© ® N O g A~ W N =

Inference-time Scaling of Diffusion Models through
Classical Search

Anonymous Author(s)
Affiliation
Address

email

Abstract

Classical search algorithms have long underpinned modern artificial intelligence.
In this work, we tackle the challenge of inference-time control in diffusion mod-
els—adapting generated outputs to meet diverse test-time objectives—using prin-
ciples from classical search. We propose a general framework that orchestrates
local and global search to efficiently navigate the generative space. It performs
compute-efficient global exploration using breadth-first and depth-first tree search
and employs a theoretically grounded scalable local search via annealed Langevin
MCMC. We evaluate our approach on a range of challenging domains, including
planning, offline reinforcement learning, and image generation. Across all tasks,
we observe significant gains in both performance and efficiency over baseline meth-
ods. These results demonstrate that classical search offers a principled, practical
foundation for inference-time scaling in diffusion models, and that our method,
which jointly scales local and global search, establishes a new Pareto frontier.

1 Introduction

Classical search algorithms have laid the foundation for modern artificial intelligence [59]. In discrete
settings, graph search algorithms are widely used to explore the state space. Breadth-first search
(BES) [50] and depth-first search (DFS) [73] traverse the search tree in a fixed order. To better
leverage problem-specific information, best-first search methods [56], such as A* [22], use a heuristic
to evaluate and prioritize states. Alternatively, local search methods, such as hill-climbing [59, Sec.
4.1], explore neighboring states. More recent techniques like gradient descent and Markov Chain
Monte Carlo (MCMC) have become widely adopted in optimization and probabilistic inference,
underpinning many modern Al models.

Diffusion models [26] have shown impressive performance in generative modeling for continuous
domains such as images [10], videos [28], and world modeling [92]. They are also increasingly
used in robotics and decision-making [44, 4, 74] to generate diverse actions [8]. However, generated
samples may not always align with physical laws [68] or human intent [79], and the vast generative
space often necessitates multiple trials to produce satisfactory outputs [87]. To address this, we scale
up inference-time compute using strategic search methods that navigate the generative manifold for
high-quality samples. We formalize sample evaluation using a verifier function f(x() defined on
ground truth samples, which measures the quality of the sample. Such verifiers could be reward
functions [89], Q-functions [45], classifier conditions p(c|xg) [94, 10], and multi-modal LLMs [29].

To efficiently search the generative space of diffusion models, we revisit classical search principles.
To capture diverse modes in the complex distributions generated by diffusion models, we view
sampling as traversing a search tree, employing BFS and DFS to progressively explore states during
denoising. Similar to best-first search, we evaluate intermediate states x; with a verifier f(xq;),
prioritizing high-quality paths. To go beyond the base model and obtain higher-quality samples, we

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

37
38
39
40

41
42
43
44
45
46

47

48
49
50

51
52

53
54
55

56

57
58

59
60
61
62
63
64
65
66
67

Keys:

@ : samples from the
base diffusion
model

: samples selected
in global search

Base distribution pg P les afte
: samples after

Local refinement optimization in
etter samples
local search

! :local search steps

Selected modes : base

Direct sampling Global search Local + global search distribution

Figure 1: Illustration of our search framework. Bottom left: direct sampling results in samples
with low verifier scores. Bottom middle: global search identifies high score modes within the base
distribution. Bottom right: local search further optimizes the samples for higher quality, driven by
the gradient signal.

perform local search via Langevin MCMC, exploring the neighborhood of current samples under
guidance from both the verifier gradient and the diffusion model’s “score function” [78]. By jointly
optimizing the compositional objective of the diffusion model and the verifier [12], our local search
surpasses the capabilities of the base model. An overview of our framework is shown in Fig. 1.

Recent works scale diffusion model inference via particle-based SMC [33, 63, 84] and tree-based
methods [19], typically as BFS with fixed schedules. We generalize these with a BFS-based frame-
work, clarifying prior design choices and establishing a strong baseline. Inspired by DFS, we add
adaptive backtracking to allocate compute adaptively, surpassing BFS baselines. While global search
remains limited to base-distribution modes, scaling local search with Langevin MCMC explores
high-reward regions beyond the model, proving effective in challenging decision-making tasks.

Our key contributions are summarized as follows:

i) For global tree search, we elucidate the design space of prior BFS-style methods and provide
an improved BFS baseline. We further present the first adaptive DFS algorithm for diffusion
inference scaling, offering superior efficiency and adaptivity.

ii) We introduce a theoretically grounded local search method using annealed Langevin MCMC,
demonstrating superior performance in challenging domains.

iii) We propose a unified framework for efficient inference-time search in diffusion models grounded
in classical search principles. By jointly scaling local and global search for the first time, we
advance the Pareto frontier of inference-time scaling across diverse domains.

2 Related Works

Here, we provide a brief overview of inference-time scaling with diffusion models. For a more
comprehensive literature review and discussion of concurrent works, see Appendix B.

Recent works such as [33, 63] propose SMC-based particle filtering methods, scaling inference
compute by increasing the number of particles. Tree-search-based methods [39, 19, 48] evaluate
intermediate nodes and expand promising candidates, scaling inference compute by increasing the
width of the search tree. Both approaches can be seen as special cases of our BFS framework.
Alternatively, Du et al. [13] propose iterative reasoning via Langevin MCMC, scaling inference
by increasing the number of refinement steps. To utilize the verifier gradient, classifier guidance
[10] trains a noise-dependent classifier for gradient guidance, and training-free guidance methods
[94, 9, 68, 95, 24] improve sample quality using an additional pretrained classifier. In TFG [94] the
authors have observed that more recurrent steps can yield better performance on challenging tasks.

68
69

70

71

72
73

74

75
76

77
78

79
80
81
82

83

84

85
86
87
88
89

90
91
92
93

94

95
96

97

98
99

100
101

102
103

104

However, their theoretical foundations remain poorly understood, and their scaling behaviors are
largely unexplored.

3 Backgrounds
3.1 Diffusion Probabilistic Models

Suppose we have D-dimensional random variable xy € RP with distribution po(xo). Diffusion
models [26, 67] and the more general flow models [42, 2] are generative models that turn noise into

data via a stochastic process {a:t}tho. The forward “noising” process with ¢ > s can be defined as:
2 2
ay 9o (0f ©
q(xi|zs) =N (w; — X, O (2 - ;) I)) (D
Qg o ol
where oy, oy are referred as the noise schedule with oy = o = 1, ap = 0¢p = 0. We can thus write
the random variables x; as an interpolation between data and noise [47]:
Ty = o0 + J1€,
and denote ¢;(x;) as the marginal distribution of x;. To model the reverse “denoising” process, we
train the model using the denoising objective [26]:
L(@) =]Et,woﬁ [69(:1:157 t) - 6])
which is equivalent of learning the score function of ¢;(x;) [78], as the ground truth of ey(x;,t)
is —0+Vg, log ¢:(x:). To generate samples, we transform noise into data via the reverse transition
kernel pg(x;—1|x:). In practice, we either sample x;_; using deterministic samplers like DDIM
[67]:

Qi1

Ty = (xr — oreg(xs, 1)) + or_1€9(24, 1)

t
or stochastic samplers like DDPM [26, 54]:

po(@i—i1|xe) = N (@115 po (s, 1), Bo (24, 1)) -
3.2 Compositional and Controllable Generation of DPMs

Given a base diffusion model with data distribution pg(xg), one may wish to sample xy with
some constraints or conditions f(xg). Exact diffusion sampling from the composed distribution
Po(xo) x po(xo)f(xo) would require training a time-dependent f on data generated by pg [10, 451,
which may not be applicable in practice. Thus, we adopt optimization based methods to approximate
the target distribution.

Compositional generation via annealed Langevin MCMC. When sampling from a compositional
distribution composed of multiple probability distributions, po(xo) o po(xo)po(xo), [12] proposes
annealed Langevin MCMC sampling. In this approach, a sequence of annealed distributions ¢; (@) o
gt (x4)Gi (o) is constructed, and samples are drawn using Langevin dynamics [82]:

it =2l 4 9V, log Gi(xh) + \/2ne’, € ~N(0,1).)
Since the distribution of ¢ converges to G;(x;) asymptotically as i — oo, 7 — 0, we can sample
from po (o) following the annealing path {c"jt}tT:O with §g = pg. Moreover, since the score of ¢; can
be directly computed by composing the score of two distributions:
Valog Gi(z:) = Vg log gi(xt) + Va, log () ,

thus do not require extra training.
Controllable generation through training-free guidance. During the sampling process, training-
free guidance propose to update x; using gradient ascent

Ty =+ Ay, Ay = pVag, log f(xo) + et Va,, log f(zo)) - 3

where xo; = Elxo|z,] = 2:=0weo(@:) Thig method approximates the intractable posterior with

the posterior mean: Eg, |4, [f (a:o)]t ~ f(E[xo|z:]). To enhance the guidance strength, [95] propose
to apply a recurrence strategy, which first samples x;_1 via pg(x;—1|x;), add the guidance gradient,
then add noise back to x; through the forward process q;(x:|x:—1):

Qg — ; - .
: 1Atv $1+1 ~ qt('|w;_1)a 1= 1a27‘ o aNrecurv (4)

xi_q ~po(-ley), Ty =xp 4+ ;
with Ny being the total number of recurrence steps.

105

106
107
108
109
110

111
112
113
114
115

116

117
118
119
120
121
122

123

124
125
126
127
128
129

130

131
132
133
134

135

136

137
138
139

Pamcles Particles :
O -~
t=T ; \
| . = accepted by verifier
2 = rejected by verifier
g
A ‘ = denoise
£=0 /,’/ = add noise
'/
Figure 2: Illustration of global tree search algorithms.
4 Methods

Problem Formulation. Given a pretrained diffusion model ey (x;, t) with a base distribution pg (o),
at test-time, we often wish to optimize the generation process to satisfy task-specific objectives.
For example, RL may require generating high-value actions, image synthesis may seek constraint-
satisfying images, and trajectory generation may demand physically valid outputs. In this paper, we
are interested in how to scale test-time inference to follow such objectives.

We consider an inference-time scaling strategy that adjusts the sampling process based on a verifier
function. Specifically, we define a verifier f(zg) : R” — R* which specifies the degree to which
samples optimize a specified objective. We then aim to bias sampling toward regions of the sample
space where f(xg) is high. This leads to the objective of sampling from a compositional distribution
that combines the original model distribution with the verifier:

Po(®0) o po(ao) f(20)* o)
where \ controls the weight of verifier scores.

Since exact sampling from the distribution is often impractical, we aim to search the manifold for the
target samples at inference time, both globally and locally. First, we explore the diverse modes in the
complex generative landscape of diffusion models through global graph search algorithms. However,
global search alone can not generate samples beyond the pretrained model. We then propose to
search the vicinity of the sample using hill-climbing style local search methods, guided by the verifier
gradient.

4.1 Global Search for Mode Identification

To efficiently explore the modes of the diffusion model, we represent the Markov chain of the
denoising process as a fixed-depth tree, where the transition kernel py(@;_1|2+) may correspond to
either deterministic or stochastic samplers. This abstraction allows the application of classical tree
search heuristics to design compute-efficient exploration methods. By expanding nodes with higher
score estimates and backtracking from low-quality nodes in the tree, we can efficiently navigate the
generative space and sample from high-quality modes. An illustration is provided in Fig. 2.

4.1.1 Unified BFS-style linear search

Inspired by breadth-first search (BFS), which expands nodes level by level, we denoise a set of
particles in parallel at each noise level. The simplest approach is best-of-N sampling: generate
N candidate trajectories and select the one with the highest verifier score at the final step. While
straightforward, this strategy ignores information from intermediate stages.

