthetic benchmarks by en-
gaging with challenges inherent in real-world decision tasks. Through its combination of logged hu-
man demonstrations, safety constraints, and long-term operational dynamics, it enables research ad-
vances in representation learning, safe exploration, inverse RL, multi-objective optimization meth-
ods, areas where existing benchmarks fall short.

Representation learning and reward design. Real-world problems like pump scheduling lack a
predefined state representation or a reward function that produces optimal policies. In our testbed,
the observation space was defined ad hoc, based on the information (variables) provided by the
sensors and the frequency at which these measurements are recorded. However, some variables may
be uninformative or redundant, while incorporating additional variables or extending their historical
context could improve policy efficiency. Some works (see e.g. Lesort et al., 2018; Merckling et al.,
2020; Westphal et al., 2024) have addressed the challenge of identifying more informative, low-
dimensional state representations. Similarly, reward engineering poses difficulties, as defining a
reward function that balances multiple, potentially conflicting objectives is complex. One potential
solution is inverse RL (Ng & Russell, 2000; Abbeel & Ng, 2004), which infers a reward function
from the demonstrations. More recently, some approaches have completely bypassed the reward
design by conditioning the learning process on achieving specific goals, such as reaching designated
states (see e.g. Ghosh et al., 2019).

Multi-objective RL. In real-world water distribution systems, the foremost priority is to guarantee
a reliable supply of high-quality water to consumers. Once this requirement is satisfied, operational
objectives such as minimizing energy consumption, reducing equipment wear, and managing risk
become relevant. These competing goals create a natural multi-objective optimization problem.
However, in most RL applications, such objectives are aggregated into a single scalar reward using
fixed weightings, masking the underlying trade-offs, and limiting flexibility under changing opera-
tional conditions. For example, consider a scenario in which planned maintenance is required. To
proceed, operators must fill the storage tanks in advance to ensure an uninterrupted supply. In such
cases, a static reward function may fail to prioritize this temporary yet critical goal, as it cannot
dynamically adjust to the objective importance change. Multi-objective RL (MORL) (Roijers et al.,
2013; Hayes et al., 2021) addresses this limitation by representing rewards as a vector of cumula-
tive returns, one for each objective. This enables explicit prioritization, allowing policies to adapt
preferences over time without retraining.

An exploration challenge. One constraint in controlling the system is to avoid switching the pump
operation too frequently to minimize mechanical wear and extend the pump’s lifespan. However,
exploration strategies such as epsilon-greedy (Sutton & Barto, 2018) can lead to frequent action
switches, which conflict with the need for repeated consecutive actions, potentially causing pre-
mature convergence to suboptimal policies. Moreover, approaches that prioritize visiting novel
states (Bellemare et al., 2016; Subramanian et al., 2016; Tang et al., 2017) risk violating safety
constraints, such as tank level limits, by driving the system into unsafe configurations. Thus, the
pump scheduling problem can be a setting for evaluating exploration strategies that aim to improve
sample efficiency while limiting state visitation to those that meet system safety constraints (Garcı́a
& Fernández, 2015). In particular, our episodic formulation is state-persistent, as the initial tank
level of each episode depends on the final state of the previous episode, reflecting the continuity of
the real world. This persistence of the state requires a robust policy to varying initial conditions, a
challenge absent in most existing RL benchmarks (Co-Reyes et al., 2020).
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Learning from demonstrations. In this work, we evaluated the performance of offline RL algo-
rithms, such as BCQ and REM, using a dataset of state-action pairs derived from expert demon-
strations. These demonstrations reflect a consistent and safe human behavior, and consequently,
a concentrated distribution: undesirable or risky system configurations, such as tank overflows or
shortages, are rarely encountered. This makes the testbed particularly well-suited to studying of-
fline RL challenges where generalization from narrow expert behavior is required. The testbed also
enables the evaluation of Behavior Cloning (BC) (Hussein et al., 2017) approaches, which corre-
spond to solving a maximum likelihood problem to mimic the agent’s actions. BC can serve as
a pre-training step to accelerate policy learning, although mitigating the distributional shift when
the learned policies begin to generate new trajectories remains a critical issue (Nair et al., 2018;
Nakamoto et al., 2023). Beyond imitation learning, demonstrations can also support alternative ap-
proaches, such as building dynamics models or guiding uncertainty-aware planning, as explored in
model-based methods (see e.g. Yu et al., 2020; Kidambi et al., 2020).

