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Abstract

Multimodal recommender systems leverage diverse information, to model
user preferences and item features, helping users discover relevant prod-
ucts. Integrating multimodal data can mitigate challenges like data sparsity
and cold-start, but also introduces risks such as information adjustment
and inherent noise, posing robustness challenges. In this paper, we ana-
lyze multimodal recommenders from the perspective of flat local minima
and leverage the denoising capability of BLIP, a Vision Language Model,
to mitigate the inherent noise risk in multimodal inputs. We propose a
concise yet effective recommendation training strategy that can implicitly
enhance model robustness during optimization, addressing instability risks.
Extensive theoretical and empirical analyses demonstrate the superiority of
our approach across multimodal recommendation models and benchmarks.
The proposed method: Sharpness-Aware Mirror Gradient with BLIP-Based
Denoising (SGBD) complements existing robust training techniques and
can be easily extended to advanced recommendation models, making it a
promising paradigm for training robust multimodal recommender systems.

1 Introduction

Multimodal recommender systems leverage various types of information, such as texts,
images, and videos, to model user preferences and item features, helping users discover
items aligned with their interests. Integrating multimodal information can mitigate inherent
challenges in recommender systems, like data sparsity and cold-start issues (1) (5) (8) (19) .
However, this integration also introduces certain risks, such as information adjustment risk
and inherent noise risk, which pose crucial challenges to the robustness of recommendation
models.

The information adjustment risk arises from the frequent modifications made to mul-
timodal data, such as merchants updating keywords or images of items to keep up with
trends and promotions. The inherent noise risk is present in the training phase, where
the multimodal information, like subpar image quality, noisy text, or irrelevant features,
can negatively impact the model’s performance. These two make it difficult for the rec-
ommender system to accurately determine the target user for the current item, leading to
suboptimal/incorrect product recommendations (15) (19). The introduction of multimodal
data in recommender systems makes it more challenging to mitigate such risks.

These risks can significantly degrade the reliability and performance of multimodal recom-
mender systems (3). To address this problem, we rethink the robustness of multimodal
recommender systems from the perspective of flat local minima. We propose a novel op-
timization strategy that combines Sharpness-Aware Minimization (SAM) (4) with Mirror
Gradient (MG) (21), which together enhance the model’s robustness by promoting solutions
with flat minima during the optimization process. This approach effectively mitigates the
instability risks arising from multimodal information inputs. Furthermore, we leverage the
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(a) Illustration of the Inherent Noise Risk and Infor-
mation Adjustment Risk arising from multimodal
inputs. As visible in the figure, the unrelated in-
formation present in the product’s text description
(due to tagging etc.) and image (for example due
to some sales event) can act as a noise for feature
generator. This can translate to wrong informa-
tion being attributed to the preference of a given
customer, leading to the solution recommending
products not upto the customer’s preference.
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(b) Illustrative example of how Informa-
tion Adjustment risk leads to shift in the
loss landscape, increasing the loss for a
given optimized model parameter θ. The
increase in loss for local sharp minima
∆L1 = |θ1−θ′1| is much greater than that
for the local flat minima ∆L2 = |θ2−θ′2|.
Thus, searching for local flat minima
while optimization delivers more robust
solution w.r.t information adjustment
risk

Figure 1: Description of different multimodal risks that can arise when a Foundational Model
based solution operates in the wild. Each risk poses serious challenge to the robustness of
production systems based on Foundational Models

denoising capabilities of BLIP (Bootstrapped Language-Image Pre-training) (10) to address
the inherent noise risk by refining noisy images and texts. This denoising process significantly
improves the quality of multimodal representations, leading to more accurate and reliable
recommendations as demonstrated by our experiments.

We address practical deployment challenges by proposing SGBD: Sharpness Aware Mirror
Gradient with BLIP based denoising for building robust solutions for handling noisy inputs
and information adjustments in production environments, with empirical validation across
multiple recommendation models and datasets. Through strong theoretical analysis and
extensive empirical experiments, we demonstrate the superiority of our proposed approach
across various multimodal recommendation models and benchmarks. Additionally, we show
that the integration of SAM with MG complements existing robust training methods and
that the denoising capabilities of BLIP further enhance model performance. This makes our
method a versatile and fundamental paradigm for training robust multimodal recommender
systems, establishing a new benchmark for reliability and accuracy in the field.

2 Preliminaries

Multimodal Product Recommender Let the set of customers be U = {u0, u1, . . . , un}
and the set of products be I = {i0, i1, . . . , im}. Each customer u ∈ U has given an explicit
positive feedback about product Iu ∈ I. For each product Iu ∈ I the multimodal information
is constituted by the visual features as vi ∈ V , textual features as ti ∈ T and the multimodal
recommendation model is represented by R. The multimodal product preference score yu,i
is computed as:

yu,i = R(u, i, vi, ti, Iu|θ) (1)
Where θ represents the parameters of R and yu,i is the preference score that a customer u has
for the product i. A high yu,i implies a high probability of customer u buying product i, hence
the products with high yu,i form the recommendation set for a customer u. Loss Function
for Recommender Sytem Bayesian Personalized Ranking loss(13) is the most popular
loss function used by most recommender systems(7)(23). The optimizer aims to ensure that
yu,i > yu,i′ where i ∈ Iu and i′ /∈ Iu thereby ranking positive interaction products higher
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than the non positive ones. Some method introduce additional loss components to enhance
the overall performance (16) (24). We will use L(.) to represent the overall loss function.

Amazon Website
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Figure 2: The captioning and filtering framework for BLIP. The captioner generates
synthetic descriptions for image-text pairs (e.g., describing a jewelry box), while the filter
removes noisy or irrelevant data. This process ensures that the resulting training dataset is
cleaner and more representative, enhancing the model’s training and inference robustness.

3 Methodology

3.1 Overcoming Noise in Images and Text with BLIP

Noise in multimodal ASIN data, particularly in the product images and their associated title
and description texts, presents significant challenges in the development of robust product
recommender systems. This noise may include low-resolution images, artifacts introduced
during compression, ambiguous or irrelevant textual descriptions, and inconsistencies between
visual and textual modalities. Such issues degrade the quality of feature representations and
adversely affect the accuracy of recommendations based on such representations.

