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Abstract

As the deployment of automated face recognition (FR) systems proliferates, bias
in these systems is not just an academic question, but a matter of public concern.
Media portrayals often center imbalance as the main source of bias, i.e., that
FR models perform worse on images of non-white people or women because
these demographic groups are underrepresented in training data. Recent academic
research paints a more nuanced picture of this relationship. However, previous
studies of data imbalance in FR have focused exclusively on the face verification
setting, while the face identification setting has been largely ignored, despite being
deployed in sensitive applications such as law enforcement. This is an unfortunate
omission, as ‘imbalance’ is a more complex matter in identification; imbalance
may arise in not only the training data, but also the testing data, and furthermore
may affect the proportion of identities belonging to each demographic group or
the number of images belonging to each identity. In this work, we address this
gap in the research by thoroughly exploring the effects of each kind of imbalance
possible in face identification, and discuss other factors which may impact bias in
this setting.

1 Introduction

Automated face recognition is becoming increasingly prevalent in modern life, with applications
ranging from improving user experience (such as automatic face-tagging of photos) to security (e.g.,
phone unlocking or crime suspect identification). While these advances are impressive achievements,
decades of research have demonstrated disparate performance in FR systems depending on a subject’s
race [28, 4], gender presentation [2, 1], age [19], and other factors.

Modern FR systems employ neural networks trained on large datasets and one major source of model
bias is disparities in rates of representation of different groups in the dataset. Dataset imbalance is a
much more complex and nuanced issue than it may seem at first blush. While a naive conception
of ‘dataset imbalance’ is simply as a disparity in the number of images per group, this disparity can
manifest itself as either a gap in the number of identities per group, or in the number of images per
identity. Furthermore, dataset imbalance can be present in different ways in both the training and
testing data, and these two source of imbalance can have radically different (and often opposite)
effects on downstream model bias.
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Figure 1: Examples of imbalance in face identification. Top left: data containing more female
identities than male identities. Top right: data containing the same number of male and female
identities, but more images per male identity. Bottom: two possible test (gallery) sets showing how
the effects of different kinds of imbalance may interact.

Past work has only considered the verification setting of FR, where testing consists of determining
whether a pair of images belongs to the same identity [28, 19, 1, 15]. As such, ‘imbalance’ between
demographic groups is not a meaningful concept in the test data. Furthermore, the distinction between
imbalance of identities belonging to a certain demographic group versus that of images per identity
in each demographic group has not been carefully studied in either the testing or the training data.
All of these facets of imbalance are present in the face identification setting, where testing involves
matching a probe image to a gallery of many identities, each of which contains multiple images, see
Figure 1.

In this work, we unravel the complex effects that dataset imbalance can have on model bias for face
identification systems. We separately consider imbalance (both in terms of identities or images per
identity) in the train set and in the test set. We also consider the realistic social use case in which a
large dataset is collected from an imbalanced population and then split at random, resulting in similar
dataset imbalance in both the train and test set. We specifically focus on imbalance with respect to
gender presentation. Our findings show that each type of imbalance has a distinct effect on a
model’s performance on each gender presentation. Furthermore, in the realistic scenario where
the train and test set are similarly imbalanced, the train and test imbalance have the potential to
interact in a way that leads to systematic underestimation of the true bias of a model during an
audit. Thus any audit of model bias in face identification must carefully control for these effects.

2 Face Identification Setup

Face recognition has two tasks: face verification and face identification. The first refers to verifying
whether a person of interest (called the probe image) and a person in a reference photo are the same.
This is the setting that might be applied, e.g., to phone unlocking or other identity confirmation.
In contrast, face identification involves matching a probe image against a set of images (called the
gallery) with known identities. This application is relevant to search tasks, such as identifying the
subject of a photo from a database of driver’s license or mugshot photos.

