
Inference-time Scaling of Diffusion Models through Classical Search

Anonymous Author(s)

Affiliation
Address
email

Abstract

1 Classical search algorithms have long underpinned modern artificial intelligence.
2 In this work, we tackle the challenge of inference-time control in diffusion models—adapting generated outputs to meet diverse test-time objectives—using prin-
3 ciples from classical search. We propose a general framework that orchestrates
4 local and global search to efficiently navigate the generative space. It performs
5 compute-efficient global exploration using breadth-first and depth-first tree search
6 and employs a theoretically grounded scalable local search via annealed Langevin
7 MCMC. We evaluate our approach on a range of challenging domains, including
8 planning, offline reinforcement learning, and image generation. Across all tasks,
9 we observe significant gains in both performance and efficiency over baseline meth-
10 ods. These results demonstrate that classical search offers a principled, practical
11 foundation for inference-time scaling in diffusion models, and that our method,
12 which jointly scales local and global search, establishes a new Pareto frontier.
13

14 1 Introduction

15 Classical search algorithms have laid the foundation for modern artificial intelligence [59]. In discrete
16 settings, graph search algorithms are widely used to explore the state space. Breadth-first search
17 (BFS) [50] and depth-first search (DFS) [73] traverse the search tree in a fixed order. To better
18 leverage problem-specific information, best-first search methods [56], such as A* [22], use a heuristic
19 to evaluate and prioritize states. Alternatively, local search methods, such as hill-climbing [59, Sec.
20 4.1], explore neighboring states. More recent techniques like gradient descent and Markov Chain
21 Monte Carlo (MCMC) have become widely adopted in optimization and probabilistic inference,
22 underpinning many modern AI models.

23 Diffusion models [26] have shown impressive performance in generative modeling for continuous
24 domains such as images [10], videos [28], and world modeling [92]. They are also increasingly
25 used in robotics and decision-making [44, 4, 74] to generate diverse actions [8]. However, generated
26 samples may not always align with physical laws [68] or human intent [79], and the vast generative
27 space often necessitates multiple trials to produce satisfactory outputs [87]. To address this, we scale
28 up *inference-time compute* using strategic search methods that navigate the generative manifold for
29 high-quality samples. We formalize sample evaluation using a verifier function $f(\mathbf{x}_0)$ defined on
30 *ground truth* samples, which measures the quality of the sample. Such verifiers could be reward
31 functions [89], Q-functions [45], classifier conditions $p(c|\mathbf{x}_0)$ [94, 10], and multi-modal LLMs [29].

32 To efficiently search the generative space of diffusion models, we revisit classical search principles.
33 To capture diverse modes in the complex distributions generated by diffusion models, we view
34 sampling as traversing a search tree, employing BFS and DFS to progressively explore states during
35 denoising. Similar to best-first search, we evaluate intermediate states \mathbf{x}_t with a verifier $f(\mathbf{x}_{0|t})$,
36 prioritizing high-quality paths. To go beyond the base model and obtain higher-quality samples, we

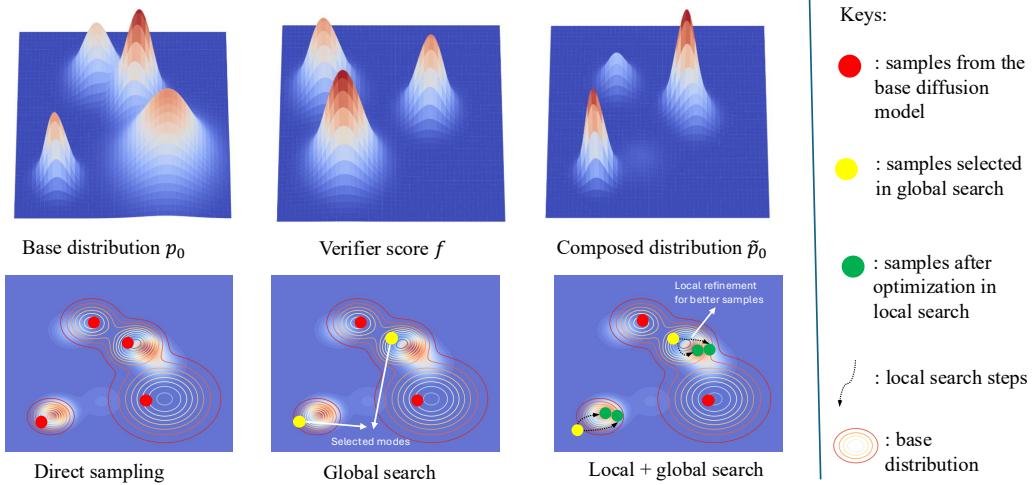


Figure 1: **Illustration of our search framework.** **Bottom left:** direct sampling results in samples with low verifier scores. **Bottom middle:** global search identifies high score modes within the base distribution. **Bottom right:** local search further optimizes the samples for higher quality, driven by the gradient signal.

37 perform local search via Langevin MCMC, exploring the neighborhood of current samples under
 38 guidance from both the verifier gradient and the diffusion model’s “score function” [78]. By jointly
 39 optimizing the compositional objective of the diffusion model and the verifier [12], our local search
 40 surpasses the capabilities of the base model. An overview of our framework is shown in Fig. 1.

41 Recent works scale diffusion model inference via particle-based SMC [33, 63, 84] and tree-based
 42 methods [19], typically as BFS with fixed schedules. We generalize these with a BFS-based frame-
 43 work, clarifying prior design choices and establishing a strong baseline. Inspired by DFS, we add
 44 adaptive backtracking to allocate compute adaptively, surpassing BFS baselines. While global search
 45 remains limited to base-distribution modes, scaling local search with Langevin MCMC explores
 46 high-reward regions beyond the model, proving effective in challenging decision-making tasks.

47 Our key contributions are summarized as follows:

48 **i)** For global tree search, we elucidate the design space of prior BFS-style methods and provide
 49 an improved BFS baseline. We further present the first adaptive DFS algorithm for diffusion
 50 inference scaling, offering superior efficiency and adaptivity.

51 **ii)** We introduce a theoretically grounded local search method using annealed Langevin MCMC,
 52 demonstrating superior performance in challenging domains.

53 **iii)** We propose a unified framework for efficient inference-time search in diffusion models grounded
 54 in classical search principles. By jointly scaling local and global search for the first time, we
 55 advance the Pareto frontier of inference-time scaling across diverse domains.

56 2 Related Works

57 Here, we provide a brief overview of inference-time scaling with diffusion models. For a more
 58 comprehensive literature review and discussion of concurrent works, see Appendix B.

59 Recent works such as [33, 63] propose SMC-based particle filtering methods, scaling inference
 60 compute by increasing the number of particles. Tree-search-based methods [39, 19, 48] evaluate
 61 intermediate nodes and expand promising candidates, scaling inference compute by increasing the
 62 width of the search tree. Both approaches can be seen as special cases of our BFS framework.
 63 Alternatively, Du et al. [13] propose iterative reasoning via Langevin MCMC, scaling inference
 64 by increasing the number of refinement steps. To utilize the verifier gradient, classifier guidance
 65 [10] trains a noise-dependent classifier for gradient guidance, and training-free guidance methods
 66 [94, 9, 68, 95, 24] improve sample quality using an additional pretrained classifier. In TFG [94] the
 67 authors have observed that more recurrent steps can yield better performance on challenging tasks.

68 However, their theoretical foundations remain poorly understood, and their scaling behaviors are
 69 largely unexplored.

70 3 Backgrounds

71 3.1 Diffusion Probabilistic Models

72 Suppose we have D -dimensional random variable $\mathbf{x}_0 \in \mathbb{R}^D$ with distribution $p_0(\mathbf{x}_0)$. Diffusion
 73 models [26, 67] and the more general flow models [42, 2] are generative models that turn noise into
 74 data via a stochastic process $\{\mathbf{x}_t\}_{t=0}^T$. The forward “noising” process with $t > s$ can be defined as:

$$q(\mathbf{x}_t | \mathbf{x}_s) = \mathcal{N} \left(\mathbf{x}_t; \frac{\alpha_t}{\alpha_s} \mathbf{x}_s, \alpha_t^2 \left(\frac{\sigma_t^2}{\alpha_t^2} - \frac{\sigma_s^2}{\alpha_s^2} \right) \mathbf{I} \right). \quad (1)$$

75 where α_t, σ_t are referred as the noise schedule with $\alpha_0 = \sigma_T = 1, \alpha_T = \sigma_0 = 0$. We can thus write
 76 the random variables \mathbf{x}_t as an interpolation between data and noise [47]:

$$\mathbf{x}_t = \alpha_t \mathbf{x}_0 + \sigma_t \epsilon,$$

77 and denote $q_t(\mathbf{x}_t)$ as the marginal distribution of \mathbf{x}_t . To model the reverse “denoising” process, we
 78 train the model using the denoising objective [26]:

$$L(\theta) = \mathbb{E}_{t, \mathbf{x}_0, \epsilon} [\epsilon_\theta(\mathbf{x}_t, t) - \epsilon],$$

79 which is equivalent of learning the score function of $q_t(\mathbf{x}_t)$ [78], as the ground truth of $\epsilon_\theta(\mathbf{x}_t, t)$
 80 is $-\sigma_t \nabla_{\mathbf{x}_t} \log q_t(\mathbf{x}_t)$. To generate samples, we transform noise into data via the reverse transition
 81 kernel $p_\theta(\mathbf{x}_{t-1} | \mathbf{x}_t)$. In practice, we either sample \mathbf{x}_{t-1} using deterministic samplers like DDIM
 82 [67]:

$$\mathbf{x}_{t-1} = \frac{\alpha_{t-1}}{\alpha_t} (\mathbf{x}_t - \sigma_t \epsilon_\theta(\mathbf{x}_t, t)) + \sigma_{t-1} \epsilon_\theta(\mathbf{x}_t, t)$$

83 or stochastic samplers like DDPM [26, 54]:

$$p_\theta(\mathbf{x}_{t-1} | \mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_\theta(\mathbf{x}_t, t), \boldsymbol{\Sigma}_\theta(\mathbf{x}_t, t)).$$

84 3.2 Compositional and Controllable Generation of DPMs

85 Given a base diffusion model with data distribution $p_0(\mathbf{x}_0)$, one may wish to sample \mathbf{x}_0 with
 86 some constraints or conditions $f(\mathbf{x}_0)$. Exact diffusion sampling from the composed distribution
 87 $\tilde{p}_0(\mathbf{x}_0) \propto p_0(\mathbf{x}_0) f(\mathbf{x}_0)$ would require training a time-dependent f on data generated by p_0 [10, 45],
 88 which may not be applicable in practice. Thus, we adopt optimization based methods to approximate
 89 the target distribution.

90 **Compositional generation via annealed Langevin MCMC.** When sampling from a compositional
 91 distribution composed of multiple probability distributions, $\tilde{p}_0(\mathbf{x}_0) \propto p_0(\mathbf{x}_0) \hat{p}_0(\mathbf{x}_0)$, [12] proposes
 92 annealed Langevin MCMC sampling. In this approach, a sequence of annealed distributions $\tilde{q}_t(\mathbf{x}_t) \propto$
 93 $q_t(\mathbf{x}_t) \hat{q}_t(\mathbf{x}_t)$ is constructed, and samples are drawn using Langevin dynamics [82]:

$$\mathbf{x}_t^{i+1} = \mathbf{x}_t^i + \eta \nabla_{\mathbf{x}} \log \tilde{q}_t(\mathbf{x}_t^i) + \sqrt{2\eta} \epsilon^i, \quad \epsilon^i \sim \mathcal{N}(\mathbf{0}, \mathbf{I}). \quad (2)$$

94 Since the distribution of \mathbf{x}_t^i converges to $\tilde{q}_t(\mathbf{x}_t)$ asymptotically as $i \rightarrow \infty, \eta \rightarrow 0$, we can sample
 95 from $\tilde{p}_0(\mathbf{x}_0)$ following the annealing path $\{\tilde{q}_t\}_{t=0}^T$ with $\tilde{q}_0 = \tilde{p}_0$. Moreover, since the score of \tilde{q}_t can
 96 be directly computed by composing the score of two distributions:

$$\nabla_{\mathbf{x}} \log \tilde{q}_t(\mathbf{x}_t) = \nabla_{\mathbf{x}} \log q_t(\mathbf{x}_t) + \nabla_{\mathbf{x}_t} \log \hat{q}_t(\mathbf{x}_t),$$

97 thus do not require extra training.

98 **Controllable generation through training-free guidance.** During the sampling process, training-
 99 free guidance propose to update \mathbf{x}_t using gradient ascent

$$\tilde{\mathbf{x}}_t = \mathbf{x}_t + \Delta_t, \quad \Delta_t = \rho_t \nabla_{\mathbf{x}_t} \log f(\mathbf{x}_{0|t}) + \mu_t \alpha_t \nabla_{\mathbf{x}_{0|t}} \log f(\mathbf{x}_{0|t}). \quad (3)$$

100 where $\mathbf{x}_{0|t} = \mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t] = \frac{\mathbf{x}_t - \sigma_t \epsilon_\theta(\mathbf{x}_t, t)}{\alpha_t}$. This method approximates the intractable posterior with
 101 the posterior mean: $\mathbb{E}_{\mathbf{x}_0 | \mathbf{x}_t} [f(\mathbf{x}_0)] \approx f(\mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t])$. To enhance the guidance strength, [95] propose
 102 to apply a recurrence strategy, which first samples \mathbf{x}_{t-1} via $p_\theta(\mathbf{x}_{t-1} | \mathbf{x}_t)$, add the guidance gradient,
 103 then add noise back to \mathbf{x}_t through the forward process $q_t(\mathbf{x}_t | \mathbf{x}_{t-1})$:

$$\mathbf{x}_{t-1}^i \sim p_\theta(\cdot | \mathbf{x}_t^i), \quad \tilde{\mathbf{x}}_{t-1}^i = \mathbf{x}_{t-1}^i + \frac{\alpha_{t-1}}{\alpha_t} \Delta_t, \quad \mathbf{x}_t^{i+1} \sim q_t(\cdot | \tilde{\mathbf{x}}_{t-1}^i), \quad i = 1, 2, \dots, N_{\text{recur}}, \quad (4)$$

104 with N_{recur} being the total number of recurrence steps.

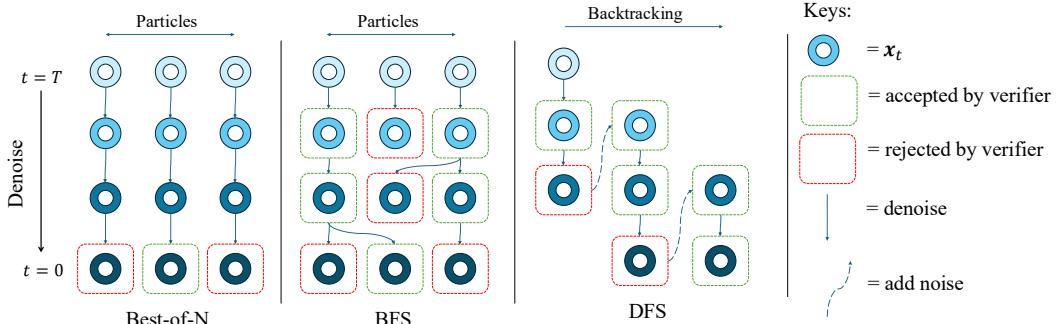


Figure 2: Illustration of global tree search algorithms.

105 4 Methods

106 **Problem Formulation.** Given a pretrained diffusion model $\epsilon_\theta(\mathbf{x}_t, t)$ with a base distribution $p_0(\mathbf{x}_0)$,
 107 at test-time, we often wish to optimize the generation process to satisfy task-specific objectives.
 108 For example, RL may require generating high-value actions, image synthesis may seek constraint-
 109 satisfying images, and trajectory generation may demand physically valid outputs. In this paper, we
 110 are interested in how to scale test-time inference to follow such objectives.

111 We consider an inference-time scaling strategy that adjusts the sampling process based on a verifier
 112 function. Specifically, we define a verifier $f(\mathbf{x}_0) : \mathbb{R}^D \rightarrow \mathbb{R}^+$ which specifies the degree to which
 113 samples optimize a specified objective. We then aim to bias sampling toward regions of the sample
 114 space where $f(\mathbf{x}_0)$ is high. This leads to the objective of sampling from a compositional distribution
 115 that combines the original model distribution with the verifier:

$$\tilde{p}_0(\mathbf{x}_0) \propto p_0(\mathbf{x}_0) f(\mathbf{x}_0)^\lambda, \quad (5)$$

116 where λ controls the weight of verifier scores.