Bootstrapped Language-Image Pre-training (BLIP) has emerged as a promising framework
to address these challenges by leveraging advanced denoising capabilities. The pre-training
objectives of BLIP, including noise-robust contrastive learning and masked modeling, enable it
to enhance multimodal representations. BLIP achieves this through the following mechanisms:

1. Enhancement of Image Representations: BLIP processes noisy or degraded
images by refining visual features, leveraging pre-training on large-scale datasets.
By predicting clean and semantically meaningful representations, BLIP effectively
filters out irrelevant artifacts, retaining only salient visual attributes of the item
(10).

2. Refinement of Textual Descriptions: Text accompanying images, such as
product descriptions or metadata, often contains noise in the form of redundancy,
irrelevance, or ambiguity. BLIP utilizes masked language modeling and caption
generation tasks to denoise and enrich these textual representations. This ensures
that the text captures the most relevant aspects of the image (10) (9).

The cross-attention mechanism in the encoder and decoder enables the model to conditionally
align image features with text tokens, fostering a bidirectional interaction that extracts
semantic correlations between modalities.

3.1.1 Noise Invariance Product Representation

The denoising capabilities of BLIP extend beyond the training phase, providing robust
handling of noisy input data during inference. Robust representations learned during pre-
training enable BLIP to generalize effectively to unseen noisy data, ensuring consistent
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Figure 3: The learning framework of BLIP highlights its bootstrapping-based denoising
capability. A captioner generates synthetic captions for web images, while a filter discards
noisy image-text pairs. Both the captioner and filter are initialized from the same pre-
trained model and fine-tuned on a small-scale human-annotated dataset to ensure quality.
The resulting bootstrapped dataset, free from noise, is used for pre-training a new model,
enhancing its robustness and generalization. During inference, the denoising mechanism is
retained, allowing the model to filter noisy inputs dynamically and maintain high-quality
performance in real-world scenarios.

recommendation performance across diverse input conditions. The key advantage of BLIP
is its robustness to modality gaps and domain shifts during inference. By employing
contrastive learning objectives during training, the model learns to associate semantically
similar image-text pairs while distinguishing dissimilar ones. The learned representation
not only encapsulates high-level semantics from individual modalities but also integrates
cross-modal context. For example, in an image captioning task, visual regions are dynamically
weighted by their relevance to specific textual tokens, enabling nuanced and contextually
aware caption generation (10). Similarly, in retrieval tasks, BLIP computes similarity scores
in the fused latent space, facilitating precise matching of visually and textually aligned
inputs.

3.2 Enhanced Sharpness-Aware Minimization for Flat Local Minima
Detection

Optimization strategies that promote flat local minima are critical for improving the robust-
ness and generalization of machine learning models, specially while dealing with information
adjustment risk. Sharpness-Aware Minimization (SAM) (4) is an advanced optimization
technique designed to achieve such minima by explicitly considering the geometry of the loss
landscape during training.

3.2.1 Sharpness-Aware Minimization Framework

SAM modifies the standard optimization objective by penalizing sharp minima. The SAM
objective is given by minθ max|ϵ|p≤ρ L(θ + p). The sharpness of a minimum is defined by
the sensitivity of the loss function to perturbations in the model parameters. Formally, the
SAM loss function and it’s gradient is given by:

LSAM(θ) = L
(
θ + ϵ

∇θL(θ)
∥∇θL(θ)∥+ δ

)
, g̃ = ∇θLSAM (2)

where L(.) is the loss function, θ represents the model parameters, ϵ is an adversarial
perturbation, and ρ is a predefined radius that controls the size of the perturbation. The
modified argument of loss function identifies the worst-case loss within the ρ-neighborhood
of the current parameter configuration, while the outer minimization seeks to minimize this
worst-case loss. This results in parameter updates that favor flat minima, which are known
to generalize better (4).
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3.2.2 Incorporating Individual Sample Specific Mirror Gradient

To further enhance the SAM objective, we propose incorporating an additional loss component
that is specific to individual samples. This component introduces a sample-wise penalty
term that optimizes in an opposing direction, providing a more nuanced regularization effect.
The optimization steps for the proposed method are described in algorithm 1.

Algorithm 1 Sharpness-Aware Minimization with Mirror Gradient Training Algorithm
Require: Training dataset D, model parameters θ, perturbation scale ϵ, stability constant

δ, step interval β, learning rates α1 and α2 with α1 > α2 ≥ 0
Ensure: Optimized model parameters θ
1: count← 0 {Initialize step counter}
2: for each mini-batch B ⊂ D do
3: if count%β = 0 then
4: Compute the gradient g̃ of the loss LSAM as defined in Equation 2
5: Update intermediate parameters: θ̃ ← θ − α1g̃
6: Further refine the parameters: θ′ ← θ̃ + α2∇θL(θ̃)
7: else
8: Update parameters directly: θ̃ ← θ − α2∇θL(θ)
9: end if

10: Update the model parameters: θ ← θ′

11: Increment the step counter: count← count+ 1
12: end for
13: return Optimized model parameters θ

3.2.3 Theoretical Insights

Inherent Noise Risk. To address the challenge of inherent noise in multimodal data
during training, BLIP models employ a combination of robust architectural and optimization
strategies. Central to this approach is contrastive learning, which aligns semantically
meaningful image-text pairs while separating noisy or irrelevant pairs, as established in prior
work (10) (9). This ensures that the model focuses on high-quality relationships during
training.

To further enhance robustness, BLIP incorporates a cross-modal bootstrapping mecha-
nism (10), where high-quality signals from one modality (e.g., visual) guide the refinement of
noisy embedding in the other (e.g., textual). This interplay ensures balanced learning across
modalities, leveraging alignment to reduce noise impact effectively.