To improve efficiency, and following the idea of best-first search [56], we score each intermediate
. N :
particle { x¥ } 4, Uusing estimates of its verifier score f (:c’gl ,)» and dynamically reallocate compu-

tation by sampling more children n¥ for high-scoring nodes. We provide a general design space
for tempering, scoring, and resampling that unifies previous tree-search-based and particle-based
baselines such as SVDD [39], DAS [33], and FK-steering [64]. The pseudocode is shown in Alg. 3.

140
141
142
143

144
145

146

147
148

149
150
151
152

153

154
155

157
158

160
161
162

163
164
165
166
167

169

170

171

172
173
174
175
176
177

178
179
180
181
182
183
184

186
187

Tempering. To reduce estimation bias in early steps, DAS [33] increases weights on smaller time
steps so that 70 < 7p_1 -+ < Tp, re-weighting scores with th(m’g‘t). SVDD [39] samples only
from the top-scoring particle, i.e., 7w = oco. We consider: Constant : 7, = 7, Increase : 7 =
((1 +y)I-t - 1) 7, Inf: 7, =00.

Scoring. Following [33, 64], we propose to score intermediate particles f(xf) via: Current :
7 f(xf),), Difference : 7 f(xf),) — T+ f(2f),,), Max : max,>, 7, f(2(),)-

~

Resampling. Given f(zF), we allocate particles as n¥ = Resample (N , softmax (f(ff))), where

n¥ is the number of children for 2. We compare the baseline Multinomial resampling [19, 64]
and the variance-reduced SSP [33]; see [17] for other methods.

Prior methods are special cases of BFS: SVDD [39] = BFS (Inf, Current, Multinomial); DAS
[33] = BFS (Increase, Difference, SSP); FK-steering [63] = BFS (Constant, Max, Multinomial).
Ablations (Sec. 5.1) show SSP resampling is key for performance, and our baseline BFS (Increase,
Max, SSP) consistently outperforms prior methods in efficiency.

4.1.2 DFS-style non-linear search

Depth-first search (DFS) explores one branch of the search tree as deeply as possible before backtrack-
ing. In our setting, this corresponds to iteratively denoising a single particle until its verifier score
drops below a predefined threshold: f(x;) < d;, where d; is a scheduled threshold for timestep .

Once the constraint is violated, the algorithm backtracks by reintroducing noise, moving to a higher
noise level tyexe = t + A using the forward diffusion process g(xy,. |®:) in Eq. 1. This allows
the model to restart the denoising process from a different region of the manifold, encouraging
exploration of diverse modes. Unlike the small noise injection and fixed schedule used in SoP [48]
for local exploration, DFS performs global exploration with A > % and an adaptive exploration
strategy.

A key strength of DFS is its ability to allocate compute adaptively: difficult prompts and low-quality
trajectories naturally trigger more backtracking and exploration, while easier instances are solved
more directly. This dynamic behavior is driven purely by the verifier signal, without needing to know
the difficulty in advance as in [66]. Also, the threshold acts as a control knob for users to balance
output quality and computation resources, where higher threshold automatically scales compute for
better output. As shown in Sec. 5.2, this adaptive strategy leads to substantial gains in efficiency and
performance over prior methods, and even our strengthened BFS baseline.

4.2 Scaling Local Search via Langevin MCMC with Verifier Gradient

Global search can efficiently discover the high score modes from the base diffusion model, but can
not generate higher quality samples that exceed the pretrained model. Thus, we aim to sample from
the compositional distribution py in Eq. 5 for higher quality samples. To optimize the compositional
objective, we conduct local-search with hill-climbing methods, aiming to find the local maximum
with high py. Specifically, we view the sampling problem as compositional optimization in measure
space [83], and follow the gradient flow of KL-divergence, performing Langevin MCMC steps
(details see Appendix. C.1).

Similar to annealed Langevin MCMC in [12], we could construct a series of annealed functions
fi(x¢) with fo(xo) = f(ao). Then we sample from the distributions G (2¢) o g () f (2;) through
Langevin MCMC in Eq. 2 (details see Appendix. C.2). Alternatively, training-free guidance in Eq. 3
utilizes the gradient of f(x|;) to optimize x;, which can be computed directly using the diffusion
model output. However, naive gradient updates have been observed to produce OOD and adversarial
samples [61]. In [94], recurrence (Eq. 4) was found to help avoid adversarial samples in challenging
guidance tasks, though its theoretical underpinnings remain poorly understood. We unify these
two approaches by demonstrating that training-free guidance with recurrence, in the continuous
limit, constitutes an instance of Langevin MCMC. For details see Appendix. C.3, and a rigorous
convergence bound is in Theorem. 1.

188
189

191
192
193
194
195

196
197
198
199

201

202

203
204
205
206
207

208

209
210
211

212
213
214
215

216
217
218
219

220

221
222
223

Proposition 1. In the continuous limit where the number of diffusion denoising steps T — o0,

training-free guidance with recurrence is equivalent to running Langevin MCMC on a series of
A

annealed distributions {cjt(:rt)}f:o, with §o(xo) = Polxo) x po(xo)f(xo)™.
Thus, the recurrence step (without guidance) can be interpreted as Langevin MCMC applied to the
original distribution of the diffusion model ¢;(x;), and the guidance term A; in Eq. 3 then serves

as defining a practical annealing path ft () that bias the sampling path towards high reward areas
beyond the modes of the base model. We are the first to propose this theoretical unification of the
two lines of work, providing insights into efficient local search of diffusion models via gradients.

We implement local search by parameterizing the reverse transition kernel pg (x:—1|x:) as a sequence
of Langevin MCMC steps (Eq. 2), followed by a denoising step using DDIM (Eq. 11) or DDPM
(Eq. 12); see Appendix C.5 for details. Unlike classifier-guidance or naive training-free guidance,
which apply only gradient guidance in the denoising step, our approach incorporates explicit Langevin
MCMC steps. In Sec. 5.3, we scale the number of local search steps for the first time and observe
substantial improvements over pretrained models across multiple tasks.

5 Experiments

In this section, we apply inference-time scaling with our search strategy across a range of domains. In
Sec. 5.1, we present a strengthened BFS baseline that outperforms previous particle-based methods.
In Sec. 5.2, we demonstrate the adaptivity and efficiency of our DFS method. In Sec. 5.3, we scale up
local search in challenging decision-making domains, highlighting the importance of jointly scaling
local and global search.

5.1 Elucidating the Design Space of BFS for a Strengthened Baseline

In this section, we explore the design choices of BFS and present a strengthened baseline. To
ensure a fair comparison, we directly use the official implementation of FK-steering [63] with the
ImageReward [89] verifier and the SD v1.5 model. For details, see Appendix E.1.

N BoN Multinomial SSp N Current Difference Max N Increase Inf Constant
4 0.702+0.057 0.74340.037 0.834 +0.041 4 0.812+0.037 0.823+0.036 0.834 +0.041 4 0.88240.029 0.667+0.076 0.834 £ 0.041
8 0.896+0.031 0.926£0.042 1.032+£0.035 8 0.996+0.029 1.013+£0.032 1.032+0.035 8 1.087+£0.031 0.775£0.087 1.032+0.035

(a) Results for different sampling (b) Results for different scoring (c) Results for different tempering
choices with Constant tempering choices with SSP resampling and choices with SSP resampling and
and Max scoring Constant tempering Max scoring

Table 1: Ablation of BFS design choices

We begin with the baseline design of FK using BFS (Constant, Max, Multinomial) and evaluate
different resampling strategies. As shown in Table 1a, SSP significantly improves performance over
naive multinomial resampling, and we adopt it in our design. We then ablate the scoring methods and
tempering options in Tables 1b and Ic, arriving at our improved BFS (Increase, Max, SSP).

Model N BoN FK[63] DAS[33] TreeG [19] SVDD[39] BFS (ours)

SDvlL.5 4 0.702 £ 0.057 0.743 +0.037 0.878 +0.028 0.860 % 0.033 0.667 +0.076 0.882 + 0.029
SDvl.5 8 0.896 + 0.031 0.926 + 0.042 1.052 £ 0.033 1.023 £ 0.018 0.775 + 0.087 1.087 +0.031
SD XL 4 1.085 4+ 0.013 1.131 £ 0.022 1.181 £+ 0.023 1.152 £+ 0.023 1.036 £ 0.062 1.194 + 0.024
SDXL 8 1.198 £+ 0.021 1.251 +£0.011 1.265 £ 0.019 1.261 £+ 0.021 1.225 £ 0.027 1.291 4+ 0.018

Table 2: Comparison of our BFS with prior methods

To compare our improved BFS (Increase, Max, SSP) with prior baselines, we additionally experiment
with the SDXL model [58], which differs from the model used in our ablations. As shown in Table 2,
our improved BFS consistently outperforms previous methods across compute budgets and models.
In the following experiments, we use the improved BES as our baseline.

5.2 Adaptive and Efficient Inference-Scaling with DFS

In this section, we evaluate the adaptivity and efficiency of DFS on the CompBench dataset [29],
using the SSD-1B model [20] and a VLM [37] as our verifier. The detailed setup is provided in
Appendix E.2. Through these experiments, we address the following questions:

224
225
226

227
228
229
230
231

232

234
235
236

237
238

239

240
241
242
243
244
245
246

247
248
249
250
251
252

254

255
256
257

259

260

261
262

rrrr

< DFS-05 = BFS DFS-0.5 -« BFS 06 v < DFS-05 = BFS
DFS-0.7 =+ Best-of-N DFS-0.7 = Best-of-N e DFS-0.7 = Best-of-N
-~ DFS-0.9 056 ' -~ DFS-0.9 06z :” -~ DFS-0.9

= 7 7 7
Compute Compute Compute

(a) (b) © (d)

Figure 3: CompBench [29] text-to-image results with DFS. DFS-6 denotes DFS with threshold
d; = 4. Figs. 3a, 3b, and 3c show DFS outperforming baseline BFS on the color, shape, and texture
datasets, with up to 2x lower cost than Best-of-N. Fig. 3d shows average compute allocation by DFS
for prompts of increasing difficulty on the color dataset.

* Can DFS outperform Best-of-N and prior particle-based methods? As shown in Figs. 3a,
3b, and 3c, DFS consistently outperforms BFS and Best-of-N across datasets and threshold
parameters, achieving up to 2x lower computational cost.

e Can DFS adjust compute allocation with different thresholds? We evaluate DFS across
a wide range of practical threshold values (0.5, 0.7, and 0.9) and find that lower thresh-
olds automatically allocate less compute, while higher thresholds scale up compute for
better quality. DFS consistently outperforms baseline methods across all threshold choices,
demonstrating the robustness of our method.

e Can DFS dynamically adjust compute allocation for different instances? We measure the
computational cost of DFS on prompts of varying difficulty in the color dataset. Threshold
parameters are fixed, and the difficulty of a prompt is defined as the average score over four
independent trials. As shown in Fig. 3d, difficult prompts with lower scores automatically
consume more compute, without prior knowledge of difficulty as in [66].

Unlike linear-search methods that use a fixed exploration schedule, DFS offers higher efficiency and
adaptivity, which may be of independent interest to the broader community.

5.3 Joint Scaling Local and Global Search

Although global search methods such as BFS and DFS can efficiently explore the generative space of
the diffusion model, they are restricted to the modes of the base distribution and therefore cannot
exceed the capabilities of the base model. To optimize the compositional objective in Eq. 5 and
sample from high-reward regions beyond the base model, we propose scaling up local search steps
via annealed Langevin MCMC, introducing a new scaling dimension for diffusion models. We
validate the effectiveness of scaling local search in challenging decision-making domains, such as
long-horizon planning and offline RL.

