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ABSTRACT

Evaluating learned representations independently of designated downstream tasks
is pivotal for crafting robust and adaptable algorithms across a diverse array of
applications. Among such evaluations, the assessment of disentanglement in a
learned representation has emerged as a significant technique. In a disentangled
representation, independent data generating factors are encoded in mutually or-
thogonal subspaces, a characteristic enhancing numerous downstream applica-
tions, potentially bolstering interpretability, fairness, and robustness. However,
a representation is often deemed well-disentangled if these orthogonal subspaces
are one-dimensional and align with the canonical basis of the latent space – a pow-
erful yet frequently challenging or unattainable condition in real-world scenarios –
thus narrowing the applicability of disentanglement. Addressing this, we propose
a novel evaluation scheme, Importance-Weighted Orthogonality (IWO), to gauge
the mutual orthogonality between subspaces encoding the data generating factors,
irrespective of their dimensionality or alignment with the canonical basis. For that
matter, we introduce a new method, Latent Orthogonal Analysis (LOA), which
identifies the subspace encoding each data generating factor and establishes an
importance-ranked basis spanning it, thereby forming the foundational bedrock
for IWO. Through extensive comparisons of learned representations from syn-
thetic and real-world datasets, we demonstrate that, relative to existing disentan-
glement metrics, IWO offers a superior assessment of orthogonality and exhibits
stronger correlation with downstream task performance across a spectrum of ap-
plications.

1 INTRODUCTION

Learning meaningful representations, independent of specific downstream tasks, is central to repre-
sentation learning. Such representations should ideally capture human-centric inductive biases, and
much of the research emphasis revolves around determining how various models, training method-
ologies, or hyperparameters achieve this goal. The aim is not just to advance model development
but also to pave the way for algorithms that are robust, adaptable, and efficient across a multitude of
applications.

Among various such methods, disentangled representation learning emerged as a prominent tech-
nique. In this framework, data x is often assumed to be generated by an underlying function g driven
by ground truth, generative factors {zj}Kj=1 and other variability factors ψ, that is x = g(z, ψ). A
model then learns a mapping c = r(x) ∈ RL from the data to a latent representation space. A com-
mon characterization of disentanglement posits that the generative factors are represented by single
distinct components of c, implying that they manifest as orthogonal 1-d latent subspaces aligned
with the canonical basis within the latent representation, up to a scaling factor and irrelevant latent
dimensions (i.e., when L > K). Such properties in learned representations have been pivotal for
the development of models that are: (i) interpretable, by disentangling the latent factors, individ-
ual variables can be analyzed, making the models more comprehensible and transparent (Zhu et al.
(2021); Klein et al. (2022) (ii) flexible, as disentangled representations result from models that can
be adapted to a range of tasks without extensive retraining, (iii) fair, by identifying and isolating
sensitive features in the representation, it is possible to build models that are less prone to biased
predictions (Creager et al. (2019)). We argue that among the properties that a disentangled repre-
sentation possesses, the orthogonality of independent human-centric concepts and categories in the
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Figure 1: Three configurations of a 2-dimensional latent space. The red and blue lines represent the
latent subspaces where the generative factors z1, z2 lie. (i) The generative factors are disentangled
since they are singularly coincident with a single component in the latent representation. This cor-
responds to perfect scores for both the DCI-D and the IWO metric. (ii) the generative factors are
not disentangled, however they preserve the orthogonality. In this case, DCI-D is low, while IWO
stays optimal. (iii) the generative factors are neither disentangled nor orthogonal, both DCI-D and
the IWO metric are low.

latent space plays a fundamental role in why disentangled representations can boost downstream
task performance. Consider for example a latent space encoding human faces, where the concept
of smiling lies in a potentially multidimensional subspace orthogonal to other facial feature con-
cepts. Using such a latent representation, a downstream model tasked to convert non-smiling faces
to smiling faces might only require a few annotated examples. A similar argument holds for the
embedding of natural language. If the concept of age lies in a dimension orthogonal to most other
concepts, converting baby to adult or puppy to dog becomes as easy as identifying such dimension
and navigating through it.

However, even if a model learns perfectly orthogonal subspaces for independent generative factors,
it is not considered disentangled per se. When orthogonal subspaces are not (i) 1-dimensional, (ii)
aligned with the canonical basis of the representation, (iii) showing a linear behavior with respect
to their related generative factors, the latent space might, in fact, be considered very badly dis-
entangled according to popular metrics such as MIG (Chen et al., 2018b) or DCI-D (Eastwood &
Williams, 2018). Disentanglement then becomes a restrictive concept for the evaluation with respect
to many downstream applications, which benefit from the orthogonality of human-centric concepts.
In Figure 1 we present three cases to highlight the differences between disentangled and orthogonal
representations, in terms of DCI-D and IWO scores.

Motivated by these considerations, we propose a new metric, Importance-Weighted Orthogonality
(IWO), which addresses these discrepancies by assessing the orthogonality of generative factor sub-
spaces based on the magnitude of their projections onto each other. In essence, our metric general-
izes the notion of cosine similarity to a multidimensional context. IWO relies on Latent Orthogonal
Analysis (LOA), a novel methodology that identifies the “latent subspaces” where each generative
factor actually varies, while accommodating any potential non-linear dynamics within such sub-
spaces. Each dimension of the latent subspace is then assigned an “importance score” that quantifies
the variability of the generative factor along that dimension. Subsequently, we compute the mutual
projections between all pairs of identified subspaces and aggregate them to derive a final score which
estimates the orthogonality of the latent representation.