The use of frozen pre-trained language models (e.g., FLAN-T5 or OPT)(20)(9)(2) provides
robust semantic grounding. These models map noisy textual inputs to consistent embedding,
as demonstrated in large-scale pretraining studies. Pretraining on carefully curated multi-
modal datasets further enhances foundational robustness by minimizing empirical risk on
clean distributions (12; 10). This allows the model to adapt effectively during fine-tuning on
noisier downstream datasets.

Together, these strategies enable BLIP to construct robust multimodal representations,
significantly mitigating noise-related risks in large-scale datasets.

Information Adjustment Risk. The proposed method introduces a novel mechanism for
addressing information adjustment risk by integrating opposing individual sample losses into
the SAM framework. This innovation adds directional flexibility to the gradient, balancing
sharpness and curvature considerations during optimization.

Theorem: step 5 and step 6 described in algorithm 1 are equivalent to introducing an additional
regularization term ∇2

θL(θ)∇θL(θ)/(∥∇θL(θ)∥+ δ) and an additional multiplicative factor
of [α1/(∥∇θL(θ)∥+ δ)− α2] to the original loss objective Lθ
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Proof: Substituting θ̃ from Step 5 into Step 6 in alg. 1 and applying a Taylor expansion for
LSAM (θ) as defined in Eq. 2, we can write the final update θ′ as:

θ′ = θ −∇θ

(
Lθ(θ)

(
α1

||∇θLθ(θ)||+ δ
− α2

)
+ α1α2∇2

θ

(
∇θL(θ)

∥∇θL(θ)∥+ δ

))
(3)

Thus, the effective loss objective becomes:

min
θ

(
Lθ(θ)

(
α1

∥∇θLθ(θ)∥+ δ
− α2

)
+ α1α2∇2

θ

(
∇θL(θ)

∥∇θL(θ)∥+ δ

))
.

This formulation introduces two key adjustments:

1. A multiplicative factor scaling the original loss, controlling gradient updates based
on their magnitude relative to α1/α2.

2. A regularization term proportional to the curvature (Hessian) of the loss landscape.
This term dynamically adjusts the optimization trajectory, penalizing sharp minima
with high curvature while incentivizing flat minima.

When ∥∇θL(θ)∥+ δ ≥ α1/α2, the gradient’s sign reverses, effectively pushing the weights
away from sharp minima. The curvature-dependent regularization term further discourages
convergence to regions with high curvature, promoting exploration of flatter solutions. No-
tably, when escaping sharp minima, the regularization term may become negative, amplifying
the gradient to accelerate movement toward smoother regions. As the model approaches a
saddle point, the curvature term diminishes in magnitude, allowing stable convergence.

By balancing gradient scaling and curvature-dependent regularization, the proposed frame-
work ensures robustness against noisy gradients and sharp minima, enabling the model to
consistently converge to flat, generalizable solutions.

A detailed discussion on how BLIP based denoising complements the proposed Sharpness
Aware Mirror Gradient is stated in the Appendix.

4 Experiments
To establish the competitiveness of the proposed method, we conduct thorough experiments
where we train a variety of multimodal recommendation models including Graph Neural Net-
work based models: DualGNN (17) and DRAGON (23), and self supervised learning based
model: SLMRec (16) on 4 Amazon Product Recommendation datasets (11). Dataset The
experiments are conducted on four multimodal Amazon datasets: Baby, Sports, Electronics
and Clothing where each sample is a pair of product images and their text description. The
data processing follows same steps as outlined by Zhou et al (22). The exact statistics of the
dataset is mentioned in table 1. Metric We compare the top-k precision (PREC), recall
(REC), mean average precision (MAP) and normalized discounted cumulative gain (NDCG)
as these top-k metrics help us identify the most important products for recommendation
(6)(14)(18)(22). These four evaluation metrics capture complementary aspects of system
performance: REC assesses user interest coverage, PREC measures recommendation ac-
curacy, MAP evaluates average ranking accuracy, and NDCG highlights ranking quality.
Together, they provide a holistic evaluation of the recommender system. Baselines We use
the DualGNN, DRAGON and SLMRec as the baseline along with their variants trained
using Mirror Gradient from (21). The baselines are trained using the original multimodal
features where description based feature has been computed as the sentence embedding
from all-MiniLM-L6-v2 while the visual features are generated using deep CNN from (11).
Implementation Details For product image and decription feature generation, we use
the fused image-text feature from off-the-shelf COCO based base BLIP’s encoder and fused
image-text feature from OPT based base BLIP2’s Q-former (9). We use the standard settings
for the underlying models as can be found in the code shared by (21). The experiments
are performed using Adam optimizer while β is set as 3. The training and evaluation of all
models is conducted using the NVIDIA Tesla T4 GPU where we train each model for 1000
epoch with early stop if there is no update to least loss for 20 consecutive steps.
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Dataset # Users # Items # Interactions Sparsity

Baby 19,445 7,050 160,792 99.88%
Sports 35,598 18,357 296,337 99.95%
Clothing 39,387 23,033 237,488 99.97%
Electronics 192,403 63,001 1,689,188 99.99%

Table 1: Statistics of datasets. These datasets comprise textual and visual features in the
form of item descriptions and images.

Baby
REC@5 NDCG@5 PREC@5 MAP@5

DualGNN

Vanilla 0.0161 0.0107 0.0034 0.0087
Vanilla+MG 0.0208 0.0139 0.0043 0.0107
Vanilla+SGBD 0.0238 0.0190 0.0059 0.0119
BLIP 0.0244 0.0162 0.0053 0.0131
BLIP+MG 0.0272 0.0179 0.0058 0.0144
BLIP+SGBD 0.0288 0.0186 0.0062 0.0151
BLIP2 0.0321 0.0212 0.0068 0.0170
BLIP2+MG 0.0298 0.0198 0.0064 0.0155
BLIP2+SGBD 0.0311 0.0217 0.0071 0.0176

Dragon

Vanilla 0.0322 0.0211 0.0067 0.0170
Vanilla+MG 0.0346 0.0223 0.0070 0.0182
Vanilla+SGBD 0.0351 0.0228 0.0072 0.0187
BLIP 0.0332 0.0217 0.0067 0.0175
BLIP+MG 0.0350 0.0230 0.0077 0.0184
BLIP+SGBD 0.0355 0.0238 0.0081 0.0188
BLIP2 0.0324 0.0210 0.0057 0.0154
BLIP2+MG 0.0320 0.0216 0.0065 0.0168
BLIP2+SGBD 0.0325 0.0218 0.0073 0.0174

Table 2: Top-5 recommendation performance on Amazon Baby dataset when the input
embedding is injected with noise ϵ ∼ N (0, 10−6).

