
Inference-time Scaling of Diffusion Models through
Classical Search

Anonymous Author(s)
Affiliation
Address
email

Abstract

Classical search algorithms have long underpinned modern artificial intelligence.1

In this work, we tackle the challenge of inference-time control in diffusion mod-2

els—adapting generated outputs to meet diverse test-time objectives—using prin-3

ciples from classical search. We propose a general framework that orchestrates4

local and global search to efficiently navigate the generative space. It performs5

compute-efficient global exploration using breadth-first and depth-first tree search6

and employs a theoretically grounded scalable local search via annealed Langevin7

MCMC. We evaluate our approach on a range of challenging domains, including8

planning, offline reinforcement learning, and image generation. Across all tasks,9

we observe significant gains in both performance and efficiency over baseline meth-10

ods. These results demonstrate that classical search offers a principled, practical11

foundation for inference-time scaling in diffusion models, and that our method,12

which jointly scales local and global search, establishes a new Pareto frontier.13

1 Introduction14

Classical search algorithms have laid the foundation for modern artificial intelligence [59]. In discrete15

settings, graph search algorithms are widely used to explore the state space. Breadth-first search16

(BFS) [50] and depth-first search (DFS) [73] traverse the search tree in a fixed order. To better17

leverage problem-specific information, best-first search methods [56], such as A* [22], use a heuristic18

to evaluate and prioritize states. Alternatively, local search methods, such as hill-climbing [59, Sec.19

4.1], explore neighboring states. More recent techniques like gradient descent and Markov Chain20

Monte Carlo (MCMC) have become widely adopted in optimization and probabilistic inference,21

underpinning many modern AI models.22

Diffusion models [26] have shown impressive performance in generative modeling for continuous23

domains such as images [10], videos [28], and world modeling [92]. They are also increasingly24

used in robotics and decision-making [44, 4, 74] to generate diverse actions [8]. However, generated25

samples may not always align with physical laws [68] or human intent [79], and the vast generative26

space often necessitates multiple trials to produce satisfactory outputs [87]. To address this, we scale27

up inference-time compute using strategic search methods that navigate the generative manifold for28

high-quality samples. We formalize sample evaluation using a verifier function f(x0) defined on29

ground truth samples, which measures the quality of the sample. Such verifiers could be reward30

functions [89], Q-functions [45], classifier conditions p(c|x0) [94, 10], and multi-modal LLMs [29].31

To efficiently search the generative space of diffusion models, we revisit classical search principles.32

To capture diverse modes in the complex distributions generated by diffusion models, we view33

sampling as traversing a search tree, employing BFS and DFS to progressively explore states during34

denoising. Similar to best-first search, we evaluate intermediate states xt with a verifier f(x0|t),35

prioritizing high-quality paths. To go beyond the base model and obtain higher-quality samples, we36

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

Base distribution 𝑝0 Verifier score 𝑓 Composed distribution ෤𝑝0

Direct sampling Global search Local + global search

Keys:

: samples from the

base diffusion

model

: samples selected

in global search

: samples after

optimization in

local search

: local search steps

: base

distribution

Selected modes

Local refinement
for better samples

Figure 1: Illustration of our search framework. Bottom left: direct sampling results in samples
with low verifier scores. Bottom middle: global search identifies high score modes within the base
distribution. Bottom right: local search further optimizes the samples for higher quality, driven by
the gradient signal.

perform local search via Langevin MCMC, exploring the neighborhood of current samples under37

guidance from both the verifier gradient and the diffusion model’s “score function” [78]. By jointly38

optimizing the compositional objective of the diffusion model and the verifier [12], our local search39

surpasses the capabilities of the base model. An overview of our framework is shown in Fig. 1.40

Recent works scale diffusion model inference via particle-based SMC [33, 63, 84] and tree-based41

methods [19], typically as BFS with fixed schedules. We generalize these with a BFS-based frame-42

work, clarifying prior design choices and establishing a strong baseline. Inspired by DFS, we add43

adaptive backtracking to allocate compute adaptively, surpassing BFS baselines. While global search44

remains limited to base-distribution modes, scaling local search with Langevin MCMC explores45

high-reward regions beyond the model, proving effective in challenging decision-making tasks.46

Our key contributions are summarized as follows:47

i) For global tree search, we elucidate the design space of prior BFS-style methods and provide48

an improved BFS baseline. We further present the first adaptive DFS algorithm for diffusion49

inference scaling, offering superior efficiency and adaptivity.50

ii) We introduce a theoretically grounded local search method using annealed Langevin MCMC,51

demonstrating superior performance in challenging domains.52

iii) We propose a unified framework for efficient inference-time search in diffusion models grounded53

in classical search principles. By jointly scaling local and global search for the first time, we54

advance the Pareto frontier of inference-time scaling across diverse domains.55

2 Related Works56

Here, we provide a brief overview of inference-time scaling with diffusion models. For a more57

comprehensive literature review and discussion of concurrent works, see Appendix B.58

Recent works such as [33, 63] propose SMC-based particle filtering methods, scaling inference59

compute by increasing the number of particles. Tree-search-based methods [39, 19, 48] evaluate60

intermediate nodes and expand promising candidates, scaling inference compute by increasing the61

width of the search tree. Both approaches can be seen as special cases of our BFS framework.62

Alternatively, Du et al. [13] propose iterative reasoning via Langevin MCMC, scaling inference63

by increasing the number of refinement steps. To utilize the verifier gradient, classifier guidance64

[10] trains a noise-dependent classifier for gradient guidance, and training-free guidance methods65

[94, 9, 68, 95, 24] improve sample quality using an additional pretrained classifier. In TFG [94] the66

authors have observed that more recurrent steps can yield better performance on challenging tasks.67

2

However, their theoretical foundations remain poorly understood, and their scaling behaviors are68

largely unexplored.69

3 Backgrounds70

3.1 Diffusion Probabilistic Models71

Suppose we have D-dimensional random variable x0 ∈ RD with distribution p0(x0). Diffusion72

models [26, 67] and the more general flow models [42, 2] are generative models that turn noise into73

data via a stochastic process {xt}Tt=0. The forward “noising” process with t > s can be defined as:74

q(xt|xs) = N
(
x;

αt
αs

xs, α
2
t

(
σ2
t

α2
t

− σ2
s

α2
s

)
I

)
. (1)

where αt, σt are referred as the noise schedule with α0 = σT = 1, αT = σ0 = 0. We can thus write75

the random variables xt as an interpolation between data and noise [47]:76

xt = αtx0 + σtϵ ,

and denote qt(xt) as the marginal distribution of xt. To model the reverse “denoising” process, we77

train the model using the denoising objective [26]:78

L(θ) = Et,x0,ϵ [ϵθ(xt, t)− ϵ] ,

which is equivalent of learning the score function of qt(xt) [78], as the ground truth of ϵθ(xt, t)79

is −σt∇xt log qt(xt). To generate samples, we transform noise into data via the reverse transition80

kernel pθ(xt−1|xt). In practice, we either sample xt−1 using deterministic samplers like DDIM81

[67]:82

xt−1 =
αt−1

αt
(xt − σtϵθ(xt, t)) + σt−1ϵθ(xt, t)

or stochastic samplers like DDPM [26, 54]:83

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t))) .

3.2 Compositional and Controllable Generation of DPMs84

Given a base diffusion model with data distribution p0(x0), one may wish to sample x0 with85

some constraints or conditions f(x0). Exact diffusion sampling from the composed distribution86

p̃0(x0) ∝ p0(x0)f(x0) would require training a time-dependent f on data generated by p0 [10, 45],87

which may not be applicable in practice. Thus, we adopt optimization based methods to approximate88

the target distribution.89

Compositional generation via annealed Langevin MCMC. When sampling from a compositional90

distribution composed of multiple probability distributions, p̃0(x0) ∝ p0(x0)p̂0(x0), [12] proposes91

annealed Langevin MCMC sampling. In this approach, a sequence of annealed distributions q̃t(xt) ∝92

qt(xt)q̂t(x0) is constructed, and samples are drawn using Langevin dynamics [82]:93

xi+1
t = xit + η∇x log q̃t(x

i
t) +

√
2ηϵi , ϵi ∼ N (0, I) . (2)

Since the distribution of xit converges to q̃t(xt) asymptotically as i → ∞, η → 0, we can sample94

from p̃0(x0) following the annealing path {q̃t}Tt=0 with q̃0 = p̃0. Moreover, since the score of q̃t can95

be directly computed by composing the score of two distributions:96

∇x log q̃t(xt) = ∇x log qt(xt) +∇xt log q̂t(xt) ,

thus do not require extra training.97

Controllable generation through training-free guidance. During the sampling process, training-98

free guidance propose to update xt using gradient ascent99

x̃t = xt +∆t , ∆t = ρt∇xt log f(x0|t) + µtαt∇x0|t log f(x0|t) . (3)

where x0|t = E[x0|xt] = xt−σtϵθ(xt,t)
αt

. This method approximates the intractable posterior with100

the posterior mean: Ex0|xt [f(x0)] ≈ f(E[x0|xt]). To enhance the guidance strength, [95] propose101

to apply a recurrence strategy, which first samples xt−1 via pθ(xt−1|xt), add the guidance gradient,102

then add noise back to xt through the forward process qt(xt|xt−1):103

xit−1 ∼ pθ(·|xit) , x̃it−1 = xit−1 +
αt−1

αt
∆t , xi+1

t ∼ qt(·|x̃it−1) , i = 1, 2, · · · , Nrecur , (4)

with Nrecur being the total number of recurrence steps.104

3

𝑡 = 𝑇

𝑡 = 0

D
en

o
is

e

Particles Particles
Backtracking

Best-of-N BFS DFS

= 𝒙𝑡

= accepted by verifier

= rejected by verifier

= denoise

= add noise

Keys:

Figure 2: Illustration of global tree search algorithms.

4 Methods105

Problem Formulation. Given a pretrained diffusion model ϵθ(xt, t) with a base distribution p0(x0),106

at test-time, we often wish to optimize the generation process to satisfy task-specific objectives.107

For example, RL may require generating high-value actions, image synthesis may seek constraint-108

satisfying images, and trajectory generation may demand physically valid outputs. In this paper, we109

are interested in how to scale test-time inference to follow such objectives.110

We consider an inference-time scaling strategy that adjusts the sampling process based on a verifier111

function. Specifically, we define a verifier f(x0) : RD → R+ which specifies the degree to which112

samples optimize a specified objective. We then aim to bias sampling toward regions of the sample113

space where f(x0) is high. This leads to the objective of sampling from a compositional distribution114

that combines the original model distribution with the verifier:115

p̃0(x0) ∝ p0(x0)f(x0)
λ , (5)

where λ controls the weight of verifier scores.116

Since exact sampling from the distribution is often impractical, we aim to search the manifold for the117

target samples at inference time, both globally and locally. First, we explore the diverse modes in the118

complex generative landscape of diffusion models through global graph search algorithms. However,119

global search alone can not generate samples beyond the pretrained model. We then propose to120

search the vicinity of the sample using hill-climbing style local search methods, guided by the verifier121

gradient.122

4.1 Global Search for Mode Identification123

To efficiently explore the modes of the diffusion model, we represent the Markov chain of the124

denoising process as a fixed-depth tree, where the transition kernel p̃θ(xt−1|xt) may correspond to125

either deterministic or stochastic samplers. This abstraction allows the application of classical tree126

search heuristics to design compute-efficient exploration methods. By expanding nodes with higher127

score estimates and backtracking from low-quality nodes in the tree, we can efficiently navigate the128

generative space and sample from high-quality modes. An illustration is provided in Fig. 2.129

4.1.1 Unified BFS-style linear search130

Inspired by breadth-first search (BFS), which expands nodes level by level, we denoise a set of131

particles in parallel at each noise level. The simplest approach is best-of-N sampling: generate132

N candidate trajectories and select the one with the highest verifier score at the final step. While133

straightforward, this strategy ignores information from intermediate stages.134

To improve efficiency, and following the idea of best-first search [56], we score each intermediate135

particle
{
xkt
}N
k=1

using estimates of its verifier score f(xk0|t), and dynamically reallocate compu-136

tation by sampling more children nkt for high-scoring nodes. We provide a general design space137

for tempering, scoring, and resampling that unifies previous tree-search-based and particle-based138

baselines such as SVDD [39], DAS [33], and FK-steering [64]. The pseudocode is shown in Alg. 3.139

4

Tempering. To reduce estimation bias in early steps, DAS [33] increases weights on smaller time140

steps so that τT < τT−1 · · · < τ0, re-weighting scores with τtf(x
k
0|t). SVDD [39] samples only141

from the top-scoring particle, i.e., τt = ∞. We consider: Constant : τt = τ, Increase : τt =142 (
(1 + γ)T−t − 1

)
τ, Inf : τt =∞ .143

Scoring. Following [33, 64], we propose to score intermediate particles f̂(xkt) via: Current :144

τtf(x
k
0|t), Difference : τtf(x

k
0|t)− τt+1f(x

k
0|t+1), Max : maxs≥t τsf(x

k
0|s).145

Resampling. Given f̂(xkt), we allocate particles as nkt = Resample
(
N, softmax

(
f̂(xkt)

))
, where146

nkt is the number of children for xkt . We compare the baseline Multinomial resampling [19, 64]147

and the variance-reduced SSP [33]; see [17] for other methods.148

Prior methods are special cases of BFS: SVDD [39] = BFS (Inf, Current, Multinomial); DAS149

