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ABSTRACT

Quantum machine learning (QML) promises significant speedups, particularly
when operating on quantum datasets. However, its progress is hindered by the
scarcity of suitable training data. Existing synthetic data generation methods
fall short in capturing essential entanglement properties, limiting their utility for
QML. To address this, we introduce QMILL, a low-depth quantum data genera-
tion framework that produces entangled, high-quality samples emulating diverse
classical and quantum distributions, thereby enabling more effective development
and evaluation of QML models in representative data settings.

1 INTRODUCTION

Quantum machine learning (QML) is emerging as a transformative field, with applications ranging
from image recognition to scientific computing (Riofrio et al.,[2024; |Liang et al., 2023} |Peral-Garcia
et al., [2024; [Wang et al., 2022} |Guan et al., [2021). QML offers theoretical speedups over classical
methods—but crucially, these speedups are provably attainable when operating on quantum datasets,
i.e., data exhibiting superposition, interference, and entanglement (Biamonte et al., [2017; Carleo
et al.,[2019; DiBrita et al.,[2024; Beaudoin et al., 2022} Hu et al.| 2022; Delgado & Hamilton [2022).
Despite this, nearly all existing QML research focuses on classical data inputs due to the scarcity
of real-world quantum datasets (Silver et al., [2022; 2023b)). Quantum data is difficult to obtain:
current quantum sensing technology is nascent, measurements are inherently probabilistic, large-
scale data collection is cost-prohibitive, and noise from environmental and control sources further
limits usability (Degen et al.| [2017; |Aslam et al.| 2023). This data gap has become a fundamental
bottleneck preventing the community from developing and validating QML models that can operate
directly on quantum data, the very regime where QML promises a provable advantage.

Synthetic quantum data generation has therefore become critical to the future of QML. Without it,
QML cannot meaningfully progress toward its theoretical potential, nor be ready when quantum-
sensed data becomes more widely available in the coming years (Schatzki et al., 2021} [Perrier et al.,
2022). However, existing synthetic methods struggle to generate entanglement-rich datasets nec-
essary for realistic QML workloads. One key metric is concentratable entanglement (CE), which
captures inter-feature entanglement within a sample (Beckey et al., 2021} [Schatzki et al., [2024; Liu
et al., 2024} Jin et al} [2022). While [Schatzki et al.| (2021) introduced the first method to generate
data with target CE values, their approach often fails to achieve the desired entanglement (deviations
>20%), and assumes fixed CE across all samples—unlike real quantum datasets, which exhibit a
natural distribution of CE values (Perrier et al., [2022; Medrano Sandonas et al.| [2024).

To address these challenges, we present QMILL, a versatile quantum data generation framework
designed to produce synthetic datasets that reflect diverse CE distributions and faithfully emulate
both classical and quantum structures. The long-term role of synthetic quantum datasets remains an
evolving question as quantum sensing and data-collection pipelines mature. QMILL is positioned as
a pragmatic near-term tool that complements, rather than replaces, future real-world quantum data
by enabling model development, benchmarking, and architecture-aware evaluation in the absence
of large-scale quantum datasets. Our goal is to provide a practical foundation that enables QML
research to progress as quantum data sources continue to evolve.

This work makes the following key contributions:

* QMILL generates synthetic datasets that capture a range of concentratable entanglement (CE)
values, reflecting the variability observed in real-world quantum data.
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* We design low-depth ansatzes tailored to Gaussian, Weibull, and Uniform distributions, enabling
QMILL to stress-test statistical behavior under quantum constraints.

* By leveraging dual annealing (Sahin & Ciric,[1998)), QMILL optimizes entangled states efficiently,
ensuring compatibility with contemporary quantum hardware.

* QMILL incorporates SWAP tests (Zhang et al., 2024) to guarantee sample diversity and reduce
redundancy, crucial for training generalizable QML models.

* We demonstrate QMILL’s versatility across classical datasets (e.g., MNIST (Dengl 2012), Fash-
ionMNIST (Xiao et al., |2017), CIFAR-10 (Krizhevsky et al.,[2009)) and quantum datasets (e.g.,
quantum chemistry (Perrier et al.,[2022)), soil moisture (Arumugam et al.,[2024])), dark matter (Chen
et al.| 2024))), achieving a deviation of < 0.1 from the target CE distributions.

» To show QMILL’s practical utility, we train a quantum neural network on QMILL-generated CE
feature sets and show an 84.8% accuracy against a classical ceiling.

* QMILL’s data generation methodology, machine learning codebase, and generated datasets are
open-sourced at: https://anonymous.4open.science/r/QMill-FA93.

2 BRIEF AND RELEVANT BACKGROUND

2.1 QUANTUM BITS, STATES, GATES, AND CIRCUITS

Quantum computing harnesses superposition and entanglement to unlock computational capabilities
beyond classical systems (DiBrita et al., 2025 |Ludmir et al.} 2025). Its fundamental unit, the qubit,
can exist in a superposition [¢)) = «|0) + B|1), where |a|* + |3]* = 1. This can be extended to an
n-qubit system. Qubit systems reside in the 2"-dimensional Hilbert space, and quantum operations
are performed using unitary gates. A sequence of gates forms a quantum circuit, which evolves an
input state |i,) to [ou) = Ulthin), where U is the product of unitary gates.

