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ABSTRACT

Forecasting physical signals in long time range is among the most challenging
tasks in Partial Differential Equations (PDEs) research. To circumvent limitations
of traditional solvers, many different Deep Learning methods have been proposed.
They are all based on auto-regressive methods and exhibit stability issues. Drawing
inspiration from the stability property of implicit numerical schemes, we introduce
a stable auto-regressive implicit neural network. We develop a theory based on the
stability definition of schemes to ensure the stability in forecasting of this network.
It leads us to introduce hard constraints on its weights and propagate the dynamics
in the latent space. Our experimental results validate our stability property, and
show improved results at long-term forecasting for two transports PDEs.

1 INTRODUCTION AND MOTIVATION

Numerical simulations are one of the main tools to study systems described by PDEs, which are
essential for many applications including, e.g., fluid dynamics and climate science. However, solving
these systems and even more using them to predict long term phenomenon remains a complex
challenge, mainly due to the accumulation of errors over time. To overcome the limitations of
traditional solvers and to exploit the available data, many different deep learning methods have been
proposed. For the task of forecasting spatio-temporal dynamics, Ayed et al. (2019) used a standard
residual network with convolutions and Sorteberg et al. (2019); Lino et al. (2020); Fotiadis et al.
(2020) used Long short-term memory (LSTM) and Convolutional neural network (CNN) for the wave
equation. In Wiewel et al. (2019); Kim et al. (2019), a good performances is obtained by predicting
within the latent spaces of neural networks. More recently, Brandstetter et al. (2022) used graph
neural networks with several tricks and showed great results for forecasting PDEs solutions behavior.
Importantly, these methods all solve the PDE iteratively, meaning that they are auto-regressive, the
output of the model is used as the input for the next time step. Another line of recent methods
that have greatly improved the learning of PDE dynamics are Neural Operators (Li et al., 2020b).
These methods can be used as operators or as auto-regressive methods to forecast. However, when
used as operators, they do not generalize well beyond the times seen during training. Crucially,
these auto-regressive methods tend to accumulate errors over time with no possible control, and
respond quite poorly in case of change in the distribution of the data. This leads to stability problems,
especially over long periods of time beyond the training horizon.

In the numerical analysis community, the stability issue has been well studied and is usually dealt with
implicit schemes. By definition, they imply to solve an equation to go from a time step to the next
one but they are generally more stable than explicit schemes. This can be seen on the test equation

fi—’{ = Ay, where Euler implicit schemes are always stable while Euler explicit schemes are not.
Interpreting residual neural networks as numerical schemes, one can apply such schemes and gain
theoretical insights on the properties of neural networks. This has already been done in various forms
in Haber and Ruthotto (2017); Chen et al. (2018), but not applied to forecasting. Moreover, these
works use either the stability of the underlying continuous equation or the stability of the numerical
scheme on the test equation and its derivatives, which is not the stability of the numerical scheme on

the studied equation. Since a network is discrete, the latter is the most relevant. We therefore use the
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stability in norm of schemes, as defined in 2.1. In deep learning (DL), this definition has only been
applied to image classification problems (Zhang and Schaeffer, 2020). To the best of our knowledge,
this work is the first attempt to forecast PDEs with neural networks using stability as studied in the
numerical analysis community.

Using implicit schemes in DL has already been done in different contexts. The earliest line of
works tackles image problems, with Haber et al. (2019) designing semi-implicit ResNets and Li et al.
(2020a); Shen et al. (2020); Reshniak and Webster (2021) designing different implicit ResNets. The
second line of works focuses on dynamical problems. In this way, Nonnenmacher and Greenberg
(2021) designed linear implicit layers, which learn and solve linear systems, and Horie and Mitsume
(2022) used an implicit scheme as part of an improvement of graph neural network solvers to improve
forecasting generalization with different boundary condition shapes. Tackling different types of
problems, none of these methods guarantees the forecast stability. For our analysis, we restrict
ourselves to ResNet-type networks, i.e., networks with residual connections. We introduce hard
constraints on the weights of the network and predict within the latent space of our network. Hence,
by modifying the classic implicit ResNet architecture, our method can forecast dynamical system at
long range without diverging. We apply these theoretical constraints in our architecture to two 1D
transport problems: the Advection equation and Burgers’ equation.

To better investigate networks stability, we perform our experiments under the following challenging
setting: for training, we only give to the networks the data from ¢ = 0 to a small time ¢ = At, and
consider the results in forecasting in the long time range at ¢t = N - At, with N > 1. Note that our
setting is harder that the conventional setting presented for e.g. in Brandstetter et al. (2022). Indeed,
we only use changes between a single time step for training.

