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Abstract

Diffusion models excel in solving imaging inverse problems due to their ability
to model complex image priors. However, their reliance on large, clean datasets
for training limits their practical use where clean data is scarce. In this paper,
we propose EMDiffusion, an expectation-maximization (EM) approach to train
diffusion models from corrupted observations. Our method alternates between
reconstructing clean images from corrupted data using a known diffusion model (E-
step) and refining diffusion model weights based on these reconstructions (M-step).
This iterative process leads the learned diffusion model to gradually converge to a
local optimum, that is, to approximate the true clean data distribution. We validate
our method through extensive experiments on diverse computational imaging tasks,
including random inpainting, denoising, and deblurring, achieving new state-of-the-
art performance. The code is available at https://github.com/ai4imaging/
EMDiffusoin.

1 Introduction

Diffusion models (DMs) (1; 2; 3) have demonstrated remarkable versatility in capturing complex
real-world data distributions, excelling in diverse applications like image generation (4; 5; 6; 7; 8),
audio synthesis (9), and molecular design (10). DMs approximate distributions by learning their
score functions—the gradient of the log-likelihood of the data distribution ∇x log pdata(x). This
enables high-quality sample generation by simulating reverse-time stochastic differential equations
(SDEs) (2) during inference.

Recently, there has been growing interest in leveraging DMs as priors for computational imaging
inverse problems (11; 12; 13; 14; 15; 16), which aim to recover underlying images x from corrupted
observations y. The Bayesian framework for computational imaging defines the posterior distribution
of images x given observations y:

p(x | y) ∝ p(y | x)p(x), (1)
where p(y | x) defines the forward model of observations and p(x) defines an image prior. DMs offer
efficient, data-driven priors that outperform traditional handcrafted priors prone to oversimplification
and human biases, such as sparsity (17) or total variation (TV) (18; 19).

However, a major limitation of DM-based solvers is their reliance on substantial volumes of high-
quality, clean signals for pre-training—a requirement often infeasible in real-world settings, especially
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Figure 1: Overview of EMDiffusion. The paper proposes an expectation-maximization (EM)
approach to jointly solve imaging inverse problems and train a diffusion model from corrupted
observations. Left: In each E-step, we assume a known diffusion model and perform posterior
sampling to reconstruct images from corrupted observations. In the M-step, we update the weights of
the diffusion model based on these posterior samples. By iteratively alternating between these two
steps, the diffusion model gradually learns the clean image distribution and generates high-quality
posterior samples. Right: Raw observations and reconstructed clean images based on the diffusion
model learned from corrupted data.

for scientific and biomedical imaging. In contrast, corrupted noisy observations with differentiable
forward models are easier to acquire, such as blurred images from mobile photography or 2D
projections of 3D structures in X-ray computed tomography (CT) (20; 21) and cryogenic electron
microscopy (cryo-EM) (22; 23). Our paper seeks to answer a pivotal question: Can a DM be
effectively trained to solve inverse problems primarily using large-scale corrupted observations? This
presents a chicken-egg dilemma: training an accurate DM requires clean images, but reconstructing
clean images from corrupted observations requires a good DM.

Utilizing the Expectation-Maximization (EM) framework, we introduce a novel approach called
EMDiffusion. This approach initializes with a diffusion prior trained on a minimal set of clean
images, then alternates between two steps across multiple iterations: reconstructing clean images
from corrupted observations using the current diffusion prior (E-step), and refining the DM parameters
based on these reconstructions (M-step). The sparse clean data provides a good initialization of
the DM’s manifold, preventing collapse into a distorted or biased distribution characterized solely
by corrupted inputs. Each E-M iteration leverages the current diffusion prior to generate cleaner
reconstructions from the corrupted data, and these enhanced reconstructions then update the DM,
providing an improved prior for the next iteration. This cycle continues, with the generated samples
and DM progressively converging toward local optima, which equals to approximate the true clean
data distribution. The forward operator and noise process do not affect this type of convergence but
only influence the convergence speed by determining the amount of information in the corrupted
observations.

We validate the generalizability and effectiveness of EMDiffusion through extensive experiments,
applying it to diverse imaging inverse problems across various datasets, including random inpainting,
denoising, and deblurring, and achieving compelling results.

2 Related Works
Inverse problems in computational imaging. Computational imaging aims to reconstruct under-
lying signals x ∈ Rd from corrupted observations y ∈ Rm, where the image formation process is
probabilistically modeled as:

y ∼ p(y|x). (2)

Since m ≤ d and observation noise is inevitable, inverse problems in computational imaging are
ill-posed, with the inverse mapping y→ x being one-to-many. To address this complexity, Bayesian
inference introduces a prior distribution of underlying images, p(x), to constrain the solution space
for the image posterior, p(x|y), as illustrated by Eq. 1. Employing Maximum a Posteriori (MAP)
estimation, one can derive a point estimate of the underlying image by maximizing log p(x|y).
Alternatively, posterior image samples of reconstructed images can be obtained through methods like
Markov Chain Monte Carlo (MCMC) (24) or Variational Inference (VI) (25; 26; 27). However, the
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performance of many computational imaging solvers is limited by their reliance on oversimplified,
handcrafted priors such as sparsity and total variation (TV). These priors fail to capture the true
complexity of natural image distributions, hindering the solvers’ ability to achieve high-quality
reconstructions.

