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ABSTRACT

Video generation models based on diffusion transformers have recently attracted
widespread attention for their excellent generation quality. Despite recent progress,
their computational expense remains the principal bottleneck. In particular, atten-
tion alone accounts for more than 80% of the overall latency, and the synthesis of
only 8 seconds 720p video takes tens of minutes, which severely restricts practi-
cal applicability and scalability. To address this, we propose DraftAttention, a
training-free framework for the acceleration of video diffusion transformers with
dynamic sparse attention on GPUs. The key idea is to compute the low-resolution
draft attention based on the downsampled low-resolution query and key with minor
computational overhead. The draft attention exposes redundancy both spatially
within each feature map and temporally across frames, thus identifying the most
important areas in the attention map. The resulting low-resolution sparse mask then
guides full-resolution sparse attention computations. To align region-level sparsity
with token-level computations, we further propose a deterministic reordering of
tokens such that entries in each region become contiguous in memory, ensuring
hardware-friendly execution of sparse attention. Our theoretical analysis demon-
strates that the low-resolution draft attention closely approximates the full attention,
providing reliable guidance for constructing accurate sparse attention. Experimen-
tal results show that our method outperforms existing sparse attention approaches
in video generation quality and achieves up to 2× end-to-end speedup on GPUs.

1 INTRODUCTION

Diffusion Transformers (DiTs) (Peebles & Xie, 2022) have emerged as a powerful paradigm for
visual generative tasks across both image and video generation, surpassing the traditional UNets (Ron-
neberger et al., 2015). Video generation with DiTs adopts spatiotemporal 3D full attention to extend
image-based generation to the temporal domain (Arnab et al., 2021), leading to visually coherent
high-quality video generation performance (Yang et al., 2024; Kong et al., 2024; Wang et al., 2025),
validating the effectiveness of DiTs for video generation. Despite the superior generation performance
with DiTs, it remains computationally expensive due to the attention mechanism in transformers.

8s 16s 32s
Attention Others

Figure 1: FLOPs breakdown for 720p
video generation with Hunyuan Video.

The quadratic complexity with respect to context
length (Dao et al., 2022) becomes a significant computa-
tional bottleneck when handling sequences with hundreds
of thousands of tokens. For example, as shown in Figure 1,
the Hunyuan Video model (Kong et al., 2024) spends over
80% of its total computation on the attention mechanism
when generating videos longer than 16 seconds. As a re-
sult, the slow generation speed limits the application and
deployment of these promising video generation models
across a range of practical tasks.

Fortunately, pioneering works (Zhang et al., 2023; Tang et al., 2024; Xiao et al., 2023; Jiang et al.,
2024) on Large Language Models (LLMs) (Radford et al., 2019; Touvron et al., 2023a;b; Grattafiori
et al., 2024) have demonstrated substantial redundancy in the attention mechanism, offering an
opportunity for acceleration by introducing sparsity into the attention. Inspired by this, recent
works (Xi et al., 2025; Xia et al., 2025) explore the sparse attention methods for video generation
models, demonstrating promising speedups while preserving generation quality. Specifically, two
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Figure 2: Whole DraftAttention Pipeline. Both the query and key are reshaped into sequences of
feature maps across frames, then downsampled via average pooling to produce the low-resolution
draft query and draft key. Draft attention is computed using the flattened draft query and key. The
full-resolution query and key need to be reordered for the alignment of draft attention guidance.

static sparse attention patterns (targeting spatial and temporal dimensions respectively) are explored
in Sparse VideoGen (Xi et al., 2025) to reduce redundancy, with relatively significant performance
degradation under large sparsity because of non-adaptive static patterns. To mitigate this issue,
dynamic sparse attention is investigated in AdaSpa (Xia et al., 2025) to perform full attention
once for different prompts as a warm-up to guide subsequent sparsity. Although AdaSpa provides
prompt-dependent sparse patterns, sparse attention still remains static during the diffusion process.

Novel Framework. Motivated by the absence of true dynamic sparse attention at the per-module
level, we investigate a more fine-grained design—adapting the sparse attention patterns dynamically
for each specific attention module. In this paper, we propose an efficient sparse attention method,
DraftAttention, as shown in Figure 2, which leverages draft attention to dynamically generate a sparse
pattern for each attention module, enabling efficient acceleration of video diffusion transformers.
The key idea is to compute the draft attention based on downsampled low-resolution query and key,
thus identifying the most important areas in the attention map with minor computational overhead.
The resulting low-resolution sparse mask then guides full-resolution sparse attention, with effective
reordering applied to ensure fast, hardware-friendly execution.