117 Since exact sampling from the distribution is often impractical, we aim to search the manifold for the
 118 target samples at *inference time*, both *globally* and *locally*. First, we explore the diverse modes in the
 119 complex generative landscape of diffusion models through global graph search algorithms. However,
 120 global search alone can not generate samples beyond the pretrained model. We then propose to
 121 search the vicinity of the sample using hill-climbing style local search methods, guided by the verifier
 122 gradient.

123 4.1 Global Search for Mode Identification

124 To efficiently explore the modes of the diffusion model, we represent the Markov chain of the
 125 denoising process as a *fixed-depth tree*, where the transition kernel $\tilde{p}_\theta(\mathbf{x}_{t-1} | \mathbf{x}_t)$ may correspond to
 126 either deterministic or stochastic samplers. This abstraction allows the application of classical tree
 127 search heuristics to design compute-efficient exploration methods. By expanding nodes with higher
 128 score estimates and backtracking from low-quality nodes in the tree, we can efficiently navigate the
 129 generative space and sample from high-quality modes. An illustration is provided in Fig. 2.

130 4.1.1 Unified BFS-style linear search

131 Inspired by breadth-first search (BFS), which expands nodes level by level, we denoise a set of
 132 particles in parallel at each noise level. The simplest approach is best-of- N sampling: generate
 133 N candidate trajectories and select the one with the highest verifier score at the final step. While
 134 straightforward, this strategy ignores information from intermediate stages.

135 To improve efficiency, and following the idea of best-first search [56], we score each intermediate
 136 particle $\{\mathbf{x}_t^k\}_{k=1}^N$ using estimates of its verifier score $f(\mathbf{x}_{0|t}^k)$, and dynamically reallocate compu-
 137 tation by sampling more children n_t^k for high-scoring nodes. We provide a general design space
 138 for tempering, scoring, and resampling that unifies previous tree-search-based and particle-based
 139 baselines such as SVDD [39], DAS [33], and FK-steering [64]. The pseudocode is shown in Alg. 3.

140 **Tempering.** To reduce estimation bias in early steps, DAS [33] increases weights on smaller time
 141 steps so that $\tau_T < \tau_{T-1} \cdots < \tau_0$, re-weighting scores with $\tau_t f(\mathbf{x}_{0|t}^k)$. SVDD [39] samples only
 142 from the top-scoring particle, i.e., $\tau_t = \infty$. We consider: **Constant** : $\tau_t = \tau$, **Increase** : $\tau_t =$
 143 $((1 + \gamma)^{T-t} - 1) \tau$, **Inf** : $\tau_t = \infty$.

144 **Scoring.** Following [33, 64], we propose to score intermediate particles $\hat{f}(\mathbf{x}_t^k)$ via: **Current** :
 145 $\tau_t f(\mathbf{x}_{0|t}^k)$, **Difference** : $\tau_t f(\mathbf{x}_{0|t}^k) - \tau_{t+1} f(\mathbf{x}_{0|t+1}^k)$, **Max** : $\max_{s \geq t} \tau_s f(\mathbf{x}_{0|s}^k)$.

146 **Resampling.** Given $\hat{f}(\mathbf{x}_t^k)$, we allocate particles as $n_t^k = \text{Resample}\left(N, \text{softmax}\left(\hat{f}(\mathbf{x}_t^k)\right)\right)$, where
 147 n_t^k is the number of children for \mathbf{x}_t^k . We compare the baseline **Multinomial** resampling [19, 64]
 148 and the variance-reduced **SSP** [33]; see [17] for other methods.

149 Prior methods are special cases of BFS: SVDD [39] = **BFS (Inf, Current, Multinomial)**; DAS
 150 [33] = **BFS (Increase, Difference, SSP)**; FK-steering [63] = **BFS (Constant, Max, Multinomial)**.
 151 Ablations (Sec. 5.1) show **SSP** resampling is key for performance, and our baseline **BFS (Increase,**
 152 **Max, SSP)** consistently outperforms prior methods in efficiency.

153 4.1.2 DFS-style non-linear search

154 Depth-first search (DFS) explores one branch of the search tree as deeply as possible before backtracking.
 155 In our setting, this corresponds to iteratively denoising a single particle until its verifier score
 156 drops below a predefined threshold: $f(\mathbf{x}_{0|t}) \leq \delta_t$, where δ_t is a scheduled threshold for timestep t .

157 Once the constraint is violated, the algorithm backtracks by reintroducing noise, moving to a higher
 158 noise level $t_{\text{next}} = t + \Delta_T$ using the forward diffusion process $q(\mathbf{x}_{t_{\text{next}}} | \mathbf{x}_t)$ in Eq. 1. This allows
 159 the model to restart the denoising process from a different region of the manifold, encouraging
 160 exploration of diverse modes. Unlike the small noise injection and fixed schedule used in SoP [48]
 161 for local exploration, DFS performs global exploration with $\Delta_T \geq \frac{T}{4}$ and an adaptive exploration
 162 strategy.

163 A key strength of DFS is its ability to allocate compute adaptively: difficult prompts and low-quality
 164 trajectories naturally trigger more backtracking and exploration, while easier instances are solved
 165 more directly. This dynamic behavior is driven purely by the verifier signal, without needing to know
 166 the difficulty in advance as in [66]. Also, the threshold acts as a control knob for users to balance
 167 output quality and computation resources, where higher threshold automatically scales compute for
 168 better output. As shown in Sec. 5.2, this adaptive strategy leads to substantial gains in efficiency and
 169 performance over prior methods, and even our strengthened BFS baseline.

170 4.2 Scaling Local Search via Langevin MCMC with Verifier Gradient

171 Global search can efficiently discover the high score modes from the base diffusion model, but can
 172 not generate higher quality samples that exceed the pretrained model. Thus, we aim to sample from
 173 the compositional distribution \tilde{p}_0 in Eq. 5 for higher quality samples. To optimize the compositional
 174 objective, we conduct local-search with hill-climbing methods, aiming to find the local maximum
 175 with high \tilde{p}_0 . Specifically, we view the sampling problem as compositional optimization in measure
 176 space [83], and follow the gradient flow of KL-divergence, performing Langevin MCMC steps
 177 (details see Appendix. C.1).

178 Similar to annealed Langevin MCMC in [12], we could construct a series of annealed functions
 179 $\hat{f}_t(\mathbf{x}_t)$ with $\hat{f}_0(\mathbf{x}_0) = f(\mathbf{x}_0)$. Then we sample from the distributions $\tilde{q}_t(\mathbf{x}_t) \propto q_t(\mathbf{x}_t) \hat{f}(\mathbf{x}_t)$ through
 180 Langevin MCMC in Eq. 2 (details see Appendix. C.2). Alternatively, training-free guidance in Eq. 3
 181 utilizes the gradient of $f(\mathbf{x}_{0|t})$ to optimize \mathbf{x}_t , which can be computed directly using the diffusion
 182 model output. However, naive gradient updates have been observed to produce OOD and adversarial
 183 samples [61]. In [94], recurrence (Eq. 4) was found to help avoid adversarial samples in challenging
 184 guidance tasks, though its theoretical underpinnings remain poorly understood. We unify these
 185 two approaches by demonstrating that training-free guidance with recurrence, in the continuous
 186 limit, constitutes an instance of Langevin MCMC. For details see Appendix. C.3, and a rigorous
 187 convergence bound is in Theorem. 1.

188 **Proposition 1.** *In the continuous limit where the number of diffusion denoising steps $T \rightarrow \infty$,
189 training-free guidance with recurrence is equivalent to running Langevin MCMC on a series of
190 annealed distributions $\{\tilde{q}_t(\mathbf{x}_t)\}_{t=0}^T$, with $\tilde{q}_0(\mathbf{x}_0) = \tilde{p}_0(\mathbf{x}_0) \propto p_0(\mathbf{x}_0) f(\mathbf{x}_0)^\lambda$.*

191 Thus, the recurrence step (without guidance) can be interpreted as Langevin MCMC applied to the
192 original distribution of the diffusion model $q_t(\mathbf{x}_t)$, and the guidance term Δ_t in Eq. 3 then serves
193 as defining a practical annealing path $\hat{f}_t(\mathbf{x}_t)$ that bias the sampling path towards high reward areas
194 beyond the modes of the base model. We are the *first* to propose this theoretical unification of the
195 two lines of work, providing insights into efficient local search of diffusion models via gradients.

196 We implement local search by parameterizing the reverse transition kernel $\tilde{p}_\theta(\mathbf{x}_{t-1}|\mathbf{x}_t)$ as a sequence
197 of Langevin MCMC steps (Eq. 2), followed by a denoising step using DDIM (Eq. 11) or DDPM
198 (Eq. 12); see Appendix C.5 for details. Unlike classifier-guidance or naive training-free guidance,
199 which apply only gradient guidance in the denoising step, our approach incorporates explicit Langevin
200 MCMC steps. In Sec. 5.3, we scale the number of local search steps for the first time and observe
201 substantial improvements over pretrained models across multiple tasks.

202 5 Experiments

203 In this section, we apply inference-time scaling with our search strategy across a range of domains. In
204 Sec. 5.1, we present a strengthened BFS baseline that outperforms previous particle-based methods.
205 In Sec. 5.2, we demonstrate the adaptivity and efficiency of our DFS method. In Sec. 5.3, we scale up
206 local search in challenging decision-making domains, highlighting the importance of jointly scaling
207 local and global search.

208 5.1 Elucidating the Design Space of BFS for a Strengthened Baseline

209 In this section, we explore the design choices of BFS and present a strengthened baseline. To
210 ensure a fair comparison, we directly use the official implementation of FK-steering [63] with the
211 ImageReward [89] verifier and the SD v1.5 model. For details, see Appendix E.1.

N	BoN	Multinomial	SSP	N	Current	Difference	Max	N	Increase	Inf	Constant
4	0.702 ± 0.057	0.743 ± 0.037	0.834 ± 0.041	4	0.812 ± 0.037	0.823 ± 0.036	0.834 ± 0.041	4	0.882 ± 0.029	0.667 ± 0.076	0.834 ± 0.041
8	0.896 ± 0.031	0.926 ± 0.042	1.032 ± 0.035	8	0.996 ± 0.029	1.013 ± 0.032	1.032 ± 0.035	8	1.087 ± 0.031	0.775 ± 0.087	1.032 ± 0.035

(a) Results for different sampling choices with **Constant** tempering and **Max** scoring

(b) Results for different scoring choices with **SSP** resampling and **Constant** tempering

(c) Results for different tempering choices with **SSP** resampling and **Max** scoring

Table 1: Ablation of BFS design choices

212 We begin with the baseline design of FK using **BFS (Constant, Max, Multinomial)** and evaluate
213 different resampling strategies. As shown in Table 1a, **SSP** significantly improves performance over
214 naive multinomial resampling, and we adopt it in our design. We then ablate the scoring methods and
215 tempering options in Tables 1b and 1c, arriving at our improved **BFS (Increase, Max, SSP)**.

Model	N	BoN	FK[63]	DAS[33]	TreeG [19]	SVDD[39]	BFS (ours)
SD v1.5	4	0.702 ± 0.057	0.743 ± 0.037	0.878 ± 0.028	0.860 ± 0.033	0.667 ± 0.076	0.882 ± 0.029
SD v1.5	8	0.896 ± 0.031	0.926 ± 0.042	1.052 ± 0.033	1.023 ± 0.018	0.775 ± 0.087	1.087 ± 0.031
SD XL	4	1.085 ± 0.013	1.131 ± 0.022	1.181 ± 0.023	1.152 ± 0.023	1.036 ± 0.062	1.194 ± 0.024
SDXL	8	1.198 ± 0.021	1.251 ± 0.011	1.265 ± 0.019	1.261 ± 0.021	1.225 ± 0.027	1.291 ± 0.018

Table 2: Comparison of our BFS with prior methods

216 To compare our improved **BFS (Increase, Max, SSP)** with prior baselines, we additionally experiment
217 with the SDXL model [58], which differs from the model used in our ablations. As shown in Table 2,
218 our improved BFS consistently outperforms previous methods across compute budgets and models.
219 In the following experiments, we use the improved BFS as our baseline.

220 5.2 Adaptive and Efficient Inference-Scaling with DFS

221 In this section, we evaluate the adaptivity and efficiency of DFS on the CompBench dataset [29],
222 using the SSD-1B model [20] and a VLM [37] as our verifier. The detailed setup is provided in
223 Appendix E.2. Through these experiments, we address the following questions:

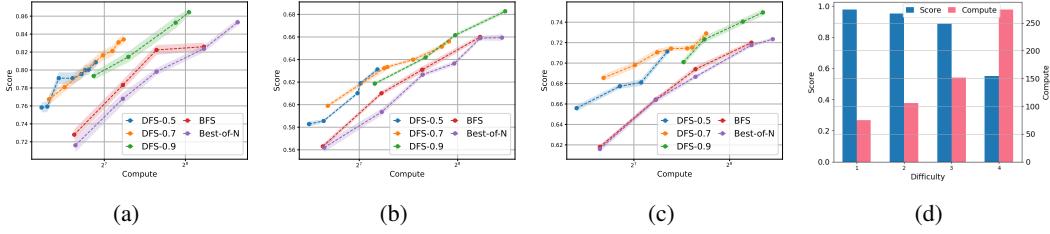


Figure 3: **CompBench [29]** text-to-image results with DFS. DFS- δ denotes DFS with threshold $\delta_t = \delta$. Figs. 3a, 3b, and 3c show DFS outperforming baseline BFS on the color, shape, and texture datasets, with up to 2 \times lower cost than Best-of-N. Fig. 3d shows average compute allocation by DFS for prompts of increasing difficulty on the color dataset.

- *Can DFS outperform Best-of-N and prior particle-based methods?* As shown in Figs. 3a, 3b, and 3c, DFS consistently outperforms BFS and Best-of-N across datasets and threshold parameters, achieving up to 2 \times lower computational cost.
- *Can DFS adjust compute allocation with different thresholds?* We evaluate DFS across a wide range of practical threshold values (0.5, 0.7, and 0.9) and find that lower thresholds automatically allocate less compute, while higher thresholds scale up compute for better quality. DFS consistently outperforms baseline methods across all threshold choices, demonstrating the robustness of our method.
- *Can DFS dynamically adjust compute allocation for different instances?* We measure the computational cost of DFS on prompts of varying difficulty in the color dataset. Threshold parameters are fixed, and the difficulty of a prompt is defined as the average score over four independent trials. As shown in Fig. 3d, difficult prompts with lower scores automatically consume more compute, without prior knowledge of difficulty as in [66].

Unlike linear-search methods that use a fixed exploration schedule, DFS offers higher efficiency and adaptivity, which may be of independent interest to the broader community.

239 5.3 Joint Scaling Local and Global Search

240 Although global search methods such as BFS and DFS can efficiently explore the generative space of
241 the diffusion model, they are restricted to the modes of the base distribution and therefore cannot
242 exceed the capabilities of the base model. To optimize the compositional objective in Eq. 5 and
243 sample from high-reward regions beyond the base model, we propose scaling up local search steps
244 via annealed Langevin MCMC, introducing a new scaling dimension for diffusion models. We
245 validate the effectiveness of scaling local search in challenging decision-making domains, such as
246 long-horizon planning and offline RL.

247 **Baselines.** To demonstrate the effectiveness of scaling local search steps, we compare with DAS [33],
248 which also utilizes verifier gradients but applies only gradient guidance without multiple local search
249 steps. We also compare with the state-of-the-art training-free guidance method TFG [94], which
250 scales up the number of recurrence steps without any global search. Compute is measured as the
251 total NFEs of both local and global search, ensuring a fair comparison. As shown in the following
252 experiments, scaling local and global search separately yields suboptimal performance, while our
253 joint scaling strategy establishes a new Pareto frontier.

254 5.3.1 Long Horizon Planning

255 Diffusion models have been widely adopted in planning for trajectory synthesis [75]. We evaluate long-
256 horizon planning in a challenging PointMaze environment, using the base model trained following
257 Diffuser [31], with the verifier defined as the total number of collisions between the trajectory and
258 maze walls (see Appendix E.3 for details). Importantly, naively maximizing the verifier score does
259 not guarantee a successful plan, and planning remains challenging even with full access to the maze
260 layout [46, 49].

261 As shown in Fig. 4c, scaling up local search improves the overall Pareto frontier and significantly
262 outperforms baseline methods. Scaling local search alone in TFG [94] is efficient with a low compute

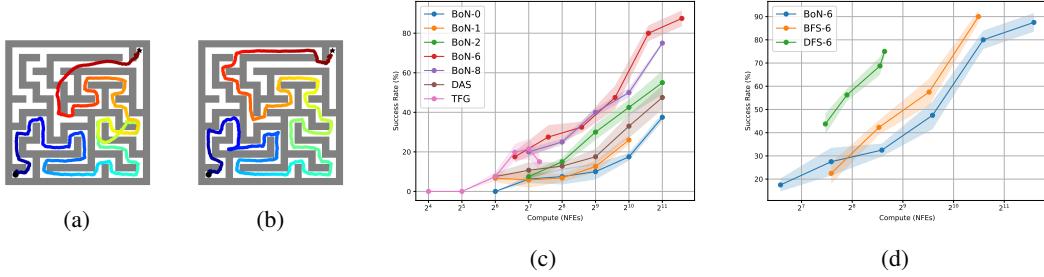


Figure 4: **(Illustration and results for maze planning)** Fig. 4a shows a failed trajectory without local search (start: \bullet , goal: \star). Fig. 4b shows a successful trajectory after scaling local search. Fig. 4c presents Pareto curves for inference-scaling with varying local search steps, where BoN- i is best-of-N with i steps. Fig. 4d shows global search efficiency with 6 local search steps fixed.