Baselines. To demonstrate the effectiveness of scaling local search steps, we compare with DAS [33],
which also utilizes verifier gradients but applies only gradient guidance without multiple local search
steps. We also compare with the state-of-the-art training-free guidance method TFG [94], which
scales up the number of recurrence steps without any global search. Compute is measured as the
total NFEs of both local and global search, ensuring a fair comparison. As shown in the following
experiments, scaling local and global search separately yields suboptimal performance, while our
joint scaling strategy establishes a new Pareto frontier.

5.3.1 Long Horizon Planning

Diffusion models have been widely adopted in planning for trajectory synthesis [75]. We evaluate long-
horizon planning in a challenging PointMaze environment, using the base model trained following
Diffuser [31], with the verifier defined as the total number of collisions between the trajectory and
maze walls (see Appendix E.3 for details). Importantly, naively maximizing the verifier score does
not guarantee a successful plan, and planning remains challenging even with full access to the maze
layout [46, 49].

As shown in Fig. 4c, scaling up local search improves the overall Pareto frontier and significantly
outperforms baseline methods. Scaling local search alone in TFG [94] is efficient with a low compute

263
264
265

267

268

269
270
271
272
273
274
275
276

277
278
279
280
281
282

283

284
285
286
287
288
289

—e— BoN-0 50| —e— BoN-6
BoN-1 BFS-6
—e— BoN-2 801 —e— DFS-6
—o— BoN-6
60| —+— BoN-8
—— DAS
TFG

(a) (b) - o T e
(© (d

Figure 4: (Illustration and results for maze planning) Fig. 4a shows a failed trajectory without
local search (start: e, goal: %). Fig. 4b shows a successful trajectory after scaling local search. Fig. 4c
presents Pareto curves for inference-scaling with varying local search steps, where BoN-i is best-of-N
with ¢ steps. Fig. 4d shows global search efficiency with 6 local search steps fixed.

budget but fails to scale with increased compute, as local search alone can become trapped in local
optima. DAS [33] is more efficient than the corresponding BoN-0 baseline without local search, but
underperforms best-of-N when more local search steps are used. In Fig. 4d, we show that local search
can be combined with global search techniques such as BFS and DFS to further improve scaling
efficiency, demonstrating the flexibility of our framework.

5.4 Offline Reinforcement Learning

Dataset Environment IQL SfBC DD Diffuser D-QL QGPO TFG DAS TTS(ours)

Medium-Expert ~ HalfCheetah 86.7 92.6 90.6 79.8 96.1 93.5 90.2+0.2 93.3+03 939+0.3
Medium-Expert ~ Hopper 91.5 108.6 111.8 107.2 110.7 108.0 100.2+3.5 1054 +5.1 104.4+3.1
Medium-Expert ~ Walker2d 109.6 109.8 108.8 108.4 109.7 110.7 108.1+0.1 111.4+0.1 111.4+0.1
Medium HalfCheetah 474 459 49.1 442 50.6 54.1 53.1+0.1 53.4+0.1 54.8 +£0.1

Medium Hopper 663 57.1 79.3 58.5 82.4 98.0 96.2+ 0.5 71.3£2.7 99.5+1.7
Medium Walker2d 78.3 77.9 82.5 79.7 85.1 86.0 832+14 83.9+0.9 86.5+0.2
Medium-Replay HalfCheetah 442 371 393 422 47.5 47.6 45.0+ 0.3 42.24+0.1 478+ 0.4
Medium-Replay ~ Hopper 94.7 86.2 100.0 96.8 100.7 96.9 93.1£0.1 96.7 £ 3.0 97.4+40
Medium-Replay ~ Walker2d 739 651 750 61.2 94.3 84.4 69.8 4.0 63.8£2.0 79.3£9.7

Average (Locomotion) 769 756 818 75.3 86.3 86.6 82.1 80.2 86.1

Table 3: Performance on DARL locomotion tasks. For more details see Appendix. E.4.

Recently, diffusion models have emerged as a powerful action prior in robotics due to their ability to
model complex and multimodal distributions [8, 44]. However, these diffusion policies are typically
trained on offline datasets and struggle to adapt to reinforcement learning or test-time requirements.
Following prior work [57], we formulate the offline RL problem as sampling from a Q-regularized
distribution: 7* (a|s) o u(als)e’@(%:2) where Q is a learned Q-function representing preferences
over actions, and p is the behavior policy, which we model using a diffusion prior. We approach
this problem from the inference-scaling perspective, composing an off-the-shelf pretrained diffusion
policy with ground-truth Q-functions, without additional training.

Among the baselines, Diffuser [31], QGPO [45], and D-QL [81] are training-based methods that
require joint training of the diffusion model and Q-function, while SfBC [6] can be viewed as a
naive best-of-N approach. To demonstrate the effectiveness of our method, we allow TFG [94]
and DAS [33] to use up to twice the compute of our method. As shown in Table 3, our method
achieves performance comparable to training-based baselines, while DAS struggles on the Medium
and Medium-Replay datasets where the model’s capabilities are limited.

6 Limitations and Conclusion

In this work, we present a unified and principled framework for inference-time scaling of diffusion
models. Our approach includes an improved BFS baseline, an adaptive DFS method for efficient
global search, and a scalable local search strategy based on annealed Langevin MCMC. A potential
limitation of our method is the risk of generating adversarial samples that exploit weaknesses in the
verifier. To address this, we introduce a double-verifier strategy, employing separate verifiers for local
and global search. Further details and evaluations are provided in Appendix F.

290

291
292

293
294

295
296
297

298
299
300

301
302

303
304
305

306
307

308
309
310

311
312

313
314

315
316

317
318

320

321
322

323
324

325
326

327
328
329

330
331

333
334

References

[1] A. Ajay, Y. Du, A. Gupta, J. Tenenbaum, T. Jaakkola, and P. Agrawal. Is conditional generative
modeling all you need for decision-making? arXiv preprint arXiv:2211.15657, 2022. 24, 25

[2] M. S. Albergo and E. Vanden-Eijnden. Building normalizing flows with stochastic interpolants.
arXiv preprint arXiv:2209.15571,2022. 3

[3] A.Bansal, H.-M. Chu, A. Schwarzschild, S. Sengupta, M. Goldblum, J. Geiping, and T. Gold-
stein. Universal guidance for diffusion models. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 843-852, 2023. 15

[4] K. Black, N. Brown, D. Driess, A. Esmail, M. Equi, C. Finn, N. Fusai, L. Groom, K. Hausman,
B. Ichter, et al. mp: A vision-language-action flow model for general robot control. arXiv
preprint arXiv:2410.24164, 2024. 1, 15, 24

[5] K. Black, M. Janner, Y. Du, I. Kostrikov, and S. Levine. Training diffusion models with
reinforcement learning. arXiv preprint arXiv:2305.13301, 2023. 15

[6] H. Chen, C. Lu, C. Ying, H. Su, and J. Zhu. Offline reinforcement learning via high-fidelity
generative behavior modeling. In The Eleventh International Conference on Learning Repre-
sentations, 2023. 8, 24

[7] X. Cheng and P. Bartlett. Convergence of langevin mcmc in kl-divergence. In Algorithmic
learning theory, pages 186-211. PMLR, 2018. 16

[8] C. Chi, Z. Xu, S. Feng, E. Cousineau, Y. Du, B. Burchfiel, R. Tedrake, and S. Song. Diffusion
policy: Visuomotor policy learning via action diffusion. The International Journal of Robotics
Research, page 02783649241273668, 2023. 1, 8, 15, 24

[9] H. Chung and J. C. Ye. Score-based diffusion models for accelerated mri. Medical image
analysis, 80:102479, 2022. 2, 15

[10] P. Dhariwal and A. Nichol. Diffusion models beat gans on image synthesis. Advances in neural
information processing systems, 34:8780-8794, 2021. 1, 2, 3, 15

[11] K. Dong and T. Ma. STP: Self-play LLM Theorem Provers with Iterative Conjecturing and
Proving, Mar. 2025. arXiv:2502.00212 [cs]. 14

[12] Y. Du, C. Durkan, R. Strudel, J. B. Tenenbaum, S. Dieleman, R. Fergus, J. Sohl-Dickstein,
A. Doucet, and W. S. Grathwohl. Reduce, reuse, recycle: Compositional generation with

energy-based diffusion models and mcme. In International conference on machine learning,
pages 8489-8510. PMLR, 2023. 2, 3, 5, 15, 16

[13] Y. Du, J. Mao, and J. B. Tenenbaum. Learning iterative reasoning through energy diffusion.
arXiv preprint arXiv:2406.11179, 2024. 2

[14] Y. Du and I. Mordatch. Implicit generation and modeling with energy based models. Advances
in neural information processing systems, 32, 2019. 16

[15] A. Durmus and E. Moulines. Non-asymptotic convergence analysis for the unadjusted langevin
algorithm. arXiv preprint arXiv:1507.05021, 2015. 16

[16] P. Esser, S. Kulal, A. Blattmann, R. Entezari, J. Miiller, H. Saini, Y. Levi, D. Lorenz, A. Sauer,
F. Boesel, et al. Scaling rectified flow transformers for high-resolution image synthesis. In
Forty-first international conference on machine learning, 2024. 15

[17] M. Gerber, N. Chopin, and N. Whiteley. Negative association, ordering and convergence of
resampling methods, 2020. 5

[18] D. Guo, D. Yang, H. Zhang, J. Song, R. Zhang, R. Xu, Q. Zhu, S. Ma, P. Wang, X. Bi, et al.
Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement learning. arXiv
preprint arXiv:2501.12948, 2025. 14

335
336

337
338

340
341
342

344
345

346
347

348
349
350

351
352

353
354

355
356

357
358

359
360

362
363

364
365
366

367

368
369
370

371
372

374

375
376

377
378
379

[19] Y. Guo, Y. Yang, H. Yuan, and M. Wang. Training-free guidance beyond differentiability:
Scalable path steering with tree search in diffusion and flow models, 2025. 2, 5, 6, 21, 22

[20] Y. Gupta, V. V. Jaddipal, H. Prabhala, S. Paul, and P. Von Platen. Progressive knowledge
distillation of stable diffusion x1 using layer level loss. arXiv preprint arXiv:2401.02677, 2024.
6

[21] X. Han, S. Kumar, and Y. Tsvetkov. Ssd-lm: Semi-autoregressive simplex-based diffusion
language model for text generation and modular control. arXiv preprint arXiv:2210.17432,
2022. 15

[22] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determination of
minimum cost paths. IEEE transactions on Systems Science and Cybernetics, 4(2):100-107,
1968. 1

[23] H. He, J. Liang, X. Wang, P. Wan, D. Zhang, K. Gai, and L. Pan. Scaling image and video
generation via test-time evolutionary search, 2025. 15

[24] Y. He, N. Murata, C.-H. Lai, Y. Takida, T. Uesaka, D. Kim, W.-H. Liao, Y. Mitsufuji, J. Z. Kolter,
R. Salakhutdinov, et al. Manifold preserving guided diffusion. arXiv preprint arXiv:2311.16424,
2023. 2,15

[25] D. Hendrycks and K. Gimpel. A baseline for detecting misclassified and out-of-distribution
examples in neural networks. arXiv preprint arXiv:1610.02136, 2016. 27

[26] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. Advances in neural
information processing systems, 33:6840-6851, 2020. 1, 3, 15, 18