Superior Advantages. We highlight the following advantages with our draft attention method: (i)
(Efficiency) The computation of draft attention map is lightweight, as it operates on a reduced number
of tokens, thereby lowering the quadratic complexity of the attention mechanism. (ii) (Effectiveness)
The draft attention captures high-level representations and preserves essential visual patterns for
videos, leading to an effective mask to identify the critical structures in attention mechanism. (iii)
(Plug-and-Play) Our method requires no additional training and integrates seamlessly as a plug-and-
play module into existing video diffusion transformers for handling long input sequences.

Theoretical Justification. We further present the theoretical analysis that formally characterizes
how the low-resolution draft attention effectively guides the full-resolution attention mechanism.
Specifically, we show that the upper bound of the difference between the full-resolution attention
map and the draft attention map remains controlled. Meanwhile, we show that the error introduced
by the sparse pattern derived from the draft attention map remains bounded.

Hardware Friendliness. To align the region-level sparsity with token-level computations, we apply
a deterministic reordering of tokens such that entries in each region become contiguous in memory,
ensuring hardware-friendly execution of sparse attention. Specifically, through reordering, we group
the scattered sparse patterns into a contiguous format, allowing all visual tokens within each kernel to
be processed in a single stage—either computed or skipped. This enables both accurate and faster
sparse attention at full resolution.

Comprehensive Evaluation. In our experiments, we use an 8×16 pooling kernel with a stride
equal to the kernel size, reducing the number of tokens by a factor of 128. This configuration also
matches the efficient block size supported by efficient attention computation frameworks (Dao et al.,
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2022; Guo et al., 2024). Such aggressive downsampling also incurs minimal computational overhead
for the low-resolution draft attention. Our comprehensive evaluation demonstrates that our method
outperforms other sparse attention methods on video generation tasks across various resolutions under
the same computational budget. It achieves up to a 2× end-to-end speedup on GPUs, demonstrating
strong practical efficiency and scalability for long video sequences without compromising generation
quality. Our contributions are summarized as follows,

1. We introduce a vision-centric perspective on spatial and temporal redundancy in video diffusion,
using pooling to extract high-level representations with a broader receptive field. Building on
this, we propose DraftAttention, a hardware-friendly approach that accelerates video diffusion
transformers using guidance from low-resolution draft attention.
2. We provide a theoretical analysis demonstrating the controlled difference between full-resolution
attention and low-resolution draft attention, as well as the bounded error introduced by the sparse
pattern derived from the draft attention map, thereby justifying the effectiveness of our design.
3. Experimental results show that DraftAttention achieves better video generation quality compared
to other sparse attention methods with same computation cost. Meanwhile, on GPUs, our method
achieves up to 2× end-to-end acceleration for video generation.

2 RELATED WORKS

2.1 EFFICIENT DIFFUSION MODELS

Diffusion Model Compression. Weight quantization is a common approach to compress diffusion
models and achieve acceleration (Li et al., 2023a). Previous works (Zhang et al., 2025b;a; Li* et al.,
2025) propose optimal quantization methods to quantize attention weights to INT8, INT4/FP8, or
even FP4, which achieve high compression ratios for the diffusion model size. Moreover, other
works explore efficient architectures (Xie et al., 2025) including linear attention or high-compression
auto-encoders (Chen et al., 2025) to accelerate the diffusion and improve model performance, which
improves the scalability of diffusion models. Our method is orthogonal to these techniques and can
be integrated with them to yield additional performance gains.

Reduce Diffusion Steps. Some distillation-based works (Li et al., 2023b; Yin et al., 2024) adopt
training with distillation to build few-step diffusion models, which accelerates the diffusion progress
by reducing the steps. However, such distillation techniques require expensive re-training or fine-
tuning, which is impractical for the application of most video diffusion models. In contrast, our
approach directly uses off-the-shelf pre-trained models without any additional training.

2.2 SPARSE ATTENTION METHODS

Attention mechanisms exhibit inherent sparsity (Child et al., 2019), allowing computational acceler-
ation by limiting interactions to a subset of the key-value pair. StreamingLLM (Xiao et al., 2023)
explores the temporal locality with attention sinks to further preserve sparse attention model perfor-
mance. H2O (Zhang et al., 2023) identifies a small set of Heavy Hitter tokens that dominate overall
attention scores. DuoAttention (Xiao et al., 2025) and MInference (Jiang et al., 2024) demonstrate
distinct sparse patterns across different attention heads. XAttention (Xu et al., 2025) leverages the
sum of antidiagonal values in the attention matrix to provide a powerful proxy for block importance,
resulting in high sparsity and dramatically accelerated inference. Sparse VideoGen (Xi et al., 2025)
explores spatial and temporal heads in video diffusion models to improve the inference efficiency.
AdaSpa (Xia et al., 2025) applies dynamic block-sparse masking with online token importance search,
accelerating video diffusion without fine-tuning. These works collectively show that such transformer-
based models contain significant redundancy in their attention mechanisms. This motivates our
exploration of dynamic, fine-grained sparse attention patterns for video diffusion transformers.