[33] = BFS (Increase, Difference, SSP); FK-steering [63] = BFS (Constant, Max, Multinomial).150

Ablations (Sec. 5.1) show SSP resampling is key for performance, and our baseline BFS (Increase,151

Max, SSP) consistently outperforms prior methods in efficiency.152

4.1.2 DFS-style non-linear search153

Depth-first search (DFS) explores one branch of the search tree as deeply as possible before backtrack-154

ing. In our setting, this corresponds to iteratively denoising a single particle until its verifier score155

drops below a predefined threshold: f(x0|t) ≤ δt, where δt is a scheduled threshold for timestep t.156

Once the constraint is violated, the algorithm backtracks by reintroducing noise, moving to a higher157

noise level tnext = t + ∆T using the forward diffusion process q(xtnext |xt) in Eq. 1. This allows158

the model to restart the denoising process from a different region of the manifold, encouraging159

exploration of diverse modes. Unlike the small noise injection and fixed schedule used in SoP [48]160

for local exploration, DFS performs global exploration with ∆T ≥ T
4 and an adaptive exploration161

strategy.162

A key strength of DFS is its ability to allocate compute adaptively: difficult prompts and low-quality163

trajectories naturally trigger more backtracking and exploration, while easier instances are solved164

more directly. This dynamic behavior is driven purely by the verifier signal, without needing to know165

the difficulty in advance as in [66]. Also, the threshold acts as a control knob for users to balance166

output quality and computation resources, where higher threshold automatically scales compute for167

better output. As shown in Sec. 5.2, this adaptive strategy leads to substantial gains in efficiency and168

performance over prior methods, and even our strengthened BFS baseline.169

4.2 Scaling Local Search via Langevin MCMC with Verifier Gradient170

Global search can efficiently discover the high score modes from the base diffusion model, but can171

not generate higher quality samples that exceed the pretrained model. Thus, we aim to sample from172

the compositional distribution p̃0 in Eq. 5 for higher quality samples. To optimize the compositional173

objective, we conduct local-search with hill-climbing methods, aiming to find the local maximum174

with high p̃0. Specifically, we view the sampling problem as compositional optimization in measure175

space [83], and follow the gradient flow of KL-divergence, performing Langevin MCMC steps176

(details see Appendix. C.1).177

Similar to annealed Langevin MCMC in [12], we could construct a series of annealed functions178

f̂t(xt) with f̂0(x0) = f(x0). Then we sample from the distributions q̃t(xt) ∝ qt(xt)f̂(xt) through179

Langevin MCMC in Eq. 2 (details see Appendix. C.2). Alternatively, training-free guidance in Eq. 3180

utilizes the gradient of f(x0|t) to optimize xt, which can be computed directly using the diffusion181

model output. However, naive gradient updates have been observed to produce OOD and adversarial182

samples [61]. In [94], recurrence (Eq. 4) was found to help avoid adversarial samples in challenging183

guidance tasks, though its theoretical underpinnings remain poorly understood. We unify these184

two approaches by demonstrating that training-free guidance with recurrence, in the continuous185

limit, constitutes an instance of Langevin MCMC. For details see Appendix. C.3, and a rigorous186

convergence bound is in Theorem. 1.187

5

Proposition 1. In the continuous limit where the number of diffusion denoising steps T → ∞,188

training-free guidance with recurrence is equivalent to running Langevin MCMC on a series of189

annealed distributions {q̃t(xt)}Tt=0, with q̃0(x0) = p̃0(x0) ∝ p0(x0)f(x0)
λ.190

Thus, the recurrence step (without guidance) can be interpreted as Langevin MCMC applied to the191

original distribution of the diffusion model qt(xt), and the guidance term ∆t in Eq. 3 then serves192

as defining a practical annealing path f̂t(xt) that bias the sampling path towards high reward areas193

beyond the modes of the base model. We are the first to propose this theoretical unification of the194

two lines of work, providing insights into efficient local search of diffusion models via gradients.195

We implement local search by parameterizing the reverse transition kernel p̃θ(xt−1|xt) as a sequence196

of Langevin MCMC steps (Eq. 2), followed by a denoising step using DDIM (Eq. 11) or DDPM197

(Eq. 12); see Appendix C.5 for details. Unlike classifier-guidance or naive training-free guidance,198

which apply only gradient guidance in the denoising step, our approach incorporates explicit Langevin199

MCMC steps. In Sec. 5.3, we scale the number of local search steps for the first time and observe200

substantial improvements over pretrained models across multiple tasks.201

5 Experiments202

In this section, we apply inference-time scaling with our search strategy across a range of domains. In203

Sec. 5.1, we present a strengthened BFS baseline that outperforms previous particle-based methods.204

In Sec. 5.2, we demonstrate the adaptivity and efficiency of our DFS method. In Sec. 5.3, we scale up205

local search in challenging decision-making domains, highlighting the importance of jointly scaling206

local and global search.207

5.1 Elucidating the Design Space of BFS for a Strengthened Baseline208

In this section, we explore the design choices of BFS and present a strengthened baseline. To209

ensure a fair comparison, we directly use the official implementation of FK-steering [63] with the210

ImageReward [89] verifier and the SD v1.5 model. For details, see Appendix E.1.211

N BoN Multinomial SSP
4 0.702± 0.057 0.743± 0.037 0.834± 0.041
8 0.896± 0.031 0.926± 0.042 1.032± 0.035

(a) Results for different sampling
choices with Constant tempering
and Max scoring

N Current Difference Max
4 0.812± 0.037 0.823± 0.036 0.834± 0.041
8 0.996± 0.029 1.013± 0.032 1.032± 0.035

(b) Results for different scoring
choices with SSP resampling and
Constant tempering

N Increase Inf Constant
4 0.882± 0.029 0.667± 0.076 0.834± 0.041
8 1.087± 0.031 0.775± 0.087 1.032± 0.035

(c) Results for different tempering
choices with SSP resampling and
Max scoring

Table 1: Ablation of BFS design choices

We begin with the baseline design of FK using BFS (Constant, Max, Multinomial) and evaluate212

different resampling strategies. As shown in Table 1a, SSP significantly improves performance over213

naive multinomial resampling, and we adopt it in our design. We then ablate the scoring methods and214

tempering options in Tables 1b and 1c, arriving at our improved BFS (Increase, Max, SSP).215

Model N BoN FK[63] DAS[33] TreeG [19] SVDD[39] BFS (ours)

SD v1.5 4 0.702 ± 0.057 0.743 ± 0.037 0.878 ± 0.028 0.860 ± 0.033 0.667 ± 0.076 0.882 ± 0.029
SD v1.5 8 0.896 ± 0.031 0.926 ± 0.042 1.052 ± 0.033 1.023 ± 0.018 0.775 ± 0.087 1.087 ± 0.031
SD XL 4 1.085 ± 0.013 1.131 ± 0.022 1.181 ± 0.023 1.152 ± 0.023 1.036 ± 0.062 1.194 ± 0.024
SDXL 8 1.198 ± 0.021 1.251 ± 0.011 1.265 ± 0.019 1.261 ± 0.021 1.225 ± 0.027 1.291 ± 0.018

Table 2: Comparison of our BFS with prior methods

To compare our improved BFS (Increase, Max, SSP) with prior baselines, we additionally experiment216

with the SDXL model [58], which differs from the model used in our ablations. As shown in Table 2,217

our improved BFS consistently outperforms previous methods across compute budgets and models.218

In the following experiments, we use the improved BFS as our baseline.219

5.2 Adaptive and Efficient Inference-Scaling with DFS220

In this section, we evaluate the adaptivity and efficiency of DFS on the CompBench dataset [29],221

using the SSD-1B model [20] and a VLM [37] as our verifier. The detailed setup is provided in222

Appendix E.2. Through these experiments, we address the following questions:223

6

27 28

Compute

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

Sc
or

e

DFS-0.5
DFS-0.7
DFS-0.9

BFS
Best-of-N

(a)

27 28

Compute

0.56

0.58

0.60

0.62

0.64

0.66

0.68

Sc
or

e

DFS-0.5
DFS-0.7
DFS-0.9

BFS
Best-of-N

(b)

27 28

Compute

0.62

0.64

0.66

0.68

0.70

0.72

0.74

Sc
or

e

DFS-0.5
DFS-0.7
DFS-0.9

BFS
Best-of-N

(c) (d)

Figure 3: CompBench [29] text-to-image results with DFS. DFS-δ denotes DFS with threshold
δt = δ. Figs. 3a, 3b, and 3c show DFS outperforming baseline BFS on the color, shape, and texture
datasets, with up to 2× lower cost than Best-of-N. Fig. 3d shows average compute allocation by DFS
for prompts of increasing difficulty on the color dataset.

• Can DFS outperform Best-of-N and prior particle-based methods? As shown in Figs. 3a,224

3b, and 3c, DFS consistently outperforms BFS and Best-of-N across datasets and threshold225

parameters, achieving up to 2× lower computational cost.226

• Can DFS adjust compute allocation with different thresholds? We evaluate DFS across227

a wide range of practical threshold values (0.5, 0.7, and 0.9) and find that lower thresh-228

olds automatically allocate less compute, while higher thresholds scale up compute for229

better quality. DFS consistently outperforms baseline methods across all threshold choices,230

demonstrating the robustness of our method.231

• Can DFS dynamically adjust compute allocation for different instances? We measure the232

computational cost of DFS on prompts of varying difficulty in the color dataset. Threshold233

parameters are fixed, and the difficulty of a prompt is defined as the average score over four234

independent trials. As shown in Fig. 3d, difficult prompts with lower scores automatically235

consume more compute, without prior knowledge of difficulty as in [66].236

Unlike linear-search methods that use a fixed exploration schedule, DFS offers higher efficiency and237

adaptivity, which may be of independent interest to the broader community.238

5.3 Joint Scaling Local and Global Search239

Although global search methods such as BFS and DFS can efficiently explore the generative space of240

the diffusion model, they are restricted to the modes of the base distribution and therefore cannot241

exceed the capabilities of the base model. To optimize the compositional objective in Eq. 5 and242

sample from high-reward regions beyond the base model, we propose scaling up local search steps243

via annealed Langevin MCMC, introducing a new scaling dimension for diffusion models. We244

validate the effectiveness of scaling local search in challenging decision-making domains, such as245

long-horizon planning and offline RL.246

Baselines. To demonstrate the effectiveness of scaling local search steps, we compare with DAS [33],247

which also utilizes verifier gradients but applies only gradient guidance without multiple local search248

steps. We also compare with the state-of-the-art training-free guidance method TFG [94], which249

scales up the number of recurrence steps without any global search. Compute is measured as the250

total NFEs of both local and global search, ensuring a fair comparison. As shown in the following251

experiments, scaling local and global search separately yields suboptimal performance, while our252

joint scaling strategy establishes a new Pareto frontier.253

5.3.1 Long Horizon Planning254

Diffusion models have been widely adopted in planning for trajectory synthesis [75]. We evaluate long-255

horizon planning in a challenging PointMaze environment, using the base model trained following256

Diffuser [31], with the verifier defined as the total number of collisions between the trajectory and257

maze walls (see Appendix E.3 for details). Importantly, naively maximizing the verifier score does258

not guarantee a successful plan, and planning remains challenging even with full access to the maze259

layout [46, 49].260

As shown in Fig. 4c, scaling up local search improves the overall Pareto frontier and significantly261

outperforms baseline methods. Scaling local search alone in TFG [94] is efficient with a low compute262

7

(a) (b)
24 25 26 27 28 29 210 211

Compute (NFEs)

0

20

40

60

80

Su
cc

es
s R

at
e

(%
)

BoN-0
BoN-1
BoN-2
BoN-6
BoN-8
DAS
TFG

(c)

27 28 29 210 211

Compute (NFEs)

20

30

40

50

60

70

80

90

Su
cc

es
s R

at
e

(%
)

BoN-6
BFS-6
DFS-6

(d)

Figure 4: (Illustration and results for maze planning) Fig. 4a shows a failed trajectory without
local search (start: •, goal: ⋆). Fig. 4b shows a successful trajectory after scaling local search. Fig. 4c
presents Pareto curves for inference-scaling with varying local search steps, where BoN-i is best-of-N
with i steps. Fig. 4d shows global search efficiency with 6 local search steps fixed.

budget but fails to scale with increased compute, as local search alone can become trapped in local263

optima. DAS [33] is more efficient than the corresponding BoN-0 baseline without local search, but264

underperforms best-of-N when more local search steps are used. In Fig. 4d, we show that local search265

can be combined with global search techniques such as BFS and DFS to further improve scaling266

efficiency, demonstrating the flexibility of our framework.267

5.4 Offline Reinforcement Learning268

Dataset Environment IQL SfBC DD Diffuser D-QL QGPO TFG DAS TTS(ours)
Medium-Expert HalfCheetah 86.7 92.6 90.6 79.8 96.1 93.5 90.2± 0.2 93.3± 0.3 93.9± 0.3
Medium-Expert Hopper 91.5 108.6 111.8 107.2 110.7 108.0 100.2± 3.5 105.4± 5.1 104.4± 3.1
Medium-Expert Walker2d 109.6 109.8 108.8 108.4 109.7 110.7 108.1± 0.1 111.4± 0.1 111.4± 0.1

Medium HalfCheetah 47.4 45.9 49.1 44.2 50.6 54.1 53.1± 0.1 53.4± 0.1 54.8± 0.1
Medium Hopper 66.3 57.1 79.3 58.5 82.4 98.0 96.2± 0.5 71.3± 2.7 99.5± 1.7
Medium Walker2d 78.3 77.9 82.5 79.7 85.1 86.0 83.2± 1.4 83.9± 0.9 86.5± 0.2

Medium-Replay HalfCheetah 44.2 37.1 39.3 42.2 47.5 47.6 45.0± 0.3 42.2± 0.1 47.8± 0.4
Medium-Replay Hopper 94.7 86.2 100.0 96.8 100.7 96.9 93.1± 0.1 96.7± 3.0 97.4± 4.0
Medium-Replay Walker2d 73.9 65.1 75.0 61.2 94.3 84.4 69.8± 4.0 63.8± 2.0 79.3± 9.7

Average (Locomotion) 76.9 75.6 81.8 75.3 86.3 86.6 82.1 80.2 86.1

Table 3: Performance on D4RL locomotion tasks. For more details see Appendix. E.4.