[27] J. Ho and T. Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,
2022. 25

[28] J. Ho, T. Salimans, A. Gritsenko, W. Chan, M. Norouzi, and D. J. Fleet. Video diffusion models.
Advances in Neural Information Processing Systems, 35:8633-8646, 2022. 1, 15

[29] K. Huang, K. Sun, E. Xie, Z. Li, and X. Liu. T2i-compbench: A comprehensive benchmark for
open-world compositional text-to-image generation. Advances in Neural Information Processing
Systems, 36:78723-78747,2023. 1, 6, 7

[30] A. Jaech, A. Kalai, A. Lerer, A. Richardson, A. El-Kishky, A. Low, A. Helyar, A. Madry,
A. Beutel, A. Carney, et al. Openai ol system card. arXiv preprint arXiv:2412.16720, 2024. 14

[31] M. Janner, Y. Du, J. Tenenbaum, and S. Levine. Planning with diffusion for flexible behavior
synthesis. In International Conference on Machine Learning, pages 9902-9915. PMLR, 2022.
7,8, 15,23,24,25

[32] D. Kahneman. Thinking, fast and slow. macmillan, 2011. 14

[33] S. Kim, M. Kim, and D. Park. Test-time alignment of diffusion models without reward over-
optimization. In The Thirteenth International Conference on Learning Representations, 2025.
2,4,5,6,7,8,21,22,25

[34] S. Kirkpatrick, C. D. Gelatt Jr, and M. P. Vecchi. Optimization by simulated annealing. science,
220(4598):671-680, 1983. 16

[35] I. Kostrikov, A. Nair, and S. Levine. Offline reinforcement learning with implicit q-learning.
arXiv preprint arXiv:2110.06169, 2021. 24

[36] G.Lee, T. N. N. Bao, J. Yoon, D. Lee, M. Kim, Y. Bengio, and S. Ahn. Adaptive inference-time
scaling via cyclic diffusion search, 2025. 15

[37] J.Li, D. Li, C. Xiong, and S. Hoi. Blip: Bootstrapping language-image pre-training for unified

vision-language understanding and generation. In International conference on machine learning,
pages 12888-12900. PMLR, 2022. 6

10

380
381
382

383
384
385

386
387
388

390
391

393

394
395
396

397
398
399

400
401
402

403
404

405
406
407

408
409
410

411
412

413
414

415
416

417
418

419
420

421
422

423
424

425
426

[38] S. Li, K. Kallidromitis, A. Gokul, A. Koneru, Y. Kato, K. Kozuka, and A. Grover. Reflect-dit:
Inference-time scaling for text-to-image diffusion transformers via in-context reflection. arXiv
preprint arXiv:2503.12271, 2025. 15

[39] X.Li, Y. Zhao, C. Wang, G. Scalia, G. Eraslan, S. Nair, T. Biancalani, S. Ji, A. Regev, S. Levine,
et al. Derivative-free guidance in continuous and discrete diffusion models with soft value-based
decoding. arXiv preprint arXiv:2408.08252, 2024. 2,4, 5, 6, 21

[40] H. Lightman, V. Kosaraju, Y. Burda, H. Edwards, B. Baker, T. Lee, J. Leike, J. Schulman,
I. Sutskever, and K. Cobbe. Let’s verify step by step. In The Twelfth International Conference
on Learning Representations, 2023. 14

[41] S. Lin, B. Liu, J. Li, and X. Yang. Common diffusion noise schedules and sample steps are
flawed. In Proceedings of the IEEE/CVF winter conference on applications of computer vision,
pages 5404-5411, 2024. 21

[42] Y. Lipman, R. T. Chen, H. Ben-Hamu, M. Nickel, and M. Le. Flow matching for generative
modeling. arXiv preprint arXiv:2210.02747,2022. 3

[43] N. Liu, S. Li, Y. Du, A. Torralba, and J. B. Tenenbaum. Compositional visual generation with
composable diffusion models. In European Conference on Computer Vision, pages 423—-439.
Springer, 2022. 15

[44] S. Liu, L. Wu, B. Li, H. Tan, H. Chen, Z. Wang, K. Xu, H. Su, and J. Zhu. Rdt-1b: a diffusion
foundation model for bimanual manipulation. arXiv preprint arXiv:2410.07864, 2024. 1, 8, 15,
24,25

[45] C. Lu, H. Chen, J. Chen, H. Su, C. Li, and J. Zhu. Contrastive energy prediction for exact
energy-guided diffusion sampling in offline reinforcement learning. In International Conference
on Machine Learning, pages 22825-22855. PMLR, 2023. 1, 3, 8, 24, 25

[46] Y. Luo, C. Sun, J. B. Tenenbaum, and Y. Du. Potential based diffusion motion planning. arXiv
preprint arXiv:2407.06169, 2024. 7

[47] N.Ma, M. Goldstein, M. S. Albergo, N. M. Boffi, E. Vanden-Eijnden, and S. Xie. Sit: Exploring
flow and diffusion-based generative models with scalable interpolant transformers. In European
Conference on Computer Vision, pages 23—40. Springer, 2024. 3, 17

[48] N. Ma, S. Tong, H. Jia, H. Hu, Y.-C. Su, M. Zhang, X. Yang, Y. Li, T. Jaakkola, X. Jia, et al.
Inference-time scaling for diffusion models beyond scaling denoising steps. arXiv preprint
arXiv:2501.09732,2025. 2,5, 15

[49] T. Marcucci, M. Petersen, D. von Wrangel, and R. Tedrake. Motion planning around obstacles
with convex optimization. Science robotics, 8(84):eadf7843, 2023. 7, 22

[50] E. F. Moore. The shortest path through a maze. In Proc. of the International Symposium on the
Theory of Switching, pages 285-292. Harvard University Press, 1959. 1

[51] M. Nakamoto, O. Mees, A. Kumar, and S. Levine. Steering your generalists: Improving robotic
foundation models via value guidance. In 8th Annual Conference on Robot Learning, 2024. 24

[52] A.Newell, J. C. Shaw, and H. A. Simon. Report on a general problem solving program. In /FIP
congress, volume 256, page 64. Pittsburgh, PA, 1959. 14

[53] A. Newell, H. A. Simon, et al. Human problem solving, volume 104. Prentice-hall Englewood
Cliffs, NJ, 1972. 14

[54] A. Q. Nichol and P. Dhariwal. Improved denoising diffusion probabilistic models. In Interna-
tional conference on machine learning, pages 8162-8171. PMLR, 2021. 3, 18

[55] S. Park, K. Frans, B. Eysenbach, and S. Levine. Ogbench: Benchmarking offline goal-
conditioned rl. arXiv preprint arXiv:2410.20092, 2024. 22, 23

[56] J. Pearl. Heuristics: intelligent search strategies for computer problem solving. Addison-Wesley
Longman Publishing Co., Inc., 1984. 1, 4

11

427
428

429

431

432

434
435

437
438

440
441
442

443
444
445

446
447

448
449

450
451

452
453

454

456

457

459
460
461

462
463
464

465
466

467
468

469
470
471

472
473

[57] J. Peters, K. Mulling, and Y. Altun. Relative entropy policy search. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 24, pages 1607-1612, 2010. 8

[58] D.Podell, Z. English, K. Lacey, A. Blattmann, T. Dockhorn, J. Miiller, J. Penna, and R. Rombach.
Sdxl: Improving latent diffusion models for high-resolution image synthesis. arXiv preprint
arXiv:2307.01952, 2023. 6

[59] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall Press, USA,
3rd edition, 2009. 1

[60] S. Sahoo, M. Arriola, Y. Schiff, A. Gokaslan, E. Marroquin, J. Chiu, A. Rush, and V. Kuleshov.
Simple and effective masked diffusion language models. Advances in Neural Information
Processing Systems, 37:130136-130184, 2024. 15

[61] Y. Shen, X. Jiang, Y. Yang, Y. Wang, D. Han, and D. Li. Understanding and improving training-
free loss-based diffusion guidance. Advances in Neural Information Processing Systems,
37:108974-109002, 2024. 5, 25

[62] A. Singh,J. D. Co-Reyes, R. Agarwal, A. Anand, P. Patil, X. Garcia, P. J. Liu, J. Harrison, J. Lee,
K. Xu, et al. Beyond human data: Scaling self-training for problem-solving with language
models. arXiv preprint arXiv:2312.06585, 2023. 14

[63] R. Singhal, Z. Horvitz, R. Teehan, M. Ren, Z. Yu, K. McKeown, and R. Ranganath. A
general framework for inference-time scaling and steering of diffusion models. arXiv preprint
arXiv:2501.06848, 2025. 2, 5, 6, 14, 15, 21, 22

[64] R. Singhal, Z. Horvitz, R. Teehan, M. Ren, Z. Yu, K. McKeown, and R. Ranganath. A general
framework for inference-time scaling and steering of diffusion models, 2025. 4, 5

[65] S. A.Sloman. The empirical case for two systems of reasoning. Psychological bulletin, 119(1):3,
1996. 14

[66] C. Snell, J. Lee, K. Xu, and A. Kumar. Scaling llm test-time compute optimally can be more
effective than scaling model parameters. arXiv preprint arXiv:2408.03314,2024. 5,7, 14

[67] J. Song, C. Meng, and S. Ermon. Denoising diffusion implicit models. arXiv preprint
arXiv:2010.02502, 2020. 3, 17

[68] J. Song, Q. Zhang, H. Yin, M. Mardani, M.-Y. Liu, J. Kautz, Y. Chen, and A. Vahdat. Loss-
guided diffusion models for plug-and-play controllable generation. In International Conference
on Machine Learning, pages 32483-32498. PMLR, 2023. 1, 2, 15

[69] Y. Song and S. Ermon. Generative Modeling by Estimating Gradients of the Data Distribution,
Oct. 2020. arXiv:1907.05600. 16

[70] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole. Score-based
generative modeling through stochastic differential equations. arXiv preprint arXiv:2011.13456,
2020. 15

[71] V. Subramaniam, Y. Du, J. B. Tenenbaum, A. Torralba, S. Li, and I. Mordatch. Multiagent
finetuning: Self improvement with diverse reasoning chains. arXiv preprint arXiv:2501.05707,
2025. 14

[72] Z. Tan, S. Liu, X. Yang, Q. Xue, and X. Wang. Ominicontrol: Minimal and universal control
for diffusion transformer. arXiv preprint arXiv:2411.15098, 2024. 15

[73] R. Tarjan. Depth-first search and linear graph algorithms. SIAM journal on computing, 1(2):146—
160, 1972. 1

[74] O.M. Team, D. Ghosh, H. Walke, K. Pertsch, K. Black, O. Mees, S. Dasari, J. Hejna, T. Kreiman,
C. Xu, et al. Octo: An open-source generalist robot policy. arXiv preprint arXiv:2405.12213,
2024. 1, 15

[75] T. Ubukata, J. Li, and K. Tei. Diffusion model for planning: A systematic literature review.
arXiv preprint arXiv:2408.10266, 2024. 7

12

474
475

476
477

489
490
491

492
493
494

495

497

498
499
500

501
502
503

504
505
506

508

509
510
511
512

513
514

515
516
517

519
520

[76] H. Van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double g-learning.
In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016. 15, 25

[77] C. Villani. Topics in optimal transportation. Graduate studies in mathematics ; v. 58. American
Mathematical Society, Providence, R.I, 2003. 20

[78] P. Vincent. A connection between score matching and denoising autoencoders. Neural compu-
tation, 23(7):1661-1674, 2011. 2, 3