Continuous action-space. In its current configuration, the control space of the water distribution
simulator is discrete: a finite set of pumps operate at fixed speeds, with the additional option of turn-
ing off all pumps. However, as discussed in Appendix F, the simulator can be extended to support
variable-speed pumps, enabling continuous control of flow rates. This opens the door to evaluat-
ing RL approaches designed for continuous action spaces, such as actor-critic methods (Sutton &
Barto, 2018). Such extensions would allow researchers to investigate smooth control policies with
fine-grained actuation.

Together, these research directions underscore the testbed’s versatility as a platform to advance RL
research in realistic environments.

7 CONCLUSION

We introduce a real-world based RL testbed for the pump scheduling problem, containing a val-
idated simulator and three years of high-resolution sensor data collected from human-led control.
The simulator models system dynamics based on hydraulic principles, enabling end-to-end policy
evaluation. We formally cast the problem as a POMDP, defining the observation and action spaces,
reward function, and discussing the constraints to control the system, which guide the design of the
task representation. Using the proposed POMDP, we benchmark offline RL algorithms, showing
that policies trained solely from demonstrations can match or exceed expert performance in energy
efficiency while respecting safety requirements.

Limitations. A key limitation lies in the finite nature of the dataset: unlike synthetic benchmarks
such as Gymnasium (Towers et al., 2024), our testbed does not allow unlimited data generation,
which restricts the training. However, this constraint reflects a common real-world challenge and
positions the testbed as a platform for studying generalization, offline RL, and data-efficient learning.
We view this work as a foundation for further development, and we encourage the community to
expand the benchmark by addressing additional challenges and settings not covered in the current
release.
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A APPENDIX

B RELATED WORKS

Below, we outline related approaches in the literature on optimizing pump scheduling and control
using RL.

Control using Reinforcement Learning. In (Yang et al., 2018) the authors use Deep Recurrent
Q-Networks (Hausknecht & Stone, 2015) in the scenario of a smart grid. The objective is to develop
a pricing strategy to maximize the broker’s (agent) profits. A reward-shaping strategy is proposed
once customers are clustered according to their consumption patterns and managed by their respec-
tive sub-brokers. Then, a mechanism for credit assignment was necessary to indicate the contribution
of each sub-broker to the global return. Wei et al., 2017 propose a data-driven solution to control the
HVAC (heating, ventilation, and air conditioning) system. The objective is to control the environ-
ment temperature by handling numerous disturbances with real-time data. The possible actions are
a discrete set of airflow rates divided by building zone. Then, the approach splits each zone, control-
ling it with distinct neural networks. Sivakumar et al., 2019 propose a network control strategy that
acts asynchronously with the environment. The delay, which the authors call δ, corresponds to the
policy lookup time when selecting an action. Meanwhile, the network transmits data in the interval
[t, t + δ]. Thus, the transitions depend on the state and action in some time step t and the previous
action in t − 1. In (Jay et al., 2019), the problem of network congestion control is also addressed,
and a testbed is released. In (Bellemare et al., 2020), RL is applied to a stratospheric balloon flight
controller that must handle a partially observable environment and continuous interaction. Degrave
et al., 2022 use RL for nuclear fusion control, which achieved a variety of plasma configurations.