Recently, diffusion models have emerged as a powerful action prior in robotics due to their ability to269

model complex and multimodal distributions [8, 44]. However, these diffusion policies are typically270

trained on offline datasets and struggle to adapt to reinforcement learning or test-time requirements.271

Following prior work [57], we formulate the offline RL problem as sampling from a Q-regularized272

distribution: π∗(a|s) ∝ µ(a|s)eβQψ(s,a), where Qψ is a learned Q-function representing preferences273

over actions, and µ is the behavior policy, which we model using a diffusion prior. We approach274

this problem from the inference-scaling perspective, composing an off-the-shelf pretrained diffusion275

policy with ground-truth Q-functions, without additional training.276

Among the baselines, Diffuser [31], QGPO [45], and D-QL [81] are training-based methods that277

require joint training of the diffusion model and Q-function, while SfBC [6] can be viewed as a278

naive best-of-N approach. To demonstrate the effectiveness of our method, we allow TFG [94]279

and DAS [33] to use up to twice the compute of our method. As shown in Table 3, our method280

achieves performance comparable to training-based baselines, while DAS struggles on the Medium281

and Medium-Replay datasets where the model’s capabilities are limited.282

6 Limitations and Conclusion283

In this work, we present a unified and principled framework for inference-time scaling of diffusion284

models. Our approach includes an improved BFS baseline, an adaptive DFS method for efficient285

global search, and a scalable local search strategy based on annealed Langevin MCMC. A potential286

limitation of our method is the risk of generating adversarial samples that exploit weaknesses in the287

verifier. To address this, we introduce a double-verifier strategy, employing separate verifiers for local288

and global search. Further details and evaluations are provided in Appendix F.289

8

References290

[1] A. Ajay, Y. Du, A. Gupta, J. Tenenbaum, T. Jaakkola, and P. Agrawal. Is conditional generative291

modeling all you need for decision-making? arXiv preprint arXiv:2211.15657, 2022. 24, 25292

[2] M. S. Albergo and E. Vanden-Eijnden. Building normalizing flows with stochastic interpolants.293

arXiv preprint arXiv:2209.15571, 2022. 3294

[3] A. Bansal, H.-M. Chu, A. Schwarzschild, S. Sengupta, M. Goldblum, J. Geiping, and T. Gold-295

stein. Universal guidance for diffusion models. In Proceedings of the IEEE/CVF Conference on296

Computer Vision and Pattern Recognition, pages 843–852, 2023. 15297

[4] K. Black, N. Brown, D. Driess, A. Esmail, M. Equi, C. Finn, N. Fusai, L. Groom, K. Hausman,298

B. Ichter, et al. π0: A vision-language-action flow model for general robot control. arXiv299

preprint arXiv:2410.24164, 2024. 1, 15, 24300

[5] K. Black, M. Janner, Y. Du, I. Kostrikov, and S. Levine. Training diffusion models with301

reinforcement learning. arXiv preprint arXiv:2305.13301, 2023. 15302

[6] H. Chen, C. Lu, C. Ying, H. Su, and J. Zhu. Offline reinforcement learning via high-fidelity303

generative behavior modeling. In The Eleventh International Conference on Learning Repre-304

sentations, 2023. 8, 24305

[7] X. Cheng and P. Bartlett. Convergence of langevin mcmc in kl-divergence. In Algorithmic306

learning theory, pages 186–211. PMLR, 2018. 16307

[8] C. Chi, Z. Xu, S. Feng, E. Cousineau, Y. Du, B. Burchfiel, R. Tedrake, and S. Song. Diffusion308

policy: Visuomotor policy learning via action diffusion. The International Journal of Robotics309

Research, page 02783649241273668, 2023. 1, 8, 15, 24310

[9] H. Chung and J. C. Ye. Score-based diffusion models for accelerated mri. Medical image311

analysis, 80:102479, 2022. 2, 15312

[10] P. Dhariwal and A. Nichol. Diffusion models beat gans on image synthesis. Advances in neural313

information processing systems, 34:8780–8794, 2021. 1, 2, 3, 15314

[11] K. Dong and T. Ma. STP: Self-play LLM Theorem Provers with Iterative Conjecturing and315

Proving, Mar. 2025. arXiv:2502.00212 [cs]. 14316

[12] Y. Du, C. Durkan, R. Strudel, J. B. Tenenbaum, S. Dieleman, R. Fergus, J. Sohl-Dickstein,317

A. Doucet, and W. S. Grathwohl. Reduce, reuse, recycle: Compositional generation with318

energy-based diffusion models and mcmc. In International conference on machine learning,319

pages 8489–8510. PMLR, 2023. 2, 3, 5, 15, 16320

[13] Y. Du, J. Mao, and J. B. Tenenbaum. Learning iterative reasoning through energy diffusion.321

arXiv preprint arXiv:2406.11179, 2024. 2322

[14] Y. Du and I. Mordatch. Implicit generation and modeling with energy based models. Advances323

in neural information processing systems, 32, 2019. 16324

[15] A. Durmus and E. Moulines. Non-asymptotic convergence analysis for the unadjusted langevin325

algorithm. arXiv preprint arXiv:1507.05021, 2015. 16326

[16] P. Esser, S. Kulal, A. Blattmann, R. Entezari, J. Müller, H. Saini, Y. Levi, D. Lorenz, A. Sauer,327

F. Boesel, et al. Scaling rectified flow transformers for high-resolution image synthesis. In328

Forty-first international conference on machine learning, 2024. 15329

[17] M. Gerber, N. Chopin, and N. Whiteley. Negative association, ordering and convergence of330

resampling methods, 2020. 5331

[18] D. Guo, D. Yang, H. Zhang, J. Song, R. Zhang, R. Xu, Q. Zhu, S. Ma, P. Wang, X. Bi, et al.332

Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. arXiv333

preprint arXiv:2501.12948, 2025. 14334

9

[19] Y. Guo, Y. Yang, H. Yuan, and M. Wang. Training-free guidance beyond differentiability:335

Scalable path steering with tree search in diffusion and flow models, 2025. 2, 5, 6, 21, 22336

[20] Y. Gupta, V. V. Jaddipal, H. Prabhala, S. Paul, and P. Von Platen. Progressive knowledge337

distillation of stable diffusion xl using layer level loss. arXiv preprint arXiv:2401.02677, 2024.338

6339

[21] X. Han, S. Kumar, and Y. Tsvetkov. Ssd-lm: Semi-autoregressive simplex-based diffusion340

language model for text generation and modular control. arXiv preprint arXiv:2210.17432,341

2022. 15342

[22] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determination of343

minimum cost paths. IEEE transactions on Systems Science and Cybernetics, 4(2):100–107,344

1968. 1345

[23] H. He, J. Liang, X. Wang, P. Wan, D. Zhang, K. Gai, and L. Pan. Scaling image and video346

generation via test-time evolutionary search, 2025. 15347

[24] Y. He, N. Murata, C.-H. Lai, Y. Takida, T. Uesaka, D. Kim, W.-H. Liao, Y. Mitsufuji, J. Z. Kolter,348

R. Salakhutdinov, et al. Manifold preserving guided diffusion. arXiv preprint arXiv:2311.16424,349

2023. 2, 15350

[25] D. Hendrycks and K. Gimpel. A baseline for detecting misclassified and out-of-distribution351

examples in neural networks. arXiv preprint arXiv:1610.02136, 2016. 27352

[26] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. Advances in neural353

information processing systems, 33:6840–6851, 2020. 1, 3, 15, 18354

[27] J. Ho and T. Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,355

2022. 25356

[28] J. Ho, T. Salimans, A. Gritsenko, W. Chan, M. Norouzi, and D. J. Fleet. Video diffusion models.357

Advances in Neural Information Processing Systems, 35:8633–8646, 2022. 1, 15358

[29] K. Huang, K. Sun, E. Xie, Z. Li, and X. Liu. T2i-compbench: A comprehensive benchmark for359

open-world compositional text-to-image generation. Advances in Neural Information Processing360

Systems, 36:78723–78747, 2023. 1, 6, 7361

[30] A. Jaech, A. Kalai, A. Lerer, A. Richardson, A. El-Kishky, A. Low, A. Helyar, A. Madry,362

A. Beutel, A. Carney, et al. Openai o1 system card. arXiv preprint arXiv:2412.16720, 2024. 14363

[31] M. Janner, Y. Du, J. Tenenbaum, and S. Levine. Planning with diffusion for flexible behavior364

synthesis. In International Conference on Machine Learning, pages 9902–9915. PMLR, 2022.365

7, 8, 15, 23, 24, 25366

[32] D. Kahneman. Thinking, fast and slow. macmillan, 2011. 14367

[33] S. Kim, M. Kim, and D. Park. Test-time alignment of diffusion models without reward over-368

optimization. In The Thirteenth International Conference on Learning Representations, 2025.369

2, 4, 5, 6, 7, 8, 21, 22, 25370

[34] S. Kirkpatrick, C. D. Gelatt Jr, and M. P. Vecchi. Optimization by simulated annealing. science,371

220(4598):671–680, 1983. 16372

[35] I. Kostrikov, A. Nair, and S. Levine. Offline reinforcement learning with implicit q-learning.373

arXiv preprint arXiv:2110.06169, 2021. 24374

[36] G. Lee, T. N. N. Bao, J. Yoon, D. Lee, M. Kim, Y. Bengio, and S. Ahn. Adaptive inference-time375

scaling via cyclic diffusion search, 2025. 15376

[37] J. Li, D. Li, C. Xiong, and S. Hoi. Blip: Bootstrapping language-image pre-training for unified377

vision-language understanding and generation. In International conference on machine learning,378

pages 12888–12900. PMLR, 2022. 6379

10

[38] S. Li, K. Kallidromitis, A. Gokul, A. Koneru, Y. Kato, K. Kozuka, and A. Grover. Reflect-dit:380

Inference-time scaling for text-to-image diffusion transformers via in-context reflection. arXiv381

preprint arXiv:2503.12271, 2025. 15382

[39] X. Li, Y. Zhao, C. Wang, G. Scalia, G. Eraslan, S. Nair, T. Biancalani, S. Ji, A. Regev, S. Levine,383

et al. Derivative-free guidance in continuous and discrete diffusion models with soft value-based384

decoding. arXiv preprint arXiv:2408.08252, 2024. 2, 4, 5, 6, 21385

[40] H. Lightman, V. Kosaraju, Y. Burda, H. Edwards, B. Baker, T. Lee, J. Leike, J. Schulman,386

I. Sutskever, and K. Cobbe. Let’s verify step by step. In The Twelfth International Conference387

on Learning Representations, 2023. 14388

[41] S. Lin, B. Liu, J. Li, and X. Yang. Common diffusion noise schedules and sample steps are389

flawed. In Proceedings of the IEEE/CVF winter conference on applications of computer vision,390

pages 5404–5411, 2024. 21391

[42] Y. Lipman, R. T. Chen, H. Ben-Hamu, M. Nickel, and M. Le. Flow matching for generative392

modeling. arXiv preprint arXiv:2210.02747, 2022. 3393

[43] N. Liu, S. Li, Y. Du, A. Torralba, and J. B. Tenenbaum. Compositional visual generation with394

composable diffusion models. In European Conference on Computer Vision, pages 423–439.395

Springer, 2022. 15396

[44] S. Liu, L. Wu, B. Li, H. Tan, H. Chen, Z. Wang, K. Xu, H. Su, and J. Zhu. Rdt-1b: a diffusion397

foundation model for bimanual manipulation. arXiv preprint arXiv:2410.07864, 2024. 1, 8, 15,398

24, 25399

[45] C. Lu, H. Chen, J. Chen, H. Su, C. Li, and J. Zhu. Contrastive energy prediction for exact400

energy-guided diffusion sampling in offline reinforcement learning. In International Conference401

on Machine Learning, pages 22825–22855. PMLR, 2023. 1, 3, 8, 24, 25402

[46] Y. Luo, C. Sun, J. B. Tenenbaum, and Y. Du. Potential based diffusion motion planning. arXiv403

preprint arXiv:2407.06169, 2024. 7404

[47] N. Ma, M. Goldstein, M. S. Albergo, N. M. Boffi, E. Vanden-Eijnden, and S. Xie. Sit: Exploring405

flow and diffusion-based generative models with scalable interpolant transformers. In European406

Conference on Computer Vision, pages 23–40. Springer, 2024. 3, 17407

[48] N. Ma, S. Tong, H. Jia, H. Hu, Y.-C. Su, M. Zhang, X. Yang, Y. Li, T. Jaakkola, X. Jia, et al.408