We conduct extensive experimental analysis on synthetic datasets showing that our metric outper-
forms other metrics in measuring the orthogonality of subspaces. Additionally, we show that our
metric is equally or better suited for model selection for a range of downstream applications com-
pared to other metrics commonly used in the literature.

2 RELATED WORK

2.1 DISENTANGLEMENT METRICS

Alongside the task of disentanglement, gauging a model’s performance in disentangling a represen-
tation has emerged as a non-trivial problem. Beyond visual inspection of the results, a variety of
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quantitative methodologies have been developed to tackle this issue. Higgins et al. (2017) proposed
to measure the accuracy of a classifier predicting the position of a fixed generative factor. Kim &
Mnih (2018a) further robustify the metric by proposing a majority voting scheme related to the least-
variance factors in the representations. Chen et al. (2018b) introduce the Mutual Information Gap
estimating the normalized difference of the mutual information between the two highest factors of
the representation vector. Eastwood & Williams (2018) propose the DCI metrics to evaluate the cor-
relation between the representation and the generative factors. For each of them, one linear regressor
is trained and the entropy over the rows (Disentanglement) and the columns (Completeness) is com-
puted, along with the error (Informativeness) achieved by each regressor. The Modularity metric
introduced by Ridgeway & Mozer (2018) computes the mutual information of each component of
the representation to estimate its dependency with at most one factor of variation. SAP score (Kumar
et al., 2018) estimates the difference, on average, of the two most predictive latent components for
each factor.

The use of metrics such as the aforementioned ones contributed to shaping several definitions of
disentanglement, each encoding a somewhat different aspect of disentangled representations, which
led to a fragmentation of definitions (cf. Locatello et al. (2019)). Higgins et al. (2018) attempted
instead to propose a unified view of the disentanglement problem, by defining Symmetry-Based
Disentangled Representation Learning (SBDRL), a principled framework drawn from group repre-
sentation theory. The authors established disentanglement in terms of a morphism from world states
to decomposable latent representations, equivariant with respect to decomposable symmetries acting
on the states/representations. For a representation to be disentangled, each symmetry group must
act only on a corresponding (multidimensional) subspace of the representation. Following this con-
ceptualization, Caselles-Dupré et al. (2019) demonstrated the learnability of such representations,
provided the actions and the transitions between the states. Painter et al. (2020) extended the work
by proposing a reinforcement learning pipeline to learn without the need for supervision. Note wor-
thy are the two proposed metrics: (i) an independence score that, similarly to our work, estimates
the orthogonality between the generative factors in the fashion of a canonical correlation analysis;
(ii) a factor leakage score, extended from the MIG metric to account for all the factors. Tonnaer
et al. (2022) formalized the evaluation in the SBDRL setting and proposed a principled metric that
quantifies the disentanglement by estimating and applying the inverse group elements to retrieve
an untransformed reference representation. A dispersion measure of such representations is then
computed. Note that while most works focus on the linear manipulation of the latent subspace, the
SBDRL can be also used in non-linear cases. Differently from our framework, however, SBDRL
requires modelling the symmetries and the group actions, which may be challenging in scenarios
where there is not a clear underlying group structure (Tonnaer et al., 2022).

Recently, several works such as those of Montero et al. (2021), Träuble et al. (2021) and Dittadi
et al. (2021) have proposed to go beyond the notion of disentanglement, advocating for the relax-
ation of the independence assumption among generative factors – perceived as too restrictive for
real-world data problems – and modelling their correlations. Reddy et al. (2022) and Suter et al.
(2019) formalized the concept of causal factor dependence, where the generative factors can be
thought of as independent or subject to confounding factors. The latter work introduced the Inter-
ventional Robustness Score assessing the effects in the learned latent space when varying its related
factors. Valenti & Bacciu (2022) defined the notion of weak disentangled representation that leaves
correlated generative factors entangled and maps such combinations in different regions of the latent
space.

2.2 EXPLICITNESS

In this paper, we aim to move beyond the definition of disentanglement and characterize less restric-
tive, nonetheless fundamental, properties of the latent representations (i.e., mutual orthogonality
among the latent subspaces). The authors of Eastwood et al. (2023) also relaxed the notion of dis-
entanglement, by extending the DCI metric with an Explicitness (E) metric:

E(zj , c;F) = 1− AULCC(zj , c;F)

Z(zj ;F)
, (1)

where zj and c represent a generative factor and the latent space respectively, and F a class of
regressors (e.g., multilayer perceptrons or random forests). AULCC is the Area Under the Loss
Curve, computed by recording the minimum losses achievable by regressing zj from c with models
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Baseline Loss

Figure 2: Model architecture and training paradigm for identifying subspaces of maximal impor-
tance and assessing their respective significance for generative factor zj . Through iterative multi-
plications with Wl ∈ Rl×l+1, the input is projected to subspaces of decreasing dimensions. The
resulting outputs wd are directed into NN heads, denoted as fj,l : Rl → R. The importance is
gauged by the loss decrease ∆Ll between consecutive NNs fj,l, fj,l−1. This training facilitates the
optimization on lower-dimensional projections by steering them towards their optimal subspaces,
ensuring that smaller subspaces are nested within the larger ones.

in F of increasing capacity. The denominator, easily computable, acts as a normalizing constant, so
that E ∈ [0, 1]. As an example, E = 1 suggests that a linear regressor is sufficient to reach zero
error, proving that the representation is efficient. To account for a bias toward large representations,
the explicitness is paired with the Size (S), computed as the ratio between the number of generative
factors and the size of the latent representation.