Baby Sports
Model REC NDCG PREC MAP REC NDCG PREC MAP

DualGNN
Vanilla 0.0187 0.0125 0.0041 0.0102 0.0277 0.0186 0.0061 0.0151
Vanilla+MG 0.0230 0.0152 0.0051 0.0122 0.0283 0.0190 0.0063 0.0154
Vanilla+SGBD 0.0245 0.0198 0.0051 0.0122 0.0319 0.0214 0.0070 0.0174
BLIP 0.0249 0.0167 0.0055 0.0136 0.0295 0.0192 0.0065 0.0153
BLIP+MG 0.0280 0.0185 0.0061 0.0149 0.0273 0.0181 0.0060 0.0146
BLIP+SGBD 0.0293 0.0193 0.0064 0.0156 0.0331 0.0227 0.0074 0.0187
BLIP2 0.0328 0.0216 0.0073 0.0174 0.0297 0.0198 0.0066 0.0160
BLIP2+MG 0.0302 0.0200 0.0066 0.0161 0.0286 0.0194 0.0063 0.0158
BLIP2+SGBD 0.0332 0.0224 0.0075 0.0181 0.0314 0.0216 0.0070 0.0177

Improv. 77.54% 72.80% 80.49% 78.00% 19.50% 22.40% 21.31% 23.84%

Dragon
Vanilla 0.0326 0.0216 0.0072 0.0174 0.0399 0.0263 0.0088 0.0211
Vanilla+MG 0.0349 0.0228 0.0073 0.0186 0.0400 0.0267 0.0087 0.0217
Vanilla+SGBD 0.0353 0.0230 0.0076 0.0190 0.0410 0.0270 0.0090 0.0217
BLIP 0.0406 0.0268 0.0090 0.0215 0.0407 0.0265 0.0089 0.0212
BLIP+MG 0.0406 0.0263 0.0088 0.0210 0.0392 0.0257 0.0086 0.0206
BLIP+SGBD 0.0407 0.0275 0.0093 0.0223 0.0392 0.0257 0.0086 0.0206
BLIP2 0.0406 0.0268 0.0090 0.0215 0.0413 0.0273 0.0090 0.0221
BLIP2+MG 0.0420 0.0275 0.0094 0.0220 0.0407 0.0271 0.0089 0.0220
BLIP2+SGBD 0.0439 0.0287 0.0098 0.0231 0.0425 0.0284 0.0093 0.0231

Improv. 34.66% 32.87% 36.11% 32.76% 6.50% 7.09% 5.68% 9.48%

SLMRec
Vanilla 0.0341 0.0227 0.0075 0.0184 0.0439 0.0298 0.0097 0.0244
Vanilla+MG 0.0345 0.0230 0.0076 0.0186 0.0440 0.0297 0.0097 0.0241
Vanilla+SGBD 0.0366 0.0244 0.0081 0.0197 0.0458 0.0310 0.0101 0.0252
BLIP 0.0341 0.0288 0.0075 0.0185 0.0436 0.0295 0.0096 0.0241
BLIP+MG 0.0350 0.0230 0.0077 0.0184 0.0440 0.0296 0.0097 0.0241
BLIP+SGBD 0.0376 0.0247 0.0083 0.0198 0.0462 0.0311 0.0102 0.0253
BLIP2 0.0326 0.0217 0.0073 0.0174 0.0436 0.0295 0.0097 0.0240
BLIP2+MG 0.0329 0.0218 0.0073 0.0176 0.0438 0.0296 0.0097 0.0241
BLIP2+SGBD 0.0362 0.0240 0.0080 0.0193 0.0484 0.0325 0.0106 0.0264

Improv. 8.80% 26.87% 10.67% 7.61% 10.25% 9.06% 9.28% 8.20%

Avg. Improv. 40.33% 44.18% 42.42% 39.46% 12.08% 12.85% 12.09% 13.84%

Table 3: Top-5 recommendation performance on Amazon datasets Baby and Sports. Metrics
in color represent best performance for the particular evaluation metric.
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Clothing Electronics
Model REC NDCG PREC MAP REC NDCG PREC MAP

DualGNN
Vanilla 0.0188 0.0122 0.0039 0.0098 0.0119 0.0080 0.0027 0.0064
Vanilla+MG 0.0188 0.0121 0.0039 0.0098 0.0119 0.0078 0.0027 0.0061
Vanilla+SGBD 0.0200 0.0128 0.0041 0.0103 0.0122 0.0087 0.0032 0.0063
BLIP 0.0294 0.0189 0.0061 0.0153 0.0106 0.0070 0.0024 0.0056
BLIP+MG 0.0221 0.0143 0.0046 0.0116 0.0125 0.0084 0.0028 0.0068
BLIP+SGBD 0.0239 0.0154 0.0050 0.0124 0.0136 0.0092 0.0040 0.0077

BLIP2 0.104 0.0208 0.0065 0.0170 0.0104 0.0069 0.0023 0.0055
BLIP2+MG 0.0233 0.0150 0.0049 0.0121 0.0130 0.0087 0.0029 0.0071
BLIP2+SGBD 0.0241 0.0154 0.0053 0.0128 0.0132 0.0090 0.0038 0.0077