3 METHODOLOGY

We introduce the framework of our draft attention in great detail to first identify critical areas in
draft attention with a low-resolution mask and then apply the mask to full-resolution attention. Next
theoretical analysis for the draft attention and the corresponding sparse attention is presented to
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demonstrate the effectiveness of our design. Moreover, we provide a deterministic reordering of
tokens to align the region-level sparsity with token-level computation, ensuring efficient hardware-
friendly execution.

3.1 DRAFT ATTENTION

Full attention over long video sequences is prohibitively expensive due to its quadratic complexity
in sequence length. However, many interactions in video are spatially and temporally localized.
We leverage this structure by introducing a two-stage attention mechanism: a lightweight draft
attention phase that estimates regional relevance, followed by a masked sparse attention applied to
the full-resolution sequence. We first define the full attention computation below.
Definition 3.1 (Full Attention). Given hidden states X ∈ Rn×d, the full attention output is:

Attn(X) = Softmax

(
QK⊤
√
d

)
V ∈ Rn×d, (1)

where Q = XWQ, K = XWK , V = XWV are the query, key, and value projections, and
WQ,WK ,WV ∈ Rd×d are learned weight matrices.

To reduce computation, we downsample Q and K via average pooling, forming a low-resolution
draft attention map to guide sparsity.
Definition 3.2 (Draft Attention via Average Pooling). Given hidden states X ∈ Rn×d, representing
spatial-temporal tokens across frames, we partition the sequence into g ≪ n disjoint regions {Ri}gi=1,
where each region Ri ⊂ [n] corresponds to a pooled spatial patch over time. Each Ri is an unordered
set of token indices. Let Q and K be the projected queries and keys. The draft query and draft key
representations are obtained by average pooling over each region:

Q̃i =
1

|Ri|
∑
j∈Ri

Qj , K̃i =
1

|Ri|
∑
j∈Ri

Kj , for i = 1, . . . , g. (2)

The resulting low-resolution draft attention map is computed as:

Adraft = Softmax

(
Q̃K̃⊤
√
d

)
∈ Rg×g. (3)

This map approximates region-level relevance and is used to guide sparse attention over the full-
resolution sequence.

The computation cost of the low-resolution draft attention map is minor compared with the full-
resolution attention computation, as it operates on a reduced number of tokens and thereby lowers the
quadratic complexity of the attention mechanism.

Guided Sparsity via Draft Attention. To reduce the cost of full attention, we extract a structured
sparsity pattern from the draft attention map Adraft ∈ Rg×g by retaining only a fraction r ∈ (0, 1) of
the most salient region-to-region interactions. We define a binary indicator mask M ∈ {0, 1}g×g,
where Mij = 1 indicates that region Ri is permitted to attend to region Rj , and Mij = 0 otherwise.
The mask is constructed by selecting the top-scoring entries in Adraft under a fixed sparsity ratio r.

To align the region-level sparsity with token-level computation, we apply a deterministic reordering of
tokens such that entries in each region Ri become contiguous. This facilitates efficient masking and
block-wise computation in sparse attention. We provide more details for reordering in Section 3.3.

This region-level sparsity pattern is then lifted to token resolution by defining a full-resolution
attention mask M̂ ∈ {0,−∞}n×n:

M̂uv =

{
0, if Mij = 1 with u ∈ Ri, v ∈ Rj ,

−∞, if Mij = 0 with u ∈ Ri, v ∈ Rj .
(4)

In general, the attention map is split into multiple non-overlapping regions by the pooling kernels.
For each region, all its elements are either computed for attention or skipped for acceleration. The
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determination for whether to skip each region is denoted by the low-resolution binary indicator mask
M for all regions, with M̂ as its full-resolution mask for all elements (i.e., tokens).

Sparse attention is then computed by applying the additive mask before the softmax:

SparseAttn(X) = Softmax

(
QK⊤
√
d

+ M̂

)
V. (5)

This formulation retains the most relevant interactions while enforcing structured sparsity for im-
proved computational efficiency.

3.2 THEORETICAL ANALYSIS

We present Frobenius-norm bounds quantifying the error introduced by our two-stage approximation
strategy: (1) average pooling (draft attention), and (2) structured sparsification via top-r indexing.