Pump Scheduling. In (Costa et al., 2016), the authors adopted a branch-and-bound algorithm
that interacts with the hydraulic simulator EPANET 1 to evaluate decisions at each timestep corre-
sponding to 1 hour in a horizon length of 24 hours. The proposed algorithm aims to find a solution
with minimum electricity consumption. Menke et al., 2016 also used a branch-and-bound approach
through an algorithm with several steps for the branching procedure. The objective function adopted

1https://www.epa.gov/water-research/epanet
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is in contact with the one presented in this work. The authors consider pumps with fixed speed
(ON/OFF), intending to minimize the power consumption while penalizing switches in pump op-
eration. In (Seo et al., 2021), the authors also applied DRL to control a real-world scenario of a
wastewater treatment plant. Unlike our case study, in their system, the electricity price has different
tariffs throughout the day, which adds another constraint to the proposed strategy.

C DETAILS OF THE WATER DISTRIBUTION SYSTEM SIMULATOR

C.1 MODELING ELECTRICITY CONSUMPTION WITH THE SIMULATOR

Figure 6 shows the electricity consumption of the measured (real-world) data and the simulator.
Note that the range of values between the measured and simulated data differs. The reason is that
the pump efficiency is not considered in Equation 5. Thus, we obtain the values for the measured
data by taking the hydraulic power (Ph) and dividing it by the efficiency η:

Ph(kW ) = Qρgh/(3.6 106),where (5)

• Q is the flow (m3/h)

• ρ is the density of fluid (kg/m3)

• g is the acceleration of gravity (9.81m/s2)

• h is the differential head (m)

(a) (b)

Figure 6: Average electricity consumption calculated using measured data 6(a) and simulator 6(b).

C.2 FURTHER DETAILS ON THE WATER SYSTEM SIMULATOR

The simulator illustrated in Figure 1 is developed to model the operational behavior of distribution
pumps in a real-world water network facility located in Germany. The calculation of a pump’s
operating point is based on the intersection between its characteristic curve (hydraulic head versus
flow rate) and the system curve.

The system curve represents the amount of hydraulic head required to deliver a given flow rate
through the network. It consists of two components (Figure 7(b)): a static component, independent
of flow rate, determined by the difference in geodetic height (e.g. when pumping water into an
elevated storage tank) and a dynamic component, which reflects friction losses in the piping system
and increases quadratically with flow rate. The operating point of a pump is determined by the
intersection of its hydraulic head curve with the system curve.

The system curve in this water distribution network is not fixed. The static head varies with the cur-
rent tank level, while the slope of the dynamic component depends on hydraulic losses influenced by
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the instantaneous water demand. Higher water demand lowers the overall system pressure, resulting
in a flatter system curve; conversely, lower demand increases system pressure, steepening the curve.
The relationship between tank level, water demand, and system curve characteristics was derived
from empirical measurements.

The simulator can model pump operations over arbitrary periods. The simulation process requires
specifying the expected water demand for each time step, along with the initial tank level and the
pump schedule. At each time step, the simulator computes the current system curve based on tank
level and water demand, determines whether a pump is active, and calculates its operating point
as the intersection between the pump and system curves. If the pump flow rate exceeds the water
demand, the tank level increases accordingly; if the flow rate is insufficient, the tank level decreases.
This process is repeated iteratively, updating the system curve and tank state at each step, to simulate
continuous operation over the defined period.

C.3 LOGGED DATA: LIST OF VARIABLES

Table 1 shows a list of variables included in the logged data to reproduce this work. The dataset
contains three years in 1-minute timesteps of raw data gathered through sensors from a real-world
system. This dataset provides, at some timestep t, information about the water tank level, and also
pump information regarding electricity consumption kW, water flow Q, and hydraulic head H .

Table 1: List of Variables in the Water Facility Dataset
Variable Name Units/Scale Description
../Tank1/{Month}/‘HB Niveau N pval’ Meters Water tank level
../WaterConsumption/{Month}/‘Netzverbrauch pval’ m3/h Water consumption
../NP/NP{#}/KW/‘NP {#} SIMEAS P Leistung pval’ kW/h kW consumption
../NP/NP{#}/Q/‘NP {#} Volumenfluss pval’ m3/h Water flow (Q)
../NP/NP{#}/H/‘NP {#} Druck Druckseite pval’ Meters Hydraulic head (H)

D OFFLINE RL ALGORITHMS USED IN BENCHMARKING

Learning policies constrained to expert demonstrations can be challenging due to the distributional
shift issue and overly optimism in the face of uncertainty (Fujimoto et al., 2019b; Levine et al.,
2020; Ostrovski et al., 2021). In this section, we further detail how the offline RL algorithms we
benchmark tackle this issue.