Inference-time scaling for diffusion models beyond scaling denoising steps. arXiv preprint409

arXiv:2501.09732, 2025. 2, 5, 15410

[49] T. Marcucci, M. Petersen, D. von Wrangel, and R. Tedrake. Motion planning around obstacles411

with convex optimization. Science robotics, 8(84):eadf7843, 2023. 7, 22412

[50] E. F. Moore. The shortest path through a maze. In Proc. of the International Symposium on the413

Theory of Switching, pages 285–292. Harvard University Press, 1959. 1414

[51] M. Nakamoto, O. Mees, A. Kumar, and S. Levine. Steering your generalists: Improving robotic415

foundation models via value guidance. In 8th Annual Conference on Robot Learning, 2024. 24416

[52] A. Newell, J. C. Shaw, and H. A. Simon. Report on a general problem solving program. In IFIP417

congress, volume 256, page 64. Pittsburgh, PA, 1959. 14418

[53] A. Newell, H. A. Simon, et al. Human problem solving, volume 104. Prentice-hall Englewood419

Cliffs, NJ, 1972. 14420

[54] A. Q. Nichol and P. Dhariwal. Improved denoising diffusion probabilistic models. In Interna-421

tional conference on machine learning, pages 8162–8171. PMLR, 2021. 3, 18422

[55] S. Park, K. Frans, B. Eysenbach, and S. Levine. Ogbench: Benchmarking offline goal-423

conditioned rl. arXiv preprint arXiv:2410.20092, 2024. 22, 23424

[56] J. Pearl. Heuristics: intelligent search strategies for computer problem solving. Addison-Wesley425

Longman Publishing Co., Inc., 1984. 1, 4426

11

[57] J. Peters, K. Mulling, and Y. Altun. Relative entropy policy search. In Proceedings of the AAAI427

Conference on Artificial Intelligence, volume 24, pages 1607–1612, 2010. 8428

[58] D. Podell, Z. English, K. Lacey, A. Blattmann, T. Dockhorn, J. Müller, J. Penna, and R. Rombach.429

Sdxl: Improving latent diffusion models for high-resolution image synthesis. arXiv preprint430

arXiv:2307.01952, 2023. 6431

[59] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall Press, USA,432

3rd edition, 2009. 1433

[60] S. Sahoo, M. Arriola, Y. Schiff, A. Gokaslan, E. Marroquin, J. Chiu, A. Rush, and V. Kuleshov.434

Simple and effective masked diffusion language models. Advances in Neural Information435

Processing Systems, 37:130136–130184, 2024. 15436

[61] Y. Shen, X. Jiang, Y. Yang, Y. Wang, D. Han, and D. Li. Understanding and improving training-437

free loss-based diffusion guidance. Advances in Neural Information Processing Systems,438

37:108974–109002, 2024. 5, 25439

[62] A. Singh, J. D. Co-Reyes, R. Agarwal, A. Anand, P. Patil, X. Garcia, P. J. Liu, J. Harrison, J. Lee,440

K. Xu, et al. Beyond human data: Scaling self-training for problem-solving with language441

models. arXiv preprint arXiv:2312.06585, 2023. 14442

[63] R. Singhal, Z. Horvitz, R. Teehan, M. Ren, Z. Yu, K. McKeown, and R. Ranganath. A443

general framework for inference-time scaling and steering of diffusion models. arXiv preprint444

arXiv:2501.06848, 2025. 2, 5, 6, 14, 15, 21, 22445

[64] R. Singhal, Z. Horvitz, R. Teehan, M. Ren, Z. Yu, K. McKeown, and R. Ranganath. A general446

framework for inference-time scaling and steering of diffusion models, 2025. 4, 5447

[65] S. A. Sloman. The empirical case for two systems of reasoning. Psychological bulletin, 119(1):3,448

1996. 14449

[66] C. Snell, J. Lee, K. Xu, and A. Kumar. Scaling llm test-time compute optimally can be more450

effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024. 5, 7, 14451

[67] J. Song, C. Meng, and S. Ermon. Denoising diffusion implicit models. arXiv preprint452

arXiv:2010.02502, 2020. 3, 17453

[68] J. Song, Q. Zhang, H. Yin, M. Mardani, M.-Y. Liu, J. Kautz, Y. Chen, and A. Vahdat. Loss-454

guided diffusion models for plug-and-play controllable generation. In International Conference455

on Machine Learning, pages 32483–32498. PMLR, 2023. 1, 2, 15456

[69] Y. Song and S. Ermon. Generative Modeling by Estimating Gradients of the Data Distribution,457

Oct. 2020. arXiv:1907.05600. 16458

[70] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole. Score-based459

generative modeling through stochastic differential equations. arXiv preprint arXiv:2011.13456,460

2020. 15461

[71] V. Subramaniam, Y. Du, J. B. Tenenbaum, A. Torralba, S. Li, and I. Mordatch. Multiagent462

finetuning: Self improvement with diverse reasoning chains. arXiv preprint arXiv:2501.05707,463

2025. 14464

[72] Z. Tan, S. Liu, X. Yang, Q. Xue, and X. Wang. Ominicontrol: Minimal and universal control465

for diffusion transformer. arXiv preprint arXiv:2411.15098, 2024. 15466

[73] R. Tarjan. Depth-first search and linear graph algorithms. SIAM journal on computing, 1(2):146–467

160, 1972. 1468

[74] O. M. Team, D. Ghosh, H. Walke, K. Pertsch, K. Black, O. Mees, S. Dasari, J. Hejna, T. Kreiman,469

C. Xu, et al. Octo: An open-source generalist robot policy. arXiv preprint arXiv:2405.12213,470

2024. 1, 15471

[75] T. Ubukata, J. Li, and K. Tei. Diffusion model for planning: A systematic literature review.472

arXiv preprint arXiv:2408.10266, 2024. 7473

12

[76] H. Van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double q-learning.474

In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016. 15, 25475

[77] C. Villani. Topics in optimal transportation. Graduate studies in mathematics ; v. 58. American476

Mathematical Society, Providence, R.I, 2003. 20477

[78] P. Vincent. A connection between score matching and denoising autoencoders. Neural compu-478

tation, 23(7):1661–1674, 2011. 2, 3479

[79] B. Wallace, M. Dang, R. Rafailov, L. Zhou, A. Lou, S. Purushwalkam, S. Ermon, C. Xiong,480

S. Joty, and N. Naik. Diffusion model alignment using direct preference optimization. In481

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages482

8228–8238, 2024. 1, 15483

[80] G. Wang, S. Zhang, T. Zhan, Z. Shen, J. Li, X. Hu, X. Sun, F. Wu, G. Deng, J. Zhang, et al.484

Unlocking the mysteries of openai o1: A survey of the reasoning abilities of large language485

models. 14486

[81] Z. Wang, J. J. Hunt, and M. Zhou. Diffusion policies as an expressive policy class for offline487

reinforcement learning. arXiv preprint arXiv:2208.06193, 2022. 8, 24, 25488

[82] M. Welling and Y. W. Teh. Bayesian learning via stochastic gradient langevin dynamics.489

In Proceedings of the 28th international conference on machine learning (ICML-11), pages490

681–688. Citeseer, 2011. 3491

[83] A. Wibisono. Sampling as optimization in the space of measures: The langevin dynamics as a492

composite optimization problem. In Conference on learning theory, pages 2093–3027. PMLR,493

2018. 5, 15, 19494

[84] L. Wu, B. Trippe, C. Naesseth, D. Blei, and J. P. Cunningham. Practical and asymptotically495

exact conditional sampling in diffusion models. Advances in Neural Information Processing496

Systems, 36:31372–31403, 2023. 2, 14497

[85] Y. Wu, Z. Sun, S. Li, S. Welleck, and Y. Yang. Inference scaling laws: An empirical analysis498

of compute-optimal inference for problem-solving with language models. arXiv preprint499

arXiv:2408.00724, 2024. 14500

[86] Z. Wu, S. Huang, Z. Zhou, H. Ying, J. Wang, D. Lin, and K. Chen. Internlm2. 5-stepprover:501

Advancing automated theorem proving via expert iteration on large-scale lean problems. arXiv502

preprint arXiv:2410.15700, 2024. 14503

[87] E. Xie, J. Chen, Y. Zhao, J. Yu, L. Zhu, C. Wu, Y. Lin, Z. Zhang, M. Li, J. Chen, et al. Sana 1.5:504

Efficient scaling of training-time and inference-time compute in linear diffusion transformer.505

arXiv preprint arXiv:2501.18427, 2025. 1506

[88] Y. Xie, V. Jampani, L. Zhong, D. Sun, and H. Jiang. Omnicontrol: Control any joint at any time507

for human motion generation. arXiv preprint arXiv:2310.08580, 2023. 15508

[89] J. Xu, X. Liu, Y. Wu, Y. Tong, Q. Li, M. Ding, J. Tang, and Y. Dong. Imagereward: learning509

and evaluating human preferences for text-to-image generation. In Proceedings of the 37th510

International Conference on Neural Information Processing Systems, pages 15903–15935, 2023.511

1, 6, 15512

[90] M. Xu, L. Yu, Y. Song, C. Shi, S. Ermon, and J. Tang. Geodiff: A geometric diffusion model513

for molecular conformation generation. arXiv preprint arXiv:2203.02923, 2022. 15514

[91] Y. Xu, M. Deng, X. Cheng, Y. Tian, Z. Liu, and T. Jaakkola. Restart sampling for improving515

generative processes. Advances in Neural Information Processing Systems, 36:76806–76838,516

2023. 14517

[92] S. Yang, Y. Du, S. K. S. Ghasemipour, J. Tompson, L. P. Kaelbling, D. Schuurmans, and518

P. Abbeel. Learning interactive real-world simulators. In The Twelfth International Conference519

on Learning Representations, 2024. 1520

13

[93] S. Yao, D. Yu, J. Zhao, I. Shafran, T. Griffiths, Y. Cao, and K. Narasimhan. Tree of thoughts:521

Deliberate problem solving with large language models. Advances in neural information522

processing systems, 36:11809–11822, 2023. 14523

[94] H. Ye, H. Lin, J. Han, M. Xu, S. Liu, Y. Liang, J. Ma, J. Y. Zou, and S. Ermon. Tfg: Unified524

training-free guidance for diffusion models. Advances in Neural Information Processing525

Systems, 37:22370–22417, 2024. 1, 2, 5, 7, 8, 15, 19, 20, 25526

[95] J. Yu, Y. Wang, C. Zhao, B. Ghanem, and J. Zhang. Freedom: Training-free energy-guided527

conditional diffusion model. In Proceedings of the IEEE/CVF International Conference on528

Computer Vision, pages 23174–23184, 2023. 2, 3, 15529

[96] E. Zelikman, Y. Wu, J. Mu, and N. Goodman. Star: Bootstrapping reasoning with reasoning.530

Advances in Neural Information Processing Systems, 35:15476–15488, 2022. 14531

[97] L. Zhang, A. Rao, and M. Agrawala. Adding conditional control to text-to-image diffusion532

models. In Proceedings of the IEEE/CVF international conference on computer vision, pages533

3836–3847, 2023. 15534

[98] Y. Zhang, E. Tzeng, Y. Du, and D. Kislyuk. Large-scale reinforcement learning for diffusion535

models. In European Conference on Computer Vision, pages 1–17. Springer, 2024. 15536

[99] S. Zhao, R. Brekelmans, A. Makhzani, and R. Grosse. Probabilistic inference in language537

models via twisted sequential monte carlo. arXiv preprint arXiv:2404.17546, 2024. 14538

A Appendix Overview539

In Sec. B, we provide a in-depth review of literature related to inference-time scaling and diffusion540

models. In Sec. C, we elaborate on local search with Langevin MCMC, and in Sec. D we provide541

the pseudo code and design of global search algorithms BFS and DFS. In Sec. E, we provide the542

details of all the experiments. In Sec. F we provide the details of double-verifier for mitigating reward543

hacking.544

B Additional Related Works545

Inference-time scaling. Scaling compute in inference-time with “slow thinking” has its long history546

grounded in cognitive science, known as “system 2” thinking [32, 65]. In [52, 53], Newell and547

his colleagues formalized problem solving as tree search in a combinatorial space, and [93] uses548

tree-of-thoughts to enable LLM reasoning with multiple exploration paths, using BFS and DFS as549

strategic search algorithms.550

Recently, long chain-of-though (CoT) reasoning has demonstrated remarkable performance for LLM551

reasoning [30, 18], where the long CoT reasoning ability is incentivized through reinforcement552

learning [18]. Notably, the CoT process demonstrates reasoning activities such as self-verification,553

backtracking and self-correction. Using a process reward model [40], we can also conduct explicit554

tree search without training the language model. [85] propose reward-balanced search (REBASE)555

which is a special instance of BFS, and [66] applied beam-search to difficult math problems, showing556

compute-optimal inference can be achieved via selecting different strategy for problems with different557

difficulty. We refer the readers to [80] for a comprehensive review.558

Inference-time scaling could also be used to improve the model itself, known as expert iteration.559

In [32], they proposed reinforcement learning with expert iteration in games, where the expert is560

constructed combining the base policy with Monte Carlo Tree Search (MCTS), and [86] applied561

expert iteration to automated theorem proving. Self improvements can also be achieved through562

iterative self-training [71, 96, 11, 62].563

Inference scaling in diffusion models. The inference-time compute of diffusion models depends564

heavily on the number of denoising steps. [91] showed that recursive restart sampling can reduce565

cumulative error during sampling, which can be regarded as scaling the number of denoising steps.566