Our experiments use state-of-the-art face recognition models. We train MobileFaceNet and ResNet-
152 feature extractors each with a CosFace and ArcFace heads. For training and evaluation we use
the CelebA dataset [25], which provides annotations for gender presentation. We create a balanced
training set with equal number of identities and total number of images from each gender presentation,
as well as perfectly balanced test set. The identities in the train and test sets are disjoint. We call
these the default train and default test sets. All models are trained with class-balanced sampling to
ensure equal contribution of identities to the loss. We additionally include results for models trained
without over-sampling in Appendix D.2.
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Recall that our research question is to investigate how class imbalances affect face identification.
In order to answer this question, we train models on a range of deliberately imbalanced subsamples
of the default training set, and test models on a range of deliberately imbalanced subsamples of the
default test set. To evaluate the models, we compute rank-1 accuracy over the test set. Specifically,
for each test image we treat the rest of the test set as gallery images and find if the closest gallery
image in the feature space (as defined by cosine similarity) of a model is an image of the same person.

3 Experimental Setup

First, to explore the effect of train set balance in the number of identities on gender presentation bias,
we construct train data splits with different ratios of female and male identities, while ensuring that
the average number of images per identity is the same across gender presentations. Then, to explore
the effect of train set balance in the number of images per identity we change the average number of
images per male and female identity, but fix the number of identities of each gender presentation. In
both experiments we evaluate the models on the (perfectly balanced) default test set and report rank-1
face identification accuracy.

Analogous to the train set experiments, we conduct similar experiments with test set (gallery) by
splitting the data with different ratios of female and male identities or number of images per identity.
We train all models on default balanced train set and evaluate on constructed imbalanced test sets.

4 Balance in the Train Set

Balancing the number of identities. We compute accuracy scores separately for male and female
test images for models trained on each of the train splits and depict them in Figure 6 in Appendix
D.1 with solid lines. We observe that a higher proportion of male identities in the train set leads
to an increase in male accuracy and decrease in female accuracy, with the most significant drops
occurring near the extreme 10 : 0 imbalance. This indicates that it is very important to have at least
a few identities from the target demographic group in the train set; once the representation of the
minority group reaches 10%, the marginal gain of additional identities becomes less. Additionally,
the accuracy gap is closed for all models when the train set consists of about 10% male and 90%
female identities.

Balancing the number of images per identity. The dashed lines in Figure 6 illustrate the accuracy
of the models trained on each data split. From the first row plots we see that, similar to the previous
experiment, increasing the number of male images in the train set leads to increased accuracy on
male and decreased accuracy on female images. Interestingly, we observe a decrease in performance
for both demographic groups when the images of that group constitute more than 60% of train data.
However, we find that this effect results from the widely used class-balanced sampling training
strategy, and models trained without the default oversampling are more robust to imbalance in the
number of images per identity, see details in Appendix D.2. The “fair point" where female accuracy
is closest to male accuracy occurs when around 20% of images are of males.

5 Balance in the Gallery Set

Balancing the number of identities. We observe that increasing the proportion of identities of a
target demographic group in the gallery set hurts the model’s performance on that demographic group,
and this trend is similar for male and female images. The results are shown in the solid lines of Figure
7 in Appendix D.1. Intuitively, this is because face recognition models rarely match images to one
of a different demographic group; therefore by adding more identities of a particular demographic
group, we add more potential false matches for images from that demographic group, which leads to
higher error rates.

Balancing the number of images per identity. Unlike the results with identity balance, increasing
the average number of images per identity leads to performance gains, since this increases the
probability of a match with an image of the same person. Also, image balance affects the performance
more significantly than identity balance, and these trends are similar across all the models and both
gender presentations. Finally, we note that the “fair point" for image balance in the test set occurs at
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Figure 2: Train & Test Set Imbalance. Results of experiments that adjust the gender presentation
balance in both the train and test set. Male (blue) and female (orange) accuracy are plotted against
the proportion of male data used in both the train and test set.

about 30% male images; contrast this with identity balance, for which no fair point appears to exist.
These results are recorded as dashed lines in Figure 7

6 A cautionary tale: matching the balance in the train and gallery data

Using our findings from above, we conclude that common machine learning techniques to create train
and test splits can lead to Simpson’s paradoxes which lead to a false belief that a model is unbiased. It
is standard practice to make random train/test splits of a dataset. If the original dataset is imbalanced,
as is commonly the case, the resulting splits will be imbalanced in similar ways. As we have seen
above, the effects of imbalance in the train and test splits may oppose one another, causing severe
underestimation of model bias when measured using the test split. This occurs because the minority
status of a group in the train split will bias the model towards low accuracy on that group, while the
correspondingly small representation in the test split will cause an increase in model accuracy, partially
or entirely masking the true model bias. The results for these experiments are presented in Figure 2.