Diffusion models for inverse problems. Diffusion models (DMs) (1; 2; 3) have recently emerged
as powerful data-driven priors for solving imaging inverse problems. By mastering the intricate
distribution of images through training on extensive image data, DMs facilitate both point estimates
via Plug-and-Play (PnP) optimization (28; 29) and posterior sampling through generative PnP
(GPnP) (30), PnP Monte Carlo (PMC) (31), or Diffusion Posterior Sampling (DPS) (13; 14; 32).
These approaches have demonstrated remarkable efficacy in addressing a broad spectrum of noisy
inverse problems, with applications spanning diverse fields, including astronomy (11; 33) and
biomedical imaging (15; 34).

Learn diffusion models from corrupted data. In many real-world scenarios, acquiring large-scale
clean data is costly or infeasible, motivating efforts to learn DMs directly from corrupted data. Data
corruptions stem from under-determined forward models (e.g., 2D projections, inpainting, compressed
sensing) and measurement noise. Recent studies have explored various strategies to address these
challenges. For instance, in inverse graphics, researchers integrate the forward model into the diffusion
process and introduce a view-consistency loss over multiple noiseless projections of the same object
to learn a 3D DM from 2D images (35; 36). In image inpainting, AmbientDiffusion (37) randomly
masks additional pixels and forces the DM to restore these deliberate corruptions. Since the model
cannot distinguish between original and further corruptions, it effectively learns the uncorrupted
image distribution. However, the AmbientDiffusion is limited by the additional masking technique
and fails to achieve good performance with noisy observations. (38) cleverly finetunes Stable
Diffusion (SD) to leverage the pre-trained knowledge in denoising tasks, but does not support training
a DM from scratch. Meanwhile, SURE-Score (39) proposes to jointly learn an image denoiser and
a score-based DM using Stein’s unbiased risk estimate (SURE) loss, where the SURE loss acts as
an implicit regularizer on the model weights. Despite its innovative approach, SURE-Score often
struggles with significant data corruption, such as inpainting tasks with a large fraction of missing
pixels, and tends to produce overly smooth results. A general approach for learning DMs from
arbitrarily corrupted data remains an open challenge.

3 Preliminary

3.1 Score-based Diffusion Models

A diffusion model captures the data distribution by learning a score function, i.e. the gradient
of the logarithm of the likelihood of data distribution ▽x log pdata(x). Consequently, a diffusion
model generates samples by gradually removing noise from a random input, which is equivalent
to a reverse-time stochastic differential equation (SDE) - the solution to a forward-time SDE that
gradually injects noise,

forward-time SDE: dxt = f (xt, t) dt+ g(t)dw,

reverse-time SDE: dxt =
[
f (xt, t)− g(t)2∇xt

log pt (xt)
]
dt+ g(t)dw,

(3)

where t ∈ [0, T ], f (xt, t) : Rd → Rd is the drift function, g(t) controls the rate of the Brownian
motion w ∈ Rd, and w denotes the Brownian motion running back. A tractable isotropic Gaussian
distribution is achieved when t = T , i.e. xT ∼ N (0, I), and the data distribution is achieved
when t = 0, i.e. x0 ∼ pdata. xt ∈ Rd denotes the image x0 diffused at time t. ∇xt

log pt (xt) is
a time-dependent score function, which is usually approximated by a deep neural network, sθ(·),
parameterized by θ. The generated data distribution from the reverse-time SDE depends only on this
time-dependent score function.

3.2 Diffusion Posterior Sampling

Many images are consistent with a single observation due to the ill-posed nature of the image
formation model. By combining the forward model with the diffusion prior using Bayes’ rule, we
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define a conditional diffusion process that samples the posterior distribution

dxt =
[
f (xt, t)− g(t)2∇xt

log pt (xt | y)
]
dt+ g(t)dw, (4)

where the conditional score function can be further decomposed as:

∇xt
log pt (xt | y) = ∇xt

log pt (xt) +∇xt
log pt (y | xt)

≃ sθ∗(xt, t) +∇xt
log

∫
x0

p(y | x0)p(x0 | xt)dx0,
(5)

Since the likelihood function is only defined for t = 0, the dependence between y and xt is implicit,
making∇xt log pt (y | xt) an intractable integral at each diffusion step. Various techniques have been
proposed to address this intractable likelihood function, including exactly computing the probability
using an ODE flow (11), bounding the probability through an evidence lower bound (ELBO)(33),
and approximating the probability using Tweedie’s formula(13; 40; 41; 42). To ensure computational
efficiency, we adopt the approximation proposed in (13),

pt (y | xt) ≃ p (y | x̂0(xt)) , where x̂0(xt) := E [x0 | xt] , (6)

for diffusion posterior sampling in all the following sections.