2.2 VARIATIONAL QUANTUM CIRCUITS AND NOISE

Variational quantum circuits (VQCs), or ansatzes, are widely used in QML due to their tunability
and expressiveness (Wang et al.,|2022; [DiBrita et al., 2024; [Han et al., [2025). Each gate in a VQC is

= =

parameterized (e.g., R, (6)), and the overall state [1)(6)) = U(6)]1o) depends on a set of parameters

g. These parameters are optimized to minimize a classical loss function f (5) On real hardware,
especially NISQ devices, gate noise is a key challenge. As each gate has a non-zero error rate e,
the total error grows with depth d approximately as 1 — (1 — €)? (Silver et al., 2023a; Bhattacharjee
et al., [2019; |Ash-Saki et al., 2019). Shallow circuits are therefore crucial to maintain high fidelity.
QMILL leverages low-depth ansatzes to mitigate this noise while preserving expressivity.

2.3 QUANTUM DATASETS AND LIMITATIONS

Quantum data are most naturally represented as quantum states. An n-qubit datum is modeled by
a density operator p = Zfz;é pi;|)(j|, where nonzero off-diagonal terms (¢ # j) encode entan-
glement. Algorithms such as quantum PCA, variational eigensolvers, and Hamiltonian learning
can achieve exponential speedups when accessing such data directly from quantum memory (Lloyd
et al.| [2014; Wiebe et all [2014). However, publicly available quantum datasets remain limited.
Quantum chemistry datasets typically contain simple molecules like Hs, LiH, and BeHs, yielding
<6 qubits after fermionic encoding (Perrier et al.,[2022). Similarly, datasets from NV-center quan-
tum sensors are restricted to a few qubits due to decoherence and control limitations (Qian et al.,
2021;|Zhang et al.,|2023). Generating large-scale quantum datasets is both costly and experimentally
challenging, which limits the scope of QML research.

2.4 CONCENTRATABLE ENTANGLEMENT (CE)

A critical challenge in synthetic quantum data generation is capturing realistic levels of entangle-
ment. Concentratable entanglement (CE) quantifies the maximum entanglement that can be local-
ized between subsystems of a quantum state (Beckey et al., |2021; [Schatzki et al., 2024} [Liu et al.
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2024; [Jin et al.,[2022). For a bipartite split { A, B} of a state p, CE is defined as:

Cr(p) = max,,, S(Trp(pan)),

where S(p) = —Tr(plog p) is the von Neumann entropy. [Beckey et al.|(2021) provide an efficient
method for computing CE in many relevant cases. CE serves as a proxy for “quantumness” in data.
High CE enables QML models to leverage entanglement for improved performance, particularly in
domains such as quantum chemistry (Perrier et al., | 2022).

3  MOTIVATION FOR QMILL

Progress in QML is hindered by the scarcity of scalable, diverse, and entanglement-aware quantum
datasets. Existing quantum datasets are small and expensive to generate, and current synthetic meth-
ods are even more limited (Zoufal et al., |2019; Benedetti et al., 2019). The most notable effort by
Schatzki et al.| (202 1)) proposes training ansatzes to match a fixed CE t; however, their approach often
fails to reach the desired CE value and overlooks a more fundamental issue: real quantum data does
not have a single entanglement level. In practice, quantum datasets exhibit a spread of CE values
across samples. Training and benchmarking QML models on a fixed CE setting oversimplifies the
problem and leads to poor generalization.

While CE is not the only meaningful descriptor of quantum correlations, we focus on it because it
provides a tractable, hardware-efficient summary statistic that still preserves sample-level variability.
CE also offers an interpretable proxy for global multi-qubit structure that many QML models rely
on, without requiring full state tomography or cost-prohibitive estimators. Our goal is not to treat
CE as a complete or sufficient characterization, but to show that matching its distribution represents
a necessary step beyond prior work that targets a single entanglement value and thereby collapses
intra-dataset structure. What is needed instead is a generator that can produce datasets with con-
trolled CE distributions, capturing the full range from weak to strong entanglement. QMILL fills
this gap. It generates synthetic datasets where CE values follow user-specified distributions. It uses
low-depth, distribution-specific ansatzes optimized via annealing methods, making it both noise-
resilient and efficient. The result is a scalable framework for producing entanglement-rich, diverse,
and realistic quantum datasets, enabling the next stage of data-driven QML development.

4 QMILL’S DESIGN
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The framework has four components: (A) a set of low-depth variational ansatzes supporting different
entanglement structures, (B) a pipeline for sample generation and CE measurement using efficient
density matrix approximations, (C) a dual-annealing optimization loop minimizing CE distribution
mismatch, and (D) a SWAP test-based diversity check to avoid mode collapse. Together, these
components make QMILL scalable, customizable, and hardware-compatible.