More recently, [63] proposed a Sequential Monte Carlo (SMC) [84, 99] style method, known as567

Feynman-Kac steering, which can be seen as a instance of BFS. Besides image generation, they also568

14

applied it to diffusion language models [21, 60]. Additionally, [48] explored inference-time scaling569

of diffusion models with local zero order search and global search over paths for image generation.570

They also experimented with different verifiers, such as oracle verifiers, self-supervised verifiers,571

and studied the verifier-task alignment problem. There zero-order search can be understood as an572

uninformed version of local search which exhibits low efficiency, and when utilizing gradients, they573

need to back-propagate through the entire diffusion sampling chain, causing high computation and574

memory overheads. Compared with their work, we propose efficient gradient-based local search with575

theoretically grounded Langevin MCMC, which we show is crucial in many tasks. Also, we provide576

systematic experiments on the compute efficiency of global search methods. Their proposed methods577

can thus be understood as a instance within our search framework.578

Apart from search, [38] exploits the in-context learning abilities of foundation models to provide579

revision during sampling. Specifically, they leverage the multi-modal capabilities of VLMs to provide580

feedbacks on past generated images, and train the model to condition on past images and feedback.581

Diffusion models and applications. Diffusion models [26, 70, 76] has shown great performance in582

generative modeling for continuous data domains, such as image [16, 10], videos [28] and molecules583

[90]. Due to its expressive power on modeling multimodal and complex distributions, they have584

also been widely used as a decision prior in robotics. [31] proposes the first work on using diffusion585

models to generate plans. [8] uses the diffusion model for visuo-motor policy in robotics. Recently,586

a series of robotics foundation models utilize diffusion heads as action experts [4, 74], while [44]587

trains a end-to-end diffusion transformer for bimanual manipulation. In this work, we demonstrate588

that inference-time scaling can be especially helpful for decision making tasks with diffusion models.589

Control and alignment of diffusion models. To align the diffusion model with flexible objectives,590

training-free guidance [94, 3, 9, 68, 95, 24] and compositional generation [12, 43] combines the591

diffusion models with classifiers or other diffusion models at inference time, while RL-based methods592

[98, 79, 89, 5] finetune the diffusion model using reward or preference signals. ControlNet [97] style593

approaches have also been used to add additional conditions for sampling, where [72] designs a594

control block for diffusion transformers, and [88] uses a combination of guidance and controlnet for595

controllable human motion generation.596

Discussions on concurrent works. Adaptive Bi-directional Cyclic Diffusion (ABCD) [36] propose597

a search based inference scaling framework which could be seen as a combination of DFS and BFS.598

Unlike DFS that determines backtracking with a quality threshold, ABCD maintains a set of particles599

and backtracks by sending the particles to all different noise levels. The termination condition is600

determined by whether backtracking to higher noise levels increases sample quality. Compared601

with DFS, ABCD can have smaller score estimation errors since they evaluate particles when fully602

denoised, and can explore the generative space sufficiently via a combination of BFS and DFS.603

However, ABCD can not adaptively adjust compute allocation on different instances due to its special604

termination condition, and requires more compute on easy instances since it will denoise a set of605

particles regardless of whether sample quality is satisfactory.606

EvoSearch [23] propose to use evolutionary search to scale inference compute in image and video607

generation. At selected time steps, they evaluate the particles via full denoising, and maintain608

high score particles and mutate low score particles with adding noise. Their method demonstrated609

improved performance over the FK-steering [63] baseline. It improves upon naive BFS with local610

search via mutation for low quality particles.611

C Details about local search with Langevin MCMC612

In this section we provide a comprehensive and detailed overview of (annealed) Langevin MCMC613

based methods used in local search, as well as proving Proposition. 1.614

C.1 Langevin MCMC as gradient flow in measure space615

Following [83], the Langevin SDE in sample space corresponds to gradient flow of the KL-divergence616

in measure space. Here we provide a brief overview.617

15

Define our target distribution that we wish to sample from as ν, and the distribution of our current618

sample as ρ. We define the KL-divergence (relative entropy) as:619

Hν(ρ) =

∫
ρ log

ρ

ν
. (6)

Thus, sampling from ν can be seen as minimizing H , since the minimum of H is achieved at ρ = ν620

with Hν(ρ) = 0. Furthermore, ν is the only stationary point of H even for multimodal distributions.621

Thus we can sample from ν when optimizing H via gradient based methods.622

We have the gradient flow of H in Eq. 6 follows the following PDE:623

∂ρ

∂t
= ∇ · (ρ∇(− log ν)) + ∆ρ , (7)

which is known as the Fokker-Planck equation. Here, ρ = ρ(x, t) is a smooth positive density624

evolving through time, driven by the dynamics of the sample x. The dynamics in sample space625

corresponding to Eq. 7 is the Langevin SDE:626

dxt = ∇ log ν(xt)dt+
√
2dwt . (8)

where (xt)t≥0 is a stochastic process with measure ρt, and (wt)t≥0 is standard Brownian motion.627

That is, if xt ∼ ρt evolves according to the dynamics in Eq. 8, then the measure ρ(x, t) = ρt evolves628

according to the PDE in Eq. 7, conducting gradient optimization in measure space.629

In practice, we implement Eq. 8 through discretization, which is known as the unadjusted Langevin630

algorithm (ULA):631

xi+1 = xi + η∇xi log ν(x
i) +

√
2ηϵi , (9)

with ϵi ∼ N (0, I). When η → 0, the ULA converges to Langevin SDE, providing exact sampling.632

Previous works [15, 7] show that ULA can efficiently converge to the target measure ν if ν is log-633

concave and smooth. However, when facing complex and multimodal distributions, we can only634

guarantee convergence to the concave vicinity.635

C.2 Annealed Langevin MCMC Sampling636

Langevin MCMC have been used to perform implicit sampling in energy-based models [14] and637

score-based models [69]. However, these methods suffer from inaccurate score estimation and638

low density regions [69]. In [69] they propose to perturb the data with gaussian noise, eventually639

smoothing the data distribution:640

q(xt) =

∫
x0

p0(x0)N (xt;x0, σ
2
t I) ,

and creating a sequence of annealed distributions {q(xt)}Tt=0 which converges to p0(x0). Since they641

are smoothed by gaussian noise, we can improve the mixing time of Langevin MCMC on multimodal642

distributions by sampling from these intermediate distributions, sharing similar spirits with simulated643

annealing [34].644

In [12], they extend this method to compositional generation of diffusion models. Specifically,645

we consider sampling from a product distribution pprod
0 (x0) ∝ p10(x0)p

2
0(x0), where p10(x0) and646

p20(x0) are distributions of different diffusion models. Since we have access to the score functions647

∇xt log q
1
t (xt) and ∇xt log q

2
t (xt) through the diffusion model, we can construct a sequence of648

annealing distributions q̃prod
t (xt) such that:649

∇xt log q̃
prod
t (xt) = ∇xt log q

1
t (xt) +∇xt log q

2
t (xt) .

By sampling from the sequence
{
q̃prod
t (xt)

}
, we can arrive at q̃prod

0 (x0) which is equal to pprod
0 (x0).650

A key difference from sampling from
{
q̃prod
t (xt)

}
and direct diffusion sampling is that the diffusion651

process with pprod
0 (x0) defined as652

qprod
t (xt) =

∫
x0

pprod
0 (x0)q(xt|x0)

16

is different from q̃prod
t (xt). The score of qprod

t (xt) can be derived as:653

∇xt log q
prod
t (xt) = ∇xt log

(∫
x0

p10(x0)p
2
0(x0)q(xt|x0)

)
,

which is not equal to654

∇xt log q̃
prod
t (xt) = ∇xt log

(∫
x0

p10(x0)q(xt|x0)

)
+∇xt log

(∫
x0

p20(x0)q(xt|x0)

)
,

and thus intractable to compute directly.655

A key distinction between annealed Langevin MCMC sampling and reverse diffusion sampling is656

that we run multiple Langevin MCMC steps on the same noise level, while reverse diffusion goes657

from high noise level to low noise level via denoising. A minimal pseudo code is shown in Alg. 1.658

Algorithm 1 Annealed Langevin MCMC sampling

Input: sequence of annealing distributions {q̃t(xt)}Tt=0, number of MCMC steps N , step size
{ηt}Tt=0. (Optional) reverse transition kernel {p̃θ(xt−1|xt)}Tt=0.
Init: x0

T ∼ N (0, I)
for t = T, · · · , 1 do

for i = 0, 1, · · · , N − 1 do
Perform Langevin MCMC steps:

xi+1
t = xit + ηt∇xt log q̃t(x

i
t) +

√
2ηtϵ

i
t , ϵit ∼ N (0, I) .

end for
(Optional) transit to next time step: x0

t−1 ∼ p̃θ(·|xNt). If no reverse kernel initialize x0
t−1 = xNt .

end for
Return x0

C.3 Annealed Langevin MCMC with recurrent training-free guidance659

In this section, we prove the connection between annealed Langevin MCMC (Alg. 1) and training-free660

guidance (Alg. 2) in Proposition. 1. We divide the proof into two parts. In Sec. C.3.1 we prove the661

equivalence between naive recurrence steps and Langevin MCMC. Then in Sec. C.3.2, we prove662

that adding the guidance term is defining an annealing path that biases towards high score regions.663

Finally, we provide a rigorous convergence analysis in Sec. C.3.3.664

C.3.1 Equivalence between Langevin MCMC and naive recurrence665

Consider the diffusion process with the following stochastic interpolant [47]:666

xt = αtx0 + σtϵ .

We denote the score function of qt(xt) as∇xt log qt(xt) = s(xt, t). Recall the forward process in667

Eq. 1:668

xt =
αt

αt−1
xt−1 +

√
α2
t

(
σ2
t

α2
t

−
σ2
t−1

α2
t−1

)
ϵ . (10)

In a recurrence step in Line. 5, we first solve xit−1 from xit using the learned score function s(xit, t),669

then add noise to xit−1 to obtain the recurrent sample xi+1
t , where the superscript denotes the670

recurrence step index: i = 0, 1, · · · , Nrecur. Depending on different solvers, we have different671

formulations of xi+1
t .672

DDIM sampler. When using DDIM [67] sampler, we have the reverse step as:673

xt−1 =
αt−1

αt
xt + σ2

t

(
αt−1

αt
− σt−1

σt

)
s(xt, t) , (11)

17

where s(xt, t) is the score function∇xt log qt(xt). Thus, we have:674

xi+1
t =

αt
αt−1

xit−1 + αt

√
σ2
t

α2
t

−
σ2
t−1

α2
t−1

ϵi

= xit + σ2
t

(
1− αt

αt−1

σt−1

σt

)
s(xit, t) + σt

√
1− α2

t

α2
t−1

σ2
t−1

σ2
t

ϵi .

Denote λt = log αt
σt

, then we have:675

xi+1
t = xit + σ2

t

(
1− eλt−λt−1

)
s(xit, t) + σt

√
1− e2(λt−λt−1)ϵi

= xit + σ2
t

(
1− eλt−λt−1

)
s(xit, t) + σt

√
(1− eλt−λt−1) (1 + eλt−λt−1)ϵi ,

where 1 + eλt−λt−1 → 2 when T →∞ and denoising step size approaches 0, as λt − λt−1 → 0.676

DDPM sampler. In DDPM [26], we parametrize the posterior distribution as:677

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) , (12)

where the posterior mean is:678

µθ(xt, t) =
αt−1

αt
xt +

(
σ2
t

αt−1

αt
− σ2

t−1

αt
αt−1

)
s(xt, t) .