3.3 Expectation Maximum Algorithm

The Expectation-Maximization (EM) algorithm (43; 44) is an iterative technique for estimating
parameters in statistical models involving latent variables. When the true values of the latent variables
are unknown, maximum likelihood estimation (MLE) cannot be directly applied to identify the model
parameters. Instead, the EM algorithm maximizes a lower bound of the log-likelihood function,
derived using Jensen’s inequality:

log pθ(y) = log

∫
pθ(y,x)dx ≥

∫
pθ(x | y) log

pθ(y,x)

pθ(x | y)
dx

=

∫
pθ(x | y) log pθ(y,x)dx−

∫
pθ(x | y) log pθ(x | y)dx

= Ex∼pθ(x|y) [log p(y | x) + log pθ(x)− log pθ (x | y)] ≜ L(θ),
(7)

where x, y, and θ denote the latent variables, observations, and model parameters, respectively. The
algorithm alternates between two steps:

• Expectation step (E-step): Sample latent variables from the current estimate of the conditional
distribution, x ∼ pθ(x | y), and compute the expected log-likelihood lower bound L(θ).

• Maximization step (M-step): Maximize L(θ) = Ex∼pθ(x|y) [log pθ(x)] to update parameters θ.

This iterative procedure allows the EM algorithm to converge to a local maximum of the observed
data log-likelihood, making it a powerful technique for estimation problems involving latent variables,
such as Gaussian mixture clustering(45), and dynamical system identification(46).

4 Proposed Method

Given corrupted observations y and a known forward model p(y | x), learning DMs from corrupted
data is a parameter estimation problem involving latent variables. The latent variables are the
underlying clean images x, and the goal is to estimate the DM parameters θ that govern the image
prior pθ(x). Consequently, we can leverage an iterative EM approach to reconstruct clean images
and train the DM using corrupted data jointly, as described in Fig. 1 and Algorithm 1.

4.1 Initialization: Training a Vague Diffusion Model using Limited Clean Images

The Expectation-Maximization (EM) algorithm needs a good initialization to begin its iterative
process, as an improper initialization can result in convergence at an incorrect local minimum. While
obtaining a large dataset of clean images is difficult, a small set of clean data is often available. This
limited clean data can be used to train an initial DM to start the EM iterations. For example, in all
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(a) Observations (b) λ = 1 (c) λ = 10 (d) λ = 20

(e) 50 clean images for training the initial diffusion model
Figure 2: Adaptive diffusion posterior sampling on CIFAR-10 inpainting. (a) Corrupted obser-
vations from the test set, with 60% of the pixels masked in each image. (b), (c), and (d) Diffusion
posterior samples with the diffusion prior weighted by different scaling factors: λ = 1, 10, 20. The
diffusion prior is pre-trained using the 50 clean images shown in (e). When λ is small, there is
obvious mode collapse, and all posterior samples come from the training set of 50 clean images,
unrelated to the observations. As λ increases, the data likelihood gains more significance, resulting in
reconstructed images that are more consistent with the inpainting observations.

the following experiments, 50 randomly selected clean images were used to train the initial DM,
serving as the starting point for the EM algorithm. As demonstrated in Sec. 5.4, clean images do not
need to be from the same dataset; those from out-of-distribution datasets also serve as reasonable
initializations.

4.2 E-step: Adaptive Diffusion Posterior Sampling

In the E-step, we assume a known diffusion prior and reconstruct the underlying clean images through
diffusion posterior sampling. We adopt the standard variance-preserving form of the stochastic
differential equation (VP-SDE) (2), which is equivalent to the Denoising Diffusion Probabilistic
Models (DDPM) (1). The drift function f(xt, t) takes the form β(t)xt/2, and the diffusion rate g(t)

is
√
β(t). Therefore, the reverse diffusion sampler in Eq. 4 can be represented as:

dxt =

[
−β(t)

2
xt − β(t)∇xt log pt (xt | y)

]
dt+

√
β(t)dw, (8)

Considering a known imaging forward model, A, and additive Gaussian noise, p(y | x) ∼ N (y |
A(x), σ2I), the conditional score function can be represented as:

∇xt log p (xt | y) = ∇xt log pt (xt)−∇xt log pt (y | xt)

≃ sθ(xt, t)−
1

2σ2
∇xt ∥y −A (x̂0 (xt))∥22 ,

(9)

where

x̂0(xt) =
1√
ᾱ(t)