Improv. 68.09% 70.49% 66.67% 73.50% 14.29% 15.00% 48.15% 20.30%

Dragon
Vanilla 0.0399 0.0263 0.0088 0.0211 0.0202 0.0137 0.0045 0.0111
Vanilla+MG 0.0400 0.0267 0.0087 0.0217 0.0204 0.0138 0.0046 0.0111
Vanilla+SGBD 0.0410 0.0270 0.0090 0.0217 0.0204 0.0138 0.0046 0.0111
BLIP 0.0407 0.0265 0.0089 0.0212 0.0209 0.0140 0.0047 0.0114
BLIP+MG 0.0392 0.0257 0.0086 0.0206 0.206 0.0136 0.0046 0.0109
BLIP+SGBD 0.0401 0.0285 0.0104 0.0225 0.0218 0.0146 0.0049 0.0118

BLIP2 0.0413 0.0273 0.0090 0.0221 0.0218 0.0146 0.0049 0.0118
BLIP2+MG 0.0407 0.0271 0.0089 0.0220 0.0207 0.0140 0.0046 0.0113
BLIP2+SGBD 0.0425 0.0284 0.0093 0.0231 0.0216 0.0152 0.0051 0.0115

Improv. 6.52% 7.98% 5.68% 9.48% 7.90% 10.95% 13.33% 6.30%

SLMRec
Vanilla 0.0439 0.0298 0.0097 0.0244 0.0288 0.0196 0.0065 0.0160
Vanilla + MG 0.0440 0.0297 0.0097 0.0241 0.0289 0.0198 0.0065 0.0162
Vanilla + SGBD 0.0458 0.0310 0.0101 0.0252 0.289 0.0198 0.0065 0.0162
BLIP 0.0436 0.0295 0.0096 0.0241 0.0297 0.0205 0.0067 0.0168
BLIP + MG 0.0440 0.0296 0.0097 0.0241 0.0297 0.0204 0.0067 0.0167
BLIP + SGBD 0.0462 0.0311 0.0102 0.0253 0.0302 0.0216 0.0078 0.0178
BLIP2 0.0436 0.0295 0.0097 0.0240 0.0298 0.0205 0.0067 0.0168
BLIP2 + MG 0.0438 0.0296 0.0097 0.0241 0.0298 0.0204 0.0067 0.0167
BLIP2 + SGBD 0.0484 0.0325 0.0106 0.0264 0.0298 0.0204 0.0067 0.0167

Improv. 10.25% 9.06% 9.28% 8.20% 4.86% 10.20% 20.00% 11.25%

Avg. Improv. 28.29% 29.18% 27.21% 30.39% 9.02% 12.05% 27.16% 12.62%

Table 4: Top-5 recommendation performance on Amazon datasets Clothing and Electronics.
Metrics in color represent the best performance for the particular evaluation metric.

4.1 Results

From table 2 and 3, we compare the proposed method’s performance against the baselines
and observe that proposed method delivers consistently higher performance across different
models by an average of 24.5%. The incremental individual benefit from both BLIP based
denoising in the product representation and Sharpness Aware Mirror Gradient can be observed
in table 2 and 3. We demonstrate improvement for higher top-k values in appendix. In table
4, we observe that the proposed method delivers more robust flat minima generalized solution
that doesn’t change much with respect to injection of Gaussian noise in input feature as
compared to that in the existing baseline.

5 Discussion

This work presents a significant advancement in training recommender systems by integrating
BLIP’s noise-robust image-text fused representations with the enhanced sharpness aware
optimization framework. The use of BLIP ensures high-quality multimodal embeddings by
effectively mitigating inherent noise through cross-modal bootstrapping and pretraining on
curated datasets. This enables the model to capture rich, noise-tolerant representations
critical for improving recommendation accuracy in complex multimodal settings. We make
use of cross attention based fused embedding against individual image-text embedding for
product representation due to superior performance of fused embedding on downstream task
(will be shared in appendix).

The proposed SGBD framework further enhances the training process by dynamically
adjusting gradients to guide optimization toward flat local minima, which are associated with
improved generalization and robustness. By penalizing sharp minima and amplifying escape
from suboptimal solutions, SGBD ensures a stable and effective optimization trajectory even
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in the presence of noisy gradients and challenging loss landscapes. As established in (21) the
Mirror Gradient technique outperforms Sharpness Aware Minimization (4) in a one-to-one
setting. We demonstrate in this work that when combined together, the two techniques
complement each other to deliver an even more robust solution.

Empirical results demonstrate the efficacy of the proposed method, achieving 24.5% average
improvement across key metrics (REC, PREC, MAP, and NDCG) across top 5 recommen-
dations under the Bayesian Personalized Ranking (BPR) loss framework. This significant
performance gain underscores the synergy between robust multimodal representations and
advanced optimization strategies in building state-of-the-art recommender systems. These
findings open avenues for further exploration of noise-aware training and optimization tech-
niques in recommendation tasks. The difference in performance of BLIP1 and BLIP2 will be
discussed in a future work where we finetune these models on product dataset.

6 Conclusion

The proposed method SGBD: Sharpness Aware Mirror Gradient with BLIP based denoising
addresses inherent noise and information adjustment risks in multimodal learning through
BLIP-based noise-robust product representations and a modified SAM framework with
Mirror Gradient, driving optimization toward flat local minima. Theoretical analysis and
experiments on REC, PREC, MAP, and NDCG metrics demonstrate that our method
outperforms baselines, effectively mitigating noise and enhancing generalization. These
findings highlight the robustness and adaptivity of our approach for real-world multimodal
applications.
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Appendix

Theoretical Connection Between BLIP and Sharpness Aware Mirror
Gradient

The complementary nature of BLIP’s denoising and Sharpness Aware Mirror Gradient
optimization can be formally established through their distinct but synergistic effects on the
loss landscape. Let L(θ, x, y) be the loss function for parameters θ and input-output pairs
(x, y).

Dual Risk Decomposition: The total risk can be decomposed into:

Rtotal = Rinherent +Radjustment (4)

where Rinherent represents inherent noise risk and Radjustment represents information ad-
justment risk.

BLIP’s Denoising Effect: BLIP’s denoising mechanism acts as a preprocessing function
fBLIP that minimizes inherent noise:

Rinherent(fBLIP (x)) ≤ Rinherent(x) (5)

This is achieved through BLIP’s captioning-filtering mechanism that ensures:

Ex∼D[∥fBLIP (x)− x∗∥] ≤ Ex∼D[∥x− x∗∥] (6)

where x∗ represents the clean, underlying signal.

