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ABSTRACT

The two most prominent approaches for building adversary-resilient image clas-
sification models are adversarial training and input transformations. Despite sig-
nificant advancements, adversarial training approaches struggle to generalize to
unseen attacks, and the effectiveness of input transformations diminishes fast in
the face of large perturbations. In general, there is a large space for improving
the inherent trade-off between the accuracy and robustness of adversary-resilient
models. Painting algorithms, which have not been used in adversarial training
pipelines so far, capture core visual elements of images and offer a potential solu-
tion to the challenges faced by current defenses. This paper reveals a correlation
between the magnitude of perturbations and the granularity of the painting process
required to maximize the classification accuracy. We leverage this correlation in
the proposed Painter-CLassifier-Decisioner (PCLD) framework, which employs
adversarial training to build an ensemble of classifiers applied to a sequence of
paintings with varying detalization. Benchmarks using provable adaptive attack
techniques demonstrate the favorable performance of PCLD compared to state-of-
the-art defenses, balancing accuracy and robustness while generalizing to unseen
attacks. It extends robustness against substantial perturbations in high-resolution
settings across various white-box attack methods under ℓ∞-norm constraints.

1 INTRODUCTION

Deep learning models excel in image classification, yet they are still vulnerable to adversarial ma-
nipulation (Nguyen et al., 2015; Szegedy et al., 2014; Biggio et al., 2013). Through carefully crafted
perturbations, attackers can manipulate the representations learned by models, leading to incorrect
predictions (Goodfellow Ian J., 2014). These vulnerabilities present significant security concerns,
especially given the integration of these models into critical domains such as autonomous driving,
healthcare, and finance (Dong et al., 2020), emphasizing the disparity between current machine
learning algorithms and human-level capabilities (Geirhos et al., 2018).

Two core defense approaches have been developed to address these challenges: (1) Adversarial
training – incorporation of adversarial examples into the training data (Madry et al., 2018; Papernot
et al., 2018; Zhang et al., 2019; Singh et al., 2024) – is the most successful defense approach to date.
However, it faces challenges in generalizing to unseen attacks (Bai et al., 2021) and maintaining per-
formance on benign images (Zhang et al., 2019). (2) Defensive transformations – transformation of
the input from adversarial space to benign space by filtering out adversarial perturbations. Some de-
fensive transformations provide theoretical guarantees (Cohen et al., 2019; Salman et al., 2020; Nie
et al., 2022). Certain defensive transformation techniques have been shown to “obfuscate gradients”,
leading to a false sense of adversarial robustness (Buckman et al., 2018; Ma et al., 2018; Guo et al.,
2018) while being vulnerable to adaptive attack strategies (Athalye et al., 2018). In addition to these
approaches, detection-based defenses (Carlini & Wagner, 2017) offer complementary strategies by
identifying adversarial inputs. Overall, there is an inherent trade-off between the robustness and ac-
curacy of adversary resilient classifiers (Zhang et al., 2019), with input transformations particularly
vulnerable to large perturbations.

In this paper, we combine adversarial training with a new defensive transformation technique utiliz-
ing stroke-based painting. Our key insight is that painting strokes filter out adversarial perturbations
while progressively reconstructing the most important image features. As depicted in Figure 1, early
coarse strokes filter out larger perturbations (better robustness) but display only the major elements
of an image (lower accuracy). Later fine strokes display more image elements (better accuracy)
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Figure 1: Painting vs adversarial perturbations. The left column includes input photos, followed
rightward by their respective paintings with t strokes. The top row includes benign images, followed
downward by their attacked variants. Here the dog can be identified after 30 strokes. The vertical
red bar marks the number of strokes when perturbations become visually perceptible. The greater
the ϵ, the earlier the perturbations become perceptible.

while also being affected by smaller adversarial perturbations (lower robustness). Given an im-
age with adversarial perturbations, there is an optimal number of painting strokes – a sweet spot –
maximizing the likelihood of correct classification. In realistic settings where the magnitude of the
perturbations is unknown, the final decision is made based on intermediate paintings by an adversar-
ially trained component we call a decisioner. To the best of our knowledge, this is the first attempt
to integrate intermediate painting, i.e. filtering, stages into an adversarial training dataset.