[xt + (1− ᾱ(t)) sθ(xt, t)] , ᾱ(t) =

t∏
s=1

(1− β(s)) . (10)

However, a naive diffusion posterior sampling approach using Eqs. 8, 9, and 10 often fails to produce
high-quality reconstructions. This is because the learned DM is inaccurate during the early EM
iterations. We demonstrate this issue with a toy experiment. We performed diffusion posterior
sampling (DPS) on randomly masked observations, as shown in Fig. 2(a), using an initial DM trained
on only 50 clean images. The resulting posterior samples, depicted in Fig. 2(b), show mode collapse
due to the severely limited prior. All recovered samples come from the training set of 50 clean images
and are unrelated to the observations. Similarly, if the DM is trained on blurry, noisy images with
artifacts, naive DPS also performs poorly in image reconstruction.
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Algorithm 1 EMDiffusion: Learning Score-based Priors for Inverse Imaging
Require: DM sθ, Observations (Y,A), few clean data x, Cycles N , Timesteps T , Epoches M ,

Measurement noise N (0, σ2I), Diffusion rate {βt}Tt=1
1: Initialize sθ on x through denoising score matching (47)
2: for i = 1 to N do
3: (y, f) ∼ Dataset(Y,A)
4: xT ∼ N (0, I)
5: for t = T to 1 do
6: ᾱt =

∏t
s=1(1− βt)

7: x̂0 ← 1√
ᾱt

(
x
(i)
t + (1− ᾱt) sθ(x

(i)
t , t)

)
8: z ∼ N (0, I)
9: Take reverse-time SDE step on {Sampling in Sec. 4.2}

x
(i)
t−1 ← x

(i)
t + β(t)

[
x
(i)
t

2 +
(
sθ(x

(i)
t , t)− λ

2σ2∇x
(i)
t
∥y − f (x̂0)∥22

)]
+

√
β(t)z

10: end for
11: for m = 0 to M do
12: xdata ∼ Shuffle(x̂

(i)
0 ∼ pθ(x̂

(i)
0 | y(i)))

13: t ∼ Uniform({1, . . . , T})
14: ᾱt =

∏t
s=1(1− βt)

15: ϵ ∼ N (0, I)
16: Take gradient descent step on {Optimization in Sec. 4.3}

∇θ

∥∥ϵ− ϵθ
(√

ᾱtx
data +

√
1− ᾱtϵ, t

)∥∥2
2

17: end for
18: end for

It does not mean that these low-quality DMs cannot provide any prior information. Although the
prior is poor in the early training stages, it has learned common features and structures shared among
natural images, such as the continuity and smoothness of natural images and profiles of specific
object types. By introducing a hyper-parameter λ to rescale the likelihood term and avoid mode
collapse, we find that the low-quality DM can also act as a weak prior for posterior sampling, where
the reverse-time SDE can be written as:

dx = β(t)
[
−x

2
− (∇xt log pt (xt) + λ∇xt log pt (y | xt))

]
dt+

√
β(t)dw

≃ β(t)

[
−x

2
−
(
sθ(xt, t)−

λ

2σ2
∇xt ∥y −A (x̂0 (xt))∥22

)]
dt+

√
β(t)dw,

(11)

The hyper-parameter λ efficiently balances the diffusion prior and the data likelihood, resulting in
reliable reconstructed images even when the prior is poor. As demonstrated in Fig. 2 (b), (c), and (d),
as λ increases from 1 to 20, the data likelihood term gains more emphasis, making the reconstructed
images more consistent with the inpainting observations. The choice of the hyper-parameter λ is
automated in each E-step by finding the value that minimizes the data loss,

λ∗ = argmin
λ

Ey,x̂0,λ

[
∥y −A(x̂0,λ)∥22

]
, (12)

where x̂0,λ represents the diffusion posterior samples of reconstructed images with λ scaling.

4.3 M-step: Optimizing Score-Based Priors

During the M-step, we update the weights of the score-based models using the posterior samples
obtained in the E-step. This resembles training a standard clean DM, sθ, to approximate the time-
dependent score function,∇xt log p(xt | x̂0), through denoising score matching (47):

θ∗ = argmin
θ

Et,xt,x̂0

[
∥sθ(xt, t)−∇xt

log p(xt | x̂0)∥22
]
, (13)

where t ∼ Uniform({1, ..., T}), x̂0 = x̂0,λ∗ represents the posterior samples from the previous
E-step, and xt ∼ p(xt | x̂0) are generated by the forward-time SDE in Eq. 3.
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Figure 3: Results on CIFAR-10 inpainting. In each image, 60% of the pixels are masked. As
the EM iterations progress, the diffusion model learns cleaner prior distributions, improving the
quality of posterior samples. Our method significantly outperforms the baselines, SURE-Score and
AmbientDiffusion, achieving reconstruction quality comparable to DPS with a clean prior.