Balancing the number of identities We create train and test sets with identical distributions of
identities. Recalling the results from prior experiments, increasing the number of identities for the
target group in the training stage improves accuracy on that group, while adding more identities in
the gallery degrades it. Interestingly, when we increase the proportion of male identities in both train
and test sets, we observe gains in both male and female accuracy, and that trend is especially strong
for ResNet models.

Balancing the number of images per identity Having more images is beneficial in both train and
test stages. Therefore, the effect of image balance is amplified when both train and test sets are
imbalanced in a similar way. Similar to the train set experiments, having more than 70% female
images in both train and test sets leads to slight drops in female accuracy on ResNet models, which
again is a result of the default class-balanced oversampling strategy.

7 Bias comparisons
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Figure 3: Random Feature Extractors. The
plot illustrates male (blue) and female (orange)
accuracy of random feature extractors against the
proportion of male images in the test set. The
standard deviation is computed across 10 random
initializations.

We ask two concluding questions: one about
whether class imbalance captures all the inher-
ent bias and the other about how the bias we see
compares to human biases.

First, we explore how data imbalances cause bi-
ases in random networks. Given a network with
random initializations, we would expect that eval-
uation on a balanced test set would result in equal
performance on males and females.However, from
Figure 3 we observe that randomly initialized mod-
els have higher male performance when the test
set is perfectly balanced, and that performance on
males is higher when they make up 80% of the test
set than female performance when they make up
80% of the test set. This provides strong evidence
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that there are sources of bias that lie outside what we explore here and which are potential confounders
to a thorough study of bias in face identification; further work on this is warranted.

Then, we ask how class imbalances in machines compare to how humans exhibit bias on face
identification tasks. Please, see the details of this experiment in Appendix C. We observe that
although models and humans both find identifying females more difficult than identifying males, the
particular males and females that are easier or harder to identify appear to differ between models and
humans, which suggests the reasons for bias in humans and machines are different.
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A X-Risk Sheet

Individual question responses do not decisively imply relevance or irrelevance to existential risk
reduction. Do not check a box if it is not applicable.

A.1 Long-Term Impact on Advanced AI Systems

In this section, please analyze how this work shapes the process that will lead to advanced AI systems
and how it steers the process in a safer direction.

1. Overview. How is this work intended to reduce existential risks from advanced AI systems?
Answer: While modern face recognition systems advanced significantly in the last decades,
it is known that these systems have disparate performance on groups of subjects sharing
particular sensitive attributes, such as gender, race or age, leading to massive distrust of
these systems and an unwillingness to deploy them in many cases.
One of the major sources of bias in FR systems is dataset imbalance. This work sheds
light on the effects of different types of dataset imbalance on bias in face identification
systems, which are widely deployed in sensitive applications. We hope that practitioners will
take into account our findings when performing bias audits in face identification systems.
Our findings demonstrate that each type of imbalance has a distinct effect on a model’s
performance on each sensitive group. Furthermore, we demonstrate how train and gallery
set imbalance interact in a way that leads to systematic underestimation of the true bias.
Finally, we compare class imbalance in machines with human bias on face recognition tasks
and show that class imbalance does not capture all the inherent bias in face recognition.

2. Direct Effects. If this work directly reduces existential risks, what are the main hazards,
vulnerabilities, or failure modes that it directly affects?
Answer: Our work reduces the potential for harm caused by neural network bias by (1)
showing how to better audit systems and (2) showing that a proper examination of such
systems must reach beyond dataset imbalances as the systems are inherently biased beyond
their training data.

3. Diffuse Effects. If this work reduces existential risks indirectly or diffusely, what are the
main contributing factors that it affects?
Answer: The findings in our work suggest that researchers should examine architectures for
their biases as even randomly initialized architectures exhibit bias.