263 budget but fails to scale with increased compute, as local search alone can become trapped in local
 264 optima. DAS [33] is more efficient than the corresponding BoN-0 baseline without local search, but
 265 underperforms best-of-N when more local search steps are used. In Fig. 4d, we show that local search
 266 can be combined with global search techniques such as BFS and DFS to further improve scaling
 267 efficiency, demonstrating the flexibility of our framework.

268 5.4 Offline Reinforcement Learning

Dataset	Environment	IQL	SfBC	DD	Diffuser	D-QL	QGPO	TFG	DAS	TTS(ours)
Medium-Expert	HalfCheetah	86.7	92.6	90.6	79.8	96.1	93.5	90.2 ± 0.2	93.3 \pm 0.3	93.9 \pm 0.3
Medium-Expert	Hopper	91.5	108.6	111.8	107.2	110.7	108.0	100.2 ± 3.5	105.4 ± 5.1	104.4 ± 3.1
Medium-Expert	Walker2d	109.6	109.8	108.8	108.4	109.7	110.7	108.1 ± 0.1	111.4 ± 0.1	111.4 ± 0.1
Medium	HalfCheetah	47.4	45.9	49.1	44.2	50.6	54.1	53.1 ± 0.1	53.4 \pm 0.1	54.8 ± 0.1
Medium	Hopper	66.3	57.1	79.3	58.5	82.4	98.0	96.2 \pm 0.5	71.3 ± 2.7	99.5 ± 1.7
Medium	Walker2d	78.3	77.9	82.5	79.7	85.1	86.0	83.2 ± 1.4	83.9 \pm 0.9	86.5 ± 0.2
Medium-Replay	HalfCheetah	44.2	37.1	39.3	42.2	47.5	47.6	45.0 ± 0.3	42.2 ± 0.1	47.8 ± 0.4
Medium-Replay	Hopper	94.7	86.2	100.0	96.8	100.7	96.9	93.1 ± 0.1	96.7 \pm 3.0	97.4 ± 4.0
Medium-Replay	Walker2d	73.9	65.1	75.0	61.2	94.3	84.4	69.8 ± 4.0	63.8 ± 2.0	79.3 ± 9.7
Average (Locomotion)		76.9	75.6	81.8	75.3	86.3	86.6	82.1	80.2	86.1

Table 3: Performance on D4RL locomotion tasks. For more details see Appendix. E.4.

269 Recently, diffusion models have emerged as a powerful action prior in robotics due to their ability to
 270 model complex and multimodal distributions [8, 44]. However, these diffusion policies are typically
 271 trained on offline datasets and struggle to adapt to reinforcement learning or test-time requirements.
 272 Following prior work [57], we formulate the offline RL problem as sampling from a Q-regularized
 273 distribution: $\pi^*(a|s) \propto \mu(a|s)e^{\beta Q_\psi(s, a)}$, where Q_ψ is a learned Q-function representing preferences
 274 over actions, and μ is the behavior policy, which we model using a diffusion prior. We approach
 275 this problem from the inference-scaling perspective, composing an off-the-shelf pretrained diffusion
 276 policy with ground-truth Q-functions, without additional training.

277 Among the baselines, Diffuser [31], QGPO [45], and D-QL [81] are training-based methods that
 278 require joint training of the diffusion model and Q-function, while SfBC [6] can be viewed as a
 279 naive best-of-N approach. To demonstrate the effectiveness of our method, we allow TFG [94]
 280 and DAS [33] to use up to twice the compute of our method. As shown in Table 3, our method
 281 achieves performance comparable to training-based baselines, while DAS struggles on the Medium
 282 and Medium-Replay datasets where the model’s capabilities are limited.

283 6 Limitations and Conclusion

284 In this work, we present a unified and principled framework for inference-time scaling of diffusion
 285 models. Our approach includes an improved BFS baseline, an adaptive DFS method for efficient
 286 global search, and a scalable local search strategy based on annealed Langevin MCMC. A potential
 287 limitation of our method is the risk of generating adversarial samples that exploit weaknesses in the
 288 verifier. To address this, we introduce a *double-verifier* strategy, employing separate verifiers for local
 289 and global search. Further details and evaluations are provided in Appendix F.

290 **References**

291 [1] A. Ajay, Y. Du, A. Gupta, J. Tenenbaum, T. Jaakkola, and P. Agrawal. Is conditional generative
292 modeling all you need for decision-making? *arXiv preprint arXiv:2211.15657*, 2022. 24, 25

293 [2] M. S. Albergo and E. Vanden-Eijnden. Building normalizing flows with stochastic interpolants.
294 *arXiv preprint arXiv:2209.15571*, 2022. 3

295 [3] A. Bansal, H.-M. Chu, A. Schwarzschild, S. Sengupta, M. Goldblum, J. Geiping, and T. Gold-
296 stein. Universal guidance for diffusion models. In *Proceedings of the IEEE/CVF Conference on*
297 *Computer Vision and Pattern Recognition*, pages 843–852, 2023. 15

298 [4] K. Black, N. Brown, D. Driess, A. Esmail, M. Equi, C. Finn, N. Fusai, L. Groom, K. Hausman,
299 B. Ichter, et al. π_0 : A vision-language-action flow model for general robot control. *arXiv*
300 *preprint arXiv:2410.24164*, 2024. 1, 15, 24

301 [5] K. Black, M. Janner, Y. Du, I. Kostrikov, and S. Levine. Training diffusion models with
302 reinforcement learning. *arXiv preprint arXiv:2305.13301*, 2023. 15

303 [6] H. Chen, C. Lu, C. Ying, H. Su, and J. Zhu. Offline reinforcement learning via high-fidelity
304 generative behavior modeling. In *The Eleventh International Conference on Learning Repre-*
305 *sentations*, 2023. 8, 24

306 [7] X. Cheng and P. Bartlett. Convergence of langevin mcmc in kl-divergence. In *Algorithmic*
307 *learning theory*, pages 186–211. PMLR, 2018. 16

308 [8] C. Chi, Z. Xu, S. Feng, E. Cousineau, Y. Du, B. Burchfiel, R. Tedrake, and S. Song. Diffusion
309 policy: Visuomotor policy learning via action diffusion. *The International Journal of Robotics*
310 *Research*, page 02783649241273668, 2023. 1, 8, 15, 24

311 [9] H. Chung and J. C. Ye. Score-based diffusion models for accelerated mri. *Medical image*
312 *analysis*, 80:102479, 2022. 2, 15

313 [10] P. Dhariwal and A. Nichol. Diffusion models beat gans on image synthesis. *Advances in neural*
314 *information processing systems*, 34:8780–8794, 2021. 1, 2, 3, 15

315 [11] K. Dong and T. Ma. STP: Self-play LLM Theorem Provers with Iterative Conjecturing and
316 Proving, Mar. 2025. *arXiv:2502.00212 [cs]*. 14

317 [12] Y. Du, C. Durkan, R. Strudel, J. B. Tenenbaum, S. Dieleman, R. Fergus, J. Sohl-Dickstein,
318 A. Doucet, and W. S. Grathwohl. Reduce, reuse, recycle: Compositional generation with
319 energy-based diffusion models and mcmc. In *International conference on machine learning*,
320 pages 8489–8510. PMLR, 2023. 2, 3, 5, 15, 16

321 [13] Y. Du, J. Mao, and J. B. Tenenbaum. Learning iterative reasoning through energy diffusion.
322 *arXiv preprint arXiv:2406.11179*, 2024. 2

323 [14] Y. Du and I. Mordatch. Implicit generation and modeling with energy based models. *Advances*
324 *in neural information processing systems*, 32, 2019. 16

325 [15] A. Durmus and E. Moulines. Non-asymptotic convergence analysis for the unadjusted langevin
326 algorithm. *arXiv preprint arXiv:1507.05021*, 2015. 16

327 [16] P. Esser, S. Kulal, A. Blattmann, R. Entezari, J. Müller, H. Saini, Y. Levi, D. Lorenz, A. Sauer,
328 F. Boesel, et al. Scaling rectified flow transformers for high-resolution image synthesis. In
329 *Forty-first international conference on machine learning*, 2024. 15

330 [17] M. Gerber, N. Chopin, and N. Whiteley. Negative association, ordering and convergence of
331 resampling methods, 2020. 5

332 [18] D. Guo, D. Yang, H. Zhang, J. Song, R. Zhang, R. Xu, Q. Zhu, S. Ma, P. Wang, X. Bi, et al.
333 Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. *arXiv*
334 *preprint arXiv:2501.12948*, 2025. 14

335 [19] Y. Guo, Y. Yang, H. Yuan, and M. Wang. Training-free guidance beyond differentiability:
 336 Scalable path steering with tree search in diffusion and flow models, 2025. [2](#), [5](#), [6](#), [21](#), [22](#)

337 [20] Y. Gupta, V. V. Jaddipal, H. Prabhala, S. Paul, and P. Von Platen. Progressive knowledge
 338 distillation of stable diffusion xl using layer level loss. *arXiv preprint arXiv:2401.02677*, 2024.
 339 [6](#)

340 [21] X. Han, S. Kumar, and Y. Tsvetkov. Ssd-lm: Semi-autoregressive simplex-based diffusion
 341 language model for text generation and modular control. *arXiv preprint arXiv:2210.17432*,
 342 2022. [15](#)

343 [22] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determination of
 344 minimum cost paths. *IEEE transactions on Systems Science and Cybernetics*, 4(2):100–107,
 345 1968. [1](#)

346 [23] H. He, J. Liang, X. Wang, P. Wan, D. Zhang, K. Gai, and L. Pan. Scaling image and video
 347 generation via test-time evolutionary search, 2025. [15](#)

348 [24] Y. He, N. Murata, C.-H. Lai, Y. Takida, T. Uesaka, D. Kim, W.-H. Liao, Y. Mitsufuji, J. Z. Kolter,
 349 R. Salakhutdinov, et al. Manifold preserving guided diffusion. *arXiv preprint arXiv:2311.16424*,
 350 2023. [2](#), [15](#)

351 [25] D. Hendrycks and K. Gimpel. A baseline for detecting misclassified and out-of-distribution
 352 examples in neural networks. *arXiv preprint arXiv:1610.02136*, 2016. [27](#)

353 [26] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. *Advances in neural
 354 information processing systems*, 33:6840–6851, 2020. [1](#), [3](#), [15](#), [18](#)

355 [27] J. Ho and T. Salimans. Classifier-free diffusion guidance. *arXiv preprint arXiv:2207.12598*,
 356 2022. [25](#)

357 [28] J. Ho, T. Salimans, A. Gritsenko, W. Chan, M. Norouzi, and D. J. Fleet. Video diffusion models.
 358 *Advances in Neural Information Processing Systems*, 35:8633–8646, 2022. [1](#), [15](#)

359 [29] K. Huang, K. Sun, E. Xie, Z. Li, and X. Liu. T2i-compbench: A comprehensive benchmark for
 360 open-world compositional text-to-image generation. *Advances in Neural Information Processing
 361 Systems*, 36:78723–78747, 2023. [1](#), [6](#), [7](#)

362 [30] A. Jaech, A. Kalai, A. Lerer, A. Richardson, A. El-Kishky, A. Low, A. Helyar, A. Madry,
 363 A. Beutel, A. Carney, et al. Openai o1 system card. *arXiv preprint arXiv:2412.16720*, 2024. [14](#)

364 [31] M. Janner, Y. Du, J. Tenenbaum, and S. Levine. Planning with diffusion for flexible behavior
 365 synthesis. In *International Conference on Machine Learning*, pages 9902–9915. PMLR, 2022.
 366 [7](#), [8](#), [15](#), [23](#), [24](#), [25](#)

367 [32] D. Kahneman. *Thinking, fast and slow*. macmillan, 2011. [14](#)

368 [33] S. Kim, M. Kim, and D. Park. Test-time alignment of diffusion models without reward over-
 369 optimization. In *The Thirteenth International Conference on Learning Representations*, 2025.
 370 [2](#), [4](#), [5](#), [6](#), [7](#), [8](#), [21](#), [22](#), [25](#)

371 [34] S. Kirkpatrick, C. D. Gelatt Jr, and M. P. Vecchi. Optimization by simulated annealing. *science*,
 372 220(4598):671–680, 1983. [16](#)

373 [35] I. Kostrikov, A. Nair, and S. Levine. Offline reinforcement learning with implicit q-learning.
 374 *arXiv preprint arXiv:2110.06169*, 2021. [24](#)

375 [36] G. Lee, T. N. N. Bao, J. Yoon, D. Lee, M. Kim, Y. Bengio, and S. Ahn. Adaptive inference-time
 376 scaling via cyclic diffusion search, 2025. [15](#)

377 [37] J. Li, D. Li, C. Xiong, and S. Hoi. Blip: Bootstrapping language-image pre-training for unified
 378 vision-language understanding and generation. In *International conference on machine learning*,
 379 pages 12888–12900. PMLR, 2022. [6](#)

380 [38] S. Li, K. Kallidromitis, A. Gokul, A. Koneru, Y. Kato, K. Kozuka, and A. Grover. Reflect-dit:
 381 Inference-time scaling for text-to-image diffusion transformers via in-context reflection. *arXiv*
 382 *preprint arXiv:2503.12271*, 2025. 15

383 [39] X. Li, Y. Zhao, C. Wang, G. Scalia, G. Eraslan, S. Nair, T. Biancalani, S. Ji, A. Regev, S. Levine,
 384 et al. Derivative-free guidance in continuous and discrete diffusion models with soft value-based
 385 decoding. *arXiv preprint arXiv:2408.08252*, 2024. 2, 4, 5, 6, 21

386 [40] H. Lightman, V. Kosaraju, Y. Burda, H. Edwards, B. Baker, T. Lee, J. Leike, J. Schulman,
 387 I. Sutskever, and K. Cobbe. Let’s verify step by step. In *The Twelfth International Conference*
 388 *on Learning Representations*, 2023. 14

389 [41] S. Lin, B. Liu, J. Li, and X. Yang. Common diffusion noise schedules and sample steps are
 390 flawed. In *Proceedings of the IEEE/CVF winter conference on applications of computer vision*,
 391 pages 5404–5411, 2024. 21

392 [42] Y. Lipman, R. T. Chen, H. Ben-Hamu, M. Nickel, and M. Le. Flow matching for generative
 393 modeling. *arXiv preprint arXiv:2210.02747*, 2022. 3

394 [43] N. Liu, S. Li, Y. Du, A. Torralba, and J. B. Tenenbaum. Compositional visual generation with
 395 composable diffusion models. In *European Conference on Computer Vision*, pages 423–439.
 396 Springer, 2022. 15

397 [44] S. Liu, L. Wu, B. Li, H. Tan, H. Chen, Z. Wang, K. Xu, H. Su, and J. Zhu. Rdt-1b: a diffusion
 398 foundation model for bimanual manipulation. *arXiv preprint arXiv:2410.07864*, 2024. 1, 8, 15,
 399 24, 25

400 [45] C. Lu, H. Chen, J. Chen, H. Su, C. Li, and J. Zhu. Contrastive energy prediction for exact
 401 energy-guided diffusion sampling in offline reinforcement learning. In *International Conference*
 402 *on Machine Learning*, pages 22825–22855. PMLR, 2023. 1, 3, 8, 24, 25

403 [46] Y. Luo, C. Sun, J. B. Tenenbaum, and Y. Du. Potential based diffusion motion planning. *arXiv*
 404 *preprint arXiv:2407.06169*, 2024. 7

405 [47] N. Ma, M. Goldstein, M. S. Albergo, N. M. Boffi, E. Vanden-Eijnden, and S. Xie. Sit: Exploring
 406 flow and diffusion-based generative models with scalable interpolant transformers. In *European*
 407 *Conference on Computer Vision*, pages 23–40. Springer, 2024. 3, 17

408 [48] N. Ma, S. Tong, H. Jia, H. Hu, Y.-C. Su, M. Zhang, X. Yang, Y. Li, T. Jaakkola, X. Jia, et al.
 409 Inference-time scaling for diffusion models beyond scaling denoising steps. *arXiv preprint*
 410 *arXiv:2501.09732*, 2025. 2, 5, 15