3.2.1 ERROR FROM DRAFT ATTENTION

Let the input sequence be partitioned into g disjoint regions {Ri}gi=1 of equal size |Ri| = n/g.
Define the full-resolution attention logits and their pooled approximation as:

Suv := ⟨Qu,Kv⟩, S̃ij := ⟨Q̃i, K̃j⟩, u, v ∈ [n], i, j ∈ [g], (6)

where Q̃i =
1

|Ri|
∑

u∈Ri
Qu and similarly for K̃j . We restore the region-level scores S̃ ∈ Rg×g to

full resolution by defining a block-constant approximation:

(Sdraft)uv := S̃ij for u ∈ Ri, v ∈ Rj . (7)

Define the worst-case deviation between token-level logits and their region-averaged counterpart as:

δ := max
i,j

max
u∈Ri, v∈Rj

∣∣Suv − S̃ij

∣∣. (8)

Theorem 3.3 (Draft Attention Error). If all regions have equal size |Ri| = n/g, then the Frobenius-
norm error between the full and draft logit matrices is bounded by:

∥S − Sdraft∥F ≤ δ n. (9)

The detailed proof of Theorem 3.3 is shown in Appendix A.
Remark 3.4. Theorem 3.3 quantifies the approximation error introduced by replacing token-level
attention logits with block-wise averages obtained via average pooling. In practice, if tokens within a
region are similar—such as in videos with local temporal consistency or spatial smoothness—the
difference |Suv − S̃ij | remains small for most (u, v). Consequently, the overall Frobenius-norm error
∥S − Sdraft∥F scales with a modest δ, leading to minimal distortion in the attention structure. This
justifies using the low-resolution draft map as a proxy for full-resolution attention in computationally
constrained settings.

3.2.2 ERROR FROM SPARSITY MASK

We now consider the additional error introduced by sparsifying attention via a top-r region selection
guided by the draft scores. Let S̃(1) ≥ · · · ≥ S̃(g2) be the sorted region-level scores and define the
threshold t := S̃(⌈rg2⌉). Let Mij = 1 if S̃ij ≥ t and 0 otherwise. Lifting this region mask to token
resolution yields the mask M̂ ∈ {0,−∞}n×n in Equation (4).

Theorem 3.5 (Sparsity Mask Error). Let S = QK⊤/
√
d, P = Softmax(S), and P M̂ =

Softmax(S + M̂) where M̂ ∈ {0,−∞}n×n is the attention mask induced by top-r draft selec-
tion. Assume uniform regions and intra–region deviation at most δ as in Eq. (8). If each row retains
at least a fraction s of tokens under the thresholding rule, then

∥P − P M̂∥F ≤
2
√
n

1 + s
1−s e

−2δ
. (10)

5
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Figure 3: Illustration for the necessity of the reordering. The ”xy” in attention map denotes attentivity
between token x in query and token y in key. Grouping the sparse pattern enables hardware-friendly
layout, leading to faster attention computation.

The detailed proof of Theorem 3.5 is shown in Appendix A.

Remark 3.6. The bound in Equation (10) highlights two controlling factors: the intra–region
deviation δ and the minimal keep ratio s determined by the draft threshold. A smaller δ means tokens
within each region are more homogeneous, so pruning introduces little distortion. A larger s means
fewer entries are removed, so the dropped probability mass is small. In practice, this means draft
attention is most reliable when the regional structure is coherent and the pruning threshold is not
overly aggressive, ensuring that sparse attention closely matches the dense baseline.

Together, Theorems 3.3 and 3.5 provide a principled decomposition of the total approximation error:
one from average pooling, and one from sparsity. Their combined bound shows that draft attention
is an efficient surrogate for full attention, maintaining structural fidelity while enabling substantial
computational savings. This justifies its use in long-context video diffusion transformers, where local
smoothness and sparse relevance patterns are common.

3.3 REORDERING FOR PATCH-ALIGNED SPARSE ATTENTION

Algorithm 1: Generate Reorder Index
Input: Frame size (H,W ), patch size (h,w),

number of frames F
Output: Permutation π ∈ [n] where

n = F ·H ·W
π ← [];
for f = 0 to F − 1 do

for i = 0 to H/h− 1 do
for j = 0 to W/w − 1 do

for u = 0 to h− 1 do
for v = 0 to w − 1 do

y ← i · h+ u, x← j ·w+ v;
idx← f ·H ·W +y ·W +x;
Append idx to π;

return π

To enable accurate and efficient sparse atten-
tion that respects spatial structure, we apply
a deterministic reordering algorithm (Algo-
rithm 1) to the flattened full-resolution token
sequence. As shown in Figure 3, the goal is
to align the memory layout of full-resolution
tokens with the spatial region structure used
in low-resolution draft attention. This align-
ment ensures that the region-level sparsity
patterns are directly and efficiently prop-
agated to full-resolution attention through
block-level masking.

Justification. In the default row-major lay-
out, spatial tokens are appended row-wise
within each frame, causing spatial patches to
be scattered in memory. This fragmentation
hinders efficient usage of sparse attention ker-
nels, which rely on contiguous blocks in fixed size for the optimal performance. As illustrated in
Figure 3, tokens 1, 2, 5, and 6 are spatial neighbors but are not stored consecutively in the memory of
full attention map (i.e., left side of Figure 3) due to the presence of tokens 3 and 4. While it is still
possible to gather these tokens and compute their average, this process is highly inefficient. Similarly,
masking out these scattered blocks is also inefficient, as it reduces the block size, which in turn lowers
arithmetic intensity, causes uncoalesced memory access, and increases the number of kernel launches.