[79] B. Wallace, M. Dang, R. Rafailov, L. Zhou, A. Lou, S. Purushwalkam, S. Ermon, C. Xiong,
S. Joty, and N. Naik. Diffusion model alignment using direct preference optimization. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
8228-8238,2024. 1, 15

[80] G. Wang, S. Zhang, T. Zhan, Z. Shen, J. Li, X. Hu, X. Sun, F. Wu, G. Deng, J. Zhang, et al.
Unlocking the mysteries of openai ol: A survey of the reasoning abilities of large language
models. 14

[81] Z. Wang, J. J. Hunt, and M. Zhou. Diffusion policies as an expressive policy class for offline
reinforcement learning. arXiv preprint arXiv:2208.06193, 2022. 8, 24, 25

[82] M. Welling and Y. W. Teh. Bayesian learning via stochastic gradient langevin dynamics.
In Proceedings of the 28th international conference on machine learning (ICML-11), pages
681-688. Citeseer, 2011. 3

[83] A. Wibisono. Sampling as optimization in the space of measures: The langevin dynamics as a
composite optimization problem. In Conference on learning theory, pages 2093-3027. PMLR,
2018. 5,15, 19

[84] L. Wu, B. Trippe, C. Naesseth, D. Blei, and J. P. Cunningham. Practical and asymptotically
exact conditional sampling in diffusion models. Advances in Neural Information Processing
Systems, 36:31372-31403, 2023. 2, 14

[85] Y. Wu, Z. Sun, S. Li, S. Welleck, and Y. Yang. Inference scaling laws: An empirical analysis
of compute-optimal inference for problem-solving with language models. arXiv preprint
arXiv:2408.00724, 2024. 14

[86] Z. Wu, S. Huang, Z. Zhou, H. Ying, J. Wang, D. Lin, and K. Chen. Internlm?2. 5-stepprover:
Advancing automated theorem proving via expert iteration on large-scale lean problems. arXiv
preprint arXiv:2410.15700, 2024. 14

[87] E. Xie, J. Chen, Y. Zhao, J. Yu, L. Zhu, C. Wu, Y. Lin, Z. Zhang, M. Li, J. Chen, et al. Sana 1.5:
Efficient scaling of training-time and inference-time compute in linear diffusion transformer.
arXiv preprint arXiv:2501.18427, 2025. 1

[88] Y. Xie, V. Jampani, L. Zhong, D. Sun, and H. Jiang. Omnicontrol: Control any joint at any time
for human motion generation. arXiv preprint arXiv:2310.08580, 2023. 15

[89] J. Xu, X. Liu, Y. Wu, Y. Tong, Q. Li, M. Ding, J. Tang, and Y. Dong. Imagereward: learning
and evaluating human preferences for text-to-image generation. In Proceedings of the 37th
International Conference on Neural Information Processing Systems, pages 15903-15935, 2023.
1,6,15

[90] M. Xu, L. Yu, Y. Song, C. Shi, S. Ermon, and J. Tang. Geodiff: A geometric diffusion model
for molecular conformation generation. arXiv preprint arXiv:2203.02923, 2022. 15

[91] Y. Xu, M. Deng, X. Cheng, Y. Tian, Z. Liu, and T. Jaakkola. Restart sampling for improving
generative processes. Advances in Neural Information Processing Systems, 36:76806—76838,
2023. 14

[92] S. Yang, Y. Du, S. K. S. Ghasemipour, J. Tompson, L. P. Kaelbling, D. Schuurmans, and
P. Abbeel. Learning interactive real-world simulators. In The Twelfth International Conference
on Learning Representations, 2024. 1

13

521
522
523

524
525
526

527
528
529

530
531

532
533
534

535
536

538

539

540
541
542
543
544

545

546
547
548
549
550

551
552
553

555
556
557
558

559
560
561
562

564
565
566
567
568

[93] S. Yao, D. Yu, J. Zhao, I. Shafran, T. Griffiths, Y. Cao, and K. Narasimhan. Tree of thoughts:
Deliberate problem solving with large language models. Advances in neural information
processing systems, 36:11809-11822, 2023. 14

[94] H. Ye, H. Lin, J. Han, M. Xu, S. Liu, Y. Liang, J. Ma, J. Y. Zou, and S. Ermon. Tfg: Unified
training-free guidance for diffusion models. Advances in Neural Information Processing
Systems, 37:22370-22417,2024. 1, 2,5, 7, 8, 15, 19, 20, 25

[95] J. Yu, Y. Wang, C. Zhao, B. Ghanem, and J. Zhang. Freedom: Training-free energy-guided
conditional diffusion model. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 23174-23184, 2023. 2, 3, 15

[96] E. Zelikman, Y. Wu, J. Mu, and N. Goodman. Star: Bootstrapping reasoning with reasoning.
Advances in Neural Information Processing Systems, 35:15476-15488, 2022. 14

[97] L. Zhang, A. Rao, and M. Agrawala. Adding conditional control to text-to-image diffusion
models. In Proceedings of the IEEE/CVF international conference on computer vision, pages
3836-3847,2023. 15

[98] Y. Zhang, E. Tzeng, Y. Du, and D. Kislyuk. Large-scale reinforcement learning for diffusion
models. In European Conference on Computer Vision, pages 1-17. Springer, 2024. 15

[99] S. Zhao, R. Brekelmans, A. Makhzani, and R. Grosse. Probabilistic inference in language
models via twisted sequential monte carlo. arXiv preprint arXiv:2404.17546, 2024. 14

A Appendix Overview

In Sec. B, we provide a in-depth review of literature related to inference-time scaling and diffusion
models. In Sec. C, we elaborate on local search with Langevin MCMC, and in Sec. D we provide
the pseudo code and design of global search algorithms BFS and DFS. In Sec. E, we provide the
details of all the experiments. In Sec. F we provide the details of double-verifier for mitigating reward
hacking.

B Additional Related Works

Inference-time scaling. Scaling compute in inference-time with “slow thinking” has its long history
grounded in cognitive science, known as “system 2” thinking [32, 65]. In [52, 53], Newell and
his colleagues formalized problem solving as tree search in a combinatorial space, and [93] uses
tree-of-thoughts to enable LLM reasoning with multiple exploration paths, using BFS and DFS as
strategic search algorithms.

Recently, long chain-of-though (CoT) reasoning has demonstrated remarkable performance for LLM
reasoning [30, 18], where the long CoT reasoning ability is incentivized through reinforcement
learning [18]. Notably, the CoT process demonstrates reasoning activities such as self-verification,
backtracking and self-correction. Using a process reward model [40], we can also conduct explicit
tree search without training the language model. [85] propose reward-balanced search (REBASE)
which is a special instance of BFS, and [66] applied beam-search to difficult math problems, showing
compute-optimal inference can be achieved via selecting different strategy for problems with different
difficulty. We refer the readers to [80] for a comprehensive review.

Inference-time scaling could also be used to improve the model itself, known as expert iteration.
In [32], they proposed reinforcement learning with expert iteration in games, where the expert is
constructed combining the base policy with Monte Carlo Tree Search (MCTS), and [86] applied
expert iteration to automated theorem proving. Self improvements can also be achieved through
iterative self-training [71, 96, 11, 62].

Inference scaling in diffusion models. The inference-time compute of diffusion models depends
heavily on the number of denoising steps. [91] showed that recursive restart sampling can reduce
cumulative error during sampling, which can be regarded as scaling the number of denoising steps.
More recently, [63] proposed a Sequential Monte Carlo (SMC) [84, 99] style method, known as
Feynman-Kac steering, which can be seen as a instance of BFS. Besides image generation, they also

14

569
570
571
572
573
574
575
576
577
578

579
580
581

582
583
584
585
586
587
588
589

590
591
592
593
594
595
596

597
598
599
600
601
602
603
604
605
606

608
609
610
611

612

613
614

616
617

applied it to diffusion language models [21, 60]. Additionally, [48] explored inference-time scaling
of diffusion models with local zero order search and global search over paths for image generation.
They also experimented with different verifiers, such as oracle verifiers, self-supervised verifiers,
and studied the verifier-task alignment problem. There zero-order search can be understood as an
uninformed version of local search which exhibits low efficiency, and when utilizing gradients, they
need to back-propagate through the entire diffusion sampling chain, causing high computation and
memory overheads. Compared with their work, we propose efficient gradient-based local search with
theoretically grounded Langevin MCMC, which we show is crucial in many tasks. Also, we provide
systematic experiments on the compute efficiency of global search methods. Their proposed methods
can thus be understood as a instance within our search framework.

Apart from search, [38] exploits the in-context learning abilities of foundation models to provide
revision during sampling. Specifically, they leverage the multi-modal capabilities of VLMs to provide
feedbacks on past generated images, and train the model to condition on past images and feedback.

Diffusion models and applications. Diffusion models [26, 70, 76] has shown great performance in
generative modeling for continuous data domains, such as image [16, 10], videos [28] and molecules
[90]. Due to its expressive power on modeling multimodal and complex distributions, they have
also been widely used as a decision prior in robotics. [31] proposes the first work on using diffusion
models to generate plans. [8] uses the diffusion model for visuo-motor policy in robotics. Recently,
a series of robotics foundation models utilize diffusion heads as action experts [4, 74], while [44]
trains a end-to-end diffusion transformer for bimanual manipulation. In this work, we demonstrate
that inference-time scaling can be especially helpful for decision making tasks with diffusion models.

Control and alignment of diffusion models. To align the diffusion model with flexible objectives,
training-free guidance [94, 3, 9, 68, 95, 24] and compositional generation [12, 43] combines the
diffusion models with classifiers or other diffusion models at inference time, while RL-based methods
[98, 79, 89, 5] finetune the diffusion model using reward or preference signals. ControlNet [97] style
approaches have also been used to add additional conditions for sampling, where [72] designs a
control block for diffusion transformers, and [88] uses a combination of guidance and controlnet for
controllable human motion generation.

Discussions on concurrent works. Adaptive Bi-directional Cyclic Diffusion (ABCD) [36] propose
a search based inference scaling framework which could be seen as a combination of DFS and BFS.
Unlike DFS that determines backtracking with a quality threshold, ABCD maintains a set of particles
and backtracks by sending the particles to all different noise levels. The termination condition is
determined by whether backtracking to higher noise levels increases sample quality. Compared
with DFS, ABCD can have smaller score estimation errors since they evaluate particles when fully
denoised, and can explore the generative space sufficiently via a combination of BFS and DFS.
However, ABCD can not adaptively adjust compute allocation on different instances due to its special
termination condition, and requires more compute on easy instances since it will denoise a set of
particles regardless of whether sample quality is satisfactory.

EvoSearch [23] propose to use evolutionary search to scale inference compute in image and video
generation. At selected time steps, they evaluate the particles via full denoising, and maintain
high score particles and mutate low score particles with adding noise. Their method demonstrated
improved performance over the FK-steering [63] baseline. It improves upon naive BFS with local
search via mutation for low quality particles.

C Details about local search with Langevin MCMC

In this section we provide a comprehensive and detailed overview of (annealed) Langevin MCMC
based methods used in local search, as well as proving Proposition. 1.

C.1 Langevin MCMC as gradient flow in measure space

Following [83], the Langevin SDE in sample space corresponds to gradient flow of the KL-divergence
in measure space. Here we provide a brief overview.

15

618
619

620
621
622

623

624
625
626

627
628
629

630
631

632

633
634
635

636

637
638
639
640

641
642
643
644

645

646
647

649

650

651

652

Define our target distribution that we wish to sample from as v, and the distribution of our current
sample as p. We define the KL-divergence (relative entropy) as:

Hy(p) = / plog?. ©)

Thus, sampling from v can be seen as minimizing H, since the minimum of H is achieved at p = v
with H,(p) = 0. Furthermore, v is the only stationary point of H even for multimodal distributions.
Thus we can sample from © when optimizing H via gradient based methods.