411 [49] T. Marcucci, M. Petersen, D. von Wrangel, and R. Tedrake. Motion planning around obstacles
 412 with convex optimization. *Science robotics*, 8(84):eadf7843, 2023. 7, 22

413 [50] E. F. Moore. The shortest path through a maze. In *Proc. of the International Symposium on the*
 414 *Theory of Switching*, pages 285–292. Harvard University Press, 1959. 1

415 [51] M. Nakamoto, O. Mees, A. Kumar, and S. Levine. Steering your generalists: Improving robotic
 416 foundation models via value guidance. In *8th Annual Conference on Robot Learning*, 2024. 24

417 [52] A. Newell, J. C. Shaw, and H. A. Simon. Report on a general problem solving program. In *IFIP*
 418 *congress*, volume 256, page 64. Pittsburgh, PA, 1959. 14

419 [53] A. Newell, H. A. Simon, et al. *Human problem solving*, volume 104. Prentice-hall Englewood
 420 Cliffs, NJ, 1972. 14

421 [54] A. Q. Nichol and P. Dhariwal. Improved denoising diffusion probabilistic models. In *International*
 422 *conference on machine learning*, pages 8162–8171. PMLR, 2021. 3, 18

423 [55] S. Park, K. Frans, B. Eysenbach, and S. Levine. Ogbench: Benchmarking offline goal-
 424 conditioned rl. *arXiv preprint arXiv:2410.20092*, 2024. 22, 23

425 [56] J. Pearl. *Heuristics: intelligent search strategies for computer problem solving*. Addison-Wesley
 426 Longman Publishing Co., Inc., 1984. 1, 4

427 [57] J. Peters, K. Mulling, and Y. Altun. Relative entropy policy search. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 24, pages 1607–1612, 2010. 8

428 [58] D. Podell, Z. English, K. Lacey, A. Blattmann, T. Dockhorn, J. Müller, J. Penna, and R. Rombach. Sdxl: Improving latent diffusion models for high-resolution image synthesis. *arXiv preprint arXiv:2307.01952*, 2023. 6

432 [59] S. Russell and P. Norvig. *Artificial Intelligence: A Modern Approach*. Prentice Hall Press, USA, 433 3rd edition, 2009. 1

434 [60] S. Sahoo, M. Arriola, Y. Schiff, A. Gokaslan, E. Marroquin, J. Chiu, A. Rush, and V. Kuleshov. 435 Simple and effective masked diffusion language models. *Advances in Neural Information Processing Systems*, 37:130136–130184, 2024. 15

436 [61] Y. Shen, X. Jiang, Y. Yang, Y. Wang, D. Han, and D. Li. Understanding and improving training- 437 free loss-based diffusion guidance. *Advances in Neural Information Processing Systems*, 37:108974–109002, 2024. 5, 25

440 [62] A. Singh, J. D. Co-Reyes, R. Agarwal, A. Anand, P. Patil, X. Garcia, P. J. Liu, J. Harrison, J. Lee, 441 K. Xu, et al. Beyond human data: Scaling self-training for problem-solving with language 442 models. *arXiv preprint arXiv:2312.06585*, 2023. 14

443 [63] R. Singhal, Z. Horvitz, R. Teehan, M. Ren, Z. Yu, K. McKeown, and R. Ranganath. A 444 general framework for inference-time scaling and steering of diffusion models. *arXiv preprint 445 arXiv:2501.06848*, 2025. 2, 5, 6, 14, 15, 21, 22

446 [64] R. Singhal, Z. Horvitz, R. Teehan, M. Ren, Z. Yu, K. McKeown, and R. Ranganath. A general 447 framework for inference-time scaling and steering of diffusion models, 2025. 4, 5

448 [65] S. A. Sloman. The empirical case for two systems of reasoning. *Psychological bulletin*, 119(1):3, 449 1996. 14

450 [66] C. Snell, J. Lee, K. Xu, and A. Kumar. Scaling llm test-time compute optimally can be more 451 effective than scaling model parameters. *arXiv preprint arXiv:2408.03314*, 2024. 5, 7, 14

452 [67] J. Song, C. Meng, and S. Ermon. Denoising diffusion implicit models. *arXiv preprint 453 arXiv:2010.02502*, 2020. 3, 17

454 [68] J. Song, Q. Zhang, H. Yin, M. Mardani, M.-Y. Liu, J. Kautz, Y. Chen, and A. Vahdat. Loss- 455 guided diffusion models for plug-and-play controllable generation. In *International Conference 456 on Machine Learning*, pages 32483–32498. PMLR, 2023. 1, 2, 15

457 [69] Y. Song and S. Ermon. Generative Modeling by Estimating Gradients of the Data Distribution, 458 Oct. 2020. *arXiv:1907.05600*. 16

459 [70] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole. Score-based 460 generative modeling through stochastic differential equations. *arXiv preprint arXiv:2011.13456*, 461 2020. 15

462 [71] V. Subramaniam, Y. Du, J. B. Tenenbaum, A. Torralba, S. Li, and I. Mordatch. Multiagent 463 finetuning: Self improvement with diverse reasoning chains. *arXiv preprint arXiv:2501.05707*, 464 2025. 14

465 [72] Z. Tan, S. Liu, X. Yang, Q. Xue, and X. Wang. Ominicontrol: Minimal and universal control 466 for diffusion transformer. *arXiv preprint arXiv:2411.15098*, 2024. 15

467 [73] R. Tarjan. Depth-first search and linear graph algorithms. *SIAM journal on computing*, 1(2):146– 468 160, 1972. 1

469 [74] O. M. Team, D. Ghosh, H. Walke, K. Pertsch, K. Black, O. Mees, S. Dasari, J. Hejna, T. Kreiman, 470 C. Xu, et al. Octo: An open-source generalist robot policy. *arXiv preprint arXiv:2405.12213*, 471 2024. 1, 15

472 [75] T. Ubukata, J. Li, and K. Tei. Diffusion model for planning: A systematic literature review. 473 *arXiv preprint arXiv:2408.10266*, 2024. 7

474 [76] H. Van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double q-learning.
 475 In *Proceedings of the AAAI conference on artificial intelligence*, volume 30, 2016. 15, 25

476 [77] C. Villani. *Topics in optimal transportation*. Graduate studies in mathematics ; v. 58. American
 477 Mathematical Society, Providence, R.I, 2003. 20

478 [78] P. Vincent. A connection between score matching and denoising autoencoders. *Neural computa-*
 479 *tion*, 23(7):1661–1674, 2011. 2, 3

480 [79] B. Wallace, M. Dang, R. Rafailov, L. Zhou, A. Lou, S. Purushwalkam, S. Ermon, C. Xiong,
 481 S. Joty, and N. Naik. Diffusion model alignment using direct preference optimization. In
 482 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages
 483 8228–8238, 2024. 1, 15

484 [80] G. Wang, S. Zhang, T. Zhan, Z. Shen, J. Li, X. Hu, X. Sun, F. Wu, G. Deng, J. Zhang, et al.
 485 Unlocking the mysteries of openai o1: A survey of the reasoning abilities of large language
 486 models. 14

487 [81] Z. Wang, J. J. Hunt, and M. Zhou. Diffusion policies as an expressive policy class for offline
 488 reinforcement learning. *arXiv preprint arXiv:2208.06193*, 2022. 8, 24, 25

489 [82] M. Welling and Y. W. Teh. Bayesian learning via stochastic gradient langevin dynamics.
 490 In *Proceedings of the 28th international conference on machine learning (ICML-11)*, pages
 491 681–688. Citeseer, 2011. 3

492 [83] A. Wibisono. Sampling as optimization in the space of measures: The langevin dynamics as a
 493 composite optimization problem. In *Conference on learning theory*, pages 2093–3027. PMLR,
 494 2018. 5, 15, 19

495 [84] L. Wu, B. Trippe, C. Naesseth, D. Blei, and J. P. Cunningham. Practical and asymptotically
 496 exact conditional sampling in diffusion models. *Advances in Neural Information Processing
 497 Systems*, 36:31372–31403, 2023. 2, 14

498 [85] Y. Wu, Z. Sun, S. Li, S. Welleck, and Y. Yang. Inference scaling laws: An empirical analysis
 499 of compute-optimal inference for problem-solving with language models. *arXiv preprint
 500 arXiv:2408.00724*, 2024. 14

501 [86] Z. Wu, S. Huang, Z. Zhou, H. Ying, J. Wang, D. Lin, and K. Chen. Internlm2. 5-stepprover:
 502 Advancing automated theorem proving via expert iteration on large-scale lean problems. *arXiv
 503 preprint arXiv:2410.15700*, 2024. 14

504 [87] E. Xie, J. Chen, Y. Zhao, J. Yu, L. Zhu, C. Wu, Y. Lin, Z. Zhang, M. Li, J. Chen, et al. Sana 1.5:
 505 Efficient scaling of training-time and inference-time compute in linear diffusion transformer.
 506 *arXiv preprint arXiv:2501.18427*, 2025. 1

507 [88] Y. Xie, V. Jampani, L. Zhong, D. Sun, and H. Jiang. Omnicontrol: Control any joint at any time
 508 for human motion generation. *arXiv preprint arXiv:2310.08580*, 2023. 15

509 [89] J. Xu, X. Liu, Y. Wu, Y. Tong, Q. Li, M. Ding, J. Tang, and Y. Dong. Imagereward: learning
 510 and evaluating human preferences for text-to-image generation. In *Proceedings of the 37th
 511 International Conference on Neural Information Processing Systems*, pages 15903–15935, 2023.
 512 1, 6, 15

513 [90] M. Xu, L. Yu, Y. Song, C. Shi, S. Ermon, and J. Tang. Geodiff: A geometric diffusion model
 514 for molecular conformation generation. *arXiv preprint arXiv:2203.02923*, 2022. 15

515 [91] Y. Xu, M. Deng, X. Cheng, Y. Tian, Z. Liu, and T. Jaakkola. Restart sampling for improving
 516 generative processes. *Advances in Neural Information Processing Systems*, 36:76806–76838,
 517 2023. 14

518 [92] S. Yang, Y. Du, S. K. S. Ghasemipour, J. Tompson, L. P. Kaelbling, D. Schuurmans, and
 519 P. Abbeel. Learning interactive real-world simulators. In *The Twelfth International Conference
 520 on Learning Representations*, 2024. 1

521 [93] S. Yao, D. Yu, J. Zhao, I. Shafran, T. Griffiths, Y. Cao, and K. Narasimhan. Tree of thoughts:
 522 Deliberate problem solving with large language models. *Advances in neural information*
 523 *processing systems*, 36:11809–11822, 2023. 14

524 [94] H. Ye, H. Lin, J. Han, M. Xu, S. Liu, Y. Liang, J. Ma, J. Y. Zou, and S. Ermon. Tfg: Unified
 525 training-free guidance for diffusion models. *Advances in Neural Information Processing*
 526 *Systems*, 37:22370–22417, 2024. 1, 2, 5, 7, 8, 15, 19, 20, 25

527 [95] J. Yu, Y. Wang, C. Zhao, B. Ghanem, and J. Zhang. Freedom: Training-free energy-guided
 528 conditional diffusion model. In *Proceedings of the IEEE/CVF International Conference on*
 529 *Computer Vision*, pages 23174–23184, 2023. 2, 3, 15

530 [96] E. Zelikman, Y. Wu, J. Mu, and N. Goodman. Star: Bootstrapping reasoning with reasoning.
 531 *Advances in Neural Information Processing Systems*, 35:15476–15488, 2022. 14

532 [97] L. Zhang, A. Rao, and M. Agrawala. Adding conditional control to text-to-image diffusion
 533 models. In *Proceedings of the IEEE/CVF international conference on computer vision*, pages
 534 3836–3847, 2023. 15

535 [98] Y. Zhang, E. Tzeng, Y. Du, and D. Kislyuk. Large-scale reinforcement learning for diffusion
 536 models. In *European Conference on Computer Vision*, pages 1–17. Springer, 2024. 15

537 [99] S. Zhao, R. Brekelmans, A. Makhzani, and R. Grosse. Probabilistic inference in language
 538 models via twisted sequential monte carlo. *arXiv preprint arXiv:2404.17546*, 2024. 14

539 **A Appendix Overview**

540 In Sec. B, we provide a in-depth review of literature related to inference-time scaling and diffusion
 541 models. In Sec. C, we elaborate on local search with Langevin MCMC, and in Sec. D we provide
 542 the pseudo code and design of global search algorithms BFS and DFS. In Sec. E, we provide the
 543 details of all the experiments. In Sec. F we provide the details of double-verifier for mitigating reward
 544 hacking.

545 **B Additional Related Works**

546 **Inference-time scaling.** Scaling compute in inference-time with “slow thinking” has its long history
 547 grounded in cognitive science, known as “system 2” thinking [32, 65]. In [52, 53], Newell and
 548 his colleagues formalized problem solving as tree search in a combinatorial space, and [93] uses
 549 tree-of-thoughts to enable LLM reasoning with multiple exploration paths, using BFS and DFS as
 550 strategic search algorithms.

551 Recently, long chain-of-thought (CoT) reasoning has demonstrated remarkable performance for LLM
 552 reasoning [30, 18], where the long CoT reasoning ability is incentivized through reinforcement
 553 learning [18]. Notably, the CoT process demonstrates reasoning activities such as self-verification,
 554 backtracking and self-correction. Using a process reward model [40], we can also conduct explicit
 555 tree search without training the language model. [85] propose reward-balanced search (REBASE)
 556 which is a special instance of BFS, and [66] applied beam-search to difficult math problems, showing
 557 compute-optimal inference can be achieved via selecting different strategy for problems with different
 558 difficulty. We refer the readers to [80] for a comprehensive review.

559 Inference-time scaling could also be used to improve the model itself, known as expert iteration.
 560 In [32], they proposed reinforcement learning with expert iteration in games, where the expert is
 561 constructed combining the base policy with Monte Carlo Tree Search (MCTS), and [86] applied
 562 expert iteration to automated theorem proving. Self improvements can also be achieved through
 563 iterative self-training [71, 96, 11, 62].

564 **Inference scaling in diffusion models.** The inference-time compute of diffusion models depends
 565 heavily on the number of denoising steps. [91] showed that recursive restart sampling can reduce
 566 cumulative error during sampling, which can be regarded as scaling the number of denoising steps.
 567 More recently, [63] proposed a Sequential Monte Carlo (SMC) [84, 99] style method, known as
 568 Feynman-Kac steering, which can be seen as a instance of BFS. Besides image generation, they also

569 applied it to diffusion language models [21, 60]. Additionally, [48] explored inference-time scaling
570 of diffusion models with local zero order search and global search over paths for image generation.
571 They also experimented with different verifiers, such as oracle verifiers, self-supervised verifiers,
572 and studied the verifier-task alignment problem. There zero-order search can be understood as an
573 uninformed version of local search which exhibits low efficiency, and when utilizing gradients, they
574 need to back-propagate through the entire diffusion sampling chain, causing high computation and
575 memory overheads. Compared with their work, we propose efficient gradient-based local search with
576 theoretically grounded Langevin MCMC, which we show is crucial in many tasks. Also, we provide
577 systematic experiments on the compute efficiency of global search methods. Their proposed methods
578 can thus be understood as a instance within our search framework.

579 Apart from search, [38] exploits the in-context learning abilities of foundation models to provide
580 revision during sampling. Specifically, they leverage the multi-modal capabilities of VLMs to provide
581 feedbacks on past generated images, and train the model to condition on past images and feedback.

582 **Diffusion models and applications.** Diffusion models [26, 70, 76] has shown great performance in
583 generative modeling for continuous data domains, such as image [16, 10], videos [28] and molecules
584 [90]. Due to its expressive power on modeling multimodal and complex distributions, they have
585 also been widely used as a decision prior in robotics. [31] proposes the first work on using diffusion
586 models to generate plans. [8] uses the diffusion model for visuo-motor policy in robotics. Recently,
587 a series of robotics foundation models utilize diffusion heads as action experts [4, 74], while [44]
588 trains a end-to-end diffusion transformer for bimanual manipulation. In this work, we demonstrate
589 that inference-time scaling can be especially helpful for decision making tasks with diffusion models.

590 **Control and alignment of diffusion models.** To align the diffusion model with flexible objectives,
591 training-free guidance [94, 3, 9, 68, 95, 24] and compositional generation [12, 43] combines the
592 diffusion models with classifiers or other diffusion models at inference time, while RL-based methods
593 [98, 79, 89, 5] finetune the diffusion model using reward or preference signals. ControlNet [97] style
594 approaches have also been used to add additional conditions for sampling, where [72] designs a
595 control block for diffusion transformers, and [88] uses a combination of guidance and controlnet for
596 controllable human motion generation.