2 METHOD

To guarantee structural forecasting stability, we take inspiration from implicit schemes. We focus our
study on an implicit ResNet with a ReLLU activation function. In our approach, an equation is solved at
each layer, namely z,, 1 := 2, +R,, (7,1 1) withzin R™ and nin Nand R,,(x) = ReLU(W,,z+b,,)
where W, is upper triangular. The latter constraint is motivated below.

2.1 IMPLICIT RESNET STABILITY ANALYSIS

To ensure that our proposed architecture is well-defined, we need to solve x = x,, + R, (x). This
equation has a solution, as proven in El Ghaoui et al. (2019) and detailed in Appendix 5.1. We can
then study its stability. The recursion defining (x,, ), N reads as an implicit Euler scheme with a step
size of 1. As described in the introduction, an implicit scheme is usually more stable than an explicit
one. We first recall the definition of stability for schemes. This property ensures that our architecture
has an auto-regressive stability.

Definition 2.1 (Stability in norm). A scheme (x,,)nen of dimension M is stable in norm LP if there
exists C(T') independent of the time discretization step At such that:

Vag € RY, n>0; nAt < T, |lz,l, < C(T)zoll, -

This general definition of stability in norm ensures that a scheme does not amplify errors. This
definition is equivalent to several others in the numerical analysis community.

Suppose that the spectrum of W, is contained in [—1, 0] for every integer n, we can assert that
(zn)nen is well-defined, using theorem 5.2. The proof of the stability of our Implicit ResNet network
is then by induction on the dimension and is given in appendix 5.4:

Theorem 2.1 (Stability theorem). If the elements of the diagonal of W,, are in [—1,0) for every
integer n, then (Ty,)nen is stable in norm LP.

This theorem leads to hard constraints on the weights of the network.
2.2 IMPLEMENTATION
To validate practically our theoretical results, we choose a setting that highlights stability issues. We

then test our implementation of an implicit ResNet. In order to respect the assumptions of theorem
2.1, we forecast the dynamics in the latent space, as detailed below.
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Setting We first learn the trajectory at a given small time step A¢. We only give data t = 0 to
t = At for the training. We then forecast in long-term, at IV - At with N >> 1. This very restricted
setting allows us to see how the network will react in forecasting with changes in the distribution and
error accumulation. Usually neural network forecasting methods use data fromt =0to 7 = L - At
for the training which allows to use different tricks to stabilize the network, such as predicting
multiple time steps at the same time. However, in this work, we want to analyze how the network
behaves without any trick that can slow down divergence. Indeed, the tricks used in the other settings
do not actually guarantee stability of the network. The training is performed with a mean-squared
error (MSE) loss.

Implicit neural network architecture To implement a neural network from Theorem 2.1, we use
the following architecture; za; = faec© [ 0...0 f1.. 0 fene(20), with £ () = 2 +ReLU(Wj_; -

k (z) + br_1). The encoder and decoder are linear, and the encoder projects the data to a smaller
dimension M. The full architecture is illustrated in Figure 2. The specificity of our architecture
is that the residual blocks are connected with an implicit Euler scheme iteration. To do so, we
use a differentiable root-finding algorithm (Kasim and Vinko, 2020). More precisely, we use the
first Broyden method van de Rotten and Lunel (2005) to solve the root-finding problem. It is a

quasi-Newton method. This helped getting better results compared to other algorithms.

Latent space forecasting As in Wiewel et al. (2019); Kim et al. (2019), the forecast can be
done within the latent space of the network; zy.a: = faec © folock © - © foiock © fenc(20), With
foloek = fE 0.0 fL .. To predict at time N - At from time ¢ = 0, we apply N times the residual
blocks. It is illustrated in Figure 4. This propagation allows our network to respect the assumptions

of theorem 2.1 and thus be stable.

3 EXPERIMENTS
We evaluate the performance of our method on the Advection equation and Burgers’ equation.

Datasets Advection equation. We construct our first dataset with the following 1-D linear PDE,
9y = 1% € (0,27), t € RT and ¥(2,0) = fo(2),z € (0,2m).

Burgers’ equation. In the second dataset, we consider the following 1-D non-linear PDE,

9y — 102 L 90 (0,2m), t € (0,1] and (2, 0) = fo(2), 2 € (0, 27).