• Double DQN (DDQN) (van Hasselt et al., 2016) mitigates the overestimation bias present in
standard Q-learning by decoupling action selection and evaluation during target computation.
Specifically, the action that maximizes the Q-estimation is selected using the current network
parameters θi, but its value is estimated using the target network parameters θi−1. DDQN is
widely used as a baseline in both online and offline RL benchmarks. The loss δi used to train the
Q-network is given by:

δi = E
[
R(s, a) + γQ

(
s′, argmax

a′
Q(s′, a′; θi); θi−1

)
−Q(s, a; θi)

]2
. (6)

• Random Ensemble Mixture (REM) (Agarwal et al., 2020) mitigates overestimation by aver-
aging Q-values across an ensemble of estimators using randomly sampled convex combination
weights. At each training step, a Dirichlet-distributed weight vector α is sampled such that∑K

k=1 αk = 1 and αk > 0 ∀k. This mixture is used to compute both the target and predicted
Q-values. The loss δi is given by:

δi = E

[
R(s, a) + γmax

a′

K∑
k=1

αkQk(s
′, a′; θki−1)−

K∑
k=1

αkQk(s, a; θ
k
i )

]2

. (7)

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

• Although not originally designed for offline settings, Maxmin Q-learning (Lan et al., 2020)
mitigates overestimation bias by taking the minimum predicted Q-estimation across a set of Q-
networks for each action: Qmin(s, a) = minj∈{1,...,N}Qj(s, a), ∀a ∈ A. During training, a
single network k ∈ N is randomly selected for each update step, but the target is computed using
the minimum over all N models:

δi = E
[
R(s, a) + γmax

a′
Qmin(s′, a′; θi−1)−Qk(s, a; θi)

]2
, k ∈ {1, . . . , N}. (8)

• Batch-Constrained Deep Q-Learning (BCQ) (Fujimoto et al., 2019b;a) mitigates overestima-
tion by constraining the policy to select only actions that are likely under the behavior policy. In
the discrete-action version, BCQ uses a BC model Gω(a | s) trained on the dataset to estimate
the action distribution. At each timestep, actions are filtered by a threshold τ , and only those with
a sufficiently high likelihood are considered for the target computation. The loss is defined as:

δi = E

R(s, a) + γ max
a′ s.t. Gω(a′|s′)

maxâ Gω(â|s′)>τ

Q(s′, a′; θi−1)−Q(s, a; θi)

2

. (9)

E EXPERIMENTAL SETUP

Reproducibility remains a major challenge in DRL research (Henderson et al., 2018; Qin et al.,
2022), often due to the lack of open-source code, limited access to training data, and insufficient
documentation of implementation details such as hyperparameters. To promote reproducibility and
transparency, we detail the key hyperparameters, architectural choices, and implementation deci-
sions used in our benchmark experiments.

Partial Observability: Since the pump scheduling problem is naturally partially observable, we
employ a Long Short-Term Memory (LSTM) network (Hausknecht & Stone, 2015) to enrich the
observation space with temporal information. Specifically, we stack four sequential observations
using an LSTM layer.

Prioritized Experience Replay (PER): Experience Replay (Lin, 1992) decorrelates sequential ob-
servations by storing transitions and sampling them in mini-batches (Mnih et al., 2013; 2015).
Rather than sampling uniformly, we adopt Prioritized Experience Replay (PER) (Schaul et al., 2016),
which prioritizes transitions based on their temporal-difference (TD) error δ.