597 **Discussions on concurrent works.** Adaptive Bi-directional Cyclic Diffusion (ABCD) [36] propose
598 a search based inference scaling framework which could be seen as a combination of DFS and BFS.
599 Unlike DFS that determines backtracking with a quality threshold, ABCD maintains a set of particles
600 and backtracks by sending the particles to all different noise levels. The termination condition is
601 determined by whether backtracking to higher noise levels increases sample quality. Compared
602 with DFS, ABCD can have smaller score estimation errors since they evaluate particles when fully
603 denoised, and can explore the generative space sufficiently via a combination of BFS and DFS.
604 However, ABCD can not adaptively adjust compute allocation on different instances due to its special
605 termination condition, and requires more compute on easy instances since it will denoise a set of
606 particles regardless of whether sample quality is satisfactory.

607 EvoSearch [23] propose to use evolutionary search to scale inference compute in image and video
608 generation. At selected time steps, they evaluate the particles via full denoising, and maintain
609 high score particles and mutate low score particles with adding noise. Their method demonstrated
610 improved performance over the FK-steering [63] baseline. It improves upon naive BFS with local
611 search via mutation for low quality particles.

612 C Details about local search with Langevin MCMC

613 In this section we provide a comprehensive and detailed overview of (annealed) Langevin MCMC
614 based methods used in local search, as well as proving Proposition. 1.

615 C.1 Langevin MCMC as gradient flow in measure space

616 Following [83], the Langevin SDE in sample space corresponds to gradient flow of the KL-divergence
617 in measure space. Here we provide a brief overview.

618 Define our target distribution that we wish to sample from as ν , and the distribution of our current
619 sample as ρ . We define the KL-divergence (relative entropy) as:

$$H_\nu(\rho) = \int \rho \log \frac{\rho}{\nu}. \quad (6)$$

620 Thus, sampling from ν can be seen as minimizing H , since the minimum of H is achieved at $\rho = \nu$
621 with $H_\nu(\rho) = 0$. Furthermore, ν is the only stationary point of H even for multimodal distributions.
622 Thus we can sample from ν when optimizing H via gradient based methods.

623 We have the gradient flow of H in Eq. 6 follows the following PDE:

$$\frac{\partial \rho}{\partial t} = \nabla \cdot (\rho \nabla (-\log \nu)) + \Delta \rho, \quad (7)$$

624 which is known as the Fokker-Planck equation. Here, $\rho = \rho(\mathbf{x}, t)$ is a smooth positive density
625 evolving through time, driven by the dynamics of the sample \mathbf{x} . The dynamics in sample space
626 corresponding to Eq. 7 is the Langevin SDE:

$$d\mathbf{x}_t = \nabla \log \nu(\mathbf{x}_t) dt + \sqrt{2} d\mathbf{w}_t. \quad (8)$$

627 where $(\mathbf{x}_t)_{t \geq 0}$ is a stochastic process with measure ρ_t , and $(\mathbf{w}_t)_{t \geq 0}$ is standard Brownian motion.
628 That is, if $\mathbf{x}_t \sim \rho_t$ evolves according to the dynamics in Eq. 8, then the measure $\rho(\mathbf{x}, t) = \rho_t$ evolves
629 according to the PDE in Eq. 7, conducting gradient optimization in measure space.

630 In practice, we implement Eq. 8 through discretization, which is known as the unadjusted Langevin
631 algorithm (ULA):

$$\mathbf{x}^{i+1} = \mathbf{x}^i + \eta \nabla_{\mathbf{x}^i} \log \nu(\mathbf{x}^i) + \sqrt{2\eta} \mathbf{\epsilon}^i, \quad (9)$$

632 with $\mathbf{\epsilon}^i \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$. When $\eta \rightarrow 0$, the ULA converges to Langevin SDE, providing exact sampling.

633 Previous works [15, 7] show that ULA can efficiently converge to the target measure ν if ν is log-
634 concave and smooth. However, when facing complex and multimodal distributions, we can only
635 guarantee convergence to the concave vicinity.

636 C.2 Annealed Langevin MCMC Sampling

637 Langevin MCMC have been used to perform implicit sampling in energy-based models [14] and
638 score-based models [69]. However, these methods suffer from inaccurate score estimation and
639 low density regions [69]. In [69] they propose to perturb the data with gaussian noise, eventually
640 smoothing the data distribution:

$$q(\mathbf{x}_t) = \int_{\mathbf{x}_0} p_0(\mathbf{x}_0) \mathcal{N}(\mathbf{x}_t; \mathbf{x}_0, \sigma_t^2 \mathbf{I}),$$

641 and creating a sequence of annealed distributions $\{q(\mathbf{x}_t)\}_{t=0}^T$ which converges to $p_0(\mathbf{x}_0)$. Since they
642 are smoothed by gaussian noise, we can improve the mixing time of Langevin MCMC on multimodal
643 distributions by sampling from these intermediate distributions, sharing similar spirits with simulated
644 annealing [34].

645 In [12], they extend this method to compositional generation of diffusion models. Specifically,
646 we consider sampling from a product distribution $p_0^{\text{prod}}(\mathbf{x}_0) \propto p_0^1(\mathbf{x}_0) p_0^2(\mathbf{x}_0)$, where $p_0^1(\mathbf{x}_0)$ and
647 $p_0^2(\mathbf{x}_0)$ are distributions of different diffusion models. Since we have access to the score functions
648 $\nabla_{\mathbf{x}_t} \log q_t^1(\mathbf{x}_t)$ and $\nabla_{\mathbf{x}_t} \log q_t^2(\mathbf{x}_t)$ through the diffusion model, we can construct a sequence of
649 annealing distributions $\tilde{q}_t^{\text{prod}}(\mathbf{x}_t)$ such that:

$$\nabla_{\mathbf{x}_t} \log \tilde{q}_t^{\text{prod}}(\mathbf{x}_t) = \nabla_{\mathbf{x}_t} \log q_t^1(\mathbf{x}_t) + \nabla_{\mathbf{x}_t} \log q_t^2(\mathbf{x}_t).$$

650 By sampling from the sequence $\{\tilde{q}_t^{\text{prod}}(\mathbf{x}_t)\}$, we can arrive at $\tilde{q}_0^{\text{prod}}(\mathbf{x}_0)$ which is equal to $p_0^{\text{prod}}(\mathbf{x}_0)$.

651 A key difference from sampling from $\{\tilde{q}_t^{\text{prod}}(\mathbf{x}_t)\}$ and direct diffusion sampling is that the diffusion
652 process with $p_0^{\text{prod}}(\mathbf{x}_0)$ defined as

$$q_t^{\text{prod}}(\mathbf{x}_t) = \int_{\mathbf{x}_0} p_0^{\text{prod}}(\mathbf{x}_0) q(\mathbf{x}_t | \mathbf{x}_0)$$

653 is different from $\tilde{q}_t^{\text{prod}}(\mathbf{x}_t)$. The score of $q_t^{\text{prod}}(\mathbf{x}_t)$ can be derived as:

$$\nabla_{\mathbf{x}_t} \log q_t^{\text{prod}}(\mathbf{x}_t) = \nabla_{\mathbf{x}_t} \log \left(\int_{\mathbf{x}_0} p_0^1(\mathbf{x}_0) p_0^2(\mathbf{x}_0) q(\mathbf{x}_t | \mathbf{x}_0) \right),$$

654 which is not equal to

$$\nabla_{\mathbf{x}_t} \log \tilde{q}_t^{\text{prod}}(\mathbf{x}_t) = \nabla_{\mathbf{x}_t} \log \left(\int_{\mathbf{x}_0} p_0^1(\mathbf{x}_0) q(\mathbf{x}_t | \mathbf{x}_0) \right) + \nabla_{\mathbf{x}_t} \log \left(\int_{\mathbf{x}_0} p_0^2(\mathbf{x}_0) q(\mathbf{x}_t | \mathbf{x}_0) \right),$$

655 and thus intractable to compute directly.

656 A key distinction between annealed Langevin MCMC sampling and reverse diffusion sampling is
657 that we run multiple Langevin MCMC steps on the *same noise level*, while reverse diffusion goes
658 from high noise level to low noise level via denoising. A minimal pseudo code is shown in Alg. 1.

Algorithm 1 Annealed Langevin MCMC sampling

Input: sequence of annealing distributions $\{\tilde{q}_t(\mathbf{x}_t)\}_{t=0}^T$, number of MCMC steps N , step size $\{\eta_t\}_{t=0}^T$. (Optional) reverse transition kernel $\{\tilde{p}_\theta(\mathbf{x}_{t-1} | \mathbf{x}_t)\}_{t=0}^T$.
Init: $\mathbf{x}_T^0 \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
for $t = T, \dots, 1$ **do**
 for $i = 0, 1, \dots, N-1$ **do**
 Perform Langevin MCMC steps:

$$\mathbf{x}_t^{i+1} = \mathbf{x}_t^i + \eta_t \nabla_{\mathbf{x}_t} \log \tilde{q}_t(\mathbf{x}_t^i) + \sqrt{2\eta_t} \boldsymbol{\epsilon}_t^i, \quad \boldsymbol{\epsilon}_t^i \sim \mathcal{N}(\mathbf{0}, \mathbf{I}).$$

 end for
 (Optional) transit to next time step: $\mathbf{x}_{t-1}^0 \sim \tilde{p}_\theta(\cdot | \mathbf{x}_t^N)$. If no reverse kernel initialize $\mathbf{x}_{t-1}^0 = \mathbf{x}_t^N$.
end for
 Return \mathbf{x}_0

659 **C.3 Annealed Langevin MCMC with recurrent training-free guidance**

660 In this section, we prove the connection between annealed Langevin MCMC (Alg. 1) and training-free
661 guidance (Alg. 2) in Proposition 1. We divide the proof into two parts. In Sec. C.3.1 we prove the
662 equivalence between naive recurrence steps and Langevin MCMC. Then in Sec. C.3.2, we prove
663 that adding the guidance term is defining an annealing path that biases towards high score regions.
664 Finally, we provide a rigorous convergence analysis in Sec. C.3.3.

665 **C.3.1 Equivalence between Langevin MCMC and naive recurrence**

666 Consider the diffusion process with the following stochastic interpolant [47]:

$$\mathbf{x}_t = \alpha_t \mathbf{x}_0 + \sigma_t \boldsymbol{\epsilon}.$$

667 We denote the score function of $q_t(\mathbf{x}_t)$ as $\nabla_{\mathbf{x}_t} \log q_t(\mathbf{x}_t) = s(\mathbf{x}_t, t)$. Recall the forward process in
668 Eq. 1:

$$\mathbf{x}_t = \frac{\alpha_t}{\alpha_{t-1}} \mathbf{x}_{t-1} + \sqrt{\alpha_t^2 \left(\frac{\sigma_t^2}{\alpha_t^2} - \frac{\sigma_{t-1}^2}{\alpha_{t-1}^2} \right)} \boldsymbol{\epsilon}. \quad (10)$$

669 In a recurrence step in Line 5, we first solve \mathbf{x}_{t-1}^i from \mathbf{x}_t^i using the learned score function $s(\mathbf{x}_t^i, t)$,
670 then add noise to \mathbf{x}_{t-1}^i to obtain the recurrent sample \mathbf{x}_t^{i+1} , where the superscript denotes the
671 recurrence step index: $i = 0, 1, \dots, N_{\text{recur}}$. Depending on different solvers, we have different
672 formulations of \mathbf{x}_t^{i+1} .

673 **DDIM sampler.** When using DDIM [67] sampler, we have the reverse step as:

$$\mathbf{x}_{t-1} = \frac{\alpha_{t-1}}{\alpha_t} \mathbf{x}_t + \sigma_t^2 \left(\frac{\alpha_{t-1}}{\alpha_t} - \frac{\sigma_{t-1}}{\sigma_t} \right) s(\mathbf{x}_t, t), \quad (11)$$

674 where $s(\mathbf{x}_t, t)$ is the score function $\nabla_{\mathbf{x}_t} \log q_t(\mathbf{x}_t)$. Thus, we have:

$$\begin{aligned}\mathbf{x}_t^{i+1} &= \frac{\alpha_t}{\alpha_{t-1}} \mathbf{x}_{t-1}^i + \alpha_t \sqrt{\frac{\sigma_t^2}{\alpha_t^2} - \frac{\sigma_{t-1}^2}{\alpha_{t-1}^2}} \boldsymbol{\epsilon}^i \\ &= \mathbf{x}_t^i + \sigma_t^2 \left(1 - \frac{\alpha_t}{\alpha_{t-1}} \frac{\sigma_{t-1}}{\sigma_t}\right) s(\mathbf{x}_t^i, t) + \sigma_t \sqrt{1 - \frac{\alpha_t^2}{\alpha_{t-1}^2} \frac{\sigma_{t-1}^2}{\sigma_t^2}} \boldsymbol{\epsilon}^i.\end{aligned}$$

675 Denote $\lambda_t = \log \frac{\alpha_t}{\sigma_t}$, then we have:

$$\begin{aligned}\mathbf{x}_t^{i+1} &= \mathbf{x}_t^i + \sigma_t^2 (1 - e^{\lambda_t - \lambda_{t-1}}) s(\mathbf{x}_t^i, t) + \sigma_t \sqrt{1 - e^{2(\lambda_t - \lambda_{t-1})}} \boldsymbol{\epsilon}^i \\ &= \mathbf{x}_t^i + \sigma_t^2 (1 - e^{\lambda_t - \lambda_{t-1}}) s(\mathbf{x}_t^i, t) + \sigma_t \sqrt{(1 - e^{\lambda_t - \lambda_{t-1}})(1 + e^{\lambda_t - \lambda_{t-1}})} \boldsymbol{\epsilon}^i,\end{aligned}$$

676 where $1 + e^{\lambda_t - \lambda_{t-1}} \rightarrow 2$ when $T \rightarrow \infty$ and denoising step size approaches 0, as $\lambda_t - \lambda_{t-1} \rightarrow 0$.

677 **DDPM sampler.** In DDPM [26], we parametrize the posterior distribution as:

$$p_\theta(\mathbf{x}_{t-1} | \mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1}; \mu_\theta(\mathbf{x}_t, t), \Sigma_\theta(\mathbf{x}_t, t)), \quad (12)$$

678 where the posterior mean is:

$$\mu_\theta(\mathbf{x}_t, t) = \frac{\alpha_{t-1}}{\alpha_t} \mathbf{x}_t + \left(\sigma_t^2 \frac{\alpha_{t-1}}{\alpha_t} - \sigma_{t-1}^2 \frac{\alpha_t}{\alpha_{t-1}} \right) s(\mathbf{x}_t, t).$$

679 [26] parameterizes the posterior variance as $\Sigma_\theta(\mathbf{x}_t, t) = \beta_t \mathbf{I}$ or $\Sigma_\theta(\mathbf{x}_t, t) = \tilde{\beta}_t \mathbf{I}$:

$$\begin{aligned}\beta_t &= \alpha_t^2 \left(\frac{\sigma_t^2}{\alpha_t^2} - \frac{\sigma_{t-1}^2}{\alpha_{t-1}^2} \right), \\ \tilde{\beta}_t &= \frac{\sigma_{t-1}^2}{\sigma_t^2} \beta_t,\end{aligned}$$

680 while [54] propose to train the posterior variance as $\Sigma_\theta(\mathbf{x}_t, t) = \exp(v \log \beta_t + (1-v) \log \tilde{\beta}_t)$.

681 Thus, a backward step can be written as:

$$\mathbf{x}_{t-1} = \frac{\alpha_{t-1}}{\alpha_t} \mathbf{x}_t + \left(\sigma_t^2 \frac{\alpha_{t-1}}{\alpha_t} - \sigma_{t-1}^2 \frac{\alpha_t}{\alpha_{t-1}} \right) s(\mathbf{x}_t, t) + \Sigma_\theta^{1/2}(\mathbf{x}_t, t) \boldsymbol{\epsilon}_{\text{post}},$$

682 where $\boldsymbol{\epsilon}_{\text{post}}$ denotes the noise added in the posterior sampling step. Then, we can write the recurrence
683 step as:

$$\begin{aligned}\mathbf{x}_t^{i+1} &= \mathbf{x}_t^i + \left(\sigma_t^2 - \sigma_{t-1}^2 \frac{\alpha_t^2}{\alpha_{t-1}^2} \right) s(\mathbf{x}_t^i, t) + \Sigma_\theta^{1/2}(\mathbf{x}_t^i, t) \boldsymbol{\epsilon}_{\text{post}}^i + \alpha_t \sqrt{\frac{\sigma_t^2}{\alpha_t^2} - \frac{\sigma_{t-1}^2}{\alpha_{t-1}^2}} \boldsymbol{\epsilon}_{\text{forward}}^i \\ &= \mathbf{x}_t^i + \beta_t s(\mathbf{x}_t^i, t) + \sqrt{\Sigma_\theta(\mathbf{x}_t, t) + \beta_t \mathbf{I}} \boldsymbol{\epsilon}^i,\end{aligned}$$

684 where $\Sigma_\theta(\mathbf{x}_t, t) \rightarrow \beta_t \mathbf{I}$ when $T \rightarrow \infty$, and the denoising step size approaches 0.