The DCI-ES framework tries to quantify a fairly general aspect of the representation, the explic-
itness, related to the capacity required to regress the representation to its generative factors. Our
metric instead measures the mutual orthogonality between subspaces associated to generative fac-
tors, filtering the relationship between the generative factors and their latent subspaces. To clarify
the difference, consider the four different latent spaces described in Figure 4 (cf. Appendix).

3 METHODOLOGY

In this section, we first present Latent Orthogonal Analysis (LOA), a technique for identifying the
latent subspaces where each generative factor lies. We then turn to Importance-Weighted Orthog-
onality (IWO), which estimates the mutual orthogonality of these subspaces. Additionally we also
present Importance Weighted Rank (IWR), which measures the rank of subspaces found with LOA.

3.1 LATENT ORTHOGONAL ANALYSIS (LOA)

Consider a latent representation or code, c ∈ RL encoding the generative factors (z1, . . . , zK) ∈ RK

with L ≥ K. Note that zj = fj(c), with fj being a potentially complex non-linear function.
However, not all changes in c imply a change in zj . In particular, we define the invariant latent
subspace of zj to be the largest linear subspace Ij ⊆ RL, such that fj(c + v) = fj(c), ∀v ∈
Ij . Accordingly, the variant latent subspace (simply latent subspace) of zj is defined to be the
orthogonal complement of Ij and will be denoted as Sj , with dimensionality Rj .

So far, our definition is entirely agnostic to the “importance” of dimensions spanning the latent sub-
space. However, it is likely that a generative factor exhibits different variability along the dimensions
spanning its subspace. In a manner akin to Linear Principal Component Regression, our objective
is to determine an orthonormal basis that spans the latent subspace Sj . The vectors in this basis are
organized based on their relative importance for predicting the factor zj . We refer to this specialized
basis as importance ordered orthonormal (i.o.o.). In the next paragraphs, we describe how to find
such a basis.

Subspace learning We propose an iterative procedure which, starting from a code c ∈ RL,
projects it onto progressively smaller dimensional subspaces, removing the least important dimen-
sion for regressing zj at each step, until the subspace is 1-dimensional. In particular, we design
a Linear Neural Network (LNN), composed of a set of projective transformations WL, . . . ,W1

which reduce the dimensionality of c step-by-step. No non-linearities are applied, therefore each
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layer performs a projection onto a smaller linear subspace. We assume a reduction factor of 1, so
that Wl ∈ Rl×l+1 for l = 1, . . . , L, however higher values can also be considered, especially when
L is large.

At each layer of the LNN, the intermediate projection wl ∈ Rl is passed as input to a non-linear
neural network fjl regressing zj . Weights are not shared between the regressors fj1, . . . , fjL. As
such, they operate on linear subspaces of the original latent space, revealing any non-linear manifes-
tation of the generative factor. Training of all neural networks is performed in parallel. In principle,
the gradient flow from each individual regressor fjl can be stopped after the corresponding Wl,
however, we attested a faster convergence when letting the gradient of each fjl flow back up to c.
The purpose of the parallel exploration of all nested subspaces is to ease the search for the smallest
subspaces by finding the larger ones first.

When training has ended, each regressor fjl can be associated with an expected loss of regressing
the factor. Let us denote this expected loss as Ll = Ec [ℓ(fjl(wl(c)), zj(c))], where ℓ is a specific
loss term. In particular, note that Ll−1 ≤ Ll because of the potential information loss due to
dimensionality reduction. Let us now quantify the loss-increase by each of the LNN-projections as
∆Ll = Ll−1 −Ll. We define Rj as the smallest dimensionality at which the lowest achievable loss
is reached, that is, ∆Ll = 0 for l > Rj . For l = 1, we compute ∆L1 as the difference between L1

and a baseline loss L0 = Ezj

[
ℓ(Ezj [zj ] , zj)

]
. The entire learning process is depicted in Figure 2.

Basis generation Using the trained weights WL, . . . ,W1 of the LNN, along with the layer-
specific loss differences ∆Ll, we now describe how to construct an i.o.o. basis, {bl ∈ RL | l =
1, . . . , Rj}, spanning factor zj’s latent subspace. Note that each layer Wl of the LNN effectively
eliminates a single dimension from the data representation. The training methodology ensures that
the dimension removed at each layer is the least important one for the regression of zj , as determined
by causing the smallest increase in ∆Ll+1. Therefore, a forward pass through the entire LNN ef-
fectively projects any input vector c onto the most important dimension. We define b1 to span this
dimension in the original representation space RL. Together with the dimensions sequentially re-
moved between W1 and WRj

we can thus form an orthogonal basis for Sj , in decreasing order
of importance. To retrieve the dimension removed by each layer Wl in the form of a basis vector
bl+1, we first perform reduced QR decomposition for all weight matrices Wl. For each resulting
Ql ∈ Rl×(l+1) we then define q⊥

l ∈ Rl+1, as the normalized row vector perpendicular to all rows
in Ql. The basis vector bl can then be calculated as

b⊤l = q⊥
l−1Ql

∏L

d=l+1
Wd for l = 1, . . . , Rj , (2)

with q0 = 1, We can quantify the importance Il of each basis vector bl by the relative loss increase
associated to its layer in the LNN:

Il =
∆Ll

L0 − LRj

for l = 1, . . . , Rj . (3)

Finally, we normalize each vector bl obtaining an i.o.o. basis for Sj .