We refer to the entire framework as Painter-CLassifier-Decisioner (PCLD), reflecting the three core
components of the proposed approach. We evaluate PCLD using state-of-the-art adaptive white-box
attacks under ℓ∞-norm on a subset of the ImageNet data (Deng et al., 2009). PCLD effectively ex-
tends robustness against large perturbations, generalizes to unseen attacks, and retains performance
on benign images.

The most important contributions of this study are:

1. We introduce Painter-CLassifier-Decisioner (PCLD), a novel framework for adversarial
training combined with stroke-based painting (Section 2.2).

2. We reveal the correlations between the granularity of the paintings and the magnitude of
the attack (Section 4.3). Our findings lay the groundwork for future exploration of painting
algorithms for adversarial resilience.

3. PCLD addresses the generalization challenge. Initially trained only on FGSM (Goodfellow
Ian J., 2014) samples, PCLD demonstrates enhanced performance against powerful white-
box attacks, including PGD (Madry et al., 2018), C&W (Carlini, 2017) and AutoAttack
(Croce & Hein, 2020) (Section 4.5).

The rest of the article is structured as follows: We overview the PCLD framework and describe
the main ideas and architectural highlights in Section 2. Then we discuss literature most related to
PCLD in Section 3 while focusing on stroke-based defensive transformations and adversarial train-
ing techniques against which we benchmark PCLD. Section 4 presents the empirical study of PCLD
as the main part of the paper. We deep dive into painting as a defensive transformation technique
and assess the accuracy vs. robustness tradeoff as a function of the painting steps in Section 4.3. In
Section 4.4, we assess the contribution of the adversarially trained decisioner. Section 4.5 presents
the results of the PCLD benchmark against the prior art. Section 5 concludes the article.
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Figure 2: The overall defense framework. An input image xi benign or adversarial is processed by
the Painter (P). Based on the canvas state Ci,t and xi, the actor outputs the stroke parameters ai,t.
The renderer then uses ai,t to render a stroke on the canvas, producing Ci,t+1. A selected set derived
from the resulting canvases, together with the original input, is fed to the Classifier (CL), generating
the probability instance Vi, which is provided to the Decisioner (D) to predict the class.

2 PAINTER-CLASSIFIER-DECISIONER (PCLD)

2.1 HIGH-LEVEL OVERVIEW OF THE PROPOSED APPROACH

In his book, Nicolaı̈des (1941) emphasizes the concept of “Correct Observation” as crucial for artists
to truly connect with and deeply understand the visual elements they paint. Painting algorithms
(Collomosse & Hall, 2005; Li et al., 2020; Zou et al., 2021; Huang et al., 2019) attempt to capture
the essential visual elements of an image. Intuitively, focusing on the essential visual elements helps
to filter out malicious perturbations while maximizing classification accuracy.

To support this intuition, we utilize a Painter (P) (Huang et al., 2019) as a defense against adver-
sarial attacks. Figure 1 shows a sequence of painting steps t, generated by the painter for a given
input image, denoted as t = ∞ (left column). Among the inputs, the top is the benign image, fol-
lowed downward by its adversarial variants. While the object is recognizable after a few (30-80)
strokes, the perturbations are visually apparent towards the end of the drawing process, allowing
early recognition of key elements for classification and avoiding malicious artifacts.

Intuitively, increasing the number of strokes (t) to create a more detailed painting not only clarifies
the image but also reconstructs the perturbations. When the attack magnitude (ϵ) is greater, the
perturbations are reconstructed earlier. This demonstrates a dependence between the Classifier’s
(CL) confidence in the correct class, the painting’s granularity, and the magnitude of the attack. We
empirically validate this phenomenon in Section 4.3.

In real-world scenarios, however, the magnitude of an attack is unknown to the defender, making
it challenging to determine the optimal step at which the painting should be provided to the classi-
fier for decision-making. To navigate this uncertainty, a sequence of CL derived from intermediate
painting steps is processed by the Decisioner (D). This last component is designed to discover pat-
terns in confidence levels, effectively addressing the challenges posed by varying attack magnitudes
and the need for image clarity.

2.2 PAINTER DYNAMICS AND PROCEDURES

As the Painter (P) we use a pre-trained model, provided by Huang et al. (2019), which does not
require retraining for new datasets. As illustrated in Figure 2 (left), the painting process begins with
a target image xi

∼= Ci,∞ and an empty canvas Ci,0. The painter decomposes the image into a
sequence of strokes ai,0, ai,1, ..., ai,n−1. The next stroke ai,t+1 is derived from xi and the preceding
canvas Ci,t. Rendering ai,t on Ci,t generates Ci,t+1. The painter’s goal is to generate the final
canvas Ci,n that is visually close to xi.