685 **Putting together.** In general, we can write the recurrence step as:

$$\mathbf{x}_t^{i+1} = \mathbf{x}_t^i + a_t r_t s(\mathbf{x}_t^i, t) + \sqrt{2a_t} \boldsymbol{\epsilon}^i. \quad (13)$$

686 with $a_t \rightarrow 0$ and $r_t \rightarrow 1$ as the denoising step size approaches 0:

687 • For DDIM sampler, we have $a_t = \frac{1}{2} \alpha_t^2 \left(\frac{\sigma_t^2}{\alpha_t^2} - \frac{\sigma_{t-1}^2}{\alpha_{t-1}^2} \right)$ and $r_t = \frac{2}{1 + e^{\lambda_t - \lambda_{t-1}}}$.

688 • For DDPM sampler, we have $a_t = \frac{1}{2} \alpha_t^2 \left(\frac{\sigma_t^2}{\alpha_t^2} - \frac{\sigma_{t-1}^2}{\alpha_{t-1}^2} \right)$ and $1 \leq r_t \leq \frac{2}{1 + \frac{\sigma_{t-1}^2}{\sigma_t^2}}$.

689 Thus, it can be seen as a approximation of the ULA in Eq. 9, and also a discretization of the Langevin
690 SDE in Eq. 8.

691 **C.3.2 Annealed Langevin MCMC with guidance**

692 When applying training free guidance [94] during the recurrence, we have:

$$\mathbf{x}_t^{i+1} = \mathbf{x}_t^i + a_t r_t s(\mathbf{x}_t^i, t) + \sqrt{2a_t} \boldsymbol{\epsilon}^i + \Delta(\mathbf{x}_t, t),$$

693 where a_t, b_t are the coefficients of the recurrence equation in Eq. 13 without guidance. In general,
694 $\Delta_t = \rho_t \nabla_{\mathbf{x}_t} \log f(\mathbf{x}_{0|t}) + \mu_t \alpha_t \nabla_{\mathbf{x}_{0|t}} \log f(\mathbf{x}_{0|t})$, where ρ_t, μ_t controls the guidance strength. We
695 then show that the guidance term can be considered as the score function of a set of annealed verifiers
696 $\{\hat{f}(\mathbf{x}_t)\}_{t=0}^T$.

697 When considering ‘variance guidance’ in Line. 7, we have $\Delta_{\text{var}} = \rho_t \nabla_{\mathbf{x}_t} \log f(\mathbf{x}_{0|t})$. Thus, we
698 can define $\hat{f}_t^{\text{var}}(\mathbf{x}_t) = f(\mathbf{x}_{0|t})$, which satisfies $\hat{f}_0^{\text{var}}(\mathbf{x}_0) = f(\mathbf{x}_0)$. Similarly, for ‘mean guidance’ in
699 Line. 8, we have

$$\begin{aligned} \Delta_{\text{mean}} &= \mu_t \alpha_t \nabla_{\mathbf{x}_{0|t}} \log f(\mathbf{x}_{0|t}) \\ &= \mu_t \frac{\sigma_t^2}{\Sigma_{0|t}} \nabla_{\mathbf{x}_t} \log f(\mathbf{x}_{0|t}), \end{aligned}$$

700 where the second Equation follows from Lemma 3.3 in [94]. Thus, there exists a set of functions
701 $\hat{f}_t^{\text{mean}}(\mathbf{x}_t)$ such that $\nabla_{\mathbf{x}_t} \log \hat{f}_t^{\text{mean}}(\mathbf{x}_t) = \frac{\sigma_t^2}{\Sigma_{0|t}} \nabla_{\mathbf{x}_t} \log f(\mathbf{x}_{0|t})$, and we can see that when $t \rightarrow$
702 $0, \nabla_{\mathbf{x}_t} \log \hat{f}_t^{\text{mean}}(\mathbf{x}_t) = \nabla_{\mathbf{x}_0} \log f(\mathbf{x}_0)$. If we additionally incorporate the ‘implicit dynamics’ in
703 Line. 4, our arguments still stands since the smoothed objective $\tilde{f}(\mathbf{x}) = \mathbb{E}_{\delta \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} f(\mathbf{x} + \bar{\gamma} \sigma_t \boldsymbol{\delta})$
704 converges to f with $t \rightarrow 0$ and $\sigma_t \rightarrow 0$.

705 Combining the two terms together, we have $\Delta_t = c_t \nabla_{\mathbf{x}_t} \log \hat{f}_t(\mathbf{x}_t)$ with $\hat{f}_t = \hat{f}_t^{\text{var}} \cdot \hat{f}_t^{\text{mean}}$. Thus,
706 recurrence with guidance can be written as:

$$\begin{aligned} \mathbf{x}_t^{i+1} &= \mathbf{x}_t^i + a_t r_t s(\mathbf{x}_t^i, t) + \sqrt{2a_t} \boldsymbol{\epsilon}^i + c_t \nabla_{\mathbf{x}_t} \log \hat{f}_t(\mathbf{x}_t) \\ &= \mathbf{x}_t^i + a_t r_t \nabla_{\mathbf{x}_t} \log q_t(\mathbf{x}_t) \hat{f}_t(\mathbf{x}_t)^{c_t/a_t r_t} + \sqrt{2a_t} \boldsymbol{\epsilon}^i, \end{aligned}$$

707 Thus, we have defined the annealing path as $\tilde{q}_t(\mathbf{x}_t) = q_t(\mathbf{x}_t) \hat{f}_t(\mathbf{x}_t)^{c_t/a_t r_t}$, $t = 1, 2, \dots, T$.

708 **C.3.3 Convergence analysis**

709 In this section, we provide a rigorous convergence analysis of recurrence to the target distribution
710 $\tilde{q}_t(\mathbf{x}_t)$.

711 **Theorem 1.** Suppose $\tilde{q}_t(\mathbf{x}_t)$ has bounded support, is α -strongly log-concave and L -log-smooth, and
712 $-\nabla^2 \log \tilde{q}_t$ is M -Lipschitz. Denote $\mathbf{x}_t^{N_{\text{recur}}}$ as the sample after N_{recur} steps of recurrence, we can
713 bound the Wasserstein distance between the distribution of $\mathbf{x}_t^{N_{\text{recur}}}$ and \tilde{q}_t as:

$$W_2(p(\mathbf{x}_t^{N_{\text{recur}}}), \tilde{q}_t) = \mathcal{O} \left(\sqrt{\lambda_{t-1} - \lambda_t} + e^{-2\lambda_t} - e^{-2\lambda_{t-1}} + (1 - e^{-2\lambda_t} + e^{-2\lambda_{t-1}})^{N_{\text{recur}}} \right),$$

714 where $\lambda_t = \log \frac{\alpha_t}{\sigma_t}$ is half of the log SNR.

715 *Proof.* Recall recurrence is equivalent to the following recursion equation:

$$\begin{aligned} \mathbf{x}_t^{i+1} &= \mathbf{x}_t^i + a_t r_t \nabla_{\mathbf{x}_t} \log \tilde{q}_t(\mathbf{x}_t^i) + \sqrt{2a_t} \boldsymbol{\epsilon}^i \\ &= \mathbf{x}_t^i + a_t r_t \nabla_{\mathbf{x}_t} \log \tilde{q}_t(\mathbf{x}_t^i)^{r_t} + \sqrt{2a_t} \boldsymbol{\epsilon}^i. \end{aligned}$$

716 Thus, recurrence is equivalent to running unadjusted Langevin algorithm (ULA) on the tempered
717 distribution $p^{\text{tempered}} \propto \tilde{q}_t^{r_t}$. Using Lemma 1 and Lemma 2 from [83], given the regularity conditions
718 on \tilde{q}_t , we can bound the discretization error from ULA as:

$$\begin{aligned} W_2(p^{\text{tempered}}, p(\mathbf{x}_t^{N_{\text{recur}}})) &= \mathcal{O} (a_t + (1 - a_t)^{N_{\text{recur}}}) \\ &= \mathcal{O} \left(\frac{\sigma_t^2}{\alpha_t^2} - \frac{\sigma_{t-1}^2}{\alpha_{t-1}^2} + (1 - \frac{\sigma_t^2}{\alpha_t^2} + \frac{\sigma_{t-1}^2}{\alpha_{t-1}^2})^{N_{\text{recur}}} \right) \\ &= \mathcal{O} (e^{-2\lambda_t} - e^{-2\lambda_{t-1}} + (1 - e^{-2\lambda_t} + e^{-2\lambda_{t-1}})^{N_{\text{recur}}}). \end{aligned}$$

719 To bound $W_2(p^{\text{tempered}}, \tilde{q}_t)$, we can bound the TV distance as $\text{TV}(p^{\text{tempered}}, \tilde{q}_t) \leq \mathcal{O}(r_t - 1)$. Following
720 Proposition 7.10 in [77] for distributions with bounded support, we have:

$$\begin{aligned}
& W_2(p^{\text{tempered}}, \tilde{q}_t) \\
&= \mathcal{O} \left(\sqrt{\text{TV}(p^{\text{tempered}}, \tilde{q}_t)} \right) \\
&= \mathcal{O} \left(\sqrt{r_t - 1} \right) \\
&= \mathcal{O} \left(\sqrt{1 - \min \left(\frac{\alpha_t \sigma_{t-1}}{\alpha_{t-1} \sigma_t}, \frac{\sigma_{t-1}^2}{\sigma_t^2} \right)} \right) \\
&= \mathcal{O} \left(\sqrt{\log \frac{\sigma_t}{\sigma_{t-1}} + \max \left(\log \frac{\alpha_{t-1}}{\alpha_t}, \log \frac{\sigma_t}{\sigma_{t-1}} \right)} \right) \\
&= \mathcal{O} \left(\log \frac{\alpha_{t-1}}{\alpha_t} + \log \frac{\sigma_t}{\sigma_{t-1}} \right) \\
&= \mathcal{O}(\lambda_{t-1} - \lambda_t) .
\end{aligned}$$

721 Putting together we obtain our desired bound. \square

722 C.4 Relationship between Langevin MCMC and gradient ascent

723 In training-free guidance, most prior works only apply gradient ascent without recurrence. Here we
724 provide a theoretical analysis of both methods.

725 Recall the KL-divergence objective in Eq. 6, which can be further decomposed when we are sampling
726 from a compositional distribution of $p_0(\mathbf{x}_0)$ and verifier $f(\mathbf{x}_0)$, with $\nu \propto p_0 \cdot f$:

$$H_\nu(\rho) = \mathbb{E}_\rho[-\log f] + H_{p_0}(\rho) + \log Z .$$

727 where $Z = \int p_0 f$ is a normalization constant. Thus, gradient ascent is optimizing the verifier
728 objective $\mathbb{E}_\rho[-\log f]$, while Langevin MCMC in Eq. 13 is optimizing the divergence between current
729 sample and base distribution $H_{p_0}(\rho)$. This explains why naive gradient updates leads to OOD
730 samples, and recurrence effectively mitigates this issue, acting as a contraction force pulling the
731 sample back to the original manifold. However, since we start from p_0 as the distribution of our initial
732 sample, sometimes we can omit the recurrence if the guidance strength is small. But if we wish to
733 traverse different modes with multiple gradient updates, introducing recurrence helps to avoid OOD
734 during optimization.

735 C.5 Implementing Local Search with TFG hyper-parameter space

736 Due to the equivalence between annealed Langevin MCMC and training-free guidance with recurrence,
737 we can implement local search with Langevin MCMC using the TFG framework of [94],
738 efficiently searching the hyperparameters. Here we provide a overview of the algorithm and design
739 space. Following Sec. C.3, every iteration of recurrence in Line. 5 is equivalent to an annealed
740 Langevin MCMC step, thus N_{recur} is equal to the number of local search steps.

741 For time varying schedules ρ_t, μ_t , we follow [94] and propose to use either the ‘increase’ schedule:

$$s_t = T \frac{\alpha_t / \alpha_{t-1}}{\sum_{t=1}^T \alpha_t / \alpha_{t-1}} , \quad (14)$$

742 where we increase the guidance strength as we denoise: $s_T < s_{T-1} < \dots < s_1$; or the ‘constant’
743 schedule

$$s_t = 1 , \quad (15)$$

744 which uses constant parameters throughout the denoising process. Thus, the time-varying schedules
745 can be computed as $\rho_t = s_t \bar{\rho}$ and $\mu_t = s_t \bar{\mu}$, and we only need to determine the average $\bar{\rho}$ and $\bar{\mu}$.

746 D Global Search of Denoising Diffusion Models

747 In this section, we provide details about the global search algorithms: BFS and DFS.

Algorithm 2 Training-Free Guidance

```

1: Input: Unconditional diffusion model  $\epsilon_\theta$ , verifier  $f$ , guidance strength  $\rho, \mu, \bar{\gamma}$ , number of steps
2:  $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ 
3: for  $t = T, \dots, 1$  do
4:   Define function  $\tilde{f}(\mathbf{x}) = \mathbb{E}_{\delta \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} f(\mathbf{x} + \bar{\gamma} \sigma_t \delta)$ 
5:   for  $r = 1, \dots, N_{\text{recur}}$  do
6:      $\mathbf{x}_{0|t} = (\mathbf{x}_t - \sigma_t \epsilon_\theta(\mathbf{x}_t, t)) / \alpha_t$ 
7:      $\Delta_{\text{var}} = \rho_t \nabla_{\mathbf{x}_t} \log \tilde{f}(\mathbf{x}_{0|t})$ 
8:      $\Delta_{\text{mean}} = \Delta_{\text{mean}} + \mu_t \alpha_t \nabla_{\mathbf{x}_{0|t}} \log \tilde{f}(\mathbf{x}_{0|t} + \Delta_{\text{mean}})$   $\triangleright$  Iterate  $N_{\text{iter}}$  times starting from  $\Delta_{\text{mean}} = \mathbf{0}$ 
9:      $\mathbf{x}_{t-1} = \text{Sample}(\mathbf{x}_t, \mathbf{x}_{0|t}, t) + \frac{\alpha_{t-1}}{\alpha_t} (\Delta_{\text{var}} + \Delta_{\text{mean}})$   $\triangleright$  Sample follows DDIM or DDPM
10:     $\mathbf{x}_t \sim \mathcal{N} \left( \frac{\alpha_t}{\alpha_{t-1}} \mathbf{x}_{t-1}, \alpha_t^2 \left( \frac{\sigma_t^2}{\alpha_t^2} - \frac{\sigma_{t-1}^2}{\alpha_{t-1}^2} \right) \mathbf{I} \right)$   $\triangleright$  Recurrent strategy
11:   end for
12: end for
13: Output: Conditional sample  $\mathbf{x}_0$ 

```

748 **D.1 BFS-Based Search**

749 We present the pseudo code for BFS in Alg. 3.
750 Here, we provide an overview of prior methods.
751 **SVDD** [39]. In SVDD, the best sample is selected at each time step, from which M children are
752 generated. This approach can be viewed as a variant of BFS with $\tau = \infty$ and M particles. Nodes are
753 evaluated using the current score $f(\mathbf{x}_{0|t})$.
754 **TreeG** [19]. In TreeG, particles are ranked and the top M are either selected directly or resampled
755 based on their scores to obtain M samples. From each selected particle, K children are sampled,
756 resulting in an effective tree width of KM . Particles are evaluated using their current score $f(\mathbf{x}_{0|t})$.
757 **DAS** [33]. In DAS, the authors propose an exponentially increasing tempering schedule as the default,
758 given by $\tau_t = (1 + \gamma)^{T-t} - 1$, and also introduce an adaptive tempering schedule. They adopt
759 advanced SSP resampling instead of multinomial resampling, and evaluate particles based on the
760 difference in rewards from the previous evaluation.
761 **FK-steering** [63]. In FK, the authors propose several options for evaluating intermediate particles,
762 including difference, max, and sum, with max adopted as the default. In the official implementation,
763 multinomial resampling is used, which may lead to suboptimal performance.