[26] parameterizes the posterior variance as Σθ(xt, t) = βtI or Σθ(xt, t) = β̃tI:679

βt = α2
t

(
σ2
t

α2
t

−
σ2
t−1

α2
t−1

)
,

β̃t =
σ2
t−1

σ2
t

βt ,

while [54] propose to train the posterior variance as Σθ(xt, t) = exp
(
v log βt + (1− v) log β̃t

)
.680

Thus, a backward step can be written as:681

xt−1 =
αt−1

αt
xt +

(
σ2
t

αt−1

αt
− σ2

t−1

αt
αt−1

)
s(xt, t) + Σ

1/2
θ (xt, t)ϵpost ,

where ϵpost denotes the noise added in the posterior sampling step. Then, we can write the recurrence682

step as:683

xi+1
t = xit +

(
σ2
t − σ2

t−1

α2
t

α2
t−1

)
s(xit, t) + Σ

1/2
θ (xit, t)ϵ

i
post + αt

√
σ2
t

α2
t

−
σ2
t−1

α2
t−1

ϵiforward

= xit + βts(x
i
t, t) +

√
Σθ(xt, t) + βtIϵ

i ,

where Σθ(xt, t)→ βtI when T →∞, and the denoising step size approaches 0.684

Putting together. In general, we can write the recurrence step as:685

xi+1
t = xit + atrts(x

i
t, t) +

√
2atϵ

i . (13)

with at → 0 and rt → 1 as the denoising step size approaches 0:686

• For DDIM sampler, we have at =
1
2α

2
t

(
σ2
t

α2
t
− σ2

t−1

α2
t−1

)
and rt =

2
1+eλt−λt−1

.687

• For DDPM sampler, we have at =
1
2α

2
t

(
σ2
t

α2
t
− σ2

t−1

α2
t−1

)
and 1 ≤ rt ≤ 2

1+
σ2
t−1

σ2t

.688

Thus, it can be seen as a approximation of the ULA in Eq. 9, and also a discretization of the Langevin689

SDE in Eq. 8.690

18

C.3.2 Annealed Langevin MCMC with guidance691

When applying training free guidance [94] during the recurrence, we have:692

xi+1
t = xit + atrts(x

i
t, t) +

√
2atϵ

i +∆(xt, t) ,

where at, bt are the coefficients of the recurrence equation in Eq. 13 without guidance. In general,693

∆t = ρt∇xt log f(x0|t) + µtαt∇x0|t log f(x0|t), where ρt, µt controls the guidance strength. We694

then show that the guidance term can be considered as the score function of a set of annealed verifiers695 {
f̂(xt)

}T
t=0

.696

When considering ‘variance guidance’ in Line. 7, we have ∆var = ρt∇xt log f(x0|t). Thus, we697

can define f̂ var
t (xt) = f(x0|t), which satisfies f̂ var

0 (x0) = f(x0). Similarly, for ‘mean guidance’ in698

Line. 8, we have699

∆mean = µtαt∇x0|t log f(x0|t)

= µt
σ2
t

Σ0|t
∇xt log f(x0|t) ,

where the second Equation follows from Lemma 3.3 in [94]. Thus, there exists a set of functions700

f̂mean
t (xt) such that ∇xt log f̂

mean
t (xt) =

σ2
t

Σ0|t
∇xt log f(x0|t), and we can see that when t →701

0,∇xt log f̂
mean
t (xt) = ∇x0 log f(x0). If we additionally incorporate the ‘implicit dynamics’ in702

Line. 4, our arguments still stands since the smoothed objective f̃(x) = Eδ∼N (0,I)f(x + γ̄σtδ)703

converges to f with t→ 0 and σt → 0.704

Combining the two terms together, we have ∆t = ct∇xt log f̂t(xt) with f̂t = f̂ var
t · f̂mean

t . Thus,705

recurrence with guidance can be written as:706

xi+1
t = xit + atrts(x

i
t, t) +

√
2atϵ

i + ct∇xt log f̂t(xt)

= xit + atrt∇xt log qt(xt)f̂t(xt)
ct/atrt +

√
2atϵ

i ,

Thus, we have defined the annealing path as q̃t(xt) = qt(xt)f̂t(xt)
ct/atrt , t = 1, 2, · · · , T .707

C.3.3 Convergence analysis708

In this section, we provide a rigorous convergence analysis of recurrence to the target distribution709

q̃t(xt).710

Theorem 1. Suppose q̃t(xt) has bounded support, is α-strongly log-concave and L-log-smooth, and711

−∇2 log q̃t is M -Lipschitz. Denote xNrecur
t as the sample after Nrecur steps of recurrence, we can712

bound the Wasserstein distance between the distribution of xNrecur
t and q̃t as:713

W2(p(x
Nrecur
t), q̃t) = O

(√
λt−1 − λt + e−2λt − e−2λt−1 + (1− e−2λt + e−2λt−1)Nrecur

)
,

where λt = log αt
σt

is half of the log SNR.714

Proof. Recall recurrence is equivalent to the following recursion equation:715

xi+1
t = xit + atrt∇xt log q̃t(x

i
t) +
√
2atϵ

i

= xit + at∇xt log q̃t(x
i
t)
rt +
√
2atϵ

i .

Thus, recurrence is equivalent to running unadjusted Langevin algorithm (ULA) on the tempered716

distribution ptempered ∝ q̃rtt . Using Lemma 1 and Lemma 2 from [83], given the regularity conditions717

on q̃t, we can bound the discretization error from ULA as:718

W2(p
tempered, p(xNrecur

t)) = O
(
at + (1− at)

Nrecur
)

= O
(
σ2
t

α2
t

−
σ2
t−1

α2
t−1

+ (1− σ2
t

α2
t

+
σ2
t−1

α2
t−1

)Nrecur

)
= O

(
e−2λt − e−2λt−1 + (1− e−2λt + e−2λt−1)Nrecur

)
.

19

To bound W2(p
tempered, q̃t), we can bound the TV distance as TV(ptempered, q̃t) ≤ O(rt−1). Following719

Proposition 7.10 in [77] for distributions with bounded support, we have:720

W2(p
tempered, q̃t)

= O
(√

TV(ptempered, q̃t)

)
= O

(√
rt − 1

)
= O

√1−min

(
αtσt−1

αt−1σt
,
σ2
t−1

σ2
t

)
= O

(√
log

σt
σt−1

+max

(
log

αt−1

αt
, log

σt
σt−1

))

= O
(
log

αt−1

αt
+ log

σt
σt−1

)
= O (λt−1 − λt) .

Putting together we obtain our desired bound.721

C.4 Relationship between Langevin MCMC and gradient ascent722

In training-free guidance, most prior works only apply gradient ascent without recurrence. Here we723

provide a theoretical analysis of both methods.724

Recall the KL-divergence objective in Eq. 6, which can be further decomposed when we are sampling725

from a compositional distribution of p0(x0) and verifier f(x0), with ν ∝ p0 · f :726

Hν(ρ) = Eρ[− log f] +Hp0(ρ) + logZ .

where Z =
∫
p0f is a normalization constant. Thus, gradient ascent is optimizing the verifier727

objective Eρ[− log f], while Langevin MCMC in Eq. 13 is optimizing the divergence between current728

sample and base distribution Hp0(ρ). This explains why naive gradient updates leads to OOD729

samples, and recurrence effectively mitigates this issue, acting as a contraction force pulling the730

sample back to the original manifold. However, since we start from p0 as the distribution of our initial731

sample, sometimes we can omit the recurrence if the guidance strength is small. But if we wish to732

traverse different modes with multiple gradient updates, introducing recurrence helps to avoid OOD733

during optimization.734

C.5 Implementing Local Search with TFG hyper-parameter space735

Due to the equivalence between annealed Langevin MCMC and training-free guidance with recur-736

rence, we can implement local search with Langevin MCMC using the TFG framework of [94],737

efficiently searching the hyperparameters. Here we provide a overview of the algorithm and design738

space. Following Sec. C.3, every iteration of recurrence in Line. 5 is equivalent to an annealed739

Langevin MCMC step, thus Nrecur is equal to the number of local search steps.740

For time varying schedules ρt, µt, we follow [94] and propose to use either the ‘increase’ schedule:741

st = T
αt/αt−1∑T
t=1 αt/αt−1

, (14)

where we increase the guidance strength as we denoise: sT < sT−1 < · · · < s1; or the ‘constant’742

schedule743

st = 1 , (15)
which uses constant parameters throughout the denoising process. Thus, the time-varying schedules744

can be computed as ρt = stρ̄ and µt = stµ̄, and we only need to determine the average ρ̄ and µ̄.745

D Global Search of Denoising Diffusion Models746

In this section, we provide details about the global search algorithms: BFS and DFS.747

20

Algorithm 2 Training-Free Guidance
1: Input: Unconditional diffusion model ϵθ , verifier f , guidance strength ρ,µ, γ̄, number of steps

T,Nrecur, Niter
2: xT ∼ N (0, I)
3: for t = T, · · · , 1 do
4: Define function f̃(x) = Eδ∼N (0,I)f(x+ γ̄σtδ)
5: for r = 1, · · · , Nrecur do
6: x0|t = (xt − σtϵθ(xt, t))/αt

7: ∆var = ρt∇xt log f̃(x0|t)

8: ∆mean = ∆mean + µtαt∇x0|t log f̃(x0|t +∆mean) ▷Iterate Niter times starting from ∆mean = 0

9: xt−1 = Sample(xt,x0|t, t) +
αt−1

αt
(∆var +∆mean) ▷ Sample follows DDIM or DDPM

10: xt ∼ N
(

αt
αt−1

xt−1, α
2
t

(
σ2
t

α2
t
− σ2

t−1

α2
t−1

)
I

)
▷ Recurrent strategy

11: end for
12: end for
13: Output: Conditional sample x0

D.1 BFS-Based Search748

We present the pseudo code for BFS in Alg. 3.749

Here, we provide an overview of prior methods.750

SVDD [39]. In SVDD, the best sample is selected at each time step, from which M children are751

generated. This approach can be viewed as a variant of BFS with τ =∞ and M particles. Nodes are752

evaluated using the current score f(x0|t).753

TreeG [19]. In TreeG, particles are ranked and the top M are either selected directly or resampled754

based on their scores to obtain M samples. From each selected particle, K children are sampled,755

resulting in an effective tree width of KM . Particles are evaluated using their current score f(x0|t).756

DAS [33]. In DAS, the authors propose an exponentially increasing tempering schedule as the default,757

given by τt = (1 + γ)T−t − 1, and also introduce an adaptive tempering schedule. They adopt758

advanced SSP resampling instead of multinomial resampling, and evaluate particles based on the759

difference in rewards from the previous evaluation.760

FK-steering [63]. In FK, the authors propose several options for evaluating intermediate particles,761

including difference, max, and sum, with max adopted as the default. In the official implementation,762

multinomial resampling is used, which may lead to suboptimal performance.763

D.2 DFS-based search764

In this section, we provide the details and pseudo code for DFS in Alg. 4. To better utilize previously765

explored sampling paths, we employ a buffer to store prior results. When no particles pass the766

threshold constraint, we retrieve the best sample from the buffer.767

Similar to BFS, controlling the set of evaluation steps allows a trade-off between efficiency and768

accuracy. Evaluating at earlier time steps introduces higher uncertainty but enables backtracking.769

Additionally, adjusting the backtracking depth ∆T governs the search scope: a small ∆T reduces770

computation and favors local search, while a larger ∆T enables broader exploration at the cost of771

increased computation.772

In practice, we set the evaluation steps to S =
{

1
2T,

1
4T
}

for image experiments to save compute,773

and to S =
{

3
4T,

3
4T − 1, · · · , 1

}
for PointMaze experiments. We set the recurrence depth to T/2774

for image tasks and T/4 for PointMaze, corresponding to the denoised steps at which samples are first775

evaluated. The threshold schedule δt is also set to ‘increase’ as in Eq.14, enforcing tighter constraints776

for samples with lower noise.777

In our experiments, we observed that when backtracking to tnext = T—thus fully restarting—the778

nonzero terminal SNR αT /σT in many diffusion schedules [41] can lead to cumulative errors with779

21

Algorithm 3 Diffusion BFS

Diffusion input: diffusion model ϵθ with diffusion time steps T and proposal transition kernel
{p̃θ(xt−1|xt)}Nt=1. Verifier f .
BFS input: Set of evaluation time steps S . Tempering schedule τt. Budget of particles N . Scoring
rule and Resampling function rule.
Init: Random sample N particles xkN ∼ N (0, I), k = 1, 2, · · ·N .
for t = T, · · · , 1 do

if t ∈ S then
for k = 1, 2, · · · , N do

Estimate the conditional mean: xk0|t =
xkt−σtϵθ(x

k
t ,t)

αt
. Compute the verifier score f(xk0|t).

Compute the verifier scores according to the scoring rules: textbfCurrent: f̂(xkt) =

τtf(x
k
0|t). Difference: f̂(xkt) = τtf(x

k
0|t)− f̂

k
prev. Max: f̂(xkt) = max

(
τtf(x

k
0|t), f̂

k
prev

)
Resample the particles. Compute the weights wkt = softmax(f̂(xkt)), and sample the
children nkt = Resample(N,wkt), where Resample can be Multinomial or SSP. Update
the score buffers f̂kprev = τtf

(
xparent(k)
0|t

)
.

end for
else
nkt = 1

end if
for k = 1, · · · , N do

Sample nkt particles from xkt : xjt−1 ∼ p̃θ(·|xkt) , j = 1, 2, · · · , nkt
end for

end for
Return x0 = argmaxk=1,··· ,K0

f(xk0)

repeated backtracking. Therefore, when backtracking to tnext = T , we initialize with fresh Gaussian780

noise.781

E Experiment Details782

In this section we provide the details of experimental setup and implementation for all our experiments.783

We run our experiments on clusters with Nvidia A100 GPUs, with over 1000 GPU hours used.784

E.1 Ablation of BFS design space785

We directly adopt the official code base of FK-steering [63] and use the samping methods provided in786

the code base of DAS [33]. We use the ImageReward prompts as in [63] and report the average and787

standard deviation over 4 independent trials. For the temperature and resampling interval, we directly788

follow the implementation of FK-steering. For TreeG [19] we use a fixed branch out size of 2.789

E.2 Text-to-Image Compositional Generation with DFS790

We use the SSD-1B model1 which is distilled from SDXL, and we use the default sampling config-791

uration with 50 steps of DDIM sampler. For DFS and BFS, we evaluate at time steps {25, 35, 45}792

and set the backtrack depth ∆T = 25. For BFS we additionally sweep the temperature in range793

{0.5, 1, 2, 4, 8} and report the best performance.794

E.3 Long Horizon Maze Planning795

Maze environment. For all our maze experiments we use the OGBench PointMaze environment796

[55]. We created our maze layout using the same protocol of Figure 5 in [49]2, but with a smaller size797

1https://huggingface.co/segmind/SSD-1B
2https://github.com/mpetersen94/gcs/blob/main/models/maze.py

22

https://huggingface.co/segmind/SSD-1B
https://github.com/mpetersen94/gcs/blob/main/models/maze.py

Algorithm 4 Diffusion DFS

Diffusion input: diffusion model ϵθ with diffusion time steps T and proposal transition kernel
{p̃θ(xt−1|xt)}Nt=1. Verifier f .
DFS input Budget for total number of backtracking B = K, backtracking depth ∆T and threshold
{δt}Tt=1. Set of evaluation time steps S.
Init xT ∼ N (0, I), t = T . Init buffer with empty sets: buffer(t)← {} , t = 1, 2, · · · , T .
while t > 0 do

if t ∈ S then
Estimate the conditional mean and verifier score: x0|t =

xt−σtϵθ(xt,t)
αt

, f(x0|t).
if f(x0|t) < δt and budget B > 0 then

Backtrack: tnext ← min(t+∆T , T), xtnext ∼ q(xtnext |xt) with q in Eq. 1
Decrease the budget: B ← B − 1
Add the score-value pair to the buffer: buffer(t).add

(
f(x0|t) : xt

)
else

if B = 0 then
Pop the best sample from buffer: xt ← buffer(t).max ▷ select the best sample from
past explorations

end if
Sample posterior: tnext ← t− 1, xtnext ∼ p̃θ(xt−1|xt)

end if
else

Sample posterior: tnext ← t− 1, xtnext ∼ p̃θ(xt−1|xt)
end if
t← tnext, xt ← xnext

end while
Return x0

of 20x20 cells. Dataset is collected following the protocal in OGBench [55]. We evaluate the model798

on the default task 1 of OGBench [55], which is navigating from bottom left to top right. Empirically799

we discover that the diffusion model can perform well on short-horizon tasks without extra inference800

compute, but struggles heavily in the long horizon tasks.801

Model Training. We train the model following diffuser [31], where we use a temporal U-Net to802

denoise the trajectory803

τ =

[
s1 s2 · · · sH
a1 a2 · · · aH

]
.