Design. We divide each frame into non-overlapping patches of size h× w. For each frame, tokens
within the same patch are grouped contiguously. Unlike prior methods (e.g., SVG (Xi et al., 2025))
that overlook misalignment issues when the kernel size does not divide evenly into the latent feature
map size, our per-frame design preserves the completeness of each feature map, generating more
reliable captured high-level representations. Meanwhile, this per-frame design ensures that each patch
in a frame is stored as a contiguous block, matching the structure of the downsampled low-resolution
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queries and keys used in draft attention. For instance, tokens 1, 2, 5, and 6 belong to the same patch
and are reordered to appear consecutively in both the query and key sequences, as illustrated at the
top of Figure 3. Reordering ensures that each entry in draft attention map (e.g., aa) corresponds to a
specific block ({1, 2, 5, 6} from query and {1, 2, 5, 6} from key) within reordered full attention map.

Execution. Applying the permutation π ensures that tokens grouped in each h×w patch are stored
contiguously in memory, enabling efficient block-wise indexing and masking. This structured layout
aligns the memory access pattern with the computational needs of sparse attention operations. This
is especially critical for efficient execution with frameworks like FlashAttention (Dao et al., 2022) ,
which leverage fused GPU kernels that operate on fixed-size blocks.

Restoration. After sparse attention is applied in the reordered space (i.e., the attention computation
for reordered query, key, and value), we apply the inverse permutation π−1 (Algorithm 2) to restore
the original spatial-temporal layout for the following correct model inference.

Algorithm 2: Generate Restore Index
Input: Permutation π ∈ [n]
Output: Inverse permutation π−1

Initialize π−1 ← zero array of length n;
for i = 0 to n− 1 do

π−1
πi
← i;

return π−1

Benefit. This reordering bridges the gap between the
coarse-grained sparsity structure derived from draft
attention and the fine-grained full-resolution attention
computation. This layout guarantees that pooled re-
gions align cleanly with memory blocks, preserving
spatial locality and enabling predictable, coalesced
memory access. As a result, it supports efficient mask-
ing and ensures compatibility with high-throughput
attention kernels. This design significantly reduces
overhead and maximizes hardware efficiency during attention computation.

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENT SETUP

Model Family. We adopt open-sourced state-of-the-art video generation models in our experiments,
including HunyuanVideo-T2V (Kong et al., 2024) for 768p resolution with 128 frames and Wan2.1-
T2V (Wang et al., 2025) for both 512p and 768p resolutions with 80 frames. We use 512p and
768p resolutions to align with the 8×16 average pooling kernel (with stride equal to the kernel size),
enabling convenient and consistent downsampling of visual tokens during the diffusion process.
This is because the corresponding latent sizes—32×48 for 512p and 48×80 for 768p—are perfectly
divisible by the 8×16 kernel, ensuring efficient and artifact-free pooling. Note that our method
supports video generation at any resolution by applying appropriate padding. Following prior
works (Xi et al., 2025; Li et al., 2024a;b; Liu et al., 2024), we retain full attention across all methods
for the first 25% of denoising steps to preserve the video generation quality. We adopt Block Sparse
Attention (Guo et al., 2024) for the implementation of our method and mainly compare our method
with the Sparse VideoGen (SVG) (Xi et al., 2025). We observe discrepancies in the generation results
of the Wan2.1-T2V model between our method and SVG, due to difference of codebases. To ensure
a fair comparison, we provide results using full attention for both methods.

Metrics and Prompts. We evaluate the quality of generated videos with VBench (Huang et al.,
2024), and the similarity of generated videos with metrics including Peak Signal-to-Noise Ratio
(PSNR), Structural Similarity Index Measure (SSIM), and Learned Perceptual Image Patch Similarity
(LPIPS) (Zhang et al., 2018). Especially, we report the image quality, subject consistency, background
consistency, dynamic degree, and aesthetic quality from VBench for our generated videos. All videos
are generated with prompts from the Penguin Video Benchmark (Kong et al., 2024) by HunyuanVideo.
The reported computation cost in PFLOPs includes the main diffusion transformer models, and the
latency results are all tested on H100 and A100. More details are shown in Appendix B.

4.2 MAIN RESULTS

Higher Generation Quality. We provide the main results compared with the SVG method in Table 1.
To perform a comprehensive study, different sparsity ratios for the attention mechanism are evaluated
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Table 1: Main results of our method compared to the Sparse VideoGen (SVG) Xi et al. (2025).