764 **D.2 DFS-based search**

765 In this section, we provide the details and pseudo code for DFS in Alg. 4. To better utilize previously
766 explored sampling paths, we employ a buffer to store prior results. When no particles pass the
767 threshold constraint, we retrieve the best sample from the buffer.
768 Similar to BFS, controlling the set of evaluation steps allows a trade-off between efficiency and
769 accuracy. Evaluating at earlier time steps introduces higher uncertainty but enables backtracking.
770 Additionally, adjusting the backtracking depth Δ_T governs the search scope: a small Δ_T reduces
771 computation and favors local search, while a larger Δ_T enables broader exploration at the cost of
772 increased computation.
773 In practice, we set the evaluation steps to $\mathcal{S} = \{\frac{1}{2}T, \frac{1}{4}T\}$ for image experiments to save compute,
774 and to $\mathcal{S} = \{\frac{3}{4}T, \frac{3}{4}T - 1, \dots, 1\}$ for PointMaze experiments. We set the recurrence depth to $T/2$
775 for image tasks and $T/4$ for PointMaze, corresponding to the denoised steps at which samples are first
776 evaluated. The threshold schedule δ_t is also set to ‘increase’ as in Eq. 14, enforcing tighter constraints
777 for samples with lower noise.
778 In our experiments, we observed that when backtracking to $t_{\text{next}} = T$ —thus fully restarting—the
779 nonzero terminal SNR α_T / σ_T in many diffusion schedules [41] can lead to cumulative errors with

Algorithm 3 Diffusion BFS

Diffusion input: diffusion model ϵ_θ with diffusion time steps T and proposal transition kernel $\{\tilde{p}_\theta(x_{t-1}|x_t)\}_{t=1}^N$. Verifier f .

BFS input: Set of evaluation time steps \mathcal{S} . Tempering schedule τ_t . Budget of particles N . Scoring rule and Resampling function rule.

Init: Random sample N particles $x_N^k \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$, $k = 1, 2, \dots, N$.

for $t = T, \dots, 1$ **do**

if $t \in \mathcal{S}$ **then**

for $k = 1, 2, \dots, N$ **do**

 Estimate the conditional mean: $x_{0|t}^k = \frac{x_t^k - \sigma_t \epsilon_\theta(x_t^k, t)}{\alpha_t}$. Compute the verifier score $f(x_{0|t}^k)$.

 Compute the verifier scores according to the scoring rules: textbf{Current}: $\hat{f}(x_t^k) = \tau_t f(x_{0|t}^k)$.

Difference: $\hat{f}(x_t^k) = \tau_t f(x_{0|t}^k) - \hat{f}_{\text{prev}}^k$.

Max: $\hat{f}(x_t^k) = \max(\tau_t f(x_{0|t}^k), \hat{f}_{\text{prev}}^k)$.

 Resample the particles. Compute the weights $w_t^k = \text{softmax}(\hat{f}(x_t^k))$, and sample the children $n_t^k = \text{Resample}(N, w_t^k)$, where Resample can be **Multinomial** or **SSP**. Update the score buffers $\hat{f}_{\text{prev}}^k = \tau_t f(x_{0|t}^{\text{parent}(k)})$.

end for

else

$n_t^k = 1$

end if

for $k = 1, \dots, N$ **do**

 Sample n_t^k particles from x_t^k : $x_{t-1}^j \sim \tilde{p}_\theta(\cdot|x_t^k)$, $j = 1, 2, \dots, n_t^k$

end for

end for

Return $x_0 = \text{argmax}_{k=1, \dots, K_0} f(x_0^k)$

780 repeated backtracking. Therefore, when backtracking to $t_{\text{next}} = T$, we initialize with fresh Gaussian
781 noise.

782 **E Experiment Details**

783 In this section we provide the details of experimental setup and implementation for all our experiments.
784 We run our experiments on clusters with Nvidia A100 GPUs, with over 1000 GPU hours used.

785 **E.1 Ablation of BFS design space**

786 We directly adopt the official code base of FK-steering [63] and use the sampling methods provided in
787 the code base of DAS [33]. We use the ImageReward prompts as in [63] and report the average and
788 standard deviation over 4 independent trials. For the temperature and resampling interval, we directly
789 follow the implementation of FK-steering. For TreeG [19] we use a fixed branch out size of 2.

790 **E.2 Text-to-Image Compositional Generation with DFS**

791 We use the SSD-1B model¹ which is distilled from SDXL, and we use the default sampling config-
792 uration with 50 steps of DDIM sampler. For DFS and BFS, we evaluate at time steps $\{25, 35, 45\}$
793 and set the backtrack depth $\Delta_T = 25$. For BFS we additionally sweep the temperature in range
794 $\{0.5, 1, 2, 4, 8\}$ and report the best performance.

795 **E.3 Long Horizon Maze Planning**

796 **Maze environment.** For all our maze experiments we use the OGbench PointMaze environment
797 [55]. We created our maze layout using the same protocol of Figure 5 in [49]², but with a smaller size

¹<https://huggingface.co/segmind/SSD-1B>

²<https://github.com/mpetersen94/gcs/blob/main/models/maze.py>

Algorithm 4 Diffusion DFS

Diffusion input: diffusion model ϵ_θ with diffusion time steps T and proposal transition kernel $\{\tilde{p}_\theta(\mathbf{x}_{t-1}|\mathbf{x}_t)\}_{t=1}^N$. Verifier f .

DFS input Budget for total number of backtracking $B = K$, backtracking depth Δ_T and threshold $\{\delta_t\}_{t=1}^T$. Set of evaluation time steps \mathcal{S} .

Init $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$, $t = T$. Init buffer with empty sets: $\text{buffer}(t) \leftarrow \{\}$, $t = 1, 2, \dots, T$.

while $t > 0$ **do**

- if** $t \in \mathcal{S}$ **then**
- Estimate the conditional mean and verifier score: $\mathbf{x}_{0|t} = \frac{\mathbf{x}_t - \sigma_t \epsilon_\theta(\mathbf{x}_t, t)}{\alpha_t}$, $f(\mathbf{x}_{0|t})$.
- if** $f(\mathbf{x}_{0|t}) < \delta_t$ and budget $B > 0$ **then**
- Backtrack: $t_{\text{next}} \leftarrow \min(t + \Delta_T, T)$, $\mathbf{x}_{t_{\text{next}}} \sim q(\mathbf{x}_{t_{\text{next}}}|\mathbf{x}_t)$ with q in Eq. 1
- Decrease the budget: $B \leftarrow B - 1$
- Add the score-value pair to the buffer: $\text{buffer}(t).\text{add}(f(\mathbf{x}_{0|t}) : \mathbf{x}_t)$
- else**
- if** $B = 0$ **then**
- Pop the best sample from buffer: $\mathbf{x}_t \leftarrow \text{buffer}(t).\text{max}$ \triangleright select the best sample from past explorations
- end if**
- Sample posterior: $t_{\text{next}} \leftarrow t - 1$, $\mathbf{x}_{t_{\text{next}}} \sim \tilde{p}_\theta(\mathbf{x}_{t-1}|\mathbf{x}_t)$
- end if**
- else**
- Sample posterior: $t_{\text{next}} \leftarrow t - 1$, $\mathbf{x}_{t_{\text{next}}} \sim \tilde{p}_\theta(\mathbf{x}_{t-1}|\mathbf{x}_t)$
- end if**
- $t \leftarrow t_{\text{next}}$, $\mathbf{x}_t \leftarrow \mathbf{x}_{t_{\text{next}}}$

end while

Return \mathbf{x}_0

798 of 20x20 cells. Dataset is collected following the protocol in OGBench [55]. We evaluate the model
799 on the default task 1 of OGBench [55], which is navigating from bottom left to top right. Empirically
800 we discover that the diffusion model can perform well on short-horizon tasks without extra inference
801 compute, but struggles heavily in the long horizon tasks.

802 **Model Training.** We train the model following diffuser [31], where we use a temporal U-Net to
803 denoise the trajectory

$$\boldsymbol{\tau} = \begin{bmatrix} \mathbf{s}_1 & \mathbf{s}_2 & \cdots & \mathbf{s}_H \\ \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_H \end{bmatrix}.$$

804 Since our objective start and goal is more distant than trajectories in dataset, we sample at longer
805 horizons than training, which is enabled by the temporal U-Net architecture. We train the model for
806 1.2M steps using the same configuration as [31].

807 **Inference.** We found that the model performance saturates with 16 denoising steps, which we use for
808 all our experiments. For all the data points we report the average success rate with over 40 samples.

809 For verifier design, we use the ground-truth maze layout, and calculate the violation of each point in
810 the trajectory using the position coordinates. Specifically, if a point (x, y) is inside a maze wall box
811 with center (c_x, c_y) and half-width d , then the point loss can be calculated as the minimum distance
812 from the point to box walls:

$$L(x, y) = \min(x - (c_x - d), (c_x + d) - x, y - (c_y - d), (c_y + d) - y).$$

813 and the total verifier score is computed as:

$$f(\boldsymbol{\tau}) = \exp \left(- \sum_{i=1}^H L(x_i, y_i)^2 \right).$$

814 So if all the points are free of violation in the trajectory, then $f(\boldsymbol{\tau}) = 1$. We point out that this does
815 not indicate a successful plan as the connection between consecutive points $(x_i, y_i) \rightarrow (x_{i+1}, y_{i+1})$
816 may violate the maze layout, and using only the verifier function can not generate a successful plan.

817 For local search, we search the hyper-parameters $\bar{\rho}$ and $\bar{\mu}$ in Sec. C.5 with $\bar{\gamma} = 0$. For global search
818 with BFS we evaluate at steps $\{12, 8, 4\}$, and for DFS we evaluate at $\{12, 11, \dots, 1\}$ with backtracking
819 depth $\Delta_T = 4$. We also observe that increasing backtracking depth to 12 and evaluate at smaller
820 time steps $\{4, 3, 2, 1\}$ helps to scale up the performance with more compute. The hyperparameter
search results are below:

N	$\tau = 0.2$	$\tau = 0.005$	$\tau = 0.1$
2	27.5 ± 4.3	32.5 ± 1.1	31.2 ± 4.2
4	42.5 ± 5.2	48.1 ± 1.1	45.5 ± 2.3
8	67.6 ± 1.1	71.2 ± 2.2	70.1 ± 1.1

Table 4: Hyperparameter search for temperature τ in PointMaze BFS

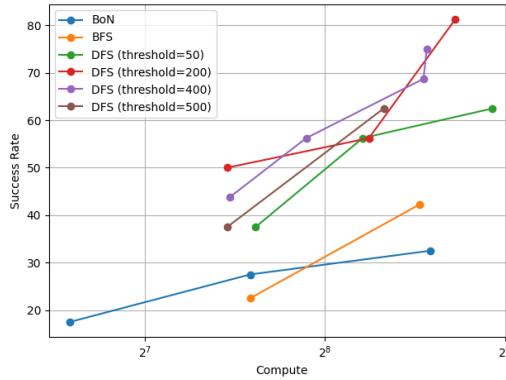


Figure 5: Hyperparameter search for threshold δ in PointMaze DFS

821

822 E.4 Offline RL

823 **Background.** Diffusion policy [8] is widely used for action generation in robot foundation models
824 [4, 44]. At inference time, policies can be guided by human trajectory constraints [81] or LLM-based
825 value functions [51]. Exact sampling requires training a noise-dependent energy function [45], but
826 this can degrade pretrained knowledge and demands additional data—often impractical in data-scarce
827 robotic settings. In contrast, inference-scaling provides a more flexible approach, allowing seamless
828 composition of pretrained diffusion policies with Q-functions without retraining.

829 **Setup.** We follow the setup in [45], and we directly use their pretrained diffusion model and Q-
830 function, omitting the time-dependent energy function. The diffusion model was trained to generate
831 action a given state s , and we sample with 15 steps of DDIM.

832 For hyper-parameter search, we disable the implicit dynamics and set $\bar{\gamma} = 0$, and use the ‘increase’
833 schedule for ρ and μ . For strength parameters $\bar{\rho}$ and $\bar{\mu}$, we first search for the right magnitude. Then,
834 we also follow [45] and search with step size $\{1, 2, 3, 5, 8, 10\}$ within the magnitude. Same as [45], we
835 use 5 different seeds with 10 samples per seed for each task. To avoid over fitting, we use different
836 seeds for parameter search and evaluation. We report the hyper-parameters and the performance
837 within the parameter-searching dataset and evaluation dataset.

838 For global search, we use 4 particles for Medium-Expert and Medium datasets, and 2 particles for
839 Medium-Replay datasets. Since the number of particles are small, we do not carry out BFS or DFS
840 methods and simply use Best-of-N. We point out that the number of particles we use are much smaller
841 than the 50 particles in [81] and the 32 particles in [6], highlighting the effectiveness of local search.

842 **Baseline.** We compare our method to a variety of baselines, including traditional state-of-the-art
843 methods IQL [35] and diffusion-based policies such as diffuser [31], decision-diffuser (DD) [1],
844 Diffusion-QL (D-QL) [81], SfBC [6] and QGPO [45]. We directly take the numbers from [45].

845 Among the baseline diffusion-based methods, both Diffuser [31] and QGPO [45] requires training
 846 a noise-dependent guidance function, and D-QL [81] requires updating the diffusion model during
 847 training using the Q-function iteratively, which needs to back-propagate through the diffusion
 848 sampling chain, introducing high computation and memory overheads. DD [1] uses classifier-free
 849 guidance [27] to generate high-return trajectories that requires training a return-conditional model
 850 on labeled datasets, which can be expensive to obtain in robotics where only demonstration data is
 851 available [44].

852 For our reproduced baselines, TFG [94] is allowed up to 8 recurrence steps and DAS [33] up to 16
 853 particles, resulting in a hyperparameter space and computational cost approximately twice that of our
 854 method. We sweep across all configurations for the baseline methods and report the best performance.
 855 For fair comparison we evaluate our method on different seeds used for hyperparameter search, with
 the results shown in Table. 5.

Dataset	Environment	particles	N_{recur}	N_{iter}	$\bar{\rho}$	$\bar{\mu}$	Eval set	Search set
Medium-Expert	HalfCheetah	4	1	1	0.008	0.02	93.9 ± 0.3	94.3 ± 0.5
Medium-Expert	Hopper	4	1	4	0.001	0.00	104.4 ± 3.1	109.4 ± 5.2
Medium-Expert	Walker2d	4	1	1	0.005	0.10	111.4 ± 0.1	111.4 ± 0.2
Medium	HalfCheetah	4	1	4	0.003	0.05	54.8 ± 0.1	54.8 ± 0.2
Medium	Hopper	4	4	4	0.003	0.02	99.5 ± 1.7	100.1 ± 0.1
Medium	Walker2d	4	1	6	0.003	0.08	86.5 ± 0.2	85.2 ± 3.2
Medium-Replay	HalfCheetah	2	1	6	0.005	0.03	47.8 ± 0.4	48.4 ± 0.1
Medium-Replay	Hopper	2	1	1	0.003	0.20	97.4 ± 4.0	100.4 ± 2.2
Medium-Replay	Walker2d	2	2	4	0.003	0.03	79.3 ± 9.7	83.2 ± 2.8
Average							86.1	87.5

Table 5: Hyper-parameters on D4RL locomotion tasks with test-time scaling. We report the performance on hyper-parameter search dataset and the evaluation dataset, highlighting the best number.

856

857 F Mitigating reward hacking with double verifier

858 In this section, we show that reward hacking caused by adversarial examples can be mitigated
 859 by employing separate verifiers for local and global search. As observed in [61], training-free
 860 guidance with verifier gradients is vulnerable to adversarial examples: generated samples can exploit
 861 weaknesses in the verifier, causing it to classify them as belonging to the target class despite being
 862 out-of-distribution (OOD). We find, however, that such adversarial examples do not transfer well
 863 between independently trained verifiers. Inspired by double-Q learning in reinforcement learning
 864 [76], we propose a *double-verifier* approach, assigning distinct verifiers to local and global search to
 865 efficiently detect and reject adversarial samples.

866 We evaluate the proposed double-verifier on the challenging conditional ImageNet generation task,
 867 generating target-class samples from an unconditional model guided by a pretrained classifier.
 868 Specifically, we use two independent classifiers as verifiers³⁴ for global and local search. We report
 869 the Fréchet Inception Distance (FID) computed on 256 generated samples against the corresponding
 870 ImageNet class, and measure class accuracy using a separate classifier⁵. Since we only apply the
 871 global verifier sparsely, double-verifier introduces negligible computational costs.

³<https://huggingface.co/google/vit-base-patch16-224>

⁴<https://huggingface.co/google/vit-base-patch16-384>

⁵<https://huggingface.co/facebook/deit-small-patch16-224>

Table 6: Best-of-N results for ImageNet conditional generation, with FID and Accuracy averaged across the two labels.

#Particles	BoN-Single		BoN-Double		BFS-Single		BFS-Double	
	FID \downarrow	Acc \uparrow						
4	171.5	31.8%	151.2	37.5%	156.2	36.1%	145.5	44.3%
8	155.7	35.8%	127.8	49.2%	133.3	46.5%	118.2	55.9%

#Particles	BoN-Single	BoN-Double
4	0.161	0.164
8	0.165	0.184

Table 7: MSP scores of Best-of-N with single and double verifier. Double verifier significantly reduces OOD samples with higher MSP score.