Since our objective start and goal is more distant than trajectories in dataset, we sample at longer804

horizons than training, which is enabled by the temporal U-Net architecture. We train the model for805

1.2M steps using the same configuration as [31].806

Inference. We found that the model performance saturates with 16 denoising steps, which we use for807

all our experiments. For all the data points we report the average success rate with over 40 samples.808

For verifier design, we use the ground-truth maze layout, and calculate the violation of each point in809

the trajectory using the position coordinates. Specifically, if a point (x, y) is inside a maze wall box810

with center (cx, cy) and half-width d, then the point loss can be calculated as the minimum distance811

from the point to box walls:812

L(x, y) = min (x− (cx − d), (cx + d)− x, y − (cy − d), (cy + d)− y) .

and the total verifier score is computed as:813

f(τ) = exp

(
−

H∑
i=1

L(xi, yi)
2

)
.

So if all the points are free of violation in the trajectory, then f(τ) = 1. We point out that this does814

not indicate a successful plan as the connection between consecutive points (xi, yi)→ (xi+1, yi+1)815

may violate the maze layout, and using only the verifier function can not generate a successful plan.816

23

For local search, we search the hyper-parameters ρ̄ and µ̄ in Sec. C.5 with γ̄ = 0. For global search817

with BFS we evaluate at steps {12, 8, 4}, and for DFS we evaluate at {12, 11, · · · , 1} with backtrack-818

ing depth ∆T = 4. We also observe that increasing backtracking depth to 12 and evaluate at smaller819

time steps {4, 3, 2, 1} helps to scale up the performance with more compute. The hyperparameter820

search results are below:

N τ = 0.2 τ = 0.005 τ = 0.1

2 27.5± 4.3 32.5± 1.1 31.2± 4.2
4 42.5± 5.2 48.1± 1.1 45.5± 2.3
8 67.6± 1.1 71.2± 2.2 70.1± 1.1

Table 4: Hyperparameter search for temperature τ in PointMaze BFS

Figure 5: Hyperparameter search for threshold δ in PointMaze DFS

821

E.4 Offline RL822

Background. Diffusion policy [8] is widely used for action generation in robot foundation models823

[4, 44]. At inference time, policies can be guided by human trajectory constraints [81] or LLM-based824

value functions [51]. Exact sampling requires training a noise-dependent energy function [45], but825

this can degrade pretrained knowledge and demands additional data—often impractical in data-scarce826

robotic settings. In contrast, inference-scaling provides a more flexible approach, allowing seamless827

composition of pretrained diffusion policies with Q-functions without retraining.828

Setup. We follow the setup in [45], and we directly use their pretrained diffusion model and Q-829

function, omitting the time-dependent energy function. The diffusion model was trained to generate830

action a given state s, and we sample with 15 steps of DDIM.831

For hyper-parameter search, we disable the implicit dynamics and set γ̄ = 0, and use the ‘increase’832

schedule for ρ and µ. For strength parameters ρ̄ and µ̄, we first search for the right magnitude. Then,833

we also follow [45] and search with step size [1,2,3,5,8,10] within the magnitude. Same as [45], we834

use 5 different seeds with 10 samples per seed for each task. To avoid over fitting, we use different835

seeds for parameter search and evaluation. We report the hyper-parameters and the performance836

within the parameter-searching dataset and evaluation dataset.837

For global search, we use 4 particles for Medium-Expert and Medium datasets, and 2 particles for838

Medium-Replay datasets. Since the number of particles are small, we do not carry out BFS or DFS839

methods and simply use Best-of-N. We point out that the number of particles we use are much smaller840

than the 50 particles in [81] and the 32 particles in [6], highlighting the effectiveness of local search.841

Baseline. We compare our method to a variety of baselines, including traditional state-of-the-art842

methods IQL [35] and diffusion-based policies such as diffuser [31], decision-diffuser (DD) [1],843

Diffusion-QL (D-QL) [81], SfBC [6] and QGPO [45]. We directly take the numbers from [45].844

24

Among the baseline diffusion-based methods, both Diffuser [31] and QGPO [45] requires training845

a noise-dependent guidance function, and D-QL [81] requires updating the diffusion model during846

training using the Q-function iteratively, which needs to back-propagate through the diffusion847

sampling chain, introducing high computation and memory overheads. DD [1] uses classifier-free848

guidance [27] to generate high-return trajectories that requires training a return-conditional model849

on labeled datasets, which can be expensive to obtain in robotics where only demonstration data is850

available [44].851

For our reproduced baselines, TFG [94] is allowed up to 8 recurrence steps and DAS [33] up to 16852

particles, resulting in a hyperparameter space and computational cost approximately twice that of our853

method. We sweep across all configurations for the baseline methods and report the best performance.854

For fair comparison we evaluate our method on different seeds used for hyperparameter search, with855

the results shown in Table. 5.

Dataset Environment particles Nrecur Niter ρ̄ µ̄ Eval set Search set
Medium-Expert HalfCheetah 4 1 1 0.008 0.02 93.9± 0.3 94.3± 0.5
Medium-Expert Hopper 4 1 4 0.001 0.00 104.4± 3.1 109.4± 5.2
Medium-Expert Walker2d 4 1 1 0.005 0.10 111.4± 0.1 111.4± 0.2

Medium HalfCheetah 4 1 4 0.003 0.05 54.8± 0.1 54.8± 0.2
Medium Hopper 4 4 4 0.003 0.02 99.5± 1.7 100.1± 0.1
Medium Walker2d 4 1 6 0.003 0.08 86.5± 0.2 85.2± 3.2

Medium-Replay HalfCheetah 2 1 6 0.005 0.03 47.8± 0.4 48.4± 0.1
Medium-Replay Hopper 2 1 1 0.003 0.20 97.4± 4.0 100.4± 2.2
Medium-Replay Walker2d 2 2 4 0.003 0.03 79.3± 9.7 83.2± 2.8

Average 86.1 87.5

Table 5: Hyper-parameters on D4RL locomotion tasks with test-time scaling. We report the perfor-
mance on hyper-parameter search dataset and the evaluation dataset, highlighting the best number.

856

F Mitigating reward hacking with double verifier857

In this section, we show that reward hacking caused by adversarial examples can be mitigated858

by employing separate verifiers for local and global search. As observed in [61], training-free859

guidance with verifier gradients is vulnerable to adversarial examples: generated samples can exploit860

weaknesses in the verifier, causing it to classify them as belonging to the target class despite being861

out-of-distribution (OOD). We find, however, that such adversarial examples do not transfer well862

between independently trained verifiers. Inspired by double-Q learning in reinforcement learning863

[76], we propose a double-verifier approach, assigning distinct verifiers to local and global search to864

efficiently detect and reject adversarial samples.865

We evaluate the proposed double-verifier on the challenging conditional ImageNet generation task,866

generating target-class samples from an unconditional model guided by a pretrained classifier.867

Specifically, we use two independent classifiers as verifiers34 for global and local search. We report868

the Fréchet Inception Distance (FID) computed on 256 generated samples against the corresponding869

ImageNet class, and measure class accuracy using a separate classifier5. Since we only apply the870

global verifier sparsely, double-verfier introduces negligible computational costs.871

3https://huggingface.co/google/vit-base-patch16-224
4https://huggingface.co/google/vit-base-patch16-384
5https://huggingface.co/facebook/deit-small-patch16-224

25

https://huggingface.co/google/vit-base-patch16-224
https://huggingface.co/google/vit-base-patch16-384
https://huggingface.co/facebook/deit-small-patch16-224

Table 6: Best-of-N results for ImageNet conditional generation, with FID and Accuracy averaged
across the two labels.

#Particles BoN-Single BoN-Double BFS-Single BFS-Double
FID↓ Acc↑ FID↓ Acc↑ FID↓ Acc↑ FID↓ Acc↑

4 171.5 31.8% 151.2 37.5% 156.2 36.1% 145.5 44.3%
8 155.7 35.8% 127.8 49.2% 133.3 46.5% 118.2 55.9%

#Particles BoN-Single BoN-Double

4 0.161 0.164
8 0.165 0.184

Table 7: MSP scores of Best-of-N with single and double verifier. Double verifier significantly
reduces OOD samples with higher MSP score.

26

As shown in Table. 6, using double-verifier significantly improves performance over single verifier872

with Best-of-N and BFS, using 2x less compute. We also evaluate the OOD of generated samples873

using the MSP score [25], with higher MSP score indicating less OOD samples. As shown in Table. 7,874

using double-verifier significantly reduces OOD samples indicated by the higher MSP score.875

27

NeurIPS Paper Checklist876

1. Claims877

Question: Do the main claims made in the abstract and introduction accurately reflect the878

paper’s contributions and scope?879

Answer: [Yes]880

Justification: The abstract and introduction reflect the paper’s contribution within inference-881

time scaling of diffusion models882

Guidelines:883

• The answer NA means that the abstract and introduction do not include the claims884

made in the paper.885

• The abstract and/or introduction should clearly state the claims made, including the886

contributions made in the paper and important assumptions and limitations. A No or887

NA answer to this question will not be perceived well by the reviewers.888

• The claims made should match theoretical and experimental results, and reflect how889

much the results can be expected to generalize to other settings.890

• It is fine to include aspirational goals as motivation as long as it is clear that these goals891

are not attained by the paper.892

2. Limitations893

Question: Does the paper discuss the limitations of the work performed by the authors?894

Answer: [Yes]895

Justification: In the conclusions section we discussed the limitations of our methods.896

Guidelines:897

• The answer NA means that the paper has no limitation while the answer No means that898

the paper has limitations, but those are not discussed in the paper.899

• The authors are encouraged to create a separate "Limitations" section in their paper.900

• The paper should point out any strong assumptions and how robust the results are to901

violations of these assumptions (e.g., independence assumptions, noiseless settings,902

model well-specification, asymptotic approximations only holding locally). The authors903

should reflect on how these assumptions might be violated in practice and what the904

implications would be.905

• The authors should reflect on the scope of the claims made, e.g., if the approach was906

only tested on a few datasets or with a few runs. In general, empirical results often907

depend on implicit assumptions, which should be articulated.908

• The authors should reflect on the factors that influence the performance of the approach.909

For example, a facial recognition algorithm may perform poorly when image resolution910

is low or images are taken in low lighting. Or a speech-to-text system might not be911

used reliably to provide closed captions for online lectures because it fails to handle912

technical jargon.913

• The authors should discuss the computational efficiency of the proposed algorithms914

and how they scale with dataset size.915

• If applicable, the authors should discuss possible limitations of their approach to916

address problems of privacy and fairness.917

• While the authors might fear that complete honesty about limitations might be used by918

reviewers as grounds for rejection, a worse outcome might be that reviewers discover919

limitations that aren’t acknowledged in the paper. The authors should use their best920

judgment and recognize that individual actions in favor of transparency play an impor-921

tant role in developing norms that preserve the integrity of the community. Reviewers922

will be specifically instructed to not penalize honesty concerning limitations.923

3. Theory assumptions and proofs924

Question: For each theoretical result, does the paper provide the full set of assumptions and925

a complete (and correct) proof?926

Answer: [Yes]927

28

Justification: We provide complete proof in the Appendix928

Guidelines:929

• The answer NA means that the paper does not include theoretical results.930

• All the theorems, formulas, and proofs in the paper should be numbered and cross-931

referenced.932

• All assumptions should be clearly stated or referenced in the statement of any theorems.933

• The proofs can either appear in the main paper or the supplemental material, but if934

they appear in the supplemental material, the authors are encouraged to provide a short935

proof sketch to provide intuition.936

• Inversely, any informal proof provided in the core of the paper should be complemented937

by formal proofs provided in appendix or supplemental material.938

• Theorems and Lemmas that the proof relies upon should be properly referenced.939