Model Method Sparse PSNR SSIM LPIPS Img. Sub. Bakg. Dyn. Aes. PFLOPs
Ratio ↑ ↑ ↓ Qual. Cons. Cons. Deg. Qual. ↓

Wan2.1
(512p)

SVG
0% / / / 65.1% 95.0% 95.9% 44.7% 58.9% 145.65

55% 25.61 83.63 10.42 65.2% 94.8% 95.9% 45.2% 58.9% 99.26
75% 23.66 78.80 15.05 64.7% 94.5% 95.7% 45.7% 58.6% 91.12

Ours
0% / / / 69.3% 95.5% 96.7% 47.6% 61.5% 145.65

55% 25.13 84.77 8.43 69.2% 95.5% 96.6% 47.6% 61.5% 99.26
75% 23.10 79.07 12.37 69.0% 95.4% 96.5% 46.9% 61.5% 91.12

Wan2.1
(768p)

SVG
0% / / / 67.7% 95.3% 96.4% 43.4% 60.4% 609.52

55% 26.01 84.81 10.89 67.9% 95.1% 96.3% 42.1% 60.0% 354.68
75% 23.62 79.05 17.57 67.5% 94.8% 96.1% 42.1% 58.8% 309.95

Ours
0% / / / 67.5% 95.7% 97.1% 37.7% 60.8% 609.52

55% 29.22 92.16 5.82 67.4% 95.6% 97.0% 37.2% 60.8% 354.69
75% 27.17 88.97 8.71 67.2% 95.6% 97.0% 38.6% 60.7% 309.95

Hunyuan
(768p)

Dense 0% / / / 66.4% 96.0% 97.0% 36.4% 58.6% 682.67

SVG
60% 25.80 84.46 14.20 66.4% 95.9% 97.0% 36.6% 58.2% 343.72
80% 24.70 81.90 17.55 66.0% 95.7% 96.9% 33.9% 58.1% 295.30
90% 23.48 78.57 22.60 65.1% 95.4% 96.7% 32.8% 57.5% 283.20

Ours
60% 32.08 93.21 5.58 66.4% 95.9% 97.0% 35.9% 58.5% 343.73
80% 29.19 89.32 9.19 66.2% 95.8% 97.0% 35.7% 58.2% 295.31
90% 24.22 79.90 18.12 65.9% 95.7% 96.9% 36.6% 57.8% 283.20

0
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2000
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A100H100Hunyuan Latency (s)

Sparsity Dense 60% 80% 90%Sparsity Dense 55% 75%
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1.31x 1.58x 1.75x

A100H100

Figure 4: Latency results tested in 768p with H100 and A100 for different sparsity ratios in attention.

under various resolutions with multiple video generation model architectures. With the Wan2.1
model, we observe that our method achieves less image quality degradation compared with SVG.
The similarity results measured by PSNR, SSIM and LPIPS demonstrate that our method generates
videos more similar to the dense model compared with SVG under the same sparsity. Specifically,
for Wan2.1 (768p), our method achieves non-marginal improvements over SVG on PSNR, SSIM
and LPIPS (such as our 8.71 LPIPS v.s. 17.57 LPIPS from SVG under 75% sparsity). For the
Hunyuan model, our method achieves better performance across almost all reported metrics, under
a fair comparison with SVG following the same sparsity and computational cost in PFLOPs. We
further provide the results with FP8 model in Table 2 of Appendix C, and our method maintains the
advantages compared to the SVG method. We exclude additional overhead of spatial or temporal
head selection when reporting PFLOPSs for SVG in Table 1. Note that the additional overhead of our
DraftAttention is minor as shown in Table 3 of Appendix C.

Superior Inference Acceleration. Furthermore, we provide our latency results in Figure 4. The
latency results are tested on H100 and A100 for both Huyuan and Wan2.1 models in 768p resolution.
Our method achieves over 2× acceleration on an A100 GPU with 90% sparsity in the attention
mechanism—demonstrating our outstanding practical efficiency.

Better Visualization. We provide the visualization for the comparison to SVG in Figure 5. All videos
are generated with 90% sparsity. As highlighted in the red box, SVG exhibits a noticeable degradation
in generation quality, with apparent blurry pixels. In contrast, our method better maintains the
generation quality. We provide generated videos for further comparison in supplementary.

4.3 ABLATION STUDY

As shown in Figure 6, we provide the ablation study for the different kernels with average pooling
and max pooling. The visualization is generated using 90% sparsity. The detailed results are included
in Table 4 of Appendix C. We observe that average pooling achieves better generation quality. The
ablation for different kernel size is included in Table 5 of Appendix C.
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“The banks of the Thames, as the camera moves 
vertically from low to high.”

“The refrigerator is placed in a corner of the 
kitchen… Various sticky notes and children's draw...”

“The fan spins, in a realistic style.”
“A blue long dress fell from the balcony clothes rack 

and dropped into the water on the ground.”