Implementation Choices. Following prior work, we used five Q-networks for REM and three for
Maxmin Q-learning after empirical evaluation of these ensemble sizes. We adopt the Huber loss for
REM, as suggested by its authors, and the Mean Squared Error (MSE) loss for all other algorithms.
For the generative model Gω used in BCQ, we employ a linear regression model implemented with
Scikit-Learn (Pedregosa et al., 2011), selecting its hyperparameters by grid search.

The full list of hyperparameters used is provided in Table 2.

F EXTENDING THE SIMULATOR FOR VARIABLE-SPEED PUMPS

Speed control is an efficient method for adjusting the operating point of a pump. In this config-
uration, the motor frequency is varied using a frequency converter, which alters the characteristic
curves of the pump, namely the hydraulic head versus flow rate and efficiency versus flow rate re-
lationships. Changes in flow rate and hydraulic head can be described by affinity laws, as given in
Equations 10 and 11, where the flow rate (Q) varies proportionally to the pump speed (n) and the
hydraulic head (H) varies proportionally to the square of the pump speed:

Q ∝ n (10)

H ∝ n2 (11)
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Hyperparameter Value
Mini-batch size 36

(LSTM, Dense, Dense) nodes (100, 100, 100)
Update target λ 12000

Optimizer Adam
Learning rate 0.00003

Discount factor 0.99
α (PER) 0.6
β (PER) 0.4 → 1

#Q-Networks (REM) 5
#Q-Networks (Maxmin Q-learning) 3

BCQ threshold τ 0.3
L2 regularization (dense layers) 0.000001

Hardware GPU V100

Table 2: Hyperparameters and architectural choices used in benchmark experiments.

From Equations 10 and 11, it follows that the hydraulic head changes with the square of the flow
rate, as expressed in Equation 12, where Q1 and H1 correspond to the flow rate and hydraulic head
at the initial reference speed:

Hx =

(
H1

Q2
1

)
Q2

x (12)

Thus, under speed variation, all points on the original pump curve move along parabolic trajectories
through the origin (Figure 7(a)).

(a) (b)

Figure 7: ((a)) Influence of speed control on the pump curve (Dieter-Heinz, 2004). ((b)) Relationship
between the pump curve and the system curve.

Changing the speed also modifies the efficiency curve of the pump. If the operating point corre-
sponds to the point of best efficiency at the nominal speed, it remains the point of best efficiency
at any other speed. Other points on the efficiency curve shift along quadratic curves while main-
taining their position relative to the best-efficiency point. The maximum efficiency value remains
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approximately constant. Effects due to variations in the Reynolds number can be incorporated using
empirical relationships, such as Ackeret’s formula (Pfleiderer & Petermann, 2005):

(1− η1,opt)

(1− η2,opt)
= (1− V ) + V

(
Re2
Re1

)( 1
α )

(13)

The change in the pump’s operating point due to speed control depends critically on the shape
of the system curve. If the system has no static head (i.e., purely dynamic losses), the system
curve coincides with the affinity parabola, and the pump can theoretically operate at its point of
best efficiency across a range of speeds. However, in practical systems with a nonzero static head,
as illustrated in Figure 8, the intersection of the pump curve and the system curve deviates from
the ideal affinity parabola. Consequently, the pump operates at reduced efficiency under part-load
conditions when the speed is lowered.

Figure 8: Effect of speed control on the operating point of a pump with nonzero static head.

To enable these effects to be modeled, a speed control function can be incorporated into the main
simulator code. This would allow recalculating the pump curve dynamically as the operating speed
varies.

G USE OF LARGE LANGUAGE MODELS

In preparing this manuscript, we used large language model (LLMs) in the following ways:

1. Text refinement. The model was used to improve clarity, grammar, and flow, and to sug-
gest alternative phrasings of drafts. It also helped organize reviewer-style feedback on
earlier versions of the text.

2. Baseline verification. The model was used to verify whether our implementations of of-
fline RL algorithms were aligned with their respective published descriptions, as well as to
refine their code.

All research ideas, methodological contributions, experimental design, and analysis are our own.
The LLM was not used to generate new technical content or experimental results. The authors take
full responsibility for the content of this paper.
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