4. Experimental result reproducibility940

Question: Does the paper fully disclose all the information needed to reproduce the main ex-941

perimental results of the paper to the extent that it affects the main claims and/or conclusions942

of the paper (regardless of whether the code and data are provided or not)?943

Answer: [Yes]944

Justification: We provide detailed pseudo code and hyper-parameters in the appendix945

Guidelines:946

• The answer NA means that the paper does not include experiments.947

• If the paper includes experiments, a No answer to this question will not be perceived948

well by the reviewers: Making the paper reproducible is important, regardless of949

whether the code and data are provided or not.950

• If the contribution is a dataset and/or model, the authors should describe the steps taken951

to make their results reproducible or verifiable.952

• Depending on the contribution, reproducibility can be accomplished in various ways.953

For example, if the contribution is a novel architecture, describing the architecture fully954

might suffice, or if the contribution is a specific model and empirical evaluation, it may955

be necessary to either make it possible for others to replicate the model with the same956

dataset, or provide access to the model. In general. releasing code and data is often957

one good way to accomplish this, but reproducibility can also be provided via detailed958

instructions for how to replicate the results, access to a hosted model (e.g., in the case959

of a large language model), releasing of a model checkpoint, or other means that are960

appropriate to the research performed.961

• While NeurIPS does not require releasing code, the conference does require all submis-962

sions to provide some reasonable avenue for reproducibility, which may depend on the963

nature of the contribution. For example964

(a) If the contribution is primarily a new algorithm, the paper should make it clear how965

to reproduce that algorithm.966

(b) If the contribution is primarily a new model architecture, the paper should describe967

the architecture clearly and fully.968

(c) If the contribution is a new model (e.g., a large language model), then there should969

either be a way to access this model for reproducing the results or a way to reproduce970

the model (e.g., with an open-source dataset or instructions for how to construct971

the dataset).972

(d) We recognize that reproducibility may be tricky in some cases, in which case973

authors are welcome to describe the particular way they provide for reproducibility.974

In the case of closed-source models, it may be that access to the model is limited in975

some way (e.g., to registered users), but it should be possible for other researchers976

to have some path to reproducing or verifying the results.977

5. Open access to data and code978

Question: Does the paper provide open access to the data and code, with sufficient instruc-979

tions to faithfully reproduce the main experimental results, as described in supplemental980

material?981

29

Answer: [No]982

Justification: We run our experiments with publicly available models and dataset.983

Guidelines:984

• The answer NA means that paper does not include experiments requiring code.985

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/986

public/guides/CodeSubmissionPolicy) for more details.987

• While we encourage the release of code and data, we understand that this might not be988

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not989

including code, unless this is central to the contribution (e.g., for a new open-source990

benchmark).991

• The instructions should contain the exact command and environment needed to run to992

reproduce the results. See the NeurIPS code and data submission guidelines (https:993

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.994

• The authors should provide instructions on data access and preparation, including how995

to access the raw data, preprocessed data, intermediate data, and generated data, etc.996

• The authors should provide scripts to reproduce all experimental results for the new997

proposed method and baselines. If only a subset of experiments are reproducible, they998

should state which ones are omitted from the script and why.999

• At submission time, to preserve anonymity, the authors should release anonymized1000

versions (if applicable).1001

• Providing as much information as possible in supplemental material (appended to the1002

paper) is recommended, but including URLs to data and code is permitted.1003

6. Experimental setting/details1004

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-1005

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the1006

results?1007

Answer: [Yes]1008

Justification: We provide all the experimental details in the appendix1009

Guidelines:1010

• The answer NA means that the paper does not include experiments.1011

• The experimental setting should be presented in the core of the paper to a level of detail1012

that is necessary to appreciate the results and make sense of them.1013

• The full details can be provided either with the code, in appendix, or as supplemental1014

material.1015

7. Experiment statistical significance1016

Question: Does the paper report error bars suitably and correctly defined or other appropriate1017

information about the statistical significance of the experiments?1018

Answer: [Yes]1019

Justification: We provide detailed numbers with standard deviation in the locomotion setting1020

Guidelines:1021

• The answer NA means that the paper does not include experiments.1022

• The authors should answer "Yes" if the results are accompanied by error bars, confi-1023

dence intervals, or statistical significance tests, at least for the experiments that support1024

the main claims of the paper.1025

• The factors of variability that the error bars are capturing should be clearly stated (for1026

example, train/test split, initialization, random drawing of some parameter, or overall1027

run with given experimental conditions).1028

• The method for calculating the error bars should be explained (closed form formula,1029

call to a library function, bootstrap, etc.)1030

• The assumptions made should be given (e.g., Normally distributed errors).1031

• It should be clear whether the error bar is the standard deviation or the standard error1032

of the mean.1033

30

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should1034

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis1035

of Normality of errors is not verified.1036

• For asymmetric distributions, the authors should be careful not to show in tables or1037

figures symmetric error bars that would yield results that are out of range (e.g. negative1038

error rates).1039

• If error bars are reported in tables or plots, The authors should explain in the text how1040

they were calculated and reference the corresponding figures or tables in the text.1041

8. Experiments compute resources1042

Question: For each experiment, does the paper provide sufficient information on the com-1043

puter resources (type of compute workers, memory, time of execution) needed to reproduce1044

the experiments?1045

Answer: [Yes]1046

Justification: we report the compute resources in the Appendix experiments section1047

Guidelines:1048

• The answer NA means that the paper does not include experiments.1049

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,1050

or cloud provider, including relevant memory and storage.1051

• The paper should provide the amount of compute required for each of the individual1052

experimental runs as well as estimate the total compute.1053

• The paper should disclose whether the full research project required more compute1054

than the experiments reported in the paper (e.g., preliminary or failed experiments that1055

didn’t make it into the paper).1056

9. Code of ethics1057

Question: Does the research conducted in the paper conform, in every respect, with the1058

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?1059

Answer: [Yes]1060

Justification: the research follows NIPS code of ethics1061

Guidelines:1062

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.1063

• If the authors answer No, they should explain the special circumstances that require a1064

deviation from the Code of Ethics.1065

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-1066

eration due to laws or regulations in their jurisdiction).1067

10. Broader impacts1068

Question: Does the paper discuss both potential positive societal impacts and negative1069

societal impacts of the work performed?1070

Answer: [Yes]1071

Justification: inference-time search with verifiers could potentially be used for verifier1072

hacking against classifiers1073

Guidelines:1074

• The answer NA means that there is no societal impact of the work performed.1075

• If the authors answer NA or No, they should explain why their work has no societal1076

impact or why the paper does not address societal impact.1077

• Examples of negative societal impacts include potential malicious or unintended uses1078

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations1079

(e.g., deployment of technologies that could make decisions that unfairly impact specific1080

groups), privacy considerations, and security considerations.1081

31

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied1082

to particular applications, let alone deployments. However, if there is a direct path to1083

any negative applications, the authors should point it out. For example, it is legitimate1084

to point out that an improvement in the quality of generative models could be used to1085

generate deepfakes for disinformation. On the other hand, it is not needed to point out1086

that a generic algorithm for optimizing neural networks could enable people to train1087

models that generate Deepfakes faster.1088

• The authors should consider possible harms that could arise when the technology is1089

being used as intended and functioning correctly, harms that could arise when the1090

technology is being used as intended but gives incorrect results, and harms following1091

from (intentional or unintentional) misuse of the technology.1092

• If there are negative societal impacts, the authors could also discuss possible mitigation1093

strategies (e.g., gated release of models, providing defenses in addition to attacks,1094

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1095

feedback over time, improving the efficiency and accessibility of ML).1096

11. Safeguards1097

Question: Does the paper describe safeguards that have been put in place for responsible1098

release of data or models that have a high risk for misuse (e.g., pretrained language models,1099

image generators, or scraped datasets)?1100

Answer: [NA]1101

Justification: the paper uses pretrained models, with safeguards already in place.1102

Guidelines:1103

• The answer NA means that the paper poses no such risks.1104

• Released models that have a high risk for misuse or dual-use should be released with1105

necessary safeguards to allow for controlled use of the model, for example by requiring1106

that users adhere to usage guidelines or restrictions to access the model or implementing1107

safety filters.1108

• Datasets that have been scraped from the Internet could pose safety risks. The authors1109

should describe how they avoided releasing unsafe images.1110

• We recognize that providing effective safeguards is challenging, and many papers do1111

not require this, but we encourage authors to take this into account and make a best1112

faith effort.1113

12. Licenses for existing assets1114

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1115

the paper, properly credited and are the license and terms of use explicitly mentioned and1116

properly respected?1117

Answer: [Yes]1118

Justification: we provide citation for all resources used1119

Guidelines:1120

• The answer NA means that the paper does not use existing assets.1121

• The authors should cite the original paper that produced the code package or dataset.1122

• The authors should state which version of the asset is used and, if possible, include a1123

URL.1124

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1125

• For scraped data from a particular source (e.g., website), the copyright and terms of1126

service of that source should be provided.1127

• If assets are released, the license, copyright information, and terms of use in the1128

package should be provided. For popular datasets, paperswithcode.com/datasets1129

has curated licenses for some datasets. Their licensing guide can help determine the1130

license of a dataset.1131

• For existing datasets that are re-packaged, both the original license and the license of1132

the derived asset (if it has changed) should be provided.1133

32

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to1134

the asset’s creators.1135

13. New assets1136

Question: Are new assets introduced in the paper well documented and is the documentation1137

provided alongside the assets?1138

Answer: [NA]1139

Justification: the paper does not release new assets1140

Guidelines:1141

• The answer NA means that the paper does not release new assets.1142

• Researchers should communicate the details of the dataset/code/model as part of their1143

submissions via structured templates. This includes details about training, license,1144

limitations, etc.1145

• The paper should discuss whether and how consent was obtained from people whose1146

asset is used.1147

• At submission time, remember to anonymize your assets (if applicable). You can either1148

create an anonymized URL or include an anonymized zip file.1149

14. Crowdsourcing and research with human subjects1150

Question: For crowdsourcing experiments and research with human subjects, does the paper1151

include the full text of instructions given to participants and screenshots, if applicable, as1152

well as details about compensation (if any)?1153

Answer: [NA]1154

Justification: the paper does not involve research with human objects1155

Guidelines:1156

• The answer NA means that the paper does not involve crowdsourcing nor research with1157

human subjects.1158

• Including this information in the supplemental material is fine, but if the main contribu-1159

tion of the paper involves human subjects, then as much detail as possible should be1160

included in the main paper.1161

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1162

or other labor should be paid at least the minimum wage in the country of the data1163

collector.1164

15. Institutional review board (IRB) approvals or equivalent for research with human1165

subjects1166

Question: Does the paper describe potential risks incurred by study participants, whether1167

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1168

approvals (or an equivalent approval/review based on the requirements of your country or1169

institution) were obtained?1170

Answer: [NA]1171

Justification: the paper does not involve crowdsourcing nor research with human subjects.1172

Guidelines:1173

• The answer NA means that the paper does not involve crowdsourcing nor research with1174

human subjects.1175

• Depending on the country in which research is conducted, IRB approval (or equivalent)1176

may be required for any human subjects research. If you obtained IRB approval, you1177

should clearly state this in the paper.1178

• We recognize that the procedures for this may vary significantly between institutions1179

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1180

guidelines for their institution.1181

• For initial submissions, do not include any information that would break anonymity (if1182

applicable), such as the institution conducting the review.1183

16. Declaration of LLM usage1184

33

Question: Does the paper describe the usage of LLMs if it is an important, original, or1185

non-standard component of the core methods in this research? Note that if the LLM is used1186

only for writing, editing, or formatting purposes and does not impact the core methodology,1187

scientific rigorousness, or originality of the research, declaration is not required.1188

Answer: [NA]1189

Justification: the core method development in this research does not involve LLMs as any1190

important, original, or non-standard components.1191

• The answer NA means that the core method development in this research does not1192

involve LLMs as any important, original, or non-standard components.1193

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1194

for what should or should not be described.1195

34

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Works
	Backgrounds
	Diffusion Probabilistic Models
	Compositional and Controllable Generation of DPMs

	Methods
	Global Search for Mode Identification
	Unified BFS-style linear search
	DFS-style non-linear search

	Scaling Local Search via Langevin MCMC with Verifier Gradient

	Experiments
	Elucidating the Design Space of BFS for a Strengthened Baseline
	Adaptive and Efficient Inference-Scaling with DFS
	Joint Scaling Local and Global Search
	Long Horizon Planning

	Offline Reinforcement Learning

	Limitations and Conclusion
	Appendix Overview
	Additional Related Works
	Details about local search with Langevin MCMC
	Langevin MCMC as gradient flow in measure space
	Annealed Langevin MCMC Sampling
	Annealed Langevin MCMC with recurrent training-free guidance
	Equivalence between Langevin MCMC and naive recurrence
	Annealed Langevin MCMC with guidance
	Convergence analysis

	Relationship between Langevin MCMC and gradient ascent
	Implementing Local Search with TFG hyper-parameter space

	Global Search of Denoising Diffusion Models
	BFS-Based Search
	DFS-based search

	Experiment Details
	Ablation of BFS design space
	Text-to-Image Compositional Generation with DFS
	Long Horizon Maze Planning
	Offline RL

	Mitigating reward hacking with double verifier