Both equations have periodic boundary conditions. We approximate the mapping from the initial
condition f to the solution at a given discretization time At, i.e. ug — u(-, At). We then forecast to
longer time ranges. At is set to 1 for the Advection equation with a grid of 100 points and 0.0005 for
Burgers’ equation with a grid of 128 points.

Baseline methods We compare our Implicit ResNet with respect to an Explicit ResNet with ReLU
activation function and a Fourier Neural Operator (FNO) (Li et al., 2020b). We have also implemented
two Explicit ResNet, with a tanh activation function and with batch normalization. We design the
Explicit ResNet in the same way as our implicit version, with K layers of residual blocks that are
linked by z,+1 = x,, + R, (x,). Traditional methods forecast by using the output of the network
at time ¢ to predict the dynamics at time ¢ + At. So to predict at time N - At from time ¢ = 0, the
baseline networks are iteratively applied N times, as illustrated in Figure 3.

Results Prediction errors are reported in Table 1 for the Advection equation and Burgers’ equation.
We also show the error according to the forecast time in Figure 1.

We found that traditional deep learning methods diverge with the forecast time. They reach a MSE of
more than 10® for the Advection equation and go to infinity for Burgers’ equation, respectively at
time 400 and 0.15. Moreover, we see in Figure 1 that their curve in time is convex, so the increase
in error is accelerating over time. We also found that our proposed Implicit ResNet presents better
results by several orders of magnitude for both datasets. Moreover, we can see in Figure 1 that its
curve in time is reaching a stable plateau, as expected from our theorem 2.1.
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As for the training, traditional deep learning methods manage to learn very well the dynamics at
t = At, with two orders of magnitude better than our Implicit ResNet. However, the latter still
manages to learn well the dynamics with a MSE of 1072 for the Advection equation and 103 for
Burgers’ equation. This difference in training can mainly be explained by the longer training time of
the Implicit ResNet, which made us take a smaller number of epochs for this network (1250 against
2500).

Table 1: Results of our approach compared to baselines on the Advection equation and Burgers’
equation. We calculate the means and standard deviations of MSE for each model based on 5 runs
with different seeds. The mid-range time is 40 for the Advection equation and 0.075 for Burgers’ and
the long range time is respectively 400 and 0.15. Recall that At,g, = 1 and Atp,,- = 0.0005.

. Forecast error at mid-range Forecast error at long-range
Train Error  Test Error 8 g 8

Model 4 4 Tado =40 - Atggy Tadv = 400 - Atagy
(1075 (107 Tyur = 150 - Atpyr Tpur = 300 - Aty
R Explicit Res Net 0.03+0.01 0.09+0.07 0.25+0.33 4.7-10% £1.0 - 1032
.1%“\\ FNO 0.04+£0.01 0.1+0.08 0.03 + 0.04 4.7-108+1.0-10°
@ Implicit ResNet (Ours) 14.0 £9.0 25.0+£27.0 27.4+24.0 27.5+24.2
‘g Explicit Res Net 0.17+0.03 090+038 2.77-10Y £6.2-10% +00
\&f‘ FNO 0.02+0.002 0.03+0.006 5.31-10°+11.2.10' +00
o Implicit ResNet (Ours) 4.90+0.64  791+£0.30  0.67 £ 0.43 0.66 + 0.44

Forecast error with different networks Forecast error with different networks

1032 4 — implicit network —— implicit network
—— Explicit network 1021 Explicit network
1077 FNO FNO
1077
102
102

17
10 -

MSE
MSE

12
10 100

107

[ 50 100 150 200 250 300 350 400 000 002 004 006 008 010 012 014
T T

Figure 1: Forecast error for different neural network architectures for the Advection equation (left)
and Burger’s equation (right).

Discussion Figure 1 demonstrates the main benefits of our constrained implicit neural network.
Our network is stable whereas the other methods diverge in time. However, although being stable and
far better than the baselines, it does not manage to forecast accurately the long-term dynamics. This
is further confirmed by Table 4, which shows high relative errors. Said otherwise, when stability is
guaranteed, convergence is not. We can also note that constraining the weights makes our network
harder to train, but guarantees structural forecasting stability.

4 CONCLUSION

In this work, we studied the challenging task of long-term forecasting in dynamical systems. To
do so, we developed a theoretical framework to analyze the stability of deep learning methods for
forecasting dynamical systems. We then designed a constrained implicit neural network out of this
framework. To the best of our knowledge, this is the first work that proposes to study deep learning
architectures for forecasting dynamical systems from a numerical schema standpoint. We showed
improved results with respect to deep learning baselines for two transport PDE:s.