We have the gradient flow of H in Eq. 6 follows the following PDE:

%)

5 = V- (pV(=logn)) + Ap, %
which is known as the Fokker-Planck equation. Here, p = p(a,t) is a smooth positive density
evolving through time, driven by the dynamics of the sample . The dynamics in sample space
corresponding to Eq. 7 is the Langevin SDE:

dxy = Vlog v(x,)dt + V2dw, . (8)
where (x;);>0 is a stochastic process with measure p;, and (w;);>¢ is standard Brownian motion.

That is, if ¢; ~ p; evolves according to the dynamics in Eq. 8, then the measure p(x,t) = p; evolves
according to the PDE in Eq. 7, conducting gradient optimization in measure space.

In practice, we implement Eq. 8 through discretization, which is known as the unadjusted Langevin
algorithm (ULA):

T =’ + Vi logu(x) + /2n€, 9)
with €’ ~ N(0, I). When 7 — 0, the ULA converges to Langevin SDE, providing exact sampling.

Previous works [15, 7] show that ULA can efficiently converge to the target measure v if v is log-
concave and smooth. However, when facing complex and multimodal distributions, we can only
guarantee convergence to the concave vicinity.

C.2 Annealed Langevin MCMC Sampling

Langevin MCMC have been used to perform implicit sampling in energy-based models [14] and
score-based models [69]. However, these methods suffer from inaccurate score estimation and
low density regions [69]. In [69] they propose to perturb the data with gaussian noise, eventually
smoothing the data distribution:

Q(mt):/ po(ﬂ’?o)-/\/(ﬂlﬂt;iEoMTt2),

and creating a sequence of annealed distributions {q(a:t)}z;o which converges to po (o). Since they
are smoothed by gaussian noise, we can improve the mixing time of Langevin MCMC on multimodal
distributions by sampling from these intermediate distributions, sharing similar spirits with simulated
annealing [34].

In [12], they extend this method to compositional generation of diffusion models. Specifically,
we consider sampling from a product distribution pi®(x0) o ph(ao)p2(xo), where p (o) and

p3(x) are distributions of different diffusion models. Since we have access to the score functions
Vz, log ¢i (x+) and V, log g7 () through the diffusion model, we can construct a sequence of
annealing distributions @ (z;) such that:

Ve, log @™ (@) = Va, log it (@) + Va, log a7 ()
By sampling from the sequence {(ﬁmd(mt) }, we can arrive at G5 (o) which is equal to pJ™ ().

A key difference from sampling from {(jfmd (mt)} and direct diffusion sampling is that the diffusion

process with pi* (z¢) defined as

& (x,) = / P2 (o)q (x| o)
xo

16

653

654

655

656
657
658

659

660
661
662
663

665

666

668

669

670
671
672

673

is different from @ (z;). The score of ¢ (z;) can be derived as:

V., log 7 (1) — Va, log (/ pé(wo)pg(mo)Q(mt@o)) ,
o

which is not equal to

Vi, log @™ () = Vi, log (/ p%)(wo)q(xtlwo))wm log (/ p3<sco>q<mt|wo>),
To Lo

and thus intractable to compute directly.

A key distinction between annealed Langevin MCMC sampling and reverse diffusion sampling is
that we run multiple Langevin MCMC steps on the same noise level, while reverse diffusion goes
from high noise level to low noise level via denoising. A minimal pseudo code is shown in Alg. 1.

Algorithm 1 Annealed Langevin MCMC sampling

Input: sequence of annealing distributions {cjt(a:t)}tTZO, number of MCMC steps N, step size

{m}fzo. (Optional) reverse transition kernel {pg(x:—1 |wt)}f:0.
Init: 3. ~ N(0, 1)
fort=T,--- ,1do
fori=0,1,--- ,N —1do
Perform Langevin MCMC steps:

mi“ = a:i + Vg, log (jt(a:i) + \/277t6i , ef; ~N(0,I).

end for

(Optional) transit to next time step: &9 _; ~ pg(-|z). If no reverse kernel initialize 9 | = z}¥.
end for
Return

C.3 Annealed Langevin MCMC with recurrent training-free guidance

In this section, we prove the connection between annealed Langevin MCMC (Alg. 1) and training-free
guidance (Alg. 2) in Proposition. 1. We divide the proof into two parts. In Sec. C.3.1 we prove the
equivalence between naive recurrence steps and Langevin MCMC. Then in Sec. C.3.2, we prove
that adding the guidance term is defining an annealing path that biases towards high score regions.
Finally, we provide a rigorous convergence analysis in Sec. C.3.3.

C.3.1 Equivalence between Langevin MCMC and naive recurrence
Consider the diffusion process with the following stochastic interpolant [47]:
Ty = 0 + OL€.

We denote the score function of g;(x;) as Vg, log q:(x+) = s(x4,t). Recall the forward process in

Eq. I:
a o2 ol
Xy = — wt1+\/at2<g— ;1)6. (10)
Qi1 oy Qg

In a recurrence step in Line. 5, we first solve «?_, from x? using the learned score function s(x¢,t),
then add noise to ! , to obtain the recurrent sample x:"', where the superscript denotes the
recurrence step index: ¢ = 0,1, -+, Nee,. Depending on different solvers, we have different
formulations of .

DDIM sampler. When using DDIM [67] sampler, we have the reverse step as:

oy o o
Ti_q = ;lmt—i-Uf(;1— ;1>s(wt,t)7 (11)
t t t

17

674

676

677

678

679

680

681

682
683

684

685

686

687

688

689
690

where s(x;, t) is the score function V, log ¢; (). Thus, we have:

2 2
P Qi . o Oi_1 4
mz—i—l _ CCz_ + oy Yt Tt %
t t—1 2 2
t—1 oy Qg
2 ;2
; Qr Op—1 ; ap 01
—:cé—i—gf(l— s(x},t) + oy |1 — 5——5¢€.
Qy_1 O¢ (& s

Denote \; = log %’ then we have:

it = @l 4 o? (1— N N) szl) + ory/1— 2 el

= @i 02 (1=) (@) + oy (1=) (1 el

A —

where 1 + e*t~*-1 — 2 when T — oo and denoising step size approaches 0, as \; — A\;_1 — 0.

DDPM sampler. In DDPM [26], we parametrize the posterior distribution as:
po(@i—1|®e) = N (@115 o (1, 1), B (4, 1)) (12)

where the posterior mean is:

Qi Qi «
,U/G(wht) _ ™ 1(L't =+ (0’)52 ; 1 0'371 t) 5<$t7t) .
t 1

Qi O
[26] parameterizes the posterior variance as Yg(xs,t) = eI or Tg(xy,t) = B.I:

2 2
8, = 2 [0% Ot—1
t=Q; | —5 — 3 >
ay o

2
5 0i—1

6 25t7
t

t =
%
while [54] propose to train the posterior variance as Y.y (x¢,t) = exp (v log B + (1 — v) log ﬂ})

Thus, a backward step can be written as:

a1 2 Q1 2 Qg 1/2
i1 = Lt —+ Ut — Ot—l s(wt, t) + 29 (Il?t, t)epos[,
Qi (e Q1

where €05 denotes the noise added in the posterior sampling step. Then, we can write the recurrence
step as:

1 of 1/2 o} oi

+1 _ 2 2 t 7 T % t — 1

Ty =T; + <Ut — 0t o2) S(mt’ t) + 29 (mt’ t)Epost + oy 2 o2 €forward
t—1 t t—1

= a;+ fis(xp,t) + V/Bo(e, 1) + Bele’
where Yg(x,t) — I when T' — oo, and the denoising step size approaches 0.

Putting together. In general, we can write the recurrence step as:
it =zl + aprys(xl,t) + V2a€t (13)

with a; — 0 and r; — 1 as the denoising step size approaches 0:

2 027
* For DDIM sampler, we have a; = %af (0—’2 — ag 1) and r; =

2
N —X_1-
oF -1 I4ett™7t—1

2 0.2
+ For DDPM sampler, we have a; = 202 (25 — 2=) and 1 < r; < —2—.
27t \ oF iy 147t
T

Thus, it can be seen as a approximation of the ULA in Eq. 9, and also a discretization of the Langevin
SDE in Egq. 8.

18

691

693
694
695

696

697

698
699

700

701

702

703
704

706

707

708

709

710

71
712
713

714

715

716
717
718

C.3.2 Annealed Langevin MCMC with guidance
When applying training free guidance [94] during the recurrence, we have:
it =l +ars(xit) + V2a€ + Az, t),

where ay, b, are the coefficients of the recurrence equation in Eq. 13 without guidance. In general,
At = piVg, log f(xo;) + p Ve, , log f(xo|¢), where py, i controls the guidance strength. We
then show that the guidance term can be considered as the score function of a set of annealed verifiers

R T
{f(mt)}tzo'

When considering ‘variance guidance’ in Line. 7, we have A, = p; Vg, log f(xo). Thus, we

can define f}* (x;) = f(xo}¢), which satisfies fa (o) = f(ao). Similarly, for ‘mean guidance’ in
Line. 8, we have

Apean = /itatvmo‘t log f(mO\t)

2
E ot th IOg f(m0|t) 5

where the second Equation follows from Lemma 3.3 in [94]. Thus, there exists a set of functions

=hts—

fmean(2,) such that Vg, log fme(z,) = %VW log f(xo|¢), and we can see that when ¢t —

0,Va, log f™ (x,) = V, log f(z). If we additionally incorporate the ‘implicit dynamics’ in
Line. 4, our arguments still stands since the smoothed objective f(x) = Egs.n0,1)f (T + 70:0)
converges to f with¢ — 0 and o; — 0.

Combining the two terms together, we have A; = ¢V, log ft(act) with ft = ftv"" - f,{“e"‘". Thus,
recurrence with guidance can be written as:
zit = a) + ares(@i,t) + V2ai€ + ¢V, log fir(me)
= &} + a;r Vg, 1og qp () fir(@) /47 + \2ay€’

Thus, we have defined the annealing path as §;(x;) = qt(a:t)ft(a:t)cf/at” ,t=1,2,---,T.

C.3.3 Convergence analysis

In this section, we provide a rigorous convergence analysis of recurrence to the target distribution
Gr(1)-
Theorem 1. Suppose §;(x;) has bounded support, is a-strongly log-concave and L-log-smooth, and

~V?2log §; is M-Lipschitz. Denote wiv e qs the sample after Ny Steps of recurrence, we can

bound the Wasserstein distance between the distribution of a:iv - and §y as:

Wa(p(@N=r), G,) = (9(Mot — e e (] ey 672,\#1)1\1,“.“,) ’

where Ay = log is half of the log SNR.

Proof. Recall recurrence is equivalent to the following recursion equation:

T =l 4 a;r Vg, log G (xh) + 2a.€’

= :13; + atth lOg dt(:ci)“ + QCLtEi .