3.2 ORTHOGONALITY OF SUBSPACES

For the derivation of the IWO metric, consider two matrices Bj ∈ RRj×L, Bk ∈ RRk×L whose
rows compose the i.o.o. basis vectors spanning zj’s and zk’s latent subspaces respectively. We
define the orthogonality between the two latent subspaces as

O(Sj ,Sk) =
Tr(BjB

⊤
k BkB

⊤
j )

min(Rj , Rk)
. (4)

Note that the trace Tr(BjB
⊤
k BkB

⊤
j ) equals the sum of the squared values in BjB

⊤
k , i.e.,∑

l,m(BjB
⊤
k )2ml =

∑
l,m(bjl ·bkm)2, where bjl and bkm are the l-th and m-th rows of Bj and Bk

respectively. The maximum of the trace is therefore min(Rj , Rk), reached if Sj is a subspace of Sk
or viceversa. It therefore holds that maxO(Sj ,Sk) = 1. The minimum of O(Sj ,Sk) is 0, which is
the case when Sk lies in the invariant latent subspace of zj . This definition of orthogonality can be
interpreted as the average absolute cosine similarity between any vector pair from Sj and Sk.
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Figure 3: Dimension Identification (top): Matrices Ql are obtained by QR-decomposition on the
learned weights Wl. We allocate the projected basis vectors bl by finding ql−1 perpendicular to all
rows in Ql−1 and multiplying it with Ql. Basis generation (bottom): Basis vector projections b̃l+1

are iteratively multiplied with Wl. The resulting vectors are normalized to form an orthonormal
basis. The importances correspond to the (normalized) loss decreases found in the learning phase.

3.3 IMPORTANCE WEIGHTED ORTHOGONALITY (IWO)

Based on this definition, we construct IWO. As the name suggests, in addition to encapsulating the
orthogonality between factor subspaces, IWO also takes into consideration the importance of the
dimensions spanning them.

To calculate the importance-weighted projection of zj’s subspace onto zk’s subspace, we first scale
the corresponding bases vectors in Bj ,Bk with their respective importance before projecting them
onto one another. IWO is the sum of all individual projections. Using Uj = DjBj , where Dj ∈
RRj×Rj is diagonal with the l-th diagonal entry corresponding to the square root of importance,√
Il(zj), we can efficiently calculate IWO as:

IWO(zj , zk) = Tr(UjU
⊤
k UkU

⊤
j ) (5)

Similar to the orthogonality, IWO(zj , zk) ∈ [0, 1]. However, 1 is only reached if zj and zk, in
addition to lying in the same subspace, also share the same importance along the same dimensions.
Together with IWO, and in analogy to the Completeness metric of the DCI framework, we define an
importance-weighted rank (IWR) for each generative factor:

IWR(zj) = 1−H′
j , (6)

where H′
j = −

∑Rj

l=1 Il(zj) logRj
Il(zj). IWR thus measures how the importance is distributed

among the L dimensions of the subspace. Note that, for a particular Rj , IWR(zj) is minimized if
the importance is distributed equally along all Rj dimensions spanning zj’s subspace. In that case,
IWR(zj) = 0. We denote the mean over all generative factors of IWO and IWR as IWO and IWR.

LOA allocates an i.o.o. basis for each generative factor of a learned representation. However, when
comparing representations, we also have to account for differences in LRj , as this loss corresponds
to the best possible regression of zj from the representation. In the DCI framework, this aspect is
captured by the Informativeness metric. In order not to favour representations with low Rj and high
LRj

over those with low LRj
and higher Rj , we adjust the importance weights of any factor zj

whose LRj
> 0. To do that, we first complete the factor’s basis Bj to span the whole latent space,

then we distribute the loss LRj
among the importance of the basis vectors equally:

Il =
∆Ll + LRj

/L

L0
for l = 1, . . . , L. (7)

Lastly, we adjust Rj = L.
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4 EXPERIMENTS

To test the effectiveness of our IWO and IWR implementations, we first test whether we can (1)
recover the true latent subspaces and (2) correctly assess their IWO and IWR. For that purpose, we
set up a synthetic data generation scheme, providing us with the ground truth IWO and IWR values.
For comparison purposes, we also test how other metrics assess the synthetic data, namely Disentan-
glement, Completeness, Informativeness and Explicitness, as measured by the DCI-ES framework.

Finally, we evaluate our IWO implementation on three disentanglement datasets, dSprites (Matthey
et al., 2017), Cars3D (Reed et al., 2015) and SmallNorbs LeCun et al. (2004). We measure how
strong IWO and the commonly used DCI-D and MIG metrics correlate with downstream task per-
formance for several common variational autoencoder models, over a wide range of seeds and hy-
perparameters. More details are listed in the appendix and in our open-source code implementation1.

4.1 SYNTHETIC EXPERIMENTS

We introduce a synthetic data generating scheme, which generates vectors of i.i.d Gaussian dis-
tributed latent representations c ∈ RL. Then, on the basis of the latent representations, we synthe-
size K generative factors {z1, . . . , zK}. For simplicity, we choose L as a multiple of K.

For simulating a disentangled latent space, we define each zj to be linearly dependent on a single,
distinct element of c. In order to assess higher dimensional cases with non-linear relationships, we
consider a non-linear commutative mapping f : RRj → R. In particular, we experiment with a
polynomial (Poly.) and a trigonometric (Trig.) f . Notice that the commutativity enforces that the
distribution is spread evenly across all dimensions, such that we can easily assess the performance
of IWR(zj). For simplicity, we always set Rj = R for all j = 1, . . . ,K. Together, L (latent
space dimension), K (number of factors) and R (latent subspace dimension) determine how many
dimensions each generative factor shares with the others. We consider the shared dimensions to be
contiguous. To give an intuition, consider the following two examples:

• L = 10, K = 5, R = 2. Each zj is a function of two elements of c, namely z1 = f(c1, c2),
z2 = f(c3, c4), . . . , z5 = f(c9, c10). No dimensions are shared, thus IWO = 0, IWR = 2.