4.1 PARAMETERIZED CIRCUITS & OBJECTIVE FUNCTION

The primary design tension lies between expressibility and hardware feasibility: deeper circuits
can model richer CE distributions, but are more susceptible to noise on near-term hardware. To
explore this trade-off, QMILL includes four low-depth parameterized circuits (A1-A4), shown in
Fig. 2 each probing different entanglement and noise behaviors. Al uses compact RX, RZ, and
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Figure 2: QMILL develops a variety of ansatz designs for real and synthetic CE distributions.

controlled-RZ gates. A2 extends Al with a denser entangling pattern. A3 incorporates Hadamard
and controlled-RX gates. A4 combines RX, RY, CNOT, and controlled-RZ gates in a deeper struc-
ture. We note that optimizing an ansatz is a challenging and well-studied problem space, and is
orthogonal to the goals of this work. Rather than performing an expansive or costly architectural
search, we intentionally restrict our study to hardware-efficient ansatz families motivated by prior
work (e.g., (Sim et al.,|2019)) and commonly considered in NISQ-era deployments. The variability
observed across architectures (explored in Sec.[6) provides empirical guidance on which lightweight
ansatz structures tend to align best with different CE distribution shapes, enabling practical and
distribution-aware selection without the need for extensive tuning.

The goal is not to find a universal best ansatz, but to evaluate which structures best match the target
CE under depth constraints. Parameters g are tuned using dual annealing (Sahin & Ciric, |1998), a
global optimizer effective in non-convex landscapes where gradient methods often fail, especially
for skewed or multimodal CE targets. The objective is to minimize the total variation distance (TVD)
between the empirical CE histogram and the target:
C(e) = TVD(Pgenerated(a)a -Plarget)a TVD(P7 Q) = % Zm |P(£C) - Q(x)|

TVD provides a symmetric, distribution-agnostic penalty, making it well-suited for our task. Note:
we compute TVD over one-dimensional CE histograms rather than full output state distributions,
which keeps the cost polynomial in the number of generated samples rather than exponential in
qubit count. Since CE is estimated through measurement-based surrogate quantities rather than
full state tomography, TVD avoids scaling challenges while still capturing distributional structure
relevant for QML evaluation.

4.2 SAMPLE GENERATION AND CE MEASUREMENT

Sample generation begins with product states drawn from the Haar measure:

[9) = cos(6/2)|0) + e sin(0/2)|1),0 ~ U(0,7), ¢ ~ U(0,27).
These unentangled inputs allow clear control over the entanglement introduced by the circuit.
To measure CE, QMILL considers an efficient approximation from [Beckey et al.[(2021)):

where p,, is the reduced density matrix over subset «, and P(s) is the power set of all qubit sub-
sets. This method captures entanglement via subsystem purities and enables CE estimation without
tomography. However, its measurement cost scales with |P(s)|, which becomes impractical beyond
small n. Thus, we employ estimators that preserve the ordering signal required for model selection,
and utilize linear shot budgets (see Appendix [A.T]for details on definitions, bounds, and scalability).

4.3 CONCENTRATABLE ENTANGLEMENT DISTRIBUTIONS
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have uniform entanglement; in-
stead, they exhibit broad or skewed
CE profiles. Supporting full CE
distributions enables realistic benchmarking of QML models across diverse entanglement regimes.
QMILL supports both real and synthetic targets. For real CE distributions, we extract his-
tograms from quantum-encoded classical datasets such as MNIST, FashionMNIST, and CIFAR-
10 (Krizhevsky et al., [2009; Xiao et all [2017} |Deng, |2012), as well as native quantum datasets
like quantum chemistry, soil moisture, and dark matter (Arumugam et al., 2024; |Chen et al.| 2024;
Schiitt et al.| 2017). Each dataset is amplitude encoded, and CE is computed to produce empirical
histograms used as generation targets. To stress-test QMILL’s flexibility, we define several synthetic
CE distributions:

Figure 3: In addition to the CE distributions of real data,
QMILL also tests its efficacy for different CE distributions.

 Uniform: Entanglement spread evenly from 0 to C' Fyax.
* Gaussian: Most samples cluster around moderate CE.

* Weibull (Left/Right): Skewed distributions representing mostly low or high entanglement.

Fig. [3] shows target examples. During training, QMILL bins CE values from generated samples
and compares them to the target via TVD. This approach enables the controlled exploration of how
QML models respond to different entanglement regimes. For instance, one can test how ansatz
performance varies under low versus high CE, or compare the demands of classical and quantum
datasets. QMILL thus enables entanglement-aware dataset engineering, which comprises more than
Jjust data generation.

4.4 SWAP TEST FOR SAMPLE DIVERSITY VALIDATION

Matching CE distributions alone ©
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To enforce diversity, QMILL uses the 0 H

SWAP test (Zhang et al., [2024) (see Figure 4: QMILL uses the SWAP test to validate the dissim-
Appendix[A.2]for details), a quantum ilarity of any two random samples with similar CE values.
routine that measures the fidelity be-

tween two states:

P(j0)) = 3 - (1+[{&]e))

High fidelity (= 1) indicates similarity; values near 0.5 suggest dissimilarity. Unlike classical sim-
ilarity checks, the SWAP test is efficient and non-destructive. During training, a random subset
of sample pairs is selected, and their average SWAP test score is calculated. If average fidelity
exceeds a threshold (e.g., > 0.95), this signals mode collapse. In response, QMILL introduces a
diversity penalty to steer optimization away from redundant states, especially important for sharp
or skewed CE targets. The SWAP test is practical because it requires only up to three-qubit con-
trolled operations, which decompose into standard one- and two-qubit gates on hardware without
native multi-qubit support. Each test uses 2n+1 qubits with shallow depth, leading to linear growth
in qubit count rather than exponential growth in depth. This is compatible with NISQ hardware,
which typically tolerates larger qubit footprints more easily than deep circuits due to high qubit de-
coherence noise. By combining CE alignment with active diversity enforcement, QMILL produces
datasets that are both representative of the target entanglement structure and richly varied at the
state level, generating diverse dataset samples.
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Figure 5: Showecase of top-performing circuits training to mimic the CE of various arbitrary, stress-
testing, and real-dataset distributions.