Sharpness Aware Mirror Gradient’s Robustness Effect: Proposed Sharpness Aware
Mirror Gradient addresses information adjustment risk by finding parameters that are robust
to perturbations:

min
θ

max
∥ϵ∥≤ρ

L(θ + ϵ, fBLIP (x), y) (7)

Synergistic Interaction: The combination of BLIP and Sharpness Aware Mirror Gradient
provides complementary robustness:

Rtotal(θSAMMG
, fBLIP (x)) ≤ min(Rtotal(θ, x),Rtotal(θSAMMG

, x)) (8)

This inequality demonstrates that: 1. BLIP reduces input noise, improving the quality of
representations entering the optimization process 2. Sharpness Aware Mirror Gradient finds
robust parameters within this denoised space 3. The combination provides better guarantees
than either method alone

Theoretical Guarantees: For a perturbation bound ρ and noise level σ:

∥∇θL(θ, fBLIP (x+ η), y)−∇θL(θ, fBLIP (x), y)∥ ≤ Kρ (9)

where ∥η∥ ≤ σ and K is a Lipschitz constant.

This bound shows that: 1. BLIP’s denoising ensures stable gradients despite input noise 2.
Sharpness Aware Mirror Gradient’s flat minima provide resilience to parameter perturbations
3. The combined effect provides robustness to both input and parameter-space variations

The proof follows from:

• BLIP’s denoising properties reduce input variation: ∥fBLIP (x+ η)− fBLIP (x)∥ ≤
α∥η∥ for some α < 1

• Sharpness Aware Mirror Gradient’s flat minima ensure: ∥∇2
θL(θ, x, y)∥ ≤ β for some

bounded β

• The composition of these properties yields the final bound

This theoretical framework establishes that while BLIP and Sharpness Aware Mirror Gradient
operate on different aspects of the robustness problem (input space vs. parameter space),
their combination provides multiplicative benefits for overall system robustness improving
the efficacy and reliability of systems deployed in production.
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Baby
Model REC@10 REC@20 NDCG@10 NDCG@20 PREC@10 PREC@20 MAP@10 MAP@20

DualGNN
Vanilla 0.0297 0.0460 0.0161 0.0204 0.0033 0.0026 0.0116 0.0127
Vanilla+MG 0.0375 0.0598 0.0199 0.0256 0.0041 0.0033 0.0141 0.0156
Vanilla+SGBD 0.0402 0.0626 0.0199 0.0256 0.0041 0.0033 0.0141 0.0156
BLIP 0.0418 0.0657 0.0222 0.0284 0.0047 0.0037 0.0158 0.0174
BLIP+MG 0.0432 0.0651 0.0235 0.0291 0.0047 0.0036 0.0169 0.0184
BLIP+SGBD 0.0452 0.0682 0.0362 0.0305 0.0049 0.0038 0.0177 0.0192

BLIP2 0.0509 0.0810 0.0276 0.0354 0.0057 0.0045 0.0198 0.0218
BLIP2+MG 0.0461 0.0697 0.0251 0.0312 0.0051 0.0038 0.0181 0.0197
BLIP2+SGBD 0.0482 0.0703 0.0362 0.0325 0.0056 0.0046 0.0196 0.0206

Improv. 71.38% 76.09% 124.84% 73.53% 72.73% 76.92% 70.69% 62.20%

Dragon
Vanilla 0.0536 0.0847 0.0285 0.0364 0.0059 0.0047 0.0202 0.0223
Vanilla+MG 0.0544 0.0837 0.0291 0.0365 0.0057 0.0044 0.0211 0.0231
Vanilla+SGBD 0.0544 0.0837 0.0291 0.0365 0.0057 0.0044 0.0211 0.0231
BLIP 0.0638 0.0991 0.0344 0.0435 0.0070 0.0055 0.0246 0.0271
BLIP+MG 0.0625 0.0947 0.0335 0.0419 0.0069 0.0053 0.0239 0.0261
BLIP+SGBD 0.0625 0.0947 0.0335 0.0419 0.0069 0.0053 0.0239 0.0261
BLIP2 0.0644 0.0971 0.0346 0.0430 0.0071 0.0054 0.0247 0.0269
BLIP2+MG 0.0643 0.0978 0.0348 0.0434 0.0071 0.0054 0.0249 0.0272

BLIP2+SGBD 0.0671 0.1021 0.0364 0.0453 0.0075 0.0057 0.0261 0.0285

Improv. 25.19% 15.47% 27.72% 24.45% 27.12% 21.28% 29.21% 27.80%

SLMRec
Vanilla 0.0508 0.0716 0.0282 0.0336 0.0056 0.0040 0.0206 0.0220
Vanilla+MG 0.0509 0.0728 0.0284 0.0340 0.0056 0.0040 0.0207 0.0222
Vanilla+SGBD 0.0530 0.0772 0.0301 0.0360 0.0059 0.0042 0.0219 0.0235
BLIP 0.0506 0.0741 0.0282 0.0343 0.0056 0.0041 0.0207 0.0223
BLIP+MG 0.0504 0.0758 0.0280 0.0346 0.0056 0.0041 0.0207 0.0223
BLIP+SGBD 0.0542 0.0813 0.0301 0.0373 0.0060 0.0045 0.0220 0.0239
BLIP2 0.0493 0.0738 0.0272 0.0335 0.0055 0.0041 0.0196 0.0213
BLIP2+MG 0.0506 0.0745 0.0276 0.0338 0.0056 0.0041 0.0199 0.0215
BLIP2+SGBD 0.0557 0.0819 0.0304 0.0372 0.0062 0.0045 0.0219 0.0237

Improv. 9.65% 14.39% 7.8% 11.01% 10.71% 12.50% 6.80% 8.64%

Avg. Improv. 35.41% 35.32% 53.45% 36.33% 36.85% 36.90% 35.57% 32.89%

Table 5: Recommendation performance on Amazon dataset Baby. Metrics in color represent
best performance for the particular evaluation metric.
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Sports
Model REC@10 REC@20 NDCG@10 NDCG@20 PREC@10 PREC@20 MAP@10 MAP@20