This work opens new perspectives to study neural networks forecasting stability from a numerical
schema standpoint, thus offering more robust architectures. However, this analysis still needs
improvements. Even though it ensures forecasting stability of our proposed network, it does not
guarantee good convergence properties. We believe that developing this line of research could help
overcome these challenges, and provide more robust architectures for forecasting dynamical systems
in long time range.
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5 DETAILS ON IMPLICIT RESNET STABILITY ANALYSIS

5.1 FIXED POINT SOLUTION EXISTENCE

We first define the Perron—Frobenius eigenvalue, before stating the root existence, which uses this
eigenvalue. Let M be a non-negative square matrix, i.e. with non-negative entries.

Theorem 5.1 (Perron—-Frobenius theorem). M admits a real eigenvalue that is larger than the
modulus of any other eigenvalue.

This non negative eigenvalue is called the Perron—Frobenius (PF) eigenvalue and is denoted A, ¢ (M).

Theorem 5.2 (Root existence). For an integer n, given that ReLU is non-expansive, if
Apf(IWh|) < 1, then x defined as x = x, + Ry, (x) exists.

The proof is available in theorem 2.2 of El Ghaoui et al. (2019). They show that the solution can be
obtained using a fixed-point iteration. However they do not offer any analytical solution.

5.2 DEFINITIONS AND NOTATIONS

Let (agfm’mQ))ml’mgee[l:M]z be the strict upper entries of W, and (b$§”>)m€[1:M] the en-
tries of b,. We suppose that (aﬁf’“ mQ)) en and (b(m))neN are bounded. Let @ :=
maxX,,, c[|o,M— 1|],m26[\ml+1m|](maxn€N(|a 7 2))|)) and B = = MaXpeN, me|1, M\](b ™). Let

(=AG™ )me[1:) be the entries of the diagonal of W), and P := min, ey, me[1,m] (AS™)). Pis by
hypothesis finite and positive.

For an integer n and z,, € RM, we will denote by a:(m) the n™™ iteration of the m™ dimension of the

sequence (z,,). For m in [|1, M|], let Sy, := max;c(1,m], keN(fEé ) and Sy = 0.

5.3 EXPLICIT EXPRESSION OF v,

The definitions and notations detailed in section 5.2 are used throughout this section.

Definition 5.1. We define, for an integer n and m in [|0, M ], vn (m) by the recursion:

(m) + Zm 1 sL(m_l)J)xSij_l + bglm)
" . ()
’VL A(»,—,71)
n+1

Lemma 5.1 (Explicit expression of vﬁm)). For an integer n and m in |
(m)

|, an explicit expression

of vy, "’ is given by:

(m) _ (m )ﬁ T ((m=1).9) ) 5

v =z s Il — Z I )
k11+)‘ k:1lk1+)‘ T4+ A™ k1zk1+>\(

Proof. In order to obtain an explicit expression of ’UT(L m) we write out all the terms of v,({”). Let i be

an integer in [0, n]. We then multiply each term by [].* A 1+>%“"’

i+1 m—1 _ ((m—-1),7) ( /) (m) i+1
H 1 (U(ri)l o 1 20y = (ijl QA 41— 0y i H 1

m n+1—i m n—i m m) "
o T+ AL /\gL+)1 i )‘SL+)1 i ios 1+ AL ()2)
We thus obtain a telescoping sum by adding equations Eq. equation 2 for every 4 in [0, n]. O

5.4 PROOF OF THEOREM 2.1

The definitions and notations detailed in section 5.2 are used throughout this section.
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Proof. We will prove that, for m in [|1, M|], (:En )neN is bounded. The proof is by induction on m.

For the base case m = 1, let n be an integer. We will show that (x%l))neN is bounded.

It is easily seen that:

" { 28 A = A2 el <o
Tnt1 = L (2 4V else.
1+)‘$11_¢)_1( ) >
(1) 4 (D)
Let ugll) = é ) and 7)7(11+)1 = (;Aitl;)ll) We then have min(u (1 ), S)) < xg) < max(u% ),vr(})).
n+