In summary, QMILL unifies low-depth ansatzes, CE-targeted optimization, and diversity validation
into a practical pipeline for generating high-quality quantum datasets. Each component addresses
a key challenge, circuit noise, CE fidelity, and sample uniqueness, resulting in a scalable frame-
work ready for QML training and evaluation. Finally, because QMILL relies on shallow, hardware-
efficient circuits, its design is portable across backends and does not assume device-specific gate
libraries or calibration profiles. To empirically validate this, we performed noisy simulations on a
neutral atom architecture using the Blogade SDK. We successfully transpiled our optimized ansatz
to the native gate set via global Rydberg pulses and executed it under the GeminiOneZoneNoise-
Model. The simulation yielded a Concentratable Entanglement value of 0.3175 with a global state
purity of 0.68. This performance is within the same order of magnitude as results observed on super-
conducting backends approximately 0.46, confirming that QMILL’s low-depth ansatzes effectively
generalize across varying noise environments and hardware implementations.

5 QMILL’S IMPLEMENTATION AND METHODS

5.1 EXPERIMENTAL AND SOFTWARE SETUP

We evaluate QMILL using Qiskit Aer’s circuit simulator with IBM Sherbrooke’s noise model for
noisy simulations. Real-machine experiments are also conducted on IBM Sherbrooke. All circuits
are implemented in Python 3.10.12 using Qiskit 1.2 (Aleksandrowicz et al.| 2019). Simulations are
executed on a local research cluster running Ubuntu 22.04.2 LTS, with a 32-core 2.0 GHz AMD
EPYC 7551P processor and 32 GB RAM. Each experiment uses 2048 measurement shots. Circuits
are constructed using Qiskit’s QuantumCircuit class, and noiseless simulations are performed
for baseline evaluations. Empirically, we observe that optimization time scales approximately lin-
early with the number of circuit parameters for the low-depth ansatz families considered, and linearly
with the number of measurement shots, consistent with our expectation.

5.2 EVALUATED CLASSICAL AND QUANTUM DATASETS

To evaluate QMILL’s ability to generate quantum data with controlled CE characteristics, we use
both synthetic and real datasets. For stress-testing, we define four synthetic CE target distributions
over the interval [0, 0.4]. These include a uniform distribution, a Gaussian distribution centered
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at 0.2 with a standard deviation of 0.05, a left-skewed Weibull distribution (shape parameter 1.2,
scaled by 0.05), and a right-skewed variant obtained by reflecting the left-skewed version across
z = 0.2. These distributions are chosen to span a wide range of entanglement behaviors observed in
real quantum systems. We also evaluate CE profiles derived from classical datasets: MNIST (Dengl
2012)), FashionMNIST (Xiao et al., 2017), and CIFAR-10 (Krizhevsky et al., [ 2009).

The data are standardized and reduced in dimension using Principal Component Analysis
(PCA) (Pearsonl 1901) to 2™ —1 features for n qubits. PCA is applied solely to reduce the dimension-
ality of classical datasets so they can be amplitude encoded using a small and hardware-compatible
qubit count. Direct amplitude encoding of full-feature vectors would require substantially more
qubits than can be simulated today, but this is a limitation of available hardware and classical sim-
ulation resources rather than of QMILL, which does not inherently depend on PCA or small state
sizes. These features are then embedded into quantum amplitudes using amplitude encoding (Rath
& Datel 2024). The resulting quantum states are processed to compute CE values as described in
Sec.}] and their empirical CE distributions are scaled for comparison against QMILL outputs. More
significantly, we evaluate CE targets extracted from three quantum datasets. The quantum chemistry
dataset (Perrier et al.| [2022)) contains 134k molecules from QM?9, each represented using engineered
features derived from atomic and molecular statistics. These include atomic charge moments, vibra-
tional frequencies, spatial metrics, and element counts, all of which are aggregated into fixed-length
vectors suitable for encoding.

For quantum datasets, we consider two protocols. The first is a soil moisture sensing setup based
on the STQS framework (Jebraeilli et al.| 2025} |/Arumugam et al.| [2024), which utilizes entangled
Rydberg atoms to detect phase differences from soil reflections. Simulations are run for both high-
and low-moisture regimes, incorporating phase jitter to generate ensembles of quantum states. CE
values are computed for each state to form CE distributions reflective of different sensing environ-
ments. The second protocol is a dark matter detection setup adapted from (Chen et al.,|2024), using
a four-qubit sensing circuit where the signal strength ¢ encodes the dark matter interaction. Simu-
lations with ¢ = 0.01 and ¢ = 0.1 yield distinct CE distributions, enabling us to evaluate QMILL
under both weak and strong signal conditions. See Appendix [B]for sensor circuit details.