872 As shown in Table. 6, using double-verifier significantly improves performance over single verifier
873 with Best-of-N and BFS, using 2x less compute. We also evaluate the OOD of generated samples
874 using the MSP score [25], with higher MSP score indicating less OOD samples. As shown in Table. 7,
875 using double-verifier significantly reduces OOD samples indicated by the higher MSP score.

876 **NeurIPS Paper Checklist**

877 **1. Claims**

878 Question: Do the main claims made in the abstract and introduction accurately reflect the
879 paper's contributions and scope?

880 Answer: [\[Yes\]](#)

881 Justification: The abstract and introduction reflect the paper's contribution within inference-
882 time scaling of diffusion models

883 Guidelines:

- 884 • The answer NA means that the abstract and introduction do not include the claims
885 made in the paper.
- 886 • The abstract and/or introduction should clearly state the claims made, including the
887 contributions made in the paper and important assumptions and limitations. A No or
888 NA answer to this question will not be perceived well by the reviewers.
- 889 • The claims made should match theoretical and experimental results, and reflect how
890 much the results can be expected to generalize to other settings.
- 891 • It is fine to include aspirational goals as motivation as long as it is clear that these goals
892 are not attained by the paper.

893 **2. Limitations**

894 Question: Does the paper discuss the limitations of the work performed by the authors?

895 Answer: [\[Yes\]](#)

896 Justification: In the conclusions section we discussed the limitations of our methods.

897 Guidelines:

- 898 • The answer NA means that the paper has no limitation while the answer No means that
899 the paper has limitations, but those are not discussed in the paper.
- 900 • The authors are encouraged to create a separate "Limitations" section in their paper.
- 901 • The paper should point out any strong assumptions and how robust the results are to
902 violations of these assumptions (e.g., independence assumptions, noiseless settings,
903 model well-specification, asymptotic approximations only holding locally). The authors
904 should reflect on how these assumptions might be violated in practice and what the
905 implications would be.
- 906 • The authors should reflect on the scope of the claims made, e.g., if the approach was
907 only tested on a few datasets or with a few runs. In general, empirical results often
908 depend on implicit assumptions, which should be articulated.
- 909 • The authors should reflect on the factors that influence the performance of the approach.
910 For example, a facial recognition algorithm may perform poorly when image resolution
911 is low or images are taken in low lighting. Or a speech-to-text system might not be
912 used reliably to provide closed captions for online lectures because it fails to handle
913 technical jargon.
- 914 • The authors should discuss the computational efficiency of the proposed algorithms
915 and how they scale with dataset size.
- 916 • If applicable, the authors should discuss possible limitations of their approach to
917 address problems of privacy and fairness.
- 918 • While the authors might fear that complete honesty about limitations might be used by
919 reviewers as grounds for rejection, a worse outcome might be that reviewers discover
920 limitations that aren't acknowledged in the paper. The authors should use their best
921 judgment and recognize that individual actions in favor of transparency play an impor-
922 tant role in developing norms that preserve the integrity of the community. Reviewers
923 will be specifically instructed to not penalize honesty concerning limitations.

924 **3. Theory assumptions and proofs**

925 Question: For each theoretical result, does the paper provide the full set of assumptions and
926 a complete (and correct) proof?

927 Answer: [\[Yes\]](#)

928 Justification: We provide complete proof in the Appendix

929 Guidelines:

- 930 • The answer NA means that the paper does not include theoretical results.
- 931 • All the theorems, formulas, and proofs in the paper should be numbered and cross-
932 referenced.
- 933 • All assumptions should be clearly stated or referenced in the statement of any theorems.
- 934 • The proofs can either appear in the main paper or the supplemental material, but if
935 they appear in the supplemental material, the authors are encouraged to provide a short
936 proof sketch to provide intuition.
- 937 • Inversely, any informal proof provided in the core of the paper should be complemented
938 by formal proofs provided in appendix or supplemental material.
- 939 • Theorems and Lemmas that the proof relies upon should be properly referenced.

940 4. Experimental result reproducibility

941 Question: Does the paper fully disclose all the information needed to reproduce the main ex-
942 perimental results of the paper to the extent that it affects the main claims and/or conclusions
943 of the paper (regardless of whether the code and data are provided or not)?

944 Answer: [Yes]

945 Justification: We provide detailed pseudo code and hyper-parameters in the appendix

946 Guidelines:

- 947 • The answer NA means that the paper does not include experiments.
- 948 • If the paper includes experiments, a No answer to this question will not be perceived
949 well by the reviewers: Making the paper reproducible is important, regardless of
950 whether the code and data are provided or not.
- 951 • If the contribution is a dataset and/or model, the authors should describe the steps taken
952 to make their results reproducible or verifiable.
- 953 • Depending on the contribution, reproducibility can be accomplished in various ways.
954 For example, if the contribution is a novel architecture, describing the architecture fully
955 might suffice, or if the contribution is a specific model and empirical evaluation, it may
956 be necessary to either make it possible for others to replicate the model with the same
957 dataset, or provide access to the model. In general, releasing code and data is often
958 one good way to accomplish this, but reproducibility can also be provided via detailed
959 instructions for how to replicate the results, access to a hosted model (e.g., in the case
960 of a large language model), releasing of a model checkpoint, or other means that are
961 appropriate to the research performed.
- 962 • While NeurIPS does not require releasing code, the conference does require all submis-
963 sions to provide some reasonable avenue for reproducibility, which may depend on the
964 nature of the contribution. For example
 - 965 (a) If the contribution is primarily a new algorithm, the paper should make it clear how
966 to reproduce that algorithm.
 - 967 (b) If the contribution is primarily a new model architecture, the paper should describe
968 the architecture clearly and fully.
 - 969 (c) If the contribution is a new model (e.g., a large language model), then there should
970 either be a way to access this model for reproducing the results or a way to reproduce
971 the model (e.g., with an open-source dataset or instructions for how to construct
972 the dataset).
 - 973 (d) We recognize that reproducibility may be tricky in some cases, in which case
974 authors are welcome to describe the particular way they provide for reproducibility.
975 In the case of closed-source models, it may be that access to the model is limited in
976 some way (e.g., to registered users), but it should be possible for other researchers
977 to have some path to reproducing or verifying the results.

978 5. Open access to data and code

979 Question: Does the paper provide open access to the data and code, with sufficient instruc-
980 tions to faithfully reproduce the main experimental results, as described in supplemental
981 material?

982 Answer: [No]

983 Justification: We run our experiments with publicly available models and dataset.

984 Guidelines:

- 985 • The answer NA means that paper does not include experiments requiring code.
- 986 • Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- 987 • While we encourage the release of code and data, we understand that this might not be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- 988 • The instructions should contain the exact command and environment needed to run to 989 reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- 990 • The authors should provide instructions on data access and preparation, including how 991 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- 992 • The authors should provide scripts to reproduce all experimental results for the new 993 proposed method and baselines. If only a subset of experiments are reproducible, they 994 should state which ones are omitted from the script and why.
- 995 • At submission time, to preserve anonymity, the authors should release anonymized 996 versions (if applicable).
- 997 • Providing as much information as possible in supplemental material (appended to the 998 paper) is recommended, but including URLs to data and code is permitted.
- 999

1000 **6. Experimental setting/details**

1001 Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
1002 parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
1003 results?

1004 Answer: [Yes]

1005 Justification: We provide all the experimental details in the appendix

1006 Guidelines:

- 1007 • The answer NA means that the paper does not include experiments.
- 1008 • The experimental setting should be presented in the core of the paper to a level of detail
1009 that is necessary to appreciate the results and make sense of them.
- 1010 • The full details can be provided either with the code, in appendix, or as supplemental
1011 material.

1012 **7. Experiment statistical significance**

1013 Question: Does the paper report error bars suitably and correctly defined or other appropriate
1014 information about the statistical significance of the experiments?

1015 Answer: [Yes]

1016 Justification: We provide detailed numbers with standard deviation in the locomotion setting

1017 Guidelines:

- 1018 • The answer NA means that the paper does not include experiments.
- 1019 • The authors should answer “Yes” if the results are accompanied by error bars, confi-
1020 dence intervals, or statistical significance tests, at least for the experiments that support
1021 the main claims of the paper.
- 1022 • The factors of variability that the error bars are capturing should be clearly stated (for
1023 example, train/test split, initialization, random drawing of some parameter, or overall
1024 run with given experimental conditions).
- 1025 • The method for calculating the error bars should be explained (closed form formula,
1026 call to a library function, bootstrap, etc.)
- 1027 • The assumptions made should be given (e.g., Normally distributed errors).
- 1028 • It should be clear whether the error bar is the standard deviation or the standard error
1029 of the mean.

1034 • It is OK to report 1-sigma error bars, but one should state it. The authors should
 1035 preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
 1036 of Normality of errors is not verified.
 1037 • For asymmetric distributions, the authors should be careful not to show in tables or
 1038 figures symmetric error bars that would yield results that are out of range (e.g. negative
 1039 error rates).
 1040 • If error bars are reported in tables or plots, The authors should explain in the text how
 1041 they were calculated and reference the corresponding figures or tables in the text.

1042 **8. Experiments compute resources**

1043 Question: For each experiment, does the paper provide sufficient information on the com-
 1044 puter resources (type of compute workers, memory, time of execution) needed to reproduce
 1045 the experiments?

1046 Answer: [\[Yes\]](#)

1047 Justification: we report the compute resources in the Appendix experiments section

1048 Guidelines:

1049 • The answer NA means that the paper does not include experiments.
 1050 • The paper should indicate the type of compute workers CPU or GPU, internal cluster,
 1051 or cloud provider, including relevant memory and storage.
 1052 • The paper should provide the amount of compute required for each of the individual
 1053 experimental runs as well as estimate the total compute.
 1054 • The paper should disclose whether the full research project required more compute
 1055 than the experiments reported in the paper (e.g., preliminary or failed experiments that
 1056 didn't make it into the paper).

1057 **9. Code of ethics**

1058 Question: Does the research conducted in the paper conform, in every respect, with the
 1059 NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

1060 Answer: [\[Yes\]](#)

1061 Justification: the research follows NIPS code of ethics

1062 Guidelines:

1063 • The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
 1064 • If the authors answer No, they should explain the special circumstances that require a
 1065 deviation from the Code of Ethics.
 1066 • The authors should make sure to preserve anonymity (e.g., if there is a special consid-
 1067 eration due to laws or regulations in their jurisdiction).

1068 **10. Broader impacts**

1069 Question: Does the paper discuss both potential positive societal impacts and negative
 1070 societal impacts of the work performed?

1071 Answer: [\[Yes\]](#)

1072 Justification: inference-time search with verifiers could potentially be used for verifier
 1073 hacking against classifiers

1074 Guidelines:

1075 • The answer NA means that there is no societal impact of the work performed.
 1076 • If the authors answer NA or No, they should explain why their work has no societal
 1077 impact or why the paper does not address societal impact.
 1078 • Examples of negative societal impacts include potential malicious or unintended uses
 1079 (e.g., disinformation, generating fake profiles, surveillance), fairness considerations
 1080 (e.g., deployment of technologies that could make decisions that unfairly impact specific
 1081 groups), privacy considerations, and security considerations.

- 1082 • The conference expects that many papers will be foundational research and not tied
1083 to particular applications, let alone deployments. However, if there is a direct path to
1084 any negative applications, the authors should point it out. For example, it is legitimate
1085 to point out that an improvement in the quality of generative models could be used to
1086 generate deepfakes for disinformation. On the other hand, it is not needed to point out
1087 that a generic algorithm for optimizing neural networks could enable people to train
1088 models that generate Deepfakes faster.
- 1089 • The authors should consider possible harms that could arise when the technology is
1090 being used as intended and functioning correctly, harms that could arise when the
1091 technology is being used as intended but gives incorrect results, and harms following
1092 from (intentional or unintentional) misuse of the technology.
- 1093 • If there are negative societal impacts, the authors could also discuss possible mitigation
1094 strategies (e.g., gated release of models, providing defenses in addition to attacks,
1095 mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
1096 feedback over time, improving the efficiency and accessibility of ML).

1097 11. Safeguards

1098 Question: Does the paper describe safeguards that have been put in place for responsible
1099 release of data or models that have a high risk for misuse (e.g., pretrained language models,
1100 image generators, or scraped datasets)?

1101 Answer: [NA]

1102 Justification: the paper uses pretrained models, with safeguards already in place.

1103 Guidelines:

- 1104 • The answer NA means that the paper poses no such risks.
- 1105 • Released models that have a high risk for misuse or dual-use should be released with
1106 necessary safeguards to allow for controlled use of the model, for example by requiring
1107 that users adhere to usage guidelines or restrictions to access the model or implementing
1108 safety filters.
- 1109 • Datasets that have been scraped from the Internet could pose safety risks. The authors
1110 should describe how they avoided releasing unsafe images.
- 1111 • We recognize that providing effective safeguards is challenging, and many papers do
1112 not require this, but we encourage authors to take this into account and make a best
1113 faith effort.

1114 12. Licenses for existing assets

1115 Question: Are the creators or original owners of assets (e.g., code, data, models), used in
1116 the paper, properly credited and are the license and terms of use explicitly mentioned and
1117 properly respected?

1118 Answer: [Yes]

1119 Justification: we provide citation for all resources used

1120 Guidelines:

- 1121 • The answer NA means that the paper does not use existing assets.
- 1122 • The authors should cite the original paper that produced the code package or dataset.
- 1123 • The authors should state which version of the asset is used and, if possible, include a
1124 URL.
- 1125 • The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- 1126 • For scraped data from a particular source (e.g., website), the copyright and terms of
1127 service of that source should be provided.
- 1128 • If assets are released, the license, copyright information, and terms of use in the
1129 package should be provided. For popular datasets, paperswithcode.com/datasets
1130 has curated licenses for some datasets. Their licensing guide can help determine the
1131 license of a dataset.
- 1132 • For existing datasets that are re-packaged, both the original license and the license of
1133 the derived asset (if it has changed) should be provided.

1134 • If this information is not available online, the authors are encouraged to reach out to
1135 the asset's creators.

1136 **13. New assets**

1137 Question: Are new assets introduced in the paper well documented and is the documentation
1138 provided alongside the assets?

1139 Answer: [NA]

1140 Justification: the paper does not release new assets

1141 Guidelines:

1142 • The answer NA means that the paper does not release new assets.
1143 • Researchers should communicate the details of the dataset/code/model as part of their
1144 submissions via structured templates. This includes details about training, license,
1145 limitations, etc.
1146 • The paper should discuss whether and how consent was obtained from people whose
1147 asset is used.
1148 • At submission time, remember to anonymize your assets (if applicable). You can either
1149 create an anonymized URL or include an anonymized zip file.

1150 **14. Crowdsourcing and research with human subjects**

1151 Question: For crowdsourcing experiments and research with human subjects, does the paper
1152 include the full text of instructions given to participants and screenshots, if applicable, as
1153 well as details about compensation (if any)?

1154 Answer: [NA]

1155 Justification: the paper does not involve research with human objects

1156 Guidelines:

1157 • The answer NA means that the paper does not involve crowdsourcing nor research with
1158 human subjects.
1159 • Including this information in the supplemental material is fine, but if the main contribu-
1160 tion of the paper involves human subjects, then as much detail as possible should be
1161 included in the main paper.
1162 • According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
1163 or other labor should be paid at least the minimum wage in the country of the data
1164 collector.

1165 **15. Institutional review board (IRB) approvals or equivalent for research with human
1166 subjects**

1167 Question: Does the paper describe potential risks incurred by study participants, whether
1168 such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
1169 approvals (or an equivalent approval/review based on the requirements of your country or
1170 institution) were obtained?

1171 Answer: [NA]

1172 Justification: the paper does not involve crowdsourcing nor research with human subjects.

1173 Guidelines:

1174 • The answer NA means that the paper does not involve crowdsourcing nor research with
1175 human subjects.
1176 • Depending on the country in which research is conducted, IRB approval (or equivalent)
1177 may be required for any human subjects research. If you obtained IRB approval, you
1178 should clearly state this in the paper.
1179 • We recognize that the procedures for this may vary significantly between institutions
1180 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
1181 guidelines for their institution.
1182 • For initial submissions, do not include any information that would break anonymity (if
1183 applicable), such as the institution conducting the review.

1184 **16. Declaration of LLM usage**

1185 Question: Does the paper describe the usage of LLMs if it is an important, original, or
1186 non-standard component of the core methods in this research? Note that if the LLM is used
1187 only for writing, editing, or formatting purposes and does not impact the core methodology,
1188 scientific rigorosity, or originality of the research, declaration is not required.

1189 Answer: [NA]

1190 Justification: the core method development in this research does not involve LLMs as any
1191 important, original, or non-standard components.

1192 • The answer NA means that the core method development in this research does not
1193 involve LLMs as any important, original, or non-standard components.

1194 • Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>)
1195 for what should or should not be described.