Thus, recurrence is equivalent to running unadjusted Langevin algorithm (ULA) on the tempered
distribution ptempered g;*. Using Lemma 1 and Lemma 2 from [83], given the regularity conditions
on ¢, we can bound the discretization error from ULA as:

Wg (ptempered7p(mu.)) =0 (at + (1 _ at)Nmm)
= O-t2 0—?71 O-t2 0—371 Nrecur
=0 (Z -t - o)
o oy Qp g
= O (6—2)\1: _ 6—2)\t71 + (1 _ 6_2/\t + 6_2)\t71)Nrecur))

719
720

721

722

723
724

725
726

727
728
729
730
731
732
733
734

735

736
737
738
739
740

741

742

743

744
745

746

747

To bound Wy (ptmPered g,), we can bound the TV distance as TV (p*mered 7,) < O(r;—1). Following
Proposition 7.10 in [77] for distributions with bounded support, we have:

W2 (ptempered7 Qt)
=0 (Tv(ptempered’ qt))
=0 (V ry — 1)

O 1min<atgt_1a 02?)
Qt_10¢ (o

=0 <\/Iog %+ max (1og di-t ,log ot))
Ot—1 (6% Ot—1

=0 (log Qi1 + log ot)
e

t Ot—1
= O ()\tfl -)\t) .
Putting together we obtain our desired bound. O

C.4 Relationship between Langevin MCMC and gradient ascent

In training-free guidance, most prior works only apply gradient ascent without recurrence. Here we
provide a theoretical analysis of both methods.

Recall the KL-divergence objective in Eq. 6, which can be further decomposed when we are sampling
from a compositional distribution of po(o) and verifier f(xg), with v < pq - f:

Hy(p) = E,[—log f] + Hp,(p) +1log Z .

where Z = [pof is a normalization constant. Thus, gradient ascent is optimizing the verifier
objective E,[— log f], while Langevin MCMC in Eq. 13 is optimizing the divergence between current
sample and base distribution H,,(p). This explains why naive gradient updates leads to OOD
samples, and recurrence effectively mitigates this issue, acting as a contraction force pulling the
sample back to the original manifold. However, since we start from pg as the distribution of our initial
sample, sometimes we can omit the recurrence if the guidance strength is small. But if we wish to
traverse different modes with multiple gradient updates, introducing recurrence helps to avoid OOD
during optimization.

C.5 Implementing Local Search with TFG hyper-parameter space

Due to the equivalence between annealed Langevin MCMC and training-free guidance with recur-
rence, we can implement local search with Langevin MCMC using the TFG framework of [94],
efficiently searching the hyperparameters. Here we provide a overview of the algorithm and design
space. Following Sec. C.3, every iteration of recurrence in Line. 5 is equivalent to an annealed
Langevin MCMC step, thus N, is equal to the number of local search steps.

For time varying schedules p;, s, we follow [94] and propose to use either the ‘increase’ schedule:

673 / Q1
st=T—F"—""—", (14)
Zt:I at/at—l
where we increase the guidance strength as we denoise: s < sp_; < --- < s1; or the ‘constant’
schedule
sg =1, (15)

which uses constant parameters throughout the denoising process. Thus, the time-varying schedules
can be computed as p; = s;p and pu; = sS4, and we only need to determine the average p and fi.

D Global Search of Denoising Diffusion Models

In this section, we provide details about the global search algorithms: BFS and DFS.

20

748

749

750

751
752
753

754
755

757
758

760

761
762
763

764

766
767

768
769
770
771
772

773
774
775
776
777

778
779

Algorithm 2 Training-Free Guidance

1: Input: Unconditional diffusion model €y, verifier f, guidance strength p, ;t,%, number of steps
T7]Vrecun]Viler

2: zp ~N(0,1)

3:fort=T,---,1do

4: Define function f(x) = Es. 0,1 f(Z + J0:0)

5: forr = 1, 7Nrecur do

6: oy = (2t — ate(;(fct,t))/at

7: Avir = ptVaz, log f(xo))

8: Anean = Amean + /Ltatvww log f(2os + Amean) >lterate Nie, times starting from Ayeq, = 0

9: @1 = Sample(@, s, t) + "5+ (Avar + Armean) > Sample follows DDIM or DDPM
2 g2

10: x: ~ N (ao‘f Ty, 07 (% - fjl) I) > Recurrent strategy

t—1 *t X1
11: end for
12: end for

13: Output: Conditional sample xg

D.1 BFS-Based Search

We present the pseudo code for BES in Alg. 3.
Here, we provide an overview of prior methods.

SVDD [39]. In SVDD, the best sample is selected at each time step, from which M children are
generated. This approach can be viewed as a variant of BFS with 7 = oo and M particles. Nodes are
evaluated using the current score f(zoj;).

TreeG [19]. In TreeG, particles are ranked and the top M are either selected directly or resampled
based on their scores to obtain M samples. From each selected particle, K children are sampled,
resulting in an effective tree width of K M. Particles are evaluated using their current score f (wo‘t).

DAS [33]. In DAS, the authors propose an exponentially increasing tempering schedule as the default,
given by 7 = (1 + v)T~* — 1, and also introduce an adaptive tempering schedule. They adopt
advanced SSP resampling instead of multinomial resampling, and evaluate particles based on the
difference in rewards from the previous evaluation.

FK-steering [63]. In FK, the authors propose several options for evaluating intermediate particles,
including difference, max, and sum, with max adopted as the default. In the official implementation,
multinomial resampling is used, which may lead to suboptimal performance.

D.2 DFS-based search

In this section, we provide the details and pseudo code for DFS in Alg. 4. To better utilize previously
explored sampling paths, we employ a buffer to store prior results. When no particles pass the
threshold constraint, we retrieve the best sample from the buffer.

Similar to BFS, controlling the set of evaluation steps allows a trade-off between efficiency and
accuracy. Evaluating at earlier time steps introduces higher uncertainty but enables backtracking.
Additionally, adjusting the backtracking depth A governs the search scope: a small A reduces
computation and favors local search, while a larger Ap enables broader exploration at the cost of
increased computation.

In practice, we set the evaluation steps to S = {17, 1T'} for image experiments to save compute,
andto S = {27,2T —1,--- ,1} for PointMaze experiments. We set the recurrence depth to T'/2
for image tasks and 7'/4 for PointMaze, corresponding to the denoised steps at which samples are first
evaluated. The threshold schedule &, is also set to ‘increase’ as in Eq.14, enforcing tighter constraints
for samples with lower noise.

In our experiments, we observed that when backtracking to ¢,ex, = T—thus fully restarting—the
nonzero terminal SNR avy /o7 in many diffusion schedules [41] can lead to cumulative errors with

21

780
781

782

783
784

785

787
788
789

791
792

794

795

796
797

Algorithm 3 Diffusion BFS

Diffusion input: diffusion model €y with diffusion time steps 7" and proposal transition kernel
{ﬁg(wt,ﬂwt)}ivzl. Verifier f.
BFS input: Set of evaluation time steps S. Tempering schedule 7. Budget of particles V. Scoring
rule and Resampling function rule.
Init: Random sample N particles a:’f\, ~N(,I),k=1,2,---N.
fort=1T,---,1do

if t € S then

fork=1,2,--- ,Ndo

Estimate the conditional mean: :c’g‘ =

k k
x, —oeq(xy ,t) . k
=~ Compute the verifier score f(x,).

Compute the verifier scores according to the scoring rules: textbfCurrent: f(a:ff) =
7 f(xf),)- Difference: f(z}) = th(a:’glt)—ﬁ“ Max: f(xF) = max (th(wgu)v 1*

prev* prev

Resample the particles. Compute the weights wf = softmax(f(:vf)), and sample the

children nf = Resample(N, w}), where Resample can be Multinomial or SSP. Update

the score buffers f/zcrev =7f (wg"i‘;em(k))_

end for
else
nff =1
end if
fork=1,--- ,Ndo
Sample n¥ particles from x¥: x]_ o~ po(-lxk),i=1,2,--- ,nk
end for
end for
Return o = argmax,_; ... g, f(xf)

repeated backtracking. Therefore, when backtracking to ¢,.x = T, we initialize with fresh Gaussian
noise.

E Experiment Details

In this section we provide the details of experimental setup and implementation for all our experiments.
‘We run our experiments on clusters with Nvidia A100 GPUs, with over 1000 GPU hours used.

E.1 Ablation of BFS design space

We directly adopt the official code base of FK-steering [63] and use the samping methods provided in
the code base of DAS [33]. We use the ImageReward prompts as in [63] and report the average and
standard deviation over 4 independent trials. For the temperature and resampling interval, we directly
follow the implementation of FK-steering. For TreeG [19] we use a fixed branch out size of 2.

E.2 Text-to-Image Compositional Generation with DFS

We use the SSD-1B model' which is distilled from SDXL, and we use the default sampling config-
uration with 50 steps of DDIM sampler. For DFS and BFS, we evaluate at time steps {25, 35,45}
and set the backtrack depth A = 25. For BFS we additionally sweep the temperature in range
{0.5,1,2,4,8} and report the best performance.

E.3 Long Horizon Maze Planning

Maze environment. For all our maze experiments we use the OGBench PointMaze environment
[55]. We created our maze layout using the same protocol of Figure 5 in [49]?, but with a smaller size

"https://huggingface.co/segmind/SSD- 1B
’https://github.com/mpetersen94/gcs/blob/main/models/maze . py

22

https://huggingface.co/segmind/SSD-1B
https://github.com/mpetersen94/gcs/blob/main/models/maze.py

798
799
800
801

802
803

804
805
806

807
808

809
810
811
812

814
815
816

Algorithm 4 Diffusion DFS

Diffusion input: diffusion model €y with diffusion time steps 7" and proposal transition kernel

{ﬁg(wt,ﬂwt)}ivzl. Verifier f.
DFS input Budget for total number of backtracking B = K, backtracking depth At and threshold
{5,5}?:1. Set of evaluation time steps S.
Init x7 ~ N(0,I), ¢t = T. Init buffer with empty sets: buffer(t) < {} ,t =1,2,--- ,T.
while ¢ > 0 do
ift € S then
Estimate the conditional mean and verifier score: o, = %f("“t) f(xope)-
if f(x;) < 0; and budget B > 0 then
Backtrack: tpex; < min(t + Ap,T), oy, ~ q(@,,,
Decrease the budget: B < B — 1
Add the score-value pair to the buffer: buffer(t).add (f(xo|;) : @)
else
if B = 0 then
Pop the best sample from buffer: @; < buffer(¢).max > select the best sample from
past explorations
end if
Sample posterior: tpex < t — 1, @y, ~ Po(Ts—1|T+)
end if
else
Sample posterior: tpex <— t — 1, @y, ~ Do(Ti—1|Tt)
end if
t 4= Tnexts Tt < Tnext
end while
Return x

@) with ¢ in Eq. 1

of 20x20 cells. Dataset is collected following the protocal in OGBench [55]. We evaluate the model
on the default task 1 of OGBench [55], which is navigating from bottom left to top right. Empirically
we discover that the diffusion model can perform well on short-horizon tasks without extra inference
compute, but struggles heavily in the long horizon tasks.

Model Training. We train the model following diffuser [31], where we use a temporal U-Net to
denoise the trajectory

S1 So SH
a; as amg

T =

Since our objective start and goal is more distant than trajectories in dataset, we sample at longer
horizons than training, which is enabled by the temporal U-Net architecture. We train the model for
1.2M steps using the same configuration as [31].

Inference. We found that the model performance saturates with 16 denoising steps, which we use for
all our experiments. For all the data points we report the average success rate with over 40 samples.

For verifier design, we use the ground-truth maze layout, and calculate the violation of each point in
the trajectory using the position coordinates. Specifically, if a point (z, y) is inside a maze wall box
with center (c,, ¢,) and half-width d, then the point loss can be calculated as the minimum distance
from the point to box walls:

L(x,y) = Inin(:c - (Cr 7d)7(cm +d) -,y — (Cy 7d)7(cy +d) 7y) .

and the total verifier score is computed as:

H
f(T) =exp (ZL(%,%)2> .