To accelerate training, especially during the early stages when the posterior samples are noisy, the
M-step does not always train the score function sθ(·) from scratch. In the initial M-steps, we inherit
the DM weights from the previous iteration and fine-tune them only using posterior samples from a
subset of observations (e.g., randomly select 10% of total observations). However, once the quality of
reconstructed images improves sufficiently, we reinitialize the DM weights and retrain the model with
100% data for a few more iterations. The training strategy transitions when the optimal balancing
parameter, λ∗, falls below 1, or fails to decrease for more than three consecutive iterations.

5 Experiments

In this section, we demonstrate the performance of our method in learning DMs from corrupted data
and solving inverse problems using these models. We validate the method on three imaging tasks:
random inpainting, denoising, and deblurring. Our main results are presented in Fig.3, Fig.4, and
Table 1, with additional ablation studies in Fig. 5. Further details on neural network architectures,
training settings, and additional reconstruction and generation samples are provided in the appendix.

5.1 Datasets and Evaluation Metrics

The experiments are conducted on the CIFAR-10 (48) and CelebA (49) datasets at resolutions of
32× 32 and 64× 64, respectively. CIFAR-10 consists of 50,000 images across 10 classes for training,
while CelebA contains 30,000 images of human faces. At each iteration, 5,000 corrupted images are
randomly chosen for posterior sampling and training, and 250 corrupted images from the test set are
chosen for evaluation.

We evaluate the performance of our method using two groups of metrics. First, we compute the peak
signal-to-noise-ratio (PSNR) and learned Perceptual Image Patch Similarity (LPIPS) scores between
the reconstructed and ground-truth images, quantifying the accuracy of inverse imaging using learned
DMs. Additionally, we compute the Fréchet Inception Distance (FID) between the learned DMs and
reserved test data to assess their image generation quality.

5.2 Baseline and Training Settings

We compare our method with three related baselines: AmbientDiffusion (37), SURE-Score (39), and
DPS with clean prior (13). AmbientDiffusion and SURE-Score have similar settings to our method,
which do not require DMs pre-trained on large-scale clean signals. Considering AmbientDiffusion is
well-designed for masked observations, we only use it as the baseline of the image inpainting task.
On the other hand, DPS leverages a pre-trained clean diffusion prior for posterior sampling, so it
defines the performance upper bound for our method.

In our experiments, we randomly select 50 clean images from each dataset to train the initial DMs
for the EM iterations. AmbientDiffusion is trained with the standard setting in (37). The key hyper-
parameter of SURE-Score, σω , is set to the observation noise’s standard deviation (0.2 for denoising,
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Table 1: Numerical Results of inverse imaging and learned priors. The average values of PSNR/LPIPS
are from 250 samples randomly selected from the test set. FID is used to evaluate the quality of
learned priors by comparing 50,000 generated samples to the train set. Optimal results are highlighted
in bold and suboptimal results in underline. Note that we take DPS w/ clean prior as the upper bound.

Method
CIFAR10-Inpainting CIFAR10-Denoising CelebA-Deblurring

PSNR↑ LPIPS↓ FID↓ PSNR↑ LPIPS↓ FID↓ PSNR↑ LPIPS↓ FID↓
Observations 13.49 0.295 234.47 18.05 0.047 132.59 22.47 0.365 72.83

DPS w/ clean prior 25.44 0.008 7.08 25.91 0.010 7.08 29.05 0.013 10.24
Noise2Self (50) - - - 21.32 0.227 92.06 - - -

SURE-Score (39) 15.75 0.182 220.01 22.42 0.138 132.61 22.07 0.383 191.96
AmbientDiffusion (37) 20.57 0.027 28.88 - - - - - -

Ours 24.70 0.009 21.08 23.16 0.022 86.47 23.74 0.103 91.89

Noisy
Observation

SURE-
Score (39) Ours DPS (13) w/

Clean Prior
Ground
Truth

Blurry
Observation

SURE-
Score (39) Ours DPS (13) w/

Clean Prior
Ground
Truth

(a) CIFAR10, Denoising (b) CelebA, Deblurring

Figure 4: Results on (a) CIFAR-10 denoising and (b) CelebA deblurring. Our method significantly
outperforms the baseline, SURE-Score, and approximates DPS with clean prior.

and 0.01 for inpainting and deblurring). To ensure a fair comparison, we also provide the same 50
clean images for training AmbientDiffusion and SURE-Score. Details are in Appendix A.

5.3 Results

Image inpainting. We conduct random inpainting (with mask probability p = 0.6) on CIFAR-10.
As shown in Fig. 3 and Table 1, our method significantly outperforms AmbientDiffusion and SURE-
Score, achieving reconstruction quality similar to DPS with a prior trained on the clean CIFAR-10
dataset. The iterative training process is also illustrated in Fig. 3. Initially, our method performs
poorly with the DM trained on only 50 randomly selected clean samples. However, as the E-step
and M-step alternate iteratively, the quality of posterior sampling improves. Large-scale posterior
samples enrich the priors, leading to enhanced performance at each stage.