We use circuits with 3-5 qubits, depending on the number of features to be generated for an appli-
cation. SWAP-based validation requires 2n+1 qubits (e.g., 21 qubits for a 10-qubit circuit), which
is costly to simulate without HPC resources, and near-term limitations in error correction necessi-
tate simulation for controlled evaluation. Our choice of smaller circuit sizes is therefore driven by
current practical constraints rather than by a technical limitation of the approach.

5.3 QMILL’S EVALUATION METRICS

We evaluate the ansatz performance using four key metrics. The TVD measures how well the ansatz
can reproduce target CE distributions, with lower values indicating better performance. The TVD
variance quantifies the consistency of the ansatz across different distributions, where lower variance
suggests more reliable performance. We also compute the TVD rank by comparing the TVD of each
ansatz against those of others for all distributions, assigning ranks 1 through 4 to each distribution
(with 1 being the best performing), and then averaging these ranks across all distributions.

We use the SWAP test similarity to compare two quantum states by measuring their similarity,
yielding a probability P(]0)) between 0.5 (distinct states) and 1.0 (identical states). For statistical
robustness, we perform multiple SWAP tests within each CE range, with the number of tests limited
by the available states in that range. For each circuit architecture and target distribution, we first
generate 1000 random product states and transform them through the trained ansatz. The resulting
states are then grouped by their CE values into discrete ranges. Within each range, we randomly
pair states and perform SWAP tests between them.

6 QMILL’S EVALUATION AND ANALYSIS

6.1 QMILL’S ABILITY TO CAPTURE DISTRIBUTIONS

We evaluate QMILL across multiple CE distributions, observing varied performance depending on
the target shape. Fig. 3] presents the best-performing ansatz for each case. We note that as prior
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Figure 6: QMILL’s TVD performance on (a) arbitrary distributions used for stress testing its impact
and (b) real datasets (lower is better).

work does not target CE distributions, there is no state-of-the-art method for this area. Fixed-target
methods can be used as a reference point, but they are fundamentally optimized for a different
objective. We therefore compare QMILL with our baselines that reflect competitive alternatives
under the same distribution-matching goal.

For the uniform distribution, ansatz Al achieves a TVD of ~ 0.18, reflecting reasonable spread
coverage. In the Gaussian case, ansatz A4 performs best, achieving a TVD below 0.1 (Fig. [6(a)).
The trained distribution accurately captures both the central peak and the bell-shaped spread, closely
matching the target. Ansatz A1l also performs well on the left-skewed Weibull, effectively modeling
the sharp peak and gradual decline. The right-skewed Weibull, however, proves more challenging:
although ansatz A3 reduces the TVD to 0.5, the improvement over the initial state is modest. This
distribution intentionally concentrates CE at unrealistically high values to stress test QMILL’s limits.
We emphasize that the high-CE right-skewed target is intentionally unrealistic: achieving arbitrarily
high entanglement from arbitrary input product states is fundamentally constrained by quantum
reversibility. A circuit that could reliably map many distinct inputs to a fixed, highly entangled
output would be invertible and could therefore be used to generate arbitrary states from that output,
which is not physically consistent. The right-skewed case is therefore included as a stress test rather
than an achievable target. Despite these extremes, QMILL achieves reasonably low TVD across all
cases, demonstrating robustness even under adversarial conditions.

6.2 QMILL’S ABILITY TO EMULATE REAL DATASETS

QMILL shows strong performance when emulating CE distributions from real-world classical and
quantum datasets. Across all evaluated datasets, the trained distributions align closely with targets,
with high-fidelity matches observed in most cases. For MNIST, ansatz A3 achieves a TVD < 0.1,
significantly outperforming Al and A2 and accurately reproducing the characteristic bell-shaped
CE profile (Fig.[5] Fig.[f[b)). Similar performance is observed for FashionMNIST and CIFAR, with
QMILL consistently narrowing the initial CE spread to better match the target structure.

0.8

On quantum datasets, QMILL performs espe-
cially well. For the quantum chemistry dataset, 0.6
all ansatzes yield TVD values below 0.2, de-
spite the narrow CE band, and the results for the
soil moisture and dark matter datasets similarly
show close alignment (Fig. 0] Fig.[7). While 00— — ¢
later evaluations show some ansatzes outper-
form others overall, these results highlight that
different architectures excel on specific distributions. For example, A3 is best suited for MNIST, A2
performs well on soil and DM sensor signals, Al is optimal for the Left Weibull dataset, and A4
captures the chemistry dataset most effectively. This underscores the utility of maintaining a diverse
ansatz library tailored to different CE profiles.

0.4

TVD

0.2

Soil High DM Low DM High

Figure 7: QMILL’s TVD with quantum sensors.