• L = 10, K = 5, R = 5. Each zj is a function of five successive elements of c, namely
z1 = f(c1, c2, c3, c4, c5), z2 = f(c3, c4, c5, c6, c7), . . . , z5 = f(c9, c10, c1, c2, c3). On
average, each zj shares two of its five dimensions, thus IWO = 0.2, IWR = 5.

To test representations that are not aligned with the canonical basis, we apply Random Orthogonal
Projections (ROP) R ∈ RL×L to c. In line with commonly used datasets such as Cars3D or dSprites,
we rescale and quantize the values in the zj to the range [0, 1].

All experiments are run four times with differing random seeds. The standard deviation was smaller
than 0.02 for all reported values. The results are displayed in Table 1.

In the first experiment (Exp. 1), we define two setups, both withL = K = 5 andR = 1. First, we let
z be a mere permutation of c, second we let z be equal to c+ϵ, with ϵ ∼ N (0, 0.01) being Gaussian
noise. The results display proficient disentanglement assessment byDCI , and near-perfect recovery
in IWO and IWR. However, Explicitness deviates from the expected value of 1.

In the second experiment (Exp. 2), we choose L = 10, K = 5 and R = 2. No dimensions are
shared between the generative factors. The mapping f is polynomial. We also apply ROP in one
of the experiments. We see that, as expected, applying an ROP dramatically lowers both D and C,
while E, IWO and IWR are resilient to it.

In the third experiment (Exp. 3), we set Rj = 5. Each generative factor now shares, on average, two
out of five dimensions with the others. We observe that while D, C, IWO and IWR are sensitive to
the shared dimensions, E is almost unchanged with respect to our second experiment. Again, IWO
and IWR are recovered almost perfectly.

In the fourth experiment (Exp. 4), we set L = 20 and vary values for R, ROP and the encoding
function. We observe that neither D, C nor E can be used to assess the orthogonality of the latent

1https://anonymous.4open.science/r/iwo-E0C6/README.md
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Table 1: Comparison of (D) Disentanglement, (C) Completeness, (I) Informativeness, (E) Explicit-
ness, IWO and IWR for Polynomial (Poly.) and Trigonometric (Trig.) encodings. ROP denotes a
random orthogonal projection.

L K R Func. ROP D ↑ C ↑ I ↑ E ↑ IWO ↓ IWR ↑

Exp. 1 5 5 1 Noisy No 0.98 0.98 1.00 0.90 0.01 1.00
5 5 1 Perm. No 0.98 0.98 1.00 0.90 0.01 1.00

Exp. 2 10 5 2 Poly. No 0.99 0.69 1.00 0.75 0.01 0.70
10 5 2 Poly. Yes 0.21 0.15 1.00 0.75 0.01 0.70

Exp. 3

10 5 5 Poly. No 0.41 0.30 1.00 0.74 0.40 0.31
10 5 5 Poly. Yes 0.06 0.04 1.00 0.74 0.40 0.31
10 5 5 Trig. No 0.41 0.30 0.99 0.73 0.41 0.30
10 5 5 Trig. Yes 0.06 0.04 1.00 0.73 0.40 0.31

Exp. 4

20 5 4 Poly. No 0.98 0.53 0.99 0.76 0.01 0.54
20 5 4 Poly. Yes 0.12 0.07 1.00 0.76 0.01 0.54
20 5 8 Poly. No 0.56 0.30 0.99 0.74 0.25 0.31
20 5 8 Poly. Yes 0.05 0.03 0.99 0.74 0.25 0.31
20 5 4 Trig. No 0.96 0.52 0.99 0.73 0.00 0.53
20 5 4 Trig. Yes 0.12 0.07 0.99 0.74 0.00 0.53
20 5 8 Trig. No 0.54 0.29 0.98 0.71 0.25 0.31
20 5 8 Trig. Yes 0.07 0.04 0.98 0.70 0.25 0.30

representation reliably. While E does slightly decrease for increased R, its variability due to differ-
ent complexities of the encoding function overshadows this. Meanwhile, IWO and IWR are able to
reliably assess both the orthogonality and the rank of the representation almost perfectly.

4.2 DOWNSTREAM EXPERIMENTS

We also assess IWO’s and IWR’s correlation with downstream task performance along with the DCI-
D, DCI-C and MIG metrics, computed on three common benchmarks of the disentanglement lib
framework Locatello et al. (2019). In particular, we consider DSprites (Matthey et al., 2017), Cars3d
(Reed et al., 2015) and smallNORB LeCun et al. (2004). We test four standard models, namely β-
VAE Higgins et al. (2016), Annealed VAE (Burgess et al., 2018), β-TCVAE Chen et al. (2018a) and
Factor-VAE Kim & Mnih (2018b). For each model, we consider six different regularization strengths
each with ten different random seeds. For each dataset, we consider two downstream tasks, namely
regressing the generative factors via logistic regression (T1), and regressing the generative factors
via boosted trees (T2). Correlations are calculated between tasks and averaged metrics, where the
average is taken over the seeds and grouped by hyperparameter. As such, we assess the capability
of the metrics to point us to good hyperparameters.

For DSprites, the correlation with downstream tasks is high for all metrics and tasks. IWR, DCI-D,
DCI-C and MIG exhibit a slightly higher correlation with (T2) than IWO for most models. This
changes for (T1), where IWO exhibits a slightly higher correlation than other metrics for most
models. However, no metric emerges as definitely superior, as all correlation factors are quite high.