For the sake of completeness, we briefly overview the employed painting process. Huang et al.
(2019) model painting as a Markov Decision Process using a state space S, an action space A, a
transition function T (si,t, ai,t) and a reward function r(si,t, ai,t). The state space contains three el-
ements such that the current state includes: si,t = (Ci,t, xi, t). si,t+1 = T (si,t, ai,t) is the transition
between states that results in a new stroke on the canvas. The action ai,t, determined under a deter-
ministic action policy, controls the position, shape, color, and transparency of the resulting stroke at
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step t. The reward function estimates the difference between the current canvas state Ci,t and the
target image xi: r(si,t, ai,t) = Li,t − Li,t+1, where Li,t is the predicted loss by the discriminator
between xi and Ci,t and Li,t+1 is the loss between xi and Ci,t+1. In each state, the agent’s objec-
tive is to maximize the cumulative rewards in all episodes Ri,t =

∑T
j=t γ

(j−t)r(si,j , ai,j) using a
decaying discounted factor γ ∈ [0, 1].

By following this approach, the painter prioritizes regenerating the essential elements of an image
before recreating the adversarial perturbations.

2.3 CLASSIFIER

The classifier can be any model that produces an inference vector for a given image. The most
common models for this task are convolutional neural networks (CNNs). As shown in Figure 2
(middle), given a selected resulting canvas Ci,t produced by the painter, the classifier outputs an
inference vector CL(Ci,t) that contains a likelihood value for each class c. The matrix Vi[t, c]
contains the classification confidence for all classes (c) and the selected painting steps (t). The
painting process contains many steps corresponding to the strokes generated by the painter. It does
not make sense to apply a classifier after each stroke due to high computational costs (inference time
reported in Section 4.5, Table 1).

2.4 DECISIONER

We designed PCLD as an ensemble of classifiers that can be applied to different stages of painting
the same image. Provided the classification likelihoods (Vi), the Decisioner (D) is responsible for
making the final decision for the predicted class. Consider, for example, the likelihood in Figure 2
(right). During the initial steps, we expect the confidence in the correct class (dog) to increase to
some point. Later, the adversarial perturbations are reconstructed by the painter, and we expect the
confidence of the correct class to drop in favor of another class (cat in this example). A decisioner
trained on adversarial examples of confidence matrices V should learn to identify such patterns and
select the right class. We consider two decisioner architectures: a convolutional network and a fully
connected network.

3 RELATED WORK

3.1 STROKE-BASED DEFENSIVE TRANSFORMATION

Kabilan et al. (2021) were the first to use sketching strokes as a defense in their framework, named
VectorDefense. Given an input bitmap image x, VectorDefence uses the Potrace algorithm (Selinger,
2003) to transform it into a Scalable Vector Graphics (SVG) image (Ferraiolo et al., 2000) using
strokes shaped from simple geometric primitives. The resulting SVG is then rasterized back into
bitmap format before it feeds to the classifier. Potrace algorithm consists of 4 steps: (1) trace a given
bitmap to paths by generating boundaries that divide black and white regions, (2) approximate each
path by an optimal polygon, (3) smooth out each polygon, and (4) optimize the generated curve by
connecting successive segments of the Bézier curve if possible. Although VectorDefense showed
promise as an effective input transformation defense, it was initially evaluated solely on the MNIST
dataset. In this paper, we extend the VectorDefense testing to a subset of the ImageNet dataset,
which comprises more complex and high-dimensional images.

3.2 ADVERSARIAL TRAINING

There have been significant advances in adversarial training over the past decade, beginning with
Szegedy et al.(Szegedy et al., 2013) method of training on both adversarial and clean samples.
Goodfellow et al.(Goodfellow et al., 2014) introduced an approach to generate adversarial examples
by tweaking the input based on the gradient of the loss function. This was extended by Madry et
al. (Madry et al., 2018) showing robustness improvements through min-max optimization. Fur-
ther advancements included exploration of adversarial training on large datasets like ImageNet and
strategies to counter overfitting and label leaking, such as avoiding the use of ground-truth labels
(Kurakin et al., 2016).
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Additional methods like Ensemble Adversarial Training (EAT) (Tramèr et al., 2017) and Unsu-
pervised Adversarial Training (UAT) (Alayrac et al., 2019) were developed to enhance robustness
against diverse adversarial attacks. Diffusion models have also been explored for adversarial training
by iteratively removing adversarial noise and training on the resulting images (Wang et al., 2023).
Furthermore, Vision Transformers (ViT) have been utilized in adversarial training, benefiting from
their global self-attention mechanisms to enhance robustness (Singh et al., 2024).