6.3 DIVERSITY OF SAMPLES GENERATED BY QMILL

We assess the diversity of generated states using SWAP tests between state pairs within similar CE
ranges across all four circuit architectures. As shown in Fig.[8[(a), each point represents the average
SWAP test value for a given CE range, with point size indicating the number of state pairs tested (the
larger the circle, the more the samples). Most values lie between 0.5 and 0.6, suggesting that gener-
ated states are largely distinct, even within the same CE bin. We observe slightly higher similarity in
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Figure 8: (a) SWAP test results across different CE values. Each point represents a set of SWAP
tests between states with similar CE values. The y-axis shows the test outcome (0.5 indicates distinct
states, while 1.0 indicates identical states), and the x-axis shows the CE value of the tested states. (b)
CE differences between ideal simulation, noisy simulation, and real hardware for the soil moisture
dataset highlight the performance differences under different scenarios.

the low CE regime, where most samples are concentrated—an expected outcome, as high-CE states
are harder to generate. In contrast, states in higher CE ranges consistently yield SWAP scores near
0.5, indicating strong sample-level diversity. This trend is consistent across all ansatzes, confirming
that QMILL reliably produces non-redundant states across the full CE spectrum.

6.4 QMILL’S PERFORMANCE UNDER NOISE

To evaluate robustness under realistic conditions, we compare CE values for quantum states from
the soil moisture dataset across ideal simulation, noisy simulation (using IBM Sherbrooke’s noise
model), and real hardware execution on IBM Sherbrooke (Fig. [§(b)). Interestingly, both noisy sim-
ulation and real hardware runs exhibit higher CE values than ideal simulation, likely due to noise-
induced deviations reducing the likelihood of measuring the all-O state. While all three settings
capture a similar trend (approximately linear), real hardware consistently shows more variance than
noisy simulation. This suggests that IBM’s noise model slightly underestimates noise effects com-
pared to actual device behavior. These results emphasize the need to evaluate QML-relevant quan-
tum datasets under both simulated and real hardware conditions, as noise can significantly influence
measured entanglement.

6.5 PERFORMANCE OF DIFFERENT ANSATZES

We compare the four ansatz A1 O0A2 A3 EAL
des1gns using mean TVD_’ Mean Median Variance Rank
median TVD, TVD vari- 0.22 0.2 0.016 7 4.007

ance, and average rank
across all target CE distri-
butions (Fig. 0). Ansatz (g 0.0 0.000 0.004

A3 delivers the best over-
all performance, achieving Figure 9: The aggregated TVD performance of the different ansatzes

the lowest mean and me- Shows that A3 performs the best in general.

dian TVD along with low

variance. Despite its simplicity, featuring only a single layer of controlled operations and Hadamard-
based state preparation, A3 strikes an effective balance between expressivity and depth. A2 performs
comparably in terms of accuracy and rank, but has significantly higher depth due to its extensive use
of controlled-RZ gates, offering no clear performance gain over A3. Al, the simplest in struc-
ture, shows the weakest results, with the highest median TVD, indicating that minimal circuits lack
sufficient expressivity to model CE distributions effectively. A4 offers balanced performance with
moderate depth; its use of X gates provides a slight improvement over rotation-only designs, but still
falls short of A3’s efficiency. The results suggest that while simplicity helps with noise resilience, a
minimal level of entangling structure is essential. A3 best captures this trade-off.

0.11+ 0.14 0.008 1 2.00 1

6.6 DEPLOYING QMILL FOR QML CLASSIFIERS

We now demonstrate the practical utility of QMILL, specifically whether these synthetic CE datasets
can effectively train QML models. We train a three-qubit QNN on QMILL-generated CE feature
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Table 1: Performance (%) of dual-annealing-optimized QNNs comparing ideal vs. noisy circuits.

Accuracy Precision Recall F1 Score
Ideal: 81.8, Noisy: 84.8 | Ideal: 83.3, Noisy: 87.0 | Ideal: 83.3, Noisy: 84.5 | Ideal: 83.2, Noisy: 83.8

sets under both ideal and noisy simulations, and benchmark its accuracy against a classical logistic-
regression ceiling. We first create a dataset using the quantum soil sensor data we generated earlier
by batching the CE values into 400 samples, with each sample containing 9 CE values, and then
assigning the label O or 1 depending on whether the samples came from low- or high-moisture
soil. We implement a three-qubit classifier by encoding each of the input CE value features into
an RY-RX-RZ feature map, then applying an ansatz with full entanglement between qubits using
Qiskit’s RealAmplitudes parameterized circuit. The model then measures a single-qubit Z observ-
able on the first qubit and feeds the expectation value into a QNN.

Training is performed using a dual-annealing optimizer, and performance is evaluated through 5-fold
cross-validation. Noise is modeled using IBM Sherbrooke’s error parameters. Table [T] summarizes
accuracy, precision, recall, and F; score for the noisy and ideal circuits, each normalized against a
classical logistic-regression baseline set to 100%. Notably, the noisy implementation falls within a
few percentage points of its ideal counterpart, demonstrating that our three-qubit classifier retains
nearly all of its predictive power even in the presence of realistic gate and readout errors. The
slightly higher accuracy observed under the noisy setting in can be attributed to sampling variance
rather than a systematic performance gain from noise, and conclude that the two settings exhibit
comparable accuracy in practice. This tight correspondence confirms that, for Concentratable En-
tanglement—based features, the modest noise levels expected on near-term quantum hardware will
not adversely affect QMILL’s performance for QML applications.