For Cars3D, DCI-D, DCI-C and MIG fail to correlate with downstream tasks. This was also noted
by Locatello et al. (2019). Instead, IWO and IWR fairly correlate for both tasks and most models.

For the SmallNorb dataset, DCI-D, DCI-C and MIG fairly correlate for most models on both tasks.
However, again, IWO and IWR seem to correlate more constantly over the models and tasks, not
exhibiting negative correlation outliers.

5 DISCUSSION AND CONCLUSION

Summary of Key Findings In our investigation, we pivoted from the conventional focus on the
disentanglement of generative factors to a novel examination of their orthogonality. Our approach,
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Table 2: Correlation coefficients between IWO, IWR, DCI-D, DCI-C, MIG and the downstream
task of recovering the generative factors with Logistic Regression (T1) and Boosted Trees (T2).
Examined Latent representations of DSprites, Cars3D and small Norb datasets learned by models:
Annealed VAE (A-VAE), β-VAE, β-TCVAE and Factor-VAE (F-VAE).

1 - IWO IWR D C MIG
Model T1 T2 T1 T2 T1 T2 T1 T2 T1 T2

D
Sp

ri
te

s A-VAE 0.87 0.93 0.88 0.93 0.84 0.99 0.82 0.99 0.85 0.97
β-VAE 0.02 0.70 0.06 0.98 0.03 0.98 0.07 0.99 0.01 0.97
β-TCVAE 0.52 0.96 0.45 0.99 0.37 1.00 0.38 0.99 0.25 0.99

F-VAE 0.30 0.94 0.27 0.94 0.43 0.96 0.48 0.94 0.35 0.96

C
ar

s3
D A-VAE 0.82 0.76 0.88 0.68 -0.40 0.72 -0.85 0.18 -0.82 0.19

β-VAE 0.79 0.71 0.95 0.69 -0.93 -0.92 -0.95 -0.94 -0.92 -0.93
β-TCVAE 0.83 0.80 -0.42 -0.12 -0.94 -0.92 -0.97 -0.91 -0.90 -0.91

F-VAE 0.91 0.83 0.91 0.75 -0.17 -0.26 -0.31 -0.17 -0.71 -0.81

Sm
al

lN
or

b A-VAE 0.14 0.09 0.68 0.56 -0.26 -0.04 -0.37 0.28 0.21 0.77
β-VAE 0.93 0.97 0.97 1.00 0.97 0.92 0.96 0.93 0.96 0.97
β-TCVAE 0.78 0.94 0.92 0.99 0.86 0.97 0.53 0.76 0.97 0.98

F-VAE 0.13 0.95 0.18 0.79 -0.14 0.89 -0.51 0.73 0.40 -0.55

geared towards accommodating non-linear behaviours within linear subspaces tied to generative
factors, fills a gap in existing literature, as no prior method aptly addressed this perspective. The
proposed Latent Orthogonal Analysis (LOA) method efficiently identifies the associated subspaces
and their importance. Leveraging LOA, we formulated Importance-Weighted Orthogonality (IWO),
a novel metric offering unique insights into the subspace orthogonality. Throughout the experi-
ments, our implementation emerged as a robust mechanism for assessing orthogonality, exhibiting
resilience across varying latent shapes, non-linear encoding functions, and degrees of orthogonality.

Implications Disentanglement has long been credited for fostering fairness, interpretability, and
explainability in generated representations. However, as elucidated by Locatello et al. (2019), the
utility of disentangled representations invariably hinges on at least partial access to generative fac-
tors. With such access, an orthogonal subspace could be rendered as useful as a disentangled one.
Through orthonormal projection, any orthogonal representation discovered can be aligned with the
canonical basis, essentially achieving a state of good disentanglement.

Comparison with Previous Work Our IWO metric showcased superior efficacy in correlating
with downstream task performance on the several datasets, where established metrics like DCI-D
and MIG failed, a finding aligned with the observations of Locatello et al. (2019). We argue that
sole emphasis on the explicitness of a representation may be insufficient for the evaluation of learned
representations. This notion echoes the initial premise presented in the introduction. A latent space
that facilitates the modulation of the smile of any person, by having distilled the independent concept
of smiling is arguably different than a space that merely enables binary classification of the smiling
label from encoded data points.

Limitations Our work is introductory. There remains a vast expanse to explore to fully understand
the notion of orthogonality over disentanglement. Moreover, the real-world applicability of our
metrics outside of the examined datasets and synthetic environments is yet to be fully determined.

Conclusion In conclusion, our work lays the groundwork for a fresh perspective on evaluating
generative models. We hope the IWO metric may help identify models that craft useful orthogo-
nal subspaces, which might have been overlooked under the prevailing disentanglement paradigm.
Our hope is that IWO extends its applicability across a broader spectrum of scenarios compared to
traditional disentanglement measures.
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Matthew Painter, Adam Prügel-Bennett, and Jonathon S. Hare. Linear disentangled representations
and unsupervised action estimation. In Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual, 2020.

Abbavaram Gowtham Reddy, Benin Godfrey L, and Vineeth N. Balasubramanian. On causally
disentangled representations. In Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI
2022, Thirty-Fourth Conference on Innovative Applications of Artificial Intelligence, IAAI 2022,
The Twelveth Symposium on Educational Advances in Artificial Intelligence, EAAI 2022 Virtual
Event, February 22 - March 1, 2022, pp. 8089–8097. AAAI Press, 2022.

Scott E Reed, Yi Zhang, Yuting Zhang, and Honglak Lee. Deep visual analogy-making. Advances
in neural information processing systems, 28, 2015.