Recent techniques have addressed the accuracy-robustness trade-off. Randomized Adversarial
Training via Taylor Expansion (RATE) (Jin et al., 2023) integrates randomness during training to
improve generalization, leveraging insights from both TRADES and AWP. A notable advancement
named TRADES (Zhang et al., 2019) defined a theoretically principled approach to balance the be-
nign accuracy and robustness of the model to adversarial attacks, setting a benchmark for subsequent
research in this domain. TRADES won the NIPS 2018 Adversarial Vision Challenge out of 1995
defenses, marking a significant milestone in the field. It is widely used as a competitor for adversar-
ial training methods to this day due to its robust theoretical foundations and empirical performance.
We empirically compare PCLD with TRADES and with RATE combined with TRADES (denoted
as Rand TRADES).

4 EMPIRICAL STUDY OF PCLD

As described in Section 2, our dual-layered defense strategy designed to protect the target classifier
consists of two key components: (1) a series of input transformations executed by a painter and (2)
post-processing of the classifier’s outputs using a decisioner. In this section, we evaluate the impact
of the Painter-CLassifer (PCL) model, emphasizing the critical role of the decisioner. Finally, we
assess the resilience of the complete model, PCLD, and compare its performance with benchmark
methods.

4.1 EXPERIMENTAL ENVIRONMENT

We use a balanced subset of ImageNet, comprising 7000 images of seven animals: elephant, squir-
rel, chicken, spider, dog, butterfly, and cat. The dataset is divided into 70% for training, 10% for
validation, and the remaining 20% for testing. The original image size of 375x375 pixels was re-
sized to 300x300 pixels and scaled in a range of 0-1. During the training phase, we incorporate
random image rotations of 45◦ and apply horizontal flipping with a probability of 50%. We use
the CleverHans (Papernot et al., 2018) and ART (Nicolae et al., 2018) libraries to attack the models
under the ℓ∞ norm. The hyperparameters of the PGD attack include a step size of ϵ/Niter, while
default values were used for step sizes, random restarts, and confidence (for CW) in all other at-
tacks. Computations required GPU cores; we run it on Amazon EC2 (Services, 2023) g5.24xlarge
instances, including four 24GB NVIDIA-A10G GPU cores with 384GB memory. For the classifier
(CL), we employ a ResNet-18 architecture, pre-trained on ImageNet, and adapted for seven classes.
We select 15 distinct painting steps for all experiments: 50, 100, 200, 300, 400, 500, 600, 700, 950,
1200, 1700, 2200, 3200, 4200, 5200.

4.2 ADAPTIVE ATTACK STRATEGY

The painting process is convoluted with multiple iterative steps that cause ”Exploding & Vanishing
Gradients” by incorporating ”multiple iterations of neural network evaluation, feeding the output
of one computation as the input of the next” (Athalye et al., 2018). Consequently, we extend the
Backward Pass Differentiable Approximation (BPDA) + Expectation Over Transformation (EOT)
(Athalye et al., 2018) and substitute the painter during the backward pass while keeping the forward
pass unchanged.

Each of the above paint steps approximated with an auto-encoder (e.g., for step 50, we fine-tune an
encoder-decoder to mimic the painter’s output at step 50 given the input image). Specifically, we use
pre-trained ResNet-18 classifier, trained on ImageNet, as the encoder. We modify the ResNet18 by
keeping the layers up to the third residual block. This results in a feature map of size 256 channels,
which is used as the encoded representation.

5
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(b) PCLBp vs. PGD10

Figure 3: PCL test accuracy (z-axis) as a function of epsilon (x-axis, ϵ = 128 scaled to ϵ = 54) and
paint step (y-axis, t = ∞ scaled to t = 5700). (a) PCLB model - CLB classifier trained only on
benign images (B). (b) PCLBp model - CLBp classifier trained on benign images and their paints.
The black markers on the surface plot highlight the coordinates where the accuracy reaches peaks.
The greater the attack magnitude, the earlier the painting steps in which the classifier reaches the
accuracy peak.