7 RELATED WORK

As QMILL is the first-of-its-kind effort toward synthetic QML data generation, the related work
is limited. Schatzki et al.| (2021)) attempted to generate entangled datasets using quantum circuits
trained to achieve a single target, concentratable entanglement value. However, this approach falls
short as generated samples often deviate from the desired entanglement. |Xu et al.| (2025) employed
supervised QML and CE lower bound metric to generate mixed-state datasets designed for entangle-
ment classification around a target value, which is orthogonal to our approach of generating target
CE distribution datasets. [Zhang et al.| (2025) uses a denoising model to synthesize class-specific
GHZ/W-like states; unlike QMILL, this does not control CE distributions across datasets nor en-
force sample diversity.

Other approaches include domain-specific methods, such as Quantum Generative Adversarial Net-
works (QGANS) for detecting product states (Steck & Behrman, [2024), and quantum transfer learn-
ing on small, high-dimensional datasets for remote sensing (Otgonbaatar et al.,[2023). While inno-
vative, these methods do not generalize to QML tasks requiring flexible entanglement distributions.
(Yu et al., 2023)) proposed generating optimal datasets for learning unitary transformations, yet the
approach remains constrained to classical applications. [Sim et al.| (2019) explored the expressibil-
ity of parameterized quantum circuits, providing insight into ansatz selection, but in our work, we
observe that higher expressibility does not necessarily correlate with better CE matching. This lim-
itation necessitated the design of a customized ansatz in QMILL to better align with targeted CE
distributions, enabling more effective synthetic data generation across a range of entanglements.

8 CONCLUSION

We introduced QMILL, a quantum data generation framework that produces diverse datasets with
distributions of concentratable entanglement values, supporting robust QML model development.
By leveraging customizable ansatz and efficient, low-depth circuits with SWAP tests, QMILL en-
ables scalable, high-quality synthetic data generation with a diverse set of samples, validated across
multiple classical and quantum datasets. QMILL thus addresses a critical need in QML, providing
an essential framework for quantum data generation that advances QML training and evaluation,
ultimately enabling quantum utility and speedup in practice.
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A DESCRIPTION OF METRICS

A.1 CONCENTRATABLE ENTANGLEMENT (CE)

Motivation and intuition. Concentratable Entanglement is a measure of multipartite entangle-
ment. Intuitively, a quantum state with high CE has its entanglement broadly distributed across
many different partitions of qubits, indicating a complex, global correlation structure. In contrast,
a low-CE state may have its entanglement localized to a small number of qubits. For QML, high-
CE states are of interest as they provide a highly correlated structure that quantum algorithms can
exploit for a potential advantage. The formal definition of CE is based on the average purity of all
subsystems of a given size, where purity is a measure of how much we know about a quantum state
and is a value between 0 and 1 that tells us whether a state is pure or mixed: 1 means perfectly known
pure state, lower values mean it is noisy or mixed. For a piece of a larger, globally pure system, any
drop in purity is because that piece is entangled with the rest. CE averages these purities over many
pieces, so a lower average purity means the entanglement is more widely spread.

Formally, the purity of a quantum state for a subsystem S, described by the density matrix pg, is
given by Tr(p%). Concentratable Entanglement (CE) for an N-qubit pure state |¢) is then defined
by averaging over the purities of all possible subsystems of a given size k:

CE 72]611 T272k1 1 — Tr(p?
k() = 35— (N)Sz_k r(pf) —M~m|§k< — Tr(p3))-

In this equation, the sum is taken over all (],X ) possible subsystems S of size k. pg represents the
reduced density matrix of the subsystem S. 1—Tr(p%) measures how mixed the subsystem is, with a
larger value implying greater entanglement. The entire expression is then averaged and normalized.
The purity term Tr(p%) for each subsystem can be estimated on a quantum computer using the
SWAP test (further explained below). The SWAP test requires two copies of ps and measures the
expectation value of the SWAP, which directly corresponds to the purity of the state. Consequently,
estimating CE involves preparing two copies of the global state and performing SWAP tests on all
corresponding subsystems of size k.

Estimating the CE value for a given state thus requires testing the purity of every possible subset of
qubits in the state, which makes computing this value intractable as the qubit count increases. This
motivates the use of efficient quantities that preserve the ordering and distributional structure of CE.
We thus use two measurement-efficient quantities that are connected to CE and straightforward to
obtain on current hardware.

For training circuits to estimate CE distributions (as in Fig.3)), we use
NZP = 1-P(0"),

i.e., the complement of the all-zeros outcome in the computational basis. NZP is a lightweight
coherence indicator that increases as probability mass spreads away from a basis state. We use NZP
as a cheap surrogate during optimization where more precise CE estimators would be too expensive.
Estimating NZP is scalable because, with shallow ansatzes, the probability of observing the all-zero
outcome does not vanish exponentially, reducing NZP estimation to a Bernoulli mean estimation
problem with shot complexity O(e~?2) independent of qubit count. NZP is used solely as a CE
surrogate rather than for state reconstruction, allowing the overall cost to remain polynomial and
compatible with near-term hardware.
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Our circuits that estimate the soil moisture sensors use a more accurate and expensive measure to
estimate the CE value by leveraging a subset of SWAP tests (namely, only on single-qubit pairs) that
are used to generate CE estimations. We prepare two copies of the state and run parallel SWAP tests
on single-qubit subsets S = {j}. Let ¢ = Pr[all SWAP ancillas = 0] and n be the number of data
qubits. Then,

4
g(l—Q) < CE; < 4(1—q),

2
where CE; = 4(1 - %Z?Zl poyj) and po; = Prfancillaj =0] = #(pj). This bound is

conservative and equals CE; when single-qubit purities are equal or else safely overestimates CE; .