Karl Ridgeway and Michael C. Mozer. Learning deep disentangled embeddings with the f-statistic
loss. In Advances in Neural Information Processing Systems 31: Annual Conference on Neural
Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada,
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Figure 4: Four configurations of a 3-dimensional latent space. The planes represent the latent sub-
space where generative factors z1, z2 lie. The colour mapping on each subspace represents the
relationship between the generative factor and the latent components (e.g., blue indicating large val-
ues for z1, red indicating low ones). Cases (i) and (ii) are characterized by a good explicitness score
as both subspaces encode z1 and z2 as simple quadratic functions, contrary to cases (iii) and (iv)
where the relationship is trigonometric and more complex to recover. In contrast, cases (i) and (iii)
are characterized by a better IWO score compared to (ii) and (iv). Indeed, in configurations (i) and
(iii), there are dimensions within each generative factor’s subspace that are orthogonal to one an-
other. Consequently, any variation along any such dimension will leave the other factor unchanged.

A EXPLICITNESS VS IWO

In Figure 4, we depict four situations of a 3-dimensional latent space where two generative factors
z1, z2 lie in a separate 2-dimensional plane each, and the relationship between each generative
factor and its corresponding latent subspace is non-linear, as hinted by the colouring. In particular,
z
(n)
j = f (n)(c′) = f (n)(P

(n)
j c), for j ∈ {1, 2} and n ∈ {i, ii, iii, iv}, with P

(n)
j ∈ R2×3 being

a projection matrix. For cases (i) and (iii), the projections span orthogonal planes, contrarily to
cases (ii) & (iv) where the planes have a different inclination. Case (i) & (ii) are characterized by a
quadratic relationship, i.e., f (n) = A(c′1)

2 + B(c′2)
2 (with A, B being parameters), while case (iii)

and (iv) encode a trigonometric relationship, i.e., f (n) = cos(2πλc′1) + cos(2πλc′2) (with λ being a
parameter).

Explicitness evaluates the capacity required by a model to regress the generative factors z1, z2,
starting from the representation c. Given that the effect of the linear transformation is present in all
four situations, the differences are determined only by the non-linearity f (n). Therefore the metric is
able to discriminate cases (i) & (ii) from (iii) & (iv). Instead, IWO quantifies the orthogonality of the
planes, regardless of the non-linearities in the generative factors, so it discriminates the orthogonal
cases (i) & (iii) from the non-orthogonal ones (ii) & (iv). Finally, note that the DCI-Disentanglement
metric would penalize all four configurations as they are not disentangled.

B EXPERIMENTAL DETAILS

In this section, we provide a detailed description of the correlation analysis of our orthogonality
metric with downstream tasks on three different datasets (Dsprites, Cars3D, SmallNorb) and four
different models (Annealed VAE, β-VAE, β-TCVAE, Factor-VAE) . For each model, learned rep-
resentations for six different regularization strengths are considered (ten different random seeds for
each reg. strength). All these representations are retrieved from disentanglement lib2. For the ES
metric, we utilized the official codebase provided by the authors of DCI-ES 3. Each dataset we
investigate has independent generative factors associated with it.

2https://github.com/google-research/disentanglement_lib/tree/master
3https://github.com/andreinicolicioiu/DCI-ES
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B.1 DATASETS

dSprites Dataset The DSprites dataset is a collection of 2D shape images procedurally generated
from six independent latent factors. These factors are: color (white), shape (square, ellipse, heart),
scale, rotation, and x and y positions of a sprite. Each possible combination of these latents is present
exactly once, resulting in a total of 737280 unique images.

Cars3D Dataset The Cars3D dataset is generated from 3D computer-aided design (CAD) models
of cars. It consists of color renderings of 183 car models from 24 rotation angles, each offset by 15
degrees, and from 4 different camera elevations. The images are rendered at a resolution of 64× 64.

smallNORB Dataset The smallNORB dataset is designed for 3D object recognition from shape,
featuring images of 50 toys categorized into five types: four-legged animals, human figures, air-
planes, trucks, and cars. The images were captured under six lighting conditions, nine elevations,
and 18 different angles. The dataset is split into a training set with five instances of each category
and a test set with the remaining five instances.

B.2 STANDARD DOWN STREAM TASKS

The downstream tasks provided by disentnglement lib and considered for the correlation analysis
in Section 4.2 are multi-class logistic regression (LR) and gradient boosted trees (GBT). Both con-
cerned with simply regressing the generative factors.

B.3 MODULATION TASK

In order to investigate the latent space structure, we develop a new task which we call modulation
task. The task is defined as follows: Given a latent representation, a model is tasked to change a
single generative factor of a representation, without changing any other. We implement this task on
learned representations of the DSprites dataset for both Annealed VAE and β-TCVAE for all five
factors. Table 4 holds the correlation results between IWO, IWR, DCI-D, DCI-C, and the Modu-
lation Task Performance respectively. We see that all metrics exhibit somewhat strong correlations
with this down-stream task, while IWR and IWO slightly outperform the other metrics.

B.4 IWO ON LIMITED DATA

To asses the impact of smaller samples sizes on IWO and IWR’s correlation with down-stream task
performance, we repeat the experiments detailed in Section 4.2 for the Small Norb dataset, but with
only 50% and 10% of the data. The results are illustrated in Table 3. We observe that IWO and IWR
still exhibit a higher correlation with down stream task performance than other metrics, even if only
10% of the data is used for their evaluation.

B.5 IWO TRAINING

Given a learned representation of a dataset, we consider each generative factor independently, al-
locating separate LNNs respectively. On top of the LNNs, we have NN-heads, which regress the
generative factors from the intermediate projections. The NN-heads are also independent from one-
another and do not share any weights.