To construct the decoder, we append a series of transposed convolutional layers to progressively
upsample the encoded features back to the original image size (3x300x300). The decoder consists
of four transposed convolutional layers, followed by a final convolutional layer to adjust the output
to the desired 3-channel (RGB) format. We use ReLU activations for the upsampling layers and a
sigmoid activation in the final layer to produce the pixel values in the range [0, 1].

Finally, the model is trained using mean squared error (MSE) as the loss function, with the Adam
optimizer and a learning rate of 0.001. This approach results in 15 encoder-decoder models that
replace the painter during the backward pass.

To assess the quality of our attack strategy, we perform the following sanity tests advised in (Carlini
et al., 2019):

1. Compare it with a simpler naı̈ve strategy, crafting examples using only components other
than the painter, i.e., CLassifier (CL) for PCL and CLassifier-Decisioner (CLD) for
PCLD).

2. Verify that increasing the perturbation budget increases the attack success rate.
3. Generate adversarial samples with the ϵ = 128/255 budget. The robustness is expected

to be around random chance, as the adversary should have the ability to make any single
image into a solid gray picture.

4. Verify that iterative attacks perform better than single-step attacks.

4.3 PAINTER-CLASSIFIER (PCL) MODEL

4.3.1 TRAINING CLASSIFIER WITH PAINTS

We evaluate two training strategies for the classifier, (1) train on the benign images indicated by
B = {(xi, yi)}, and (2) train on the benign images and their paints indicated by Bp = {(Ci,t, yi)}.
Here, Ci,t represents the canvas in the painting step t for input xi, where Ci,∞ = xi. The steps
we choose to generate Bp start at 50 and increase to 200 in increments of 50, allowing us to closely
monitor the initial significant transformations in the image’s objects. Beyond 200, the increments
expand to 500, continuing up to 5200. Finally, the original image xi is included, resulting in a total
of 15 canvases. This method enables effective tracking of the more gradual changes as the painting
process progresses. After training the classifiers CLB and CLBp

, we obtain two victim models,
PCLB and PCLBp

, respectively. These classifiers trained using cross-entropy loss and the SGD
optimizer with a learning rate of 0.01, employing a learning rate scheduler (StepLR) that reduces
the learning rate by a factor of 0.1 every 7 steps.
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Figure 4: Test Results for attacking PCLBp. Our adaptive strategy outperforms the naive approach,
especially with PGD10 attacks. Note that when ϵ = 128/255, with the naive approach, most of
the PCL inferences reach high accuracy, while this anomaly is corrected by the adaptive strategy.
Furthermore, with the naive strategy, FGSM yields better results than PGD10, while the opposite
is true for the adaptive strategy. This suggests that the naive strategy may discard crucial gradient
information that is retained in our adaptive strategy.

To pick the best classifier training configuration, we conduct an attack on the PCL model as outlined
in Section 4.2. During the forward pass, the painter processes the input, while in the backward pass,
the gradients associated with the loss across all painting steps are approximated using surrogate
signals. The resulting gradient tensor, g ∈ RT×W×H×C , is then averaged over the painting steps
dimension T , producing gradients that match the shape of the input x ∈ RW×H×C . These gradients
are subsequently utilized by the chosen attack algorithm.

We use a targeted PGD attack with 10 iterations on top of the above adaptive technique to attack
and evaluate PCL through all the selected painting steps described in Section 4.2. Figure 3 shows
the test accuracy results of two PCL models as a function of ϵ and t. Consequently, training the
classifier with paints generated from the benign dataset (Bp) seems to acknowledge more robustness
to PCL than training it on the benign dataset (B) alone (data augmentation in general can improve
robustness (Rebuffi et al., 2021; Addepalli et al., 2022; Li & Spratling, 2023)).