Figure 5: Visualization for our method and SVG (Xi et al., 2025) with 90% sparsity ratio in attention.
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SV
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s

vertically from low to high.” kitchen… Various sticky notes and children's draw...”

“A cat walks on the grass, realistic style.”

Average Pooling Max Pooling

“In the style of Dunhuang sculptures, A graceful deity, playing a 
pipa, dances lightly in a museum, with flowing garments.”

“In the gym, a woman in workout clothes runs on a treadmill. 
Side angle, realistic, indoor lighting, professional.”

Figure 6: Visualization for the ablation study comparing average pooling and max pooling kernels.

5 CONCLUSION

In this paper, we propose DraftAttention for efficient video diffusion. We adopt pooling to compute
a low-resolution draft attention map to guide the sparse attention over full-resolution query, key, and
value representations. Combined with effective reordering, this approach achieves fast, hardware-
friendly execution on GPUs. Theoretical analysis is further provided for the justification of our design.
Experiments show that our method outperforms other methods and achieves up to 2× end-to-end
acceleration on GPUs. In the future work, we plan to introduce the quantization for the further
acceleration of high-resolution and long-duration video generation on GPUs.
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REPRODUCIBILITY STATEMENT

Our framework is primarily built upon 2D average pooling over latent video frames, which enables
the identification of important spatial regions during video generation. The theoretical justification
for the controlled difference between full-resolution attention and low-resolution draft attention is
rigorously presented in the paper. All code and implementation details will be released publicly upon
acceptance of the paper.

LLMS USAGE STATEMENT

LLMs were employed in a limited capacity to refine the organization and clarity of the manuscript
narrative. All conceptual contributions and experiments were performed independently of LLMs.
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APPENDIX

A DETAILED PROOF

A.1 PROOF OF THEOREM 3.3

Proof. First, observe that for any u ∈ Ri and v ∈ Rj , the draft attention assigns

(Sdraft)uv = S̃ij , while Suv = ⟨Qu,Kv⟩. (11)

By the definition of δ, we have

|Suv − (Sdraft)uv| = |Suv − S̃ij | ≤ δ. (12)

Then, summing over all n2 token pairs gives

∥S − Sdraft∥2F =
∑
u,v

|Suv − (Sdraft)uv|2 ≤ n2δ2. (13)

Taking square roots on both sides yields the desired result:

∥S − Sdraft∥F ≤ δn. (14)

This completes the proof.

A.2 PROOF OF THEOREM 3.5

Proof. Fix a query row u. Let D(u) := {v : M̂uv = −∞} be the set of dropped indices, and denote
by

µu :=
∑

v∈D(u)

Puv

the probability mass that dense attention P allocates to those entries.

Step 1 (exact row deviation). Write Zu =
∑

v e
Suv , ZK

u =
∑

v/∈D(u) e
Suv , and ZD

u =
∑

v∈D(u) e
Suv .

Then µu = ZD
u /Zu and ZK

u = Zu(1− µu). For v /∈ D(u),

Puv =
eSuv

Zu
, P M̂

uv =
eSuv

ZK
u

=
Puv

1− µu
,

while for v ∈ D(u) we have P M̂
uv = 0. Hence the absolute change on dropped indices sums to µu,

and on kept indices sums to∑
v/∈D(u)

∣∣∣Puv − Puv

1−µu

∣∣∣ = µu

1− µu

∑
v/∈D(u)

Puv = µu.

Therefore
∥Pu,· − P M̂

u,·∥1 = 2µu.

Since ∥x∥2 ≤ ∥x∥1 for each row difference vector, summing over rows gives

∥P − P M̂∥F ≤ 2
√
n max

u
µu.

Step 2 (bounding µu by δ and keep ratio). If a block (i, j) is dropped, then S̃ij < t. By the deviation
bound |Suv − S̃ij | ≤ δ, all logits in this block satisfy Suv ≤ t+ δ. If a block is kept, then S̃ij ≥ t,
so Suv ≥ t− δ. Let ND(u) and NK(u) be the numbers of dropped and kept tokens in row u. Then

ZD
u ≤ ND(u) et+δ, ZK

u ≥ NK(u) et−δ.

Therefore

µu =
ZD
u

ZD
u + ZK

u

≤ 1

1 + NK(u)
ND(u) e

−2δ
.
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Define su := NK(u)/(NK(u) + ND(u)), the fraction of tokens retained in row u, and let s :=
infu su. Then

µu ≤
1

1 + s
1−s e

−2δ
.

Step 3 (final bound). Substituting this into the Frobenius estimate from Step 1 yields

∥P − P M̂∥F ≤
2
√
n

1 + s
1−s e

−2δ
,

which is the claimed bound.