Scalability. Estimating CE precisely does not scale since it requires aggregating purities over all
size-k subsystems of qubits in a single state, and thus needs SWAP-test-based purity estimation
on a combinatorial number of subsets, which becomes intractable as the number of qubits grows.
Looking ahead to error-corrected quantum computing, scalability becomes even more critical since
a single logical qubit typically uses O(d?) physical qubits and continuous syndrome cycles, and thus
any metric whose evaluation cost grows superlinearly in the number of logical qubits is completely
unscalable. The measurement-efficient quantities we use above are designed to circumvent this
issue.

During training, we use our lightweight surrogates without paying the full evaluation cost; for soil
moisture evaluation, we use the single-qubit, two-copy procedure that prepares two copies and runs
SWAP tests in parallel on S = {;}, aggregates those local outcomes, and then relates the aggregate
to CE via the established bounds above. Using this, our evaluation cost grows with the number
of local SWAP tests we choose to run, proportional to n when we test each qubit once in parallel,
instead of with the number of subsets of qubits. That keeps shot budgets linear, which is compatible
with near-term hardware. Empirically, our evaluations demonstrate that this pipeline maintains sta-
ble ordering and trends under noise, confirming that these metrics remain informative when direct
CE estimation is infeasible.

A.2 SWAP TEST METRIC

Given two n-qubit registers and an ancilla initialized to |0), the SWAP test applies a Hadamard, a
controlled-swap on some subset S C {1,...,n} of corresponding qubits, and a final Hadamard to
the ancilla. Measuring the ancilla yields:

po(S) = Prlancilla = |0)] = (1 + Tr[psos]),

where we get |0) more often when the states overlap more. Thus in practice, po(S) can be used as a
similarity score where:

po(S) =~ 1 = the two states are nearly the same, po(S) ~ = = they are nearly orthogonal.

Moreover, the SWAP test can also be used to compute the purity of a given state; in fact, the an-
cilla’s measurement encodes the purity of the subsystem S of a single copy when the two inputs are
identical (p = o). Intuitively, the more often we see |0), the more pure .S is on its own, meaning it
carries little correlation with the rest of the system, while outcomes closer to 1/2 indicate S is mixed
because its information is shared with (i.e., entangled with or randomized by) its complement.

B QUANTUM SENSOR SIMULATOR CIRCUITS

This appendix provides a description of the quantum circuits used to simulate the soil moisture and
dark matter quantum sensing protocols. These circuits are adapted from the STQS framework (Je-
braeilli et al., |2025)) and are designed to model the specific physical interactions relevant to each
application.
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B.1 SoOIL MOISTURE SENSOR CIRCUIT

The circuit for the soil moisture sensor is designed to perform a differential measurement, comparing
a signal reflected from the soil to a reference signal from free space. The purpose of this protocol is
to determine the soil’s dielectric permittivity, which is directly correlated with its moisture content.
The structure of the circuit begins by preparing a set of sensor qubits into a Greenberger-Horne-
Zeilinger (GHZ) state, entangling the qubits. Following state preparation, the entangled qubits are
partitioned into two groups. The first group interacts with the target signal, accumulating a phase
®soil, While the second group interacts with the reference signal, accumulating a phase @ge.. The
resulting phase difference, which contains the information about the soil moisture, is then transferred
onto a single memory qubit using a sequence of CNOT gates. Finally, the sensor qubits are measured
in a disentangled basis, using entanglement to amplify the small phase difference between the two
signals. A circuit diagram for the soil sensor can be found in Fig. 8 in Jebraeilli et al.| (2025).

B.2 DARK MATTER SENSOR CIRCUIT

The circuit simulating the dark matter detector is designed to sense a faint, oscillating signal hy-
pothesized to originate from ultralight, wavelike dark matter. The goal is to achieve a high degree of
sensitivity to detect a weak interaction. The protocol starts by preparing an array of sensor qubits in
an entangled GHZ state, which acts as a collective probe. The sensing phase is modeled by applying
a small rotation, represented by an R, (¢) gate, to each of the sensor qubits simultaneously. The ro-
tation angle ¢ is proportional to the strength of the interaction with the dark matter field. The use of
an entangled array provides a coherent amplification of this weak signal, as the effect of the rotation
on the collective state is more pronounced than on single unentangled qubits. After the interaction,
disentangling gates are applied to transfer the accumulated phase information from the sensor array
to a single qubit. This information is then mapped to a memory qubit for measurement. A circuit
diagram for the dark matter sensor can be found in Fig. 15 inJebraeilli et al.| (2025)).

C LLM USAGE

ChatGPT and Google Gemini were used to help generate/refine code, as well as refine paper content.
All generated content was checked by the authors for correctness.

D REPRODUCIBILITY STATEMENT

QMILL’s data generation methodology, machine learning codebase, and generated datasets are
open-sourced at: https://anonymous.4open.science/r/QOMill1-FA93. This ensures
transparency and reproducibility, supporting research acceleration.
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