Using lemma 5.1, vg) may be written as:

n+1 n+1 n+1 1

Un+1*zo)]:[ Z(H

— ). 3)
1) 1 k—1

1+>\( ) k=1 =k (1+)‘z( )
We can then bound the second term of the right-hand side of Eq. equation 3:

n+1 n+1 ( n+1
|Z H (1 bkl 1 BZ (1 + p\ntl—k
ik (A ) 1+ P
1 Pyt —(1+P
P(1+ P)ntl
Combining Eq. equation 3 and equation 4, we can assert that vg) is bounded.
Since min(x (1), ,(Ll)) < x(l) < max(x(()l) (1)) we can conclude that (x% ))nEN is bounded.
Suppose V j € [|0,m|], (zr ))neN bounded, we will now prove that (a:ﬁ, +1))neN is bounded.
We first solve Eq. equation 5 to find an expression of ng{l).
m . .
X = 2{™ D 4+ max(0, ATV X+ alm D)) 4 plimen)y, (5)
j=1
Deriving both cases, we obtain:
-777(1m+1) Jif — )\5:—7_«1#1) glerl) + Zm . aglm J) 534)_1 +b(m+1 <0
(m+1) _ L(m+1) ma(mi)g (j) (m+1)
n+1 - Ty, +Z J 1+bn lse
o b
The proof is left to the reader.
(m+1) (m+1) (m+1) _ oI+l D) et
Let up = and v, | = D . We then have that
(1+)\n+1 )
min(u{"D | (MDY < (MY < g (u(mH) gy mED),
Using lemma 5.1, v ™" may be written as:
) ( )n+1 1 n+1l n+l n+l n+l 1 ( )
(m+1 m-+1 m-+1
o =" [t ] Zak Ve )
o 1+ )kllk1+)‘ kllk1+)‘ 14"
m+1)

It is easily seen that the first and third terms of vn are bounded. We still wish to bound the
(m

second term of v\ ), Using the induction hypothesis, .S,, is finite. We can then bound the second
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term of v Y:
n+1 n+1 n+1 (
(m, 4) (J) m, 5) (J)
T e o) < | e Do)
k=1 I=k

1
1
<y QS
‘|,§<1+P>H+1—ka |
1 n+1

< mQSmW ;((1 +P)F

(1+ P)"*2 —(1+ P)
P(1+ P)rtt

< mQSm (6)

(m+1) . (m+1) .

Since Eq. equation 6 shows that the second term of vy, is bounded, vy, is bounded, hence

we can conclude that z3" ™" is bounded.
Since both the base case and the induction step have been proved as true, by mathematical induction

for every m in [|1, M]|], (x%m))neN is bounded. Hence x,, = (a:gl), . x%M)) is bounded. O

6 DETAILS ON THE IMPLEMENTATION

6.1 IMPLICIT NEURAL NETWORK ARCHITECTURE

Our implicit neural network is using Rectified linear unit (ReLU) activation functions, as can be seen
in Figure 2.

Definition 6.1 (ReLU). A rectified linear unit (ReLU) function is defined component-wise to a vector
byV x € R,ReLU(z) = max(0, x).

It is one of the most common activation functions used in Deep Learning.

In order to constrain our network, we use upper triangular weights W,,. At each training epoch, we
constrain the diagonal values to be between -1 and O after gradient descent. We choose a minimal
value of 0.01, to ensure that the theorem hypothesis are respected. For values below -1, we set them
to -1 and for values above 0.01, we set them to 0.01.

20—~ W20+ b X0~ 31— x0 ~ReLU(Wp -1 + bo) =0 >—»331

f |

Figure 2: Implicit neural network architecture with K residual blocks.

6.2 FORECASTING SETTINGS

As described in section 2.2, traditional methods forecast by using the output of the network at time ¢
to predict the dynamics at time ¢ + At. Figure 3 illustrates this setting. However, the forecast can
also be done within the latent space of the network. Figure 4 illustrates this different setting.

Zp~ =( Trained neural network >ZAt—> .. =Z(N-1)xAtr—( Trained neural network »Z N+At

Figure 3: Traditional auto-regressive forecasting.
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20 >x0 >Qresiduals blocks of the trained netwo@ XAt

- \J
e . v
ZNxAt N *Af < < K residuals blocks of the trained networlD<—x(N —1)*Ar

Figure 4: Latent-space auto-regressive forecasting.

7  DETAILS ON EXPERIMENTS

7.1 BASELINE METHODS

In addition to an Explicit ResNet with ReLU activation function and a FNO, we have two variants for
the explicit ResNet method.

* an explicit ResNet tanh, with R,,(z) = tanh(W,x + b,,)

* an explicit ResNet BN, with a ReLU activation function, and batch normalization at each
hidden layer, to control the norm inside the network.