4.3.2 ADAPTIVE ATTACK - SANITY CHECK

Figure 4 presents the performance of PCLBp
using both the naive strategy (left column) and the

adaptive strategy (right column). It is notable that the adaptive strategy significantly improves the
success rate compared to the naive method. Furthermore, achieving an accuracy significantly higher
than 15% (7 classes), as shown in Figures 4a and 4c, is impossible, indicating that the gradient
information used by the naive strategy is deficient. This issue is addressed by the adaptive strategy,
suggesting that it effectively utilizes valuable gradients from the painting process to attack the model.
Furthermore, while FGSM performs better than PGD10 under the naive strategy, the adaptive strategy
corrects this anomaly. This change is expected since multistep gradient descent methods should
typically outperform single-step methods.

4.3.3 PERFORMANCE DYNAMICS

The relationship between the granularity of the painting, model accuracy, and the magnitude of the
attack is particularly evident in Figure 3. As epsilon increases, the model reaches its accuracy peak
(denoted by the black markers on the surfaces, which we refer to as t∗) at earlier painting steps,
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Figure 5: Test results for attacking PCLBp
, accuracy as a function of magnitude size. The dashed

line with the ”D” sign in (a) is the performance of the decisioner DFC
V ⇐ before any attack is intro-

duced. Likewise, the dashed line with the ”U” sign in (b) is our complete model PCLBpD
FC
V ⇐ test

performance for adaptive targeted-PGD10 attacks. Although the decisioner trained only on FGSM
signals, it generalizes well to PGD10
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Figure 6: Softmax probabilities of PCLBp vs. targeted PGD10 for different epsilon budgets as a
function of paint-step (t). (a) Attack directed Cat ⇒ Chicken. (b) Attack directed dog ⇒ Elephant.
As the perturbation increases, the shift in the highest class probability from the correct class to the
targeted class occurs in earlier steps, illustrating the dynamics of confidence variation with increas-
ing ϵ.

indicating that perturbations are reconstructed sooner with a larger attack radius. We compute the
Spearman correlation between ϵ and the corresponding t at which the model assigns the highest
probability to the correct class, denoted as t∗prob, for each of the attacked models in Figures 3a and
3b. This correlation yields PCLB : rs(ϵ, t

∗
prob) = −0.54 and PCLBp

: rs(ϵ, t
∗
prob) = −0.55,

both with p ≪ 0.05. Focusing on samples where the model correctly predicted the class (i.e., the
model assigned the highest probability to the correct class), the correlation coefficients strengthen
to PCLB : rs(ϵ, t

∗
prob) = −0.76 and PCLBp

: rs(ϵ, t
∗
prob) = −0.61, both with p ≪ 0.05. This

correlation is a key insight that drives the further development of our framework.

This trend is further illustrated in Figures 5a and 5b, where the performance peaks at lower t values
(t ≤ 200) become more pronounced as ϵ increases, particularly when ϵ ≥ 9/255. In contrast, for
lower ϵ values, it is more beneficial to maintain accuracy by selecting a later painting step, such as
t = 1200, rather than an earlier step like t = 300. Therefore, depending on the attack magnitude, it
is necessary to stop the painting process at different steps to optimize the PCL performance.

This phenomenon is visualized in Figure 6 (as well as in Figures 9, 10, and 11 in the Appendix),
illustrating the confidence levels of PCLBp for each class versus various ϵ values at different t
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classifier. PCLD exhibits superior robustness, particularly at higher perturbations.

steps. A distinct trend is observed where, as ϵ increases: the value of t at which the highest class
probability shifts from the correct class to the targeted class occurs earlier. However, creating a
rule-based decision system to stop painting at t∗ would involve numerous rules and careful handling
of various edge cases. Therefore, training a decisioner model to learn these patterns is necessary.

4.4 DECISIONER CONTRIBUTION

We compare two decisioner architectures: a 1D convolutional network (Conv) and a fully connected
network (FC). The Conv model uses two 1D convolutional layers with 64 filters (kernel size 3),
followed by batch normalization, dropout, and adaptive max pooling. The FC model includes three
fully connected layers of sizes 128, 64, and an output layer, each with ReLU activation and dropout.
All models trained with cross-entropy loss and the SGD optimizer with a learning rate of 0.01,
without employing a learning rate scheduler. We evaluate these models using three confidence
matrices datasets derived from PCLBp on FGSM-attacked samples: targeted (V ⇒), untargeted
(V ⇐), and combined (V ⇔), resulting in six total configurations. To address class imbalance, sample
weights decrease as ϵ increases, adjusting the SGD loss per sample. Based on the validation results
in Figure 12, we select the FC decisioner trained on untargeted FGSM inferences V ⇐.