B EXPERIMENTAL SETTINGS

Different Codebases for Wan2.1. Our method and SVG adopt different implementations/codebases
for Wan2.1. Our baseline results (0% sparsity) for Wan2.1 strictly follow the original Wan2.1 codebase
and settings to ensure consistency with the official model. In contrast, the SVG results for Wan2.1
are obtained from the codebase (Xi et al., 2025), which incorporates several modifications—such
as the transformation of negative prompts to improve dynamic degree scores—resulting in different
perceptual performance even for the same dense model at 0% sparsity.

Thus, it may not be entirely fair to directly compare the perceptual metrics across methods using
Wan2.1, as the results are obtained with different codebases and experimental settings. In Table 1, the
similarity results for Wan2.1 are obtained using the same implementations and thus their comparisons
are fair. However, the perceptual metrics are primarily intended to compare the dense and sparse
generation results within each method, rather than to serve as a cross-method benchmark.

For Hunyuan model, SVG does not change the codebase, and we share the same settings. As shown
in Table 1, our method demonstrates better perceptual metrics than SVG. Furthermore, our method
shows non-marginal improvements on similarity metrics over SVG for both Wan2.1 and Hunyuan
models. The superior performance shows the effectiveness of our method.

Prompts for Video Generation. In our experiments, we follow the protocol established in SVG (Xi
et al., 2025), using prompts from the Penguin Video Benchmark for video generation and evaluating
quality using the VBench metrics, which has become a common practice in recent video diffusion
works Xi et al. (2025); Yang et al. (2025). This also ensures a fair and consistent comparison with
prior work SVG.

Sparsity Ratio. Our DraftAttention is only applied to part of diffusion steps. Following prior
works Xi et al. (2025); Li et al. (2024a;b); Liu et al. (2024), we retain full attention for the first
25% of denoising steps to preserve the video generation quality. Furthermore, the model has other
modules besides attention. Thus, even if our attention sparsity reaches 90%, it does not mean that
the overall sparsity ratio for the whole model is 90%. Our 90% sparsity only means the sparsity of
certain attention modules and steps.

C ADDITIONAL RESULTS

C.1 RESULTS WITH FP8 QUANTIZATION

We further provide the results with FP8 model from Hunyuan Video in Table 2. We observe that, with
FP8 model weights, our method maintains the advantages compared to the SVG method. Meanwhile,
we further achieve up to 1.83× acceleration with FP8 model weights in 90% sparsity on H100 GPU.

C.2 OVERHEAD PROFILING

We provide the overhead profiling with 90% sparsity ratio with Hunyuan model in 768p resolution.
According to the results in Table 3, we demonstrate that the latency overhead brought by the
DraftAttention (including reorder) is minor in the table below, which is about 0.5% of the overall
latency.
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Table 2: Main results of our method compared to the Sparse VideoGen (SVG) Xi et al. (2025).

Model Method Sparse PSNR SSIM LPIPS Img. Sub. Bakg. Dyn. Aes. PFLOPs
Ratio ↑ ↑ ↓ Qual. Cons. Cons. Deg. Qual. ↓

Hunyuan
(768p,
fp8)

Dense 0% / / / 65.9% 96.1% 97.2% 34.4% 58.6% 682.67
SVG 90% 25.59 82.98 18.13 64.6% 95.6% 96.8% 30.2% 57.7% 283.20
Ours 90% 26.77 84.37 13.93 65.5% 95.8% 97.0% 33.4% 57.9% 283.20

Table 3: Latency results under different sparsity levels and DraftAttention settings.

Sparsity 0% 90% 90%

DraftAttention No No Yes

Latency (s) 1947 1107 1113

C.3 ABLATION FOR DIFFERENT POOLING KERNELS

We further provide the quantitive results with Hunyuan model in 768p and 90% sparsity in Table 4,
our average pooling demonstrates superior generation performance than max pooling.

Table 4: Comparison of pooling strategies. Avg Pool achieves better image quality and subjective
consistency across all metrics.

Pooling Type PSNR ↑ SSIM ↑ LPIPS ↓ Img. Qual. Sub. Cons.

Avg Pool 24.22 79.90 18.12 65.9% 95.7%
Max Pool 16.31 63.29 25.81 54.2% 91.4%

C.4 ABLATION FOR DIFFERENT POOLING KERNEL SIZE

We choose the kernel size 8×16, as the corresponding latent sizes—32×48 for 512p and 48×80 for
768p—are perfectly divisible by the 8×16 kernel, thus ensuring efficient and artifact-free pooling
during the practical diffusion. We provide the experimental results with additional ablation study
(with Hunyuan model in 768p and 90% sparsity) on pooling kernel sizes demonstrated in Table 5.
8×16 leads to better performance than 16 16.

Table 5: Comparison of different kernel sizes.

Kernel Size PSNR ↑ SSIM ↑ LPIPS ↓ Img. Qual. Sub. Cons.

8×16 24.22 79.90 18.12 65.9% 95.7%
16×16 23.81 78.19 20.06 65.4% 95.3%
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