B.5.1 IMPLEMENTATION DETAILS

We use the PyTorch Lightning framework4 for the implementation of the models required to discern
IWO and IWR.

In particular we use PyTorch Lightning implementations of Linear layers and Batch-Normalization
Layers. Whereas the setup of the LNNs is equal for all models and datasets, the NN-heads vary

4https://github.com/Lightning-AI/lightning
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Table 3: Correlation coefficients between IWO, IWR, DCI-D, DCI-C, MIG and the downstream
task of recovering the generative factors with Logistic Regression (T1) and Boosted Trees (T2).
Examined Latent representations of small Norb dataset as learned by models: Annealed VAE (A-
VAE), β-VAE, β-TCVAE and Factor-VAE (F-VAE) on 100%, 50% and 10% of the dataset

1 - IWO IWR D C MIG
Model T1 T2 T1 T2 T1 T2 T1 T2 T1 T2

10
0%

A-VAE 0.14 0.09 0.68 0.56 -0.26 -0.04 -0.37 0.28 0.21 0.77
β-VAE 0.93 0.97 0.97 1.00 0.97 0.92 0.96 0.93 0.96 0.97
β-TCVAE 0.78 0.94 0.92 0.99 0.86 0.97 0.53 0.76 0.97 0.98

F-VAE 0.13 0.95 0.18 0.79 -0.14 0.89 -0.51 0.73 0.40 -0.55

50
%

β-VAE 0.20 0.02 0.43 0.75 - - - - - -
A-VAE 0.97 0.98 0.97 1.00 - - - - - -
β-TCVAE 0.82 0.95 0.94 0.99 - - - - - -

F-VAE 0.13 0.72 -0.09 0.95 - - - - - -

10
%

A-VAE -0.02 -0.30 0.50 0.31 - - - - - -
β-VAE 0.94 0.99 0.96 0.99 - - - - - -
β-TCVAE 0.87 0.95 0.92 1.00 - - - - - -

F-VAE 0.32 0.56 0.12 0.58 - - - - - -

Table 4: Correlation coefficients between IWO, IWR, DCI-D, DCI-C metrics and the downstream
task of modulating a factor.

Model 1− IWO IWR DCI-D DCI-C

A-VAE 0.57 0.61 0.42 0.40
β-TCVAE 0.81 0.87 0.80 0.85

in their complexity for different datasets and factors. As all considered models operate with a 10-
dimensional latent space, each LNN has ten layers. The output of each LNN-layer is fed to the next
LNN layer and also to a the corresponding NN-head.

Table 5 holds the NN-head configuration per dataset and factor. These were found using a simple
grid search on one randomly selected learned representation. This is necessary as factors vary in
complexity and so does the required capacity to regress them. It is worth mentioning, that the
Explicitness pipieline as proposed by Eastwood et al. (2023) could actually be employed on top of
the NN-heads, as such fusing both metrics.

For the initialization of the linear neural network layers and the NN-head layers we use Kaiming
uniform initialization as proposed in He et al. (2015). We further use the Adam optimization scheme
as proposed by Kingma & Ba (2014) with a learning rate of 5× 10−4 and a batchsize of 128 for all
otpimizations. Data is split into a training and a test set (80 % and 20 %). During training, part of the
training set is used for validation, which is in turn used as an early stopping criteria. The importance
scores used for IWO should be allocated using the test set. In our experiments the difference between
the importance scores computed on the training set and on the test set were small. For further details
on the implementation, please refer to our official code here: [LINK to Github].

C COMPUTATIONAL RESOURCES ANALYSIS

This section details the computational resources utilized for evaluating IWO and IWR, specifically
applied to the smallnorb dataset from the disentanglement lib using a beta-VAE framework. Each
”run” includes parallel training of all independent models necessary for the metrics assessment. For
the model specifications please refer to section B.5.1
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Table 5: Implementation Details for neural network heads operating on LNN layers. For each factor,
ten NN-heads with the specified number of hidden layers and their respective dimensions are trained
in parallel.

Dataset Factor Layer dimensions Batch Norm Factor Discrete

DSprites

Shape 256, 256 False Yes
Scale 256, 256 False No
Rotation 512, 512, 512 True No
x-position 256, 256 False No
y-position 256, 256 False No

Cars3D
model 256, 256, 256 False Yes
rotation 256, 256, 256 False No
elevation 256, 256, 256 False No

Small Norb

category 256, 256 True Yes
lightning condition 256, 256 True No
elevation 256, 256 True No
rotation 256, 256 True No

C.1 EXPERIMENTAL SETUP

• Data: Learned representations of a beta-VAE trained on smallnorb dataset from the disen-
tanglement lib

• Objective: Assess the orthogonality of 60 learned representations using the IWO pipeline.

C.2 RESOURCE UTILIZATION

Resource Usage
Process Memory 400 MB
CPU Process Utilization 50%
GPU Process Utilization 0%

Table 6: Average resource utilization for each run of the IWO pipeline. No GPU was used.

C.3 RUNTIME ANALYSIS

• Average Duration: 7 minutes per run
• Training Epochs: 20 per run

C.4 COMPUTATIONAL COST CONSIDERATIONS

• The inference of IWO on pretrained smallnorb representations shows minimal computa-
tional costs.

• In general, computational costs scale with the number of linear layers in the LNN spine
and the capacity of the NN-heads.

• For large latent spaces, one should avoid step-wise dimensionality reduction; larger reduc-
tions between consecutive LNN-layers are preferred.

• The first LNN-layer size need not match the dimensionality of the representation. For large
representations, a smaller first LNN-layer is recommended.

• GPU usage is beneficial for larger representations and models
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