So if all the points are free of violation in the trajectory, then f(7) = 1. We point out that this does
not indicate a successful plan as the connection between consecutive points (z;,y;) = (Zit1, Yi+1)
may violate the maze layout, and using only the verifier function can not generate a successful plan.

23

817
818
819
820

821

822

823
824

826
827
828

829
830
831

834

844

For local search, we search the hyper-parameters p and j in Sec. C.5 with 4 = 0. For global search
with BFS we evaluate at steps {12, 8, 4}, and for DFS we evaluate at {12, 11, - - - , 1} with backtrack-
ing depth A = 4. We also observe that increasing backtracking depth to 12 and evaluate at smaller
time steps {4, 3,2, 1} helps to scale up the performance with more compute. The hyperparameter
search results are below:

T=0.2 7 =0.005 T=0.1

N

2 275+43 325£11 312442
4 425+£52 481411 455+2.3
8 67611 71.2+£22 70.1£1.1

Table 4: Hyperparameter search for temperature 7 in PointMaze BFS

| —e— Bon
BFS

—e— DFS (threshold=50)

70 { —®— DFS (threshold=200)

—&— DFS (threshold=400)

—8— DFS (threshold=500)

success Rate
o
=}

30 "

20 /

7 2 »
Compute

Figure 5: Hyperparameter search for threshold § in PointMaze DFS

E.4 Offline RL

Background. Diffusion policy [8] is widely used for action generation in robot foundation models
[4, 44]. At inference time, policies can be guided by human trajectory constraints [81] or LLM-based
value functions [51]. Exact sampling requires training a noise-dependent energy function [45], but
this can degrade pretrained knowledge and demands additional data—often impractical in data-scarce
robotic settings. In contrast, inference-scaling provides a more flexible approach, allowing seamless
composition of pretrained diffusion policies with Q-functions without retraining.

Setup. We follow the setup in [45], and we directly use their pretrained diffusion model and Q-
function, omitting the time-dependent energy function. The diffusion model was trained to generate
action a given state s, and we sample with 15 steps of DDIM.

For hyper-parameter search, we disable the implicit dynamics and set y = 0, and use the ‘increase’
schedule for p and . For strength parameters p and i, we first search for the right magnitude. Then,
we also follow [45] and search with step size [1,2,3,5,8,10] within the magnitude. Same as [45], we
use 5 different seeds with 10 samples per seed for each task. To avoid over fitting, we use different
seeds for parameter search and evaluation. We report the hyper-parameters and the performance
within the parameter-searching dataset and evaluation dataset.

For global search, we use 4 particles for Medium-Expert and Medium datasets, and 2 particles for
Medium-Replay datasets. Since the number of particles are small, we do not carry out BFS or DFS
methods and simply use Best-of-N. We point out that the number of particles we use are much smaller
than the 50 particles in [81] and the 32 particles in [6], highlighting the effectiveness of local search.

Baseline. We compare our method to a variety of baselines, including traditional state-of-the-art
methods IQL [35] and diffusion-based policies such as diffuser [31], decision-diffuser (DD) [1],
Diffusion-QL (D-QL) [81], SfBC [6] and QGPO [45]. We directly take the numbers from [45].

24

845
846
847
848
849
850
851

852
853
854
855

856

Among the baseline diffusion-based methods, both Diffuser [31] and QGPO [45] requires training
a noise-dependent guidance function, and D-QL [81] requires updating the diffusion model during
training using the Q-function iteratively, which needs to back-propagate through the diffusion
sampling chain, introducing high computation and memory overheads. DD [1] uses classifier-free
guidance [27] to generate high-return trajectories that requires training a return-conditional model
on labeled datasets, which can be expensive to obtain in robotics where only demonstration data is
available [44].

For our reproduced baselines, TFG [94] is allowed up to 8 recurrence steps and DAS [33] up to 16
particles, resulting in a hyperparameter space and computational cost approximately twice that of our
method. We sweep across all configurations for the baseline methods and report the best performance.
For fair comparison we evaluate our method on different seeds used for hyperparameter search, with
the results shown in Table. 5.

Dataset Environment particles Niecyr Niter p I Eval set Search set

Medium-Expert HalfCheetah 4 1 1 0.008 0.02 939403 94.3 £0.5
Medium-Expert Hopper 4 1 4 0.001 0.00 1044+3.1 1094+52
Medium-Expert ~ Walker2d 4 1 1 0.005 0.10 111.4+01 111.4+£0.2
Medium HalfCheetah 4 1 4 0.003 0.05 54.8=+0.1 54.8 £0.2

Medium Hopper 4 4 4 0.003 0.02 995+17 100.1+0.1
Medium Walker2d 4 1 6 0.003 0.08 86.5+0.2 85.2+3.2

Medium-Replay = HalfCheetah 2 1 6 0.005 0.03 478=+04 484 +0.1

Medium-Replay Hopper 2 1 1 0.003 020 9744+4.0 100.4 +£ 2.2
Medium-Replay ~ Walker2d 2 2 4 0.003 0.03 79.3+9.7 83.2+28
Average 86.1 87.5

Table 5: Hyper-parameters on DARL locomotion tasks with test-time scaling. We report the perfor-
mance on hyper-parameter search dataset and the evaluation dataset, highlighting the best number.

F Mitigating reward hacking with double verifier

In this section, we show that reward hacking caused by adversarial examples can be mitigated
by employing separate verifiers for local and global search. As observed in [61], training-free
guidance with verifier gradients is vulnerable to adversarial examples: generated samples can exploit
weaknesses in the verifier, causing it to classify them as belonging to the target class despite being
out-of-distribution (OOD). We find, however, that such adversarial examples do not transfer well
between independently trained verifiers. Inspired by double-Q learning in reinforcement learning
[76], we propose a double-verifier approach, assigning distinct verifiers to local and global search to
efficiently detect and reject adversarial samples.

We evaluate the proposed double-verifier on the challenging conditional ImageNet generation task,
generating target-class samples from an unconditional model guided by a pretrained classifier.
Specifically, we use two independent classifiers as verifiers®* for global and local search. We report
the Fréchet Inception Distance (FID) computed on 256 generated samples against the corresponding
ImageNet class, and measure class accuracy using a separate classifier’. Since we only apply the
global verifier sparsely, double-verfier introduces negligible computational costs.

*https://huggingface.co/google/vit-base-patch16-224
*https://huggingface.co/google/vit-base-patch16-384
Shttps://huggingface.co/facebook/deit-small-patchl6-224

25

https://huggingface.co/google/vit-base-patch16-224
https://huggingface.co/google/vit-base-patch16-384
https://huggingface.co/facebook/deit-small-patch16-224

Table 6: Best-of-N results for ImageNet conditional generation, with FID and Accuracy averaged
across the two labels.

#Particles BoN-Single BoN-Double BFS-Single BFS-Double
FID| Acct | FID| Acct | FID] Acct | FID| Acct
4 1715 31.8% | 151.2 37.5% | 156.2 36.1% | 145.5 44.3%
8 155.7 358% | 127.8 49.2% | 133.3 46.5% | 118.2 55.9%

#Particles BoN-Single BoN-Double

4 0.161 0.164
8 0.165 0.184

Table 7: MSP scores of Best-of-N with single and double verifier. Double verifier significantly
reduces OOD samples with higher MSP score.

26

872
873
874
875

As shown in Table. 6, using double-verifier significantly improves performance over single verifier
with Best-of-N and BFS, using 2x less compute. We also evaluate the OOD of generated samples
using the MSP score [25], with higher MSP score indicating less OOD samples. As shown in Table. 7,
using double-verifier significantly reduces OOD samples indicated by the higher MSP score.

27

876

877

878
879

880

882

883

884
885
886
887
888
889
890
891
892

893

894

895

896

897

898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923

924

925
926

927

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction reflect the paper’s contribution within inference-
time scaling of diffusion models

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: In the conclusions section we discussed the limitations of our methods.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

28

928

929

930
931

933
934
935
936
937
938

939

940

941
942
943

944

945

946

947
948
949
950
951
952
953
954
955
956

958
959
960
961
962
963
964
965
966

968
969
970
971
972
973
974
975
976
977

978

980
981

Justification: We provide complete proof in the Appendix
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We provide detailed pseudo code and hyper-parameters in the appendix
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

29

982

983

984

985

986
987

988
989
990
991

992
993
994

995
996

997
998
999

1000
1001

1002
1003
1004

1005
1006
1007

1008

1009

1010

1011

1012
1013

1014
1015
1016

1017
1018

1019

1020

1021

1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033

Answer:
Justification: We run our experiments with publicly available models and dataset.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they

should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide all the experimental details in the appendix
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We provide detailed numbers with standard deviation in the locomotion setting
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

30

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

1034
1035
1036

1037
1038
1039

1040
1041

1042

1043
1044
1045

1046

1047

1048

1049

1050
1051

1052
1053

1054
1055
1056

1057

1058
1059

1060

1061

1062

1063

1064
1065

1066
1067

1068

1069
1070

1071

1072
1073

1074

1075

1076
1077

1078
1079
1080
1081

8.

10.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: we report the compute resources in the Appendix experiments section
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: the research follows NIPS code of ethics
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: inference-time search with verifiers could potentially be used for verifier
hacking against classifiers

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

31

https://neurips.cc/public/EthicsGuidelines

1082
1083
1084
1085
1086
1087
1088

1089
1090
1091
1092

1093
1094
1095
1096

1097

1098
1099
1100

1101

1102

1103

1104

1105
1106
1107
1108

1109
1110

1111
1112
1113

1114

1115
1116
1117

1118

1119

1120

1121
1122

1128
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

11.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: the paper uses pretrained models, with safeguards already in place.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: we provide citation for all resources used
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

32

paperswithcode.com/datasets

1134
1135

1136

1137
1138

1139

1140

1141

1142
1143
1144
1145
1146
1147
1148
1149

1150

1151
1152
1153

1154

1155

1156

1157

1158

1159
1160
1161
1162
1163
1164

1165
1166

1167
1168
1169
1170

171

1172

1173

1174

1175

1176
1177
1178

1179
1180
1181
1182
1183

1184

13.

14.

15.

16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: the paper does not release new assets
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: the paper does not involve research with human objects
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LM usage

33

1185
1186
1187
1188

1189

1190
1191

1192
1193

1194
1195

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: the core method development in this research does not involve LLMs as any
important, original, or non-standard components.

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

34

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Works
	Backgrounds
	Diffusion Probabilistic Models
	Compositional and Controllable Generation of DPMs

	Methods
	Global Search for Mode Identification
	Unified BFS-style linear search
	DFS-style non-linear search

	Scaling Local Search via Langevin MCMC with Verifier Gradient

	Experiments
	Elucidating the Design Space of BFS for a Strengthened Baseline
	Adaptive and Efficient Inference-Scaling with DFS
	Joint Scaling Local and Global Search
	Long Horizon Planning

	Offline Reinforcement Learning

	Limitations and Conclusion
	Appendix Overview
	Additional Related Works
	Details about local search with Langevin MCMC
	Langevin MCMC as gradient flow in measure space
	Annealed Langevin MCMC Sampling
	Annealed Langevin MCMC with recurrent training-free guidance
	Equivalence between Langevin MCMC and naive recurrence
	Annealed Langevin MCMC with guidance
	Convergence analysis

	Relationship between Langevin MCMC and gradient ascent
	Implementing Local Search with TFG hyper-parameter space

	Global Search of Denoising Diffusion Models
	BFS-Based Search
	DFS-based search

	Experiment Details
	Ablation of BFS design space
	Text-to-Image Compositional Generation with DFS
	Long Horizon Maze Planning
	Offline RL

	Mitigating reward hacking with double verifier