4. What’s at Stake? What is a future scenario in which this research direction could prevent
the sudden, large-scale loss of life? If not applicable, what is a future scenario in which this
research direction be highly beneficial?
Answer: Face Identification systems are widely used in critical applications, such as law
enforcement or mass surveillance. It has been shown that these systems are more error-prone
on images of female subjects and darker-skin subjects, and this bias has already been shown
to have caused the wrongful incarceration of innocent black men in the US. Our findings
can be used to audit models, which are under consideration for deployment, for bias to
make sure that minority populations are not inadvertently incarcerated because of flawed
ML systems.

5. Result Fragility. Do the findings rest on strong theoretical assumptions; are they not
demonstrated using leading-edge tasks or models; or are the findings highly sensitive to
hyperparameters?
Answer: Our experiments are conducted on realistic face recognition pipelines with large-
scale pre-trained backbones and with relevant fairness metrics. Our findings are not sensitive
to hyperparameters whatsoever. □

6. Problem Difficulty. Is it implausible that any practical system could ever markedly outper-
form humans at this task?
Answer: Machine face recognition systems can already outperform humans, both in terms
of efficiency and accuracy. □

7. Human Unreliability. Does this approach strongly depend on handcrafted features, expert
supervision, or human reliability?
Answer: Auditing face recognition systems as we do requires data with sensitive attribute
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annotations, for example gender labels. Fortunately, such audits can be conducted using
existing datasets as we do and do not need to be conducted using the model’s training set. ⊠

8. Competitive Pressures. Does work towards this approach strongly trade off against raw
intelligence, other general capabilities, or economic utility?
Answer: Under some definitions of fairness, there may be a trade-off between accuracy and
fairness. However, there is no reason to believe that our current face recognition systems are
on the Pareto frontier of this trade-off. □

A.2 Safety-Capabilities Balance

In this section, please analyze how this work relates to general capabilities and how it affects the
balance between safety and hazards from general capabilities.

1. Overview. How does this improve safety more than it improves general capabilities?
Answer: This work does not in fact improve general capabilities whatsoever and is only
focused on mitigating bias. On the other hand, future work may focus on developing new
architectures which are simultaneously accurate and fair.

2. Red Teaming. What is a way in which this hastens general capabilities or the onset of
x-risks?
Answer: The fairness auditing experiments included in this work do not improve general
capabilities, but nonetheless, any non-exhaustive auditing of industrial or government
systems may lead the organizations and the public into a false sense of security and bring on
deployment. Thus, it is important that such audits be thorough as in this work.

3. General Tasks. Does this work advance progress on tasks that have been previously
considered the subject of usual capabilities research?
Answer: No, our work only proposes techniques for auditing fairness in face recognition
systems, not for improving their accuracy. □

4. General Goals. Does this improve or facilitate research towards general prediction, classifi-
cation, state estimation, efficiency, scalability, generation, data compression, executing clear
instructions, helpfulness, informativeness, reasoning, planning, researching, optimization,
(self-)supervised learning, sequential decision making, recursive self-improvement, open-
ended goals, models accessing the Internet, or similar capabilities?
Answer: Our work does not improve any of the above capabilities. □

5. Correlation With General Aptitude. Is the analyzed capability known to be highly
predicted by general cognitive ability or educational attainment?
Answer: Fairness is not known to be predicted by “general cognitive ability” and in fact
can come with provable accuracy trade-offs for some definitions of fairness. For other
definitions, the trade-off is not well understood. □

6. Safety via Capabilities. Does this advance safety along with, or as a consequence of,
advancing other capabilities or the study of AI?
Answer: Our work does not advance other capabilities outside of fairness. □

A.3 Elaborations and Other Considerations

1. Other. What clarifications or uncertainties about this work and x-risk are worth mentioning?
Answer: Please, see our detailed responses to the questions above.
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B Appendix

B.1 Broader impact and limitations

In this work we explore the effects of various forms of data imbalance on bias in face identification,
and we hope that practitioners will take our findings into account when performing bias auditing.
However, it is important to understand that biases can originate from various sources besides data
imbalance and therefore models should be carefully evaluated for other bias factors.

The availability of high quality datasets, which are suitable for the identification task (as opposed to
verification), have demographic metadata/annotation for both train and test sets, and contain enough
identities and images belonging to each demographic group to allow for subsampling, is extremely
limited. For this reason we focus solely on gender bias and leverage CelebA dataset, which meets
these criteria. Also, using a binary demographic attribute (such as gender, when restricting only to
male- and female-presenting identities) allows the proportion of data in each group to be conveniently
tuned as a single parameter, which in turn makes interpreting results more straightforward.