Image denoising. We perform image denoising on CIFAR-10 with Gaussian noise n ∼ N (0, σ2I)
and σ = 0.2. The results are shown in Fig. 4(a) and Table 1. Our method outperforms SURE-Score,
and the self-supervised denoising benchmark, Noise2Self (50), though it slightly lags behind DPS
with clean priors. However, while our method’s reconstructions may appear noisier than DPS results,
they sometimes reproduce more details, such as the car wheels in the second row and the cat face in
the third row of Fig. 4(a), showcasing the better diversity of our learned DMs.

Image deblurring. We validate image deblurring on CelebA using a Gaussian blur kernel with
a size of 9 × 9 and a standard deviation of σ = 2 pixels. The results are shown in Fig. 4(b) and
Table 1. As with the other tasks, our method significantly outperforms SURE-Score in solving
imaging inverse problems, recovering fine details of human faces. However, the FID score of our
learned diffusion models lags behind the original blurred observations. This is primarily because
the FID score measures image similarity mainly through smooth features, making it a less effective
metric for deblurring tasks.
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(a) Initialization DMs (b) DMs after each EM iteration (c) Trend of optimal λ

Figure 5: Ablation studies. (a) PSNR of diffusion posterior samples generated by the initial diffusion
models trained on different amounts (10, 50, 100, 500) or types (in-distribution or out-of-distribution)
of clean data. (b) FID scores of learned diffusion models after each EM iteration. The diffusion model
trained on 50,000 corrupted images achieves a similar performance to those trained on 15,000-20,000
clean images. (c) PSNR of diffusion posterior samples weighted by different scaling factors λ at each
stage. The optimal λ for posterior sampling decreases as the EM iterations progress.

Comparing the results of all three tasks, we find that AmbientDiffusion only works well for inpainting
because its additional masking technique is specifically designed for that purpose. SURE-Score
consistently produces over-smoothed results because the SURE loss regularizes the gradient of
generated images. As a comparison, our method does not make any special assumptions and provides
a general framework applicable to all three tasks. The generation results are in Appendix D.

5.4 More Analysis and Ablation Studies

Number of clean images for training initial DMs. Our EM approach starts with DMs trained on a
small set of clean images. Fig. 5(a) shows the PSNR of posterior samples generated by these models
in the first E-step, allowing us to evaluate the impact of the number of clean training images on the
performance of the initial DMs. Remarkably, DMs trained on as few as 10 clean images (0.02% of
the corrupted images) can still act as reasonable priors. For inpainting and denoising tasks, DMs
trained on 10 clean images provide nearly the same reconstruction quality as those trained on 500
clean images, as these tasks primarily require priors for low-frequency features, and 10 images suffice
for an initial guess. However, the deblurring task benefits from DMs trained on more clean data since
deblurring aims to recover high-frequency details where more data helps.

Surprisingly, we find that DMs trained on clean images from CelebA (downsampled to 32×32) can
also be used to initialize tasks on CIFAR-10. For inpainting and denoising tasks, DMs initialized with
50 clean images from an out-of-distribution (OOD) dataset (CelebA) achieve similar performance to
those initialized with in-distribution (ID) data (CIFAR-10). For the deblurring task, DMs trained on
OOD data perform better than those trained on a similar amount of ID data, suggesting that OOD
data can sometimes serve as stronger priors for guessing high-frequency information.

Learned priors through iterative training. Fig. 5(b) shows the FID scores of the learned DMs in
the inpainting task with 50,000 corrupted CIFAR-10 images after each EM stage. The generation
ability of the DMs gradually improves as the EM iterations progress. As explained in Sec. 4.3,
initially the DM inherits weights from previous steps for fast training and converges at the sixth
iteration. After resetting the DM, the training resumes for three more rounds and finally converges
to a FID score of approximately 21.08, significantly better than AmbientDiffusion’s 28.88, setting
a new state-of-the-art. Notably, our method achieves this performance using a DM architecture
with far fewer parameters: our method employs a vanilla DDPM with 35.7 million parameters,
while AmbientDiffusion uses an improved DDPM++ architecture with over 100 million parameters.
Additionally, we compared our method with DMs trained on different amounts of clean data. Our
model, learned from 50,000 corrupted images (60% pixels masked) using EM, performs better than a
DM trained on around 15,000 clean images.

Scaling factor in adaptive diffusion posterior sampling. Fig. 5(c) shows the PSNR of recon-
structed images at each EM stage with different scaling factors, using the inpainting task on CIFAR-10
as an example. We observe that the quality of posterior sampling initially improves and then de-
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teriorates as the scaling factor increases, confirming the existence of an optimal scaling factor as
suggested in Eq. 12. As the EM stages progress, the optimal scaling factor decreases, indicating that
the learned priors progressively improve through the EM iterations. This observation justifies the
need for adaptive scaling factors in our method.