The test performance of the selected decisioner is illustrated by the purple line marked with a ”D”
sign in Figure 5a. This ablation study highlights that the decisioner successfully learned the patterns
and optimized the class decisions across paint steps (t). Figure 5b illustrates the performance of
PCLD (dashed cyan line with the ”U” sign) and PCL across all paint steps under a targeted-PGD10
attack. Despite being trained only on one-step untargeted-FGSM, PCLD generalizes effectively
to the iterative method, achieving the highest accuracy across nearly all perturbation magnitudes
compared to all PCL paint steps. The advantage of incorporating the decisioner into PCL is further
highlighted in Figure 7, where PCLD outperforms PCL400 for most attack magnitudes, except at
ϵ = 9. A significant performance gap is observed at larger perturbations. Furthermore, in scenarios
where maintaining high accuracy on benign images is critical, even the relatively small difference
between PCLD and PCL400 for ϵ = 0 can be crucial.

4.5 COMPARING PCL AND PCLD WITH PRIOR ART

In this section, we evaluate the performance of the optimal PCL (t = 400) and PCLD configurations,
consisting of the classifier trained on the benign images and their paints (CLBp ). For PCLD, we use
the FC decisioner trained on untargeted FGSM attacks. The results are compared against state-of-
the-art defenses, including TRADES, Rand TRADES, and VectorDefense.

Figure 7 shows the test performance of PCL and PCLD against targeted PGD10 attack across various
ϵ values. While preserving accuracy, PCLD consistently outperforms all other models, maintaining
higher robustness overall attack magnitudes except for ϵ = 9, where PCL is slightly better. Al-
though TRADES and Rand TRADES were trained specifically on PGD10, they struggle to maintain

9
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Table 1: Benchmarking test accuracies (%) against various attacks under ℓ∞. For each model we
report accuracy under different adversarial attacks (PGD10, PGD100, C&W10, and AutoAttack) and
inference time. PCLD achieves a superior balance between accuracy and robustness, demonstrating
superior robustness at larger ϵ values.

Model Benign
ϵ = 8/255 ϵ = 20/255

Inference Time (Sec)Gaussian Noise PGD10 PGD100 C&W10 AutoAttack AutoAttack

Undefended 96.2 95.8 0.0 0.0 3.0 3.0 3.0 0.0003

PCLD 94.1 94.0 77.1 75.4 78.6 52.2 33.4 0.67

PCL400 85.5 85.5 77.7 76.6 80.5 58.3 21.9 0.1876

TRADES (Zhang et al., 2019) 65.4 65.2 37.3 36.7 35.1 37.5 20.9 0.0003
Rand TRADES (Jin et al., 2023) 53.0 52.9 37.7 37.3 32.8 31.0 18.2 0.0003

both accuracy and robustness, particularly against large perturbations, whereas PCLD demonstrates
significantly greater resilience overall.

We attack VectorDefense adaptively, as described in Section 4.2, using a single surrogate model
since VectorDefense outputs only the final canvas state for a given input. However, as provided in
Figure 7, VectorDefense shows vulnerability, likely due to its reliance on only the final sketching
step, omitting crucial intermediate stages. Enhancing VectorDefense with a reinforcement learning
agent to strategically choose sketching strokes, could improve its robustness, allowing stopping the
sketching at earlier optimal stages and even learning from the progression.

Table 1 shows that PCLD achieves a superior balance between accuracy and robustness compared to
benchmarks. It maintains the highest benign accuracy (94.1%) and demonstrates strong resilience,
particularly for large perturbations (ϵ = 20/255), with 33.4% accuracy against AutoAttack, outper-
forming TRADES (20.9%) and Rand TRADES (18.2%). This suggests that PCLD’s use of inter-
mediate painting stages helps it manage the accuracy-robustness trade-off more effectively. While
PCL400 performs well in some cases, such as PGD10 and C&W10, PCLD shows greater overall
robustness, especially under higher ϵ values. Although TRADES and Rand TRADES offer faster
inference times, their lower robustness highlights PCLD’s superior performance in realistic settings.

In addition to the results shown in Table 1, for ϵ = 4/255, PCLD achieves 68% accuracy under
AutoAttack, further demonstrating its robustness at lower perturbation levels. Regarding compu-
tational complexity, the Painter requires 0.661 seconds, the Classifier takes 0.003 seconds, and the
Decisioner operates in 0.001 seconds, resulting in a complete PCLD inference time of 0.67 seconds.