DualGNN
Vanilla 0.0443 0.0693 0.0241 0.0305 0.0049 0.0039 0.0173 0.0190
Vanilla+MG 0.0437 0.0668 0.0241 0.0301 0.0049 0.0038 0.0175 0.0191
Vanilla+SGBD 0.0477 0.0707 0.0265 0.0325 0.0053 0.0039 0.0194 0.0210
BLIP 0.0442 0.0669 0.0240 0.0299 0.0049 0.0037 0.0172 0.0188
BLIP+MG 0.0416 0.0623 0.0227 0.0281 0.0046 0.0035 0.0164 0.0178
BLIP+SGBD 0.0509 0.0771 0.0286 0.0354 0.0057 0.0043 0.0210 0.0228
BLIP2 0.0457 0.0694 0.0250 0.0312 0.0051 0.0039 0.0181 0.0197
BLIP2+MG 0.0450 0.0695 0.0248 0.0311 0.0050 0.0039 0.0180 0.0197
BLIP2+SGBD 0.0492 0.0754 0.0275 0.0342 0.0055 0.0042 0.0201 0.0219

Improv. 14.90% 11.26% 18.67% 16.67% 16.33% 10.26% 21.39% 20.00%

Dragon
Vanilla 0.0633 0.0944 0.0339 0.0420 0.0070 0.0052 0.0242 0.0264
Vanilla+MG 0.0623 0.0931 0.0340 0.0419 0.0068 0.0051 0.0246 0.0268
Vanilla+SGBD 0.0636 0.0975 0.0344 0.0431 0.0071 0.0054 0.0246 0.0270
BLIP 0.0638 0.0940 0.0341 0.0419 0.0070 0.0052 0.0243 0.0264
BLIP+MG 0.0602 0.0902 0.0326 0.0403 0.0066 0.0050 0.0234 0.0255
BLIP+SGBD 0.0622 0.0916 0.0356 0.0423 0.0088 0.0067 0.0258 0.0287
BLIP2 0.0638 0.0962 0.0347 0.0430 0.0070 0.0053 0.0250 0.0273
BLIP2+MG 0.0626 0.0937 0.0343 0.0423 0.0069 0.0052 0.0249 0.0270
BLIP2+SGBD 0.0652 0.0978 0.0358 0.0443 0.0072 0.0054 0.0260 0.0283

Improv. 3.00% 3.60% 5.6% 5.50% 25.71% 18.85% 7.40% 8.70%

SLMRec
Vanilla 0.0668 0.0985 0.0373 0.0455 0.0074 0.0055 0.0274 0.0296
Vanilla+MG 0.0673 0.0989 0.0373 0.0455 0.0074 0.0055 0.0272 0.0294
Vanilla+SGBD 0.0702 0.1030 0.0389 0.0474 0.0077 0.0057 0.0285 0.0308
BLIP 0.0658 0.0964 0.0367 0.0446 0.0073 0.0054 0.0269 0.0290
BLIP+MG 0.0652 0.0968 0.0366 0.0448 0.0073 0.0054 0.0269 0.0291
BLIP+SGBD 0.0685 0.1016 0.0384 0.0471 0.0077 0.0057 0.0283 0.0306
BLIP2 0.0649 0.0974 0.0364 0.0448 0.0072 0.0055 0.0268 0.0290
BLIP2+MG 0.0664 0.0977 0.0370 0.0451 0.0074 0.0055 0.0271 0.0293
BLIP2+SGBD 0.0724 0.1075 0.0410 0.0497 0.0082 0.0060 0.0299 0.0323

Improv. 8.38% 0.41% 9.92% 9.23% 10.81% 9.09% 9.12% 9.12%

Avg. Improv. 8.76% 5.09% 11.40% 4.31% 17.62% 12.73% 12.64% 12.61%

Table 6: Recommendation performance on Amazon dataset Sports. Metrics in color represent
best performance for the particular evaluation metric.
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Clothing
Model REC@10 REC@20 NDCG@10 NDCG@20 PREC@10 PREC@20 MAP@10 MAP@20

DualGNN
Vanilla 0.0301 0.0458 0.0158 0.0198 0.0031 0.0024 0.0113 0.0124
Vanilla+MG 0.0302 0.0457 0.0158 0.0198 0.0032 0.0024 0.0113 0.0124
Vanilla+SGBD 0.0320 0.0485 0.0166 0.0210 0.0034 0.0025 0.0119 0.0130
BLIP 0.0459 0.0670 0.0243 0.0297 0.0047 0.0035 0.0175 0.0190
BLIP+MG 0.0351 0.0503 0.0185 0.0224 0.0037 0.0026 0.0133 0.0144
BLIP+SGBD 0.0380 0.0543 0.0199 0.0242 0.0040 0.0028 0.0143 0.0155
BLIP2 0.0472 0.0695 0.0258 0.0314 0.0049 0.0036 0.0190 0.0205
BLIP2+MG 0.0362 0.0546 0.0192 0.0238 0.0038 0.0029 0.0138 0.0151
BLIP2+SGBD 0.0387 0.0563 0.0216 0.0251 0.0041 0.0036 0.0156 0.0158

Improv. 56.81% 51.75% 63.29% 58.59% 58.06% 50.00% 68.14% 65.32%

Dragon
Vanilla 0.0512 0.0760 0.0273 0.0336 0.0053 0.0039 0.0198 0.0215
Vanilla+MG 0.0512 0.0766 0.0274 0.0339 0.0053 0.0040 0.0199 0.0217
Vanilla+SGBD 0.0553 0.0824 0.0298 0.0364 0.0057 0.0043 0.0215 0.0235
BLIP 0.0667 0.0983 0.0362 0.0443 0.0069 0.0051 0.0267 0.0289
BLIP+MG 0.0535 0.0795 0.0295 0.0361 0.0056 0.0041 0.0220 0.0237
BLIP+SGBD 0.0559 0.0827 0.0308 0.0374 0.0059 0.0043 0.0229 0.0245
BLIP2 0.0690 0.1012 0.0378 0.0460 0.0072 0.0053 0.0280 0.0302
BLIP2+MG 0.0651 0.0935 0.0358 0.0430 0.0068 0.0049 0.0266 0.0286
BLIP2+SGBD 0.0695 0.1003 0.0383 0.0461 0.0073 0.0052 0.0287 0.0309