6 Conclusion

In this paper, we proposed EMDiffusion, a novel expectation-maximization (EM) framework for
training diffusion models primarily from corrupted observations. The key assumption is that it is
information-theoretically possible to learn the underlying distribution from measurements. Our
method demonstrated state-of-the-art performance in image inpainting, denoising, and deblurring
across various datasets. Additionally, an important finding is that a small amount of clean, in-
distribution data can act as an implicit regularizer, aiding the training of diffusion models from
corrupted observations. Future work will aim to 1) extend initialization approaches, potentially by
incorporating foundation models or traditional machine learning techniques, such as using prepro-
cessed images from unsupervised inpainting, deblurring, or denoising for initialization, and 2) extend
to various imaging inverse problems and learning unknown forward models or noise statistics.
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We provide the implementation details and more results in the appendix. We first describe our network
architecture and training settings in Sec. A, then show initialization details in Sec. B. More results are
also provided in Sec. C and Sec. D.

A Implementation Details.

Our neural network architecture follows the vanilla denoising diffusion probabilistic
model (DDPM) (1). For quick implementation, see https://huggingface.co/google/
ddpm-cifar10-32 and https://huggingface.co/google/ddpm-celebahq-256.

Model architecture. Our architecture is exactly aligned with DDPM (1), which is a U-Net (51)
based on a Wide ResNet (52). Diffusion time t is implemented by adding the Transformer sinusoidal
position embedding into each residual block. For CIFAR-10, our 32× 32 models use four feature
map resolutions (32×32 to 4×4) and convolutional residual blocks per resolution level. For CelebA,
we increase the feature map number for our 64× 64 to six. We enable the dropout regularization to
reduce overfitting. Our CIFAR-10 model has 35.7 million parameters and our CelebA model has 114
million parameters.

Noise schedule. We leverage the default settings on VP-SDE (2), which uses a linear schedule with
timesteps T = 1000, β1 = 1e− 4, and βT = 0.02.

Exponential moving average. To stabilize the training process and reduce the color shift of samples
generated by trained DMs, we adopt an exponential moving average (EMA) technique with a decay
factor of 0.999 for all experiments.

Optimizer. We apply AdamW (53) and set the learning rate to 2e− 4 for CIFAR-10 and 2e− 5 for
CelebA.

Hyperparameters for the training process. We set the batch size to 512 for CIFAR-10 and 64 for
CelebA. We set the dropout rate to 0.1 for CIFAR-10 and 0 for CelebA. As for the learning rate, we
adapt 1e− 4 for CIFAR-10 and 2e− 5 for CelebA, for a larger learning rate will result in unstable
training.

Dataset argumentation. We only use random horizontal flips to CIFAR-10 during training to
achieve better performance. We did not flip CelebA, as the distribution of human faces is quite simple.
We provide a table of training hyperparameters in Table 2.

Table 2: Training hyperparameters.

Dataset Batch Size Epoches LR Dropout Optimizer Data Augmentation

CIFAR-10 512 1000 2e-4 0.1 AdamW Random horizontal flips
CelebA 128 1500 2e-5 0 AdamW /

Baselines. As for Ambient Diffusion, We use the official checkpoint, which adopts the improved
DDPM++ architecture (54) and the EDM scheduler design (55). It also modifies the model ar-
chitecture’s convolutions to Gated Convolutions (56), as they are known to perform better for
inpainting-type problems. Their 32 × 32 model has 113 million parameters, which is larger than
ours. SureScore, on the other hand, uses the deepest NCSNv2 (57) model architecture, which has
95 million parameters. As for DPS with clean priors, we adopt the pre-trained DDPMs provided by
https://huggingface.co/google. The details of the architectures of all methods are shown in
Table 3.

Training schedule. At each EM iteration, we randomly choose 5,000 corrupted observations for
diffusion posterior sampling and then train DMs. We further divide the iterations into two phases:

• Phase 1 - Resume training DMs: at the early EM iterations, we inherit weights of DMs from the
last iteration for quick convergence. For CIFAR-10, this phase lasts for about 6-8 EM iterations,
while for CelebA deblurring, this phase increases to 10 EM iterations.
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Table 3: Method architecture comparison.

Model
CIFAR-10 CelebA

Param Arch Memory Schedule Param Arch Memory Schudule

Ours 35.7M DDPM 140MB VP 114M DDPM 454MB VP
Ambient Diffusion 113M DDPM++ 408MB EDM 445MB DDPM++ 451MB EDM

SureScore 90M NCSNv2 1.5GB VE 90M NCSNv2 1.5GB VE

• Phase 2 - Reset training DMs: at the later EM iterations, we reset the weights of DMs at each
M-step, that is, training DMs from scratch. The key insight is that DMs from Phase 1 always
have a memory of bad posterior samples, which has a negative effect on the learned distribution.
For CIFAR-10, this phase lasts for 3 EM iterations, we found it significantly improves the FID
score of DMs. While for CelebA deblurring, this phase lasts for 2 EM iterations until we find the
improvement is not obvious.