5 CONCLUSIONS

In this paper, we introduce the Painter-Classifier-Decisioner (PCLD) framework, a novel approach
designed to reinforce adversarial robustness by leveraging stroke-based painting and adversarial
training. Our empirical results on a subset of the ImageNet dataset show that PCLD achieves su-
perior performance in both accuracy and robustness compared to state-of-the-art adversarial train-
ing against adaptive white-box attacks under the ℓ∞ norm. PCLD addresses the generalization
challenge. Initially trained on FGSM, PCLD demonstrates enhanced performance against PGD
(Madry et al., 2018), C&W (Carlini, 2017) and AutoAttack (Croce & Hein, 2020). Moreover,
PCLD maintains relatively high accuracy even as the attack strength increases, demonstrating its
robustness across different perturbation levels. PCLD’s ability to perform effectively in complex,
high-resolution settings makes it a strong candidate for robust model deployment in real-world ap-
plications. However, a notable limitation of our approach is the computational complexity of em-
ploying an iterative painting model.

Future research can focus on optimizing the painter’s efficiency and extending the evaluation to
additional datasets, such as the entire ImageNet dataset, to further validate the framework’s appli-
cability. These advancements would pave the way for more resilient models capable of withstand
sophisticated threats.

Reproducibility statement: The following GitHub repository includes the PCLD models, code,
and links for the data: https://github.com/pcld-defense/PCLD
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Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and Patrick Mc-
Daniel. Ensemble adversarial training: Attacks and defenses. arXiv preprint arXiv:1705.07204,
2017.

Zekai Wang, Tianyu Pang, Chao Du, Min Lin, Weiwei Liu, and Shuicheng Yan. Better diffusion
models further improve adversarial training. In International Conference on Machine Learning,
pp. 36246–36263. PMLR, 2023.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael Jordan.
Theoretically principled trade-off between robustness and accuracy. In International conference
on machine learning, pp. 7472–7482. PMLR, 2019.

Zhengxia Zou, Tianyang Shi, Shuang Qiu, Yi Yuan, and Zhenwei Shi. Stylized neural painting. In
2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 15684–
15693, 2021. doi: 10.1109/CVPR46437.2021.01543.

13

https://aws.amazon.com/ec2/


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 PAINTING PROCESS EXAMPLE

t=2Input (∞) t=10 t=50 t=200 t=500 t=1000 t=5200
Number of Strokes (t)

Figure 8: Painting process of all classes. The left column includes input photos, followed rightward
by their respective paintings with t strokes.
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A.2 DECISIONER MOTIVATION - PCL INFERENCE PATTERNS
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Figure 9: Softmax probability patterns of PCLBp vs. targeted PGD10 directed Cat ⇒ Chicken for
different epsilon budgets as a function of paint-step (t). As the perturbation increases, the shift in
the highest class probability from the correct class to the targeted class occurs earlier, illustrating the
dynamics of confidence variation with increasing ϵ.
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Figure 10: Softmax probability patterns of PCLBp vs. targeted PGD10 directed Dog ⇒ Elephant
for different epsilon budgets as a function of paint-step (t). As the perturbation increases, the shift
in the highest class probability from the correct class to the targeted class occurs earlier, illustrating
the dynamics of confidence variation with increasing ϵ.
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Figure 11: Softmax probability patterns of PCLBp vs. targeted PGD10 directed Squirrel ⇒ Butterfly
for different epsilon budgets as a function of paint-step (t). As the perturbation increases, the shift
in the highest class probability from the correct class to the targeted class occurs earlier, illustrating
the dynamics of confidence variation with increasing ϵ.
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Figure 12: Comparison of different decisioner configurations. Specifically, two Decisioner architec-
tures are compared, a 1D convolutional network ”Conv” (markd with solid lines) and a fully con-
nected network ”FC” (markd with dashed lines), evaluated on three confidence matrices, retrieved
from attacking PCLBp

using: targeted (V ⇒), untargeted (V ⇐), and combined (V ⇔) FGSM-attack
samples. The legend differentiates between the architectures and attack types. The FC model trained
on untargeted FGSM (V ⇐) achieves the highest performance for ϵ ≤ 24.
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