7.2  ON TRAINING

The training details for each architecture on both equations are presented in the appendix in Table 2.
For the Advection equation, 350 examples were generated for train, 150 other ones for validation/test
and 50 for forecasting tests. For Burgers’ equation, 120 examples were generated for train, 30 other
ones for validation/test and 50 for forecasting tests. Our experiments led to a few main training
remarks.

Initialization The networks are not really sensitive to the initialization. The only pitfall is to
initialize with high values. Then the network doesn’t manage to converge as well as it could have.
We initialize all networks with Xavier initialization with a gain of 1.

Learning rate scheduling We used learning rate scheduling. It improves performance by a factor
of 100. It is crucial to use it for our problems, and to choose carefully its parameter. We found that a
linear scheduling with carefully chosen decay and step size works well. A special attention needs to
be placed on the initial learning rate as well.

FNO architecture For the FNO network, we chose 12 modes a width of 32 for the Advection
equation and 16 modes and a width of 64 for Burgers’ equation, as was done in the original article.

7.3 TRAINING PARAMETERS
The training remarks detailed previously in section 7.2 led to the choices showed in Table 2.

Table 2: Hyper-parameter choice for each architecture on the Advection equation and Burgers’
equation.

Model Xavier gain  Initial learning rate Decay Step size Epochs
Explicit Res Net 1 0.05 0.95 10 2500
o Explicit Res Net BN 1 0.05 0.98 10 2500
& ] Explicit Res Tanh 1 0.05 0.95 10 2500
vw FNO 1 0.005 0.98 10 2500
» Implicit ResNet (Ours) 1 0.01 0.9 10 1250
Explicit Res Net 1 0.05 0.95 10 2500
N Explicit Res Net BN 1 0.05 0.98 10 2500
& Explicit Res Tanh 1 0.05 0.95 10 2500
Q,&"v FNO 1 0.005 096 10 2500
Implicit ResNet (Ours) 1 0.01 0.98 10 1250
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7.4 ABLATION STUDY

In order to better investigate this task, we conducted experiments with additional architectures. The
results are shown in Table 3.

Table 3: Ablation study for the Advection equation and Burgers’ equation.

. Forecast error at mid-range Forecast error at long-range
Train Error Test Error 4 2 14

Model - 4 Tadv = 40 - Ataqy Todv = 400 - At gqn
OA07 AT g = 150 Aty Tyur = 300 - Atisr
Explicit Res Net 0.03+0.01 0.09+0.07  025+0.33 4.7-10% £1.0 - 1032
o Explicit Res Net BN 1.01+£032  317£20 1.2-10% £ 2.8 - 10% +00
0{@ Explicit Res Tanh 0.98 +£0.1 14.0+£4.0 31.7+70.5 +00
B ENO 0.04+0.01  0.1+0.08 0.03 + 0.04 4.7-10% £1.0 - 10°
» Implicit ResNet (Ours) 14.0+£9.0  25.0+27.0  27.4+24 27.5+24.2
Explicit Res Net 0.17+0.03 090+038  2.77-10 +6.2-10" +00
R Explicit Res Net BN 0.51£0.13  51.63+34.89 +o0 +o0
& Explicit Res Tanh 0.84+0.22 44.67+11.58 +oo +00
‘2’&% FNO 0.02£0.002 0.03+0.006 531-100+11.2-10% +00
Implicit ResNet (Ours) 4.90+0.64  7.91+030  0.67 £0.43 0.66 + 0.44

Table 4: Results of our approach compared to baselines on the Advection equation and Burgers’
equation. We calculate the means and standard deviations of relative error for each model based on 5
runs with different seeds. The mid-range time is 40 for the Advection equation and 0.075 for Burgers’
and the long range time is respectively 400 and 0.15. Recall that At,4, = 1 and Aty,, = 0.0005.
All relative errors are in percentages.

Relative error at mid-range Relative error at long-range

Model Test relative Error 7,4, = 40 - Atyqy Tagw = 400 - Atgagy
Tyur = 150 - Atl)u?“ Tyur = 300 - Atpyr
R Explicit Res Net 0.5 +0.009 106.5 + 66.0 +00
Qeo\‘ FNO 1.1£0.1 34.5+19.0 7.2-10° +1.6- 105
Y& Implicit ResNet (Ours) 10.7 +4.2 1026.8 + 346.7 1037.1 +£347.9
3 Explicit Res Net 29+03 6.9-10"0 £1.5.101 +00
& FNO 0.6 = 0.004 3.6-10%+8.0-10° 400
Qs* Implicit ResNet (Ours) 10.7 +£0.3 277.7 £102.6 340.0 £ 129.9
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