B Additional Strategies for Training Initial DMs

To verify the sensitivity of EMDiffusion’s initial DM training data, we provide more quantitative and
qualitative results in this section, as shown in Table 4. We draw the conclusion that EMDiffusion is
not sensitive to the initial data. Apart from evaluating different numbers of in-distribution (ID) images
and out-of-distribution (OOD) images for training the initial DMs, we also test the initialization on
preprocessed observations, and find all of them converge similarly.

Table 4: Numerical results of different data for training initial DMs. We show the PSNR values of
posterior sampling with diffusion initialized with different data. The results show that EMDiffusion
is insensitive to initializations.

Initialization Observations 500 ID 100 ID 50 ID 10 ID 50 OOD 50 preprocessed
CIFAR10-Inpainting 13.49 20.58 20.95 20.93 20.21 20.10 16.16
CIFAR10-Denoising 18.05 19.89 20.48 20.47 19.88 19.57 19.96
CelebA-Deblurring 22.47 25.56 24.99 22.80 21.19 25.50 22.00

Specifically, we preprocess the noisy observations with BM3D (58), the blurry observations with
Fast TV Constraint (59), and leave the masked observations unchanged. DMs initialized on these
preprocess samples also perform well on the following E-step.

C Additional Results on Random Inpainting

Table 5: Comparison of FID scores between the EM approach and Ambient Diffusion across different
corruption levels (masking ratio p = 0.4, 0.6, 0.8, 0.9) on CIFAR-10 and CelebA.

Model
CIFAR-10 CelebA

0.4 0.6 0.8 0.6 0.8 0.9

Ambient Diffusion 18.85 28.88 46.27 6.08 11.19 25.53
Ours 13.75 21.08 45.24 5.98 13.26 29.09

As shown in Table 5, we include additional comparisons to Ambient Diffusion (37) across various
corruption conditions and datasets. The performance gap between the proposed method and Ambient
Diffusion narrows under higher levels of corruption, likely due to the simpler DDPM architecture we
employ. In contrast, Ambient Diffusion utilizes the improved DDPM++ architecture (54), which is
specifically modified to perform better for high-corruption inpainting-type problems. Nonetheless,
the overall performance demonstrates the effectiveness of the proposed method, as we do not focus
on empirically optimized architecture details, but instead show the applicability of the new EM idea
for training DMs from corrupted observations.
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D Generative Samples

EMDiffusion is proposed to learn clean distributions from corrupted observations. In Sec. 5, we
present detailed posterior sampling results and FID scores of learned DMs.

Our model outperforms baselines by a significant margin in three inverse imaging tasks on two
datasets. Though the FID score of our model trained on blurry CelebA is slightly higher than Ambient
Diffusion, we argue that FID scores are easily influenced by sharp artifacts introduced by DPS (13),
which is adopted in our E-steps. However, the distributions EMDiffusion learned from various types
of corrupted observations are obviously better than baselines, as shown in Fig. 7,6,8.

Future work. To achieve a better posterior distribution through the proposed EM framework, an
accurate and efficient E-step plays a key role. We adopt the Diffusion Posterior Sampling (13) that
could potentially introduce artifacts due to its approximation of the underlying data likelihood term.
Therefore, a better FID score could be achieved by designing a principled posterior sampling method.

(a) SURE-Score, FID=191.96

(c) Ours, FID=91.89

Figure 6: Uncurated Samples generated from models trained on blurry CelebA.
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(a) SURE-Score, FID=220.01

(b) Ambient Diffusion, FID=28.88

(c) Ours, FID=21.08

Figure 7: Uncurated Samples generated from models trained on random masked CIFAR-10.
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(a) SURE-Score, FID=132.61

(c) Ours, FID=86.47

Figure 8: Uncurated Samples generated from models trained on noisy CIFAR-10.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We make clear claims that well reflect the paper’s contributions and scope
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed the limitation in the last.
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We show ablation study for the proposed techniques.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide implementation details.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide code in supp.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide all the experiment details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Our experiments contain a large amount of examples that don’t need the error
bar.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide details of the computation resources.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research explores computational imaging algorithms in which we didn’t
see any ethics issues.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification:Our research explores computational imaging algorithms in which we didn’t
see any negative social impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We study computational imaging algorithms and didn’t see such risks.
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Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use public datasets that are licensed for research purposes.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We did;t use new assets

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification: We didn’t do crowd sourcing with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We didn’t do experiments related to human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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