Improv. 35.74% 33.16% 40.29% 37.20% 37.74% 35.90% 44.95% 43.72%

SLMRec
Vanilla 0.0447 0.0662 0.0245 0.0300 0.0047 0.0035 0.0181 0.0196
Vanilla+MG 0.0449 0.0667 0.0245 0.0301 0.0047 0.0035 0.0181 0.0196
Vanilla+SGBD 0.0477 0.0714 0.0262 0.0321 0.0050 0.0038 0.0195 0.0210
BLIP 0.0438 0.0650 0.0239 0.0293 0.0046 0.0034 0.0176 0.0191
BLIP+MG 0.0447 0.0671 0.0245 0.0302 0.0047 0.0035 0.0181 0.0196
BLIP+SGBD 0.0468 0.0702 0.0257 0.0317 0.0050 0.0037 0.0192 0.0208
BLIP2 0.0464 0.0682 0.0251 0.0306 0.0049 0.0036 0.0184 0.0199
BLIP2+MG 0.0459 0.0689 0.0250 0.0308 0.0048 0.0036 0.0184 0.0200
BLIP2+SGBD 0.0483 0.0726 0.0263 0.0324 0.0051 0.0038 0.0195 0.0211

Improv. 8.05% 9.67% 7.35% 8.00% 8.50% 8.57% 7.73% 7.65%

Avg. Improv. 35.53% 31.53% 36.98% 34.60% 34.76% 31.49% 40.27% 38.90%

Table 7: Recommendation performance on Amazon dataset Clothing. Metrics in color
represent best performance for the particular evaluation metric.
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Electronics
Model REC@10 REC@20 NDCG@10 NDCG@20 PREC@10 PREC@20 MAP@10 MAP@20

DualGNN
Vanilla 0.0193 0.0304 0.0104 0.0133 0.0022 0.0017 0.0074 0.0081
Vanilla+MG 0.0195 0.0307 0.0102 0.0132 0.0022 0.0018 0.0071 0.0079
Vanilla+SGBD 0.0203 0.0312 0.0116 0.0138 0.0027 0.0021 0.0081 0.0089
BLIP 0.0166 0.0255 0.0090 0.0113 0.0019 0.0015 0.0064 0.0070
BLIP+MG 0.0199 0.0303 0.0108 0.0135 0.0023 0.0017 0.0077 0.0084
BLIP+SGBD 0.0211 0.0316 0.0115 0.0139 0.0032 0.0022 0.0079 0.0089
BLIP2 0.0166 0.0260 0.0090 0.0114 0.0019 0.0015 0.0063 0.0070
BLIP2+MG 0.0208 0.0322 0.0113 0.0142 0.0023 0.0018 0.0081 0.0089
BLIP2+SGBD 0.0209 0.0331 0.0122 0.0156 0.0036 0.0019 0.0095 0.0096

Improv. 8.30% 8.88% 17.31% 17.29% 63.64% 29.41% 28.38% 18.52%

Dragon
Vanilla 0.0317 0.0482 0.0175 0.0217 0.0036 0.0027 0.0126 0.0138
Vanilla+MG 0.0324 0.0492 0.0177 0.0220 0.0036 0.0028 0.0127 0.0138
Vanilla+SGBD 0.0324 0.0492 0.0177 0.0220 0.0036 0.0028 0.0127 0.0138
BLIP 0.0324 0.0485 0.0178 0.0220 0.0036 0.0027 0.0129 0.0140
BLIP+MG 0.0317 0.0483 0.0172 0.0215 0.0036 0.0027 0.0123 0.0134
BLIP+SGBD 0.0323 0.0485 0.0173 0.0215 0.0038 0.0028 0.0135 0.0144
BLIP2 0.0336 0.0512 0.0185 0.0230 0.0038 0.0029 0.0134 0.0146
BLIP2+MG 0.0325 0.0494 0.0179 0.0222 0.0037 0.0028 0.0129 0.0141
BLIP2+SGBD 0.0331 0.0496 0.0181 0.0235 0.0039 0.0036 0.0131 0.0153

Improv. 5.68% 6.22% 5.71% 8.29% 8.33% 33.33% 3.97% 10.87%

SLMRec
Vanilla 0.0432 0.0641 0.0243 0.0297 0.0049 0.0037 0.0178 0.0193
Vanilla+MG 0.0434 0.0649 0.0246 0.0301 0.0049 0.0037 0.0181 0.0195
Vanilla+SGBD 0.0435 0.0651 0.0256 0.0323 0.0052 0.0039 0.0193 0.0198
BLIP 0.0448 0.0654 0.0254 0.0307 0.0051 0.0037 0.0187 0.0202
BLIP+MG 0.0448 0.0657 0.0254 0.0308 0.0051 0.0037 0.0187 0.0202
BLIP+SGBD 0.0457 0.0669 0.0256 0.0312 0.0058 0.0051 0.0193 0.0217
BLIP2 0.0448 0.0657 0.0254 0.0312 0.0051 0.0037 0.0187 0.0202
BLIP2+MG 0.0449 0.0657 0.0254 0.0307 0.0051 0.0038 0.0187 0.0201
BLIP2+SGBD 0.0483 0.0709 0.0270 0.0327 0.0054 0.0038 0.0202 0.0218

Improv. 11.81% 10.61% 11.11% 10.10% 18.37% 37.84% 13.48% 12.95%

Avg. Improv. 8.60% 19.79% 8.03% 11.89% 30.11% 33.53% 15.28% 14.11%

Table 8: Recommendation performance on Amazon dataset Electronics. Metrics in color
represent best performance for the particular evaluation metric.
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