B.2 Related Work

B.2.1 Imbalance in verification

Even before the advent of neural network-based face recognition systems, researchers have studied
how the composition of training data affects verification performance. Phillips et al. [28] compared
algorithms from the Face Recognition Vendor Test [27] and found that those developed in East Asia
performed better on East Asian Faces, and those developed in Western countries performed better
on Caucasian faces. Klare et al. [19] expanded on these results by comparing performance across
race, gender presentation, and age cohorts, observing that training exclusively on images of one
demographic group improved performance on that group and decreased performance on the others.
They further conclude that training on data that is “well distributed across all demographics" helps
prevent extreme bias.

Multiple verification datasets have been proposed in the interest of eliminating imbalance as a source
of bias in face verification. The BUPT-BalancedFace dataset [34] contains an approximately equal
number of identities and images of four racial groups2. Balanced Faces in the Wild [30] goes a
step further, balancing identities and images across eight categories of race-gender presentation
combinations. Also of note is the BUPT-CBFace dataset [36], which is class-balanced (each identity
possesses the same number of images), rather than demographically balanced.

Some recent work in verification has questioned whether perfectly balanced training data is in fact an
optimal setting for reducing bias. Albiero et al. [1] studied sources of bias along gender presentation;
among their findings, they observe that balancing the amount of male and female training images and
identities in the training data reduces, but does not eliminate, the performance gap between gender
presentations. Similarly, Gwilliam et al. [15] trained models on data with different racial makeups,
finding that models which were trained with more images of African subjects had lower variance in
performance on each race than those which were trained on balanced data.

B.2.2 Bias in Identification

Although the effect of imbalance on bias has only been explicitly studied in face verification, there is
some research on identification which is relevant. The National Institutes of Standards and Technology
performed large-scale testing of commercial identification algorithms, finding that many (though
not all) exhibit gender presentation or racial bias [14]. The evaluators speculate that the training
data or procedures contribute to this bias, but could not study this hypothesis due to the proprietary
nature of the models. Dooley et al. [12] evaluated commercial and academic models on a variant
of identification in which each probe image is compared to 9 gallery images of distinct identities,
but belonging to the same skin type and gender presentation. They find that academic models (and
some, but not all, commercial models) exhibit skin type and gender presentation bias despite a testing
regime which makes imbalance effectively irrelevant.

2This work also introduces BUPT-GlobalFace, which instead approximately matches the distribution across
races to that of the world population.
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B.2.3 Imbalance in Deep Learning

Outside the realm of facial recognition, there is much study about the impacts of class imbalance
in deep learning. In standard machine learning techniques, i.e., non-deep learning, there are many
well-studied and proven techniques for handling class imbalances like data-level techniques [33, 5, 7],
algorithm-level methods [13, 23, 20], and hybrid approaches [6, 31, 24]. In deep learning, some
take the approach of random over or under sampling [16, 21, 29]. Other methods adjust the learning
procedure by changing the loss function [35] or learning cost-sensitive functions for imbalanced
data [18]. We refer the reader to Buda et al. [3], Johnson and Khoshgoftaar [17], for a thorough
review of deep learning-based imbalance literature. Much of the class-imbalance work has been on
computer vision tasks, though generally has not examined specific analyses like we present in this
work like network initialization, face identification, or intersectional demographic imbalances.

B.2.4 Other sources of bias in facial recognition

Face recognition is a complex, sociotechnical system where biases can originate from the algo-
rithms [10], preprocessing steps [11], and human interpretations [8]. While we do not explicitly
examine these sources, we refer the reader to Mehrabi et al. [26], Suresh and Guttag [32] for a broader
overview of sources of bias in machine learning.

B.3 Training details

We pre-process CelebA images by aligning them using the provided facial landmarks and cropping
to 112x112 size. All face recognition models are trained with Focal loss [22] using SGD for 100
epochs with learning rate of 0.1, momentum of 0.9 and weight decay of 5e-4. The learning rate
is reduced by 10 times at epochs 35, 65 and 95. Horizontal flip data augmentation is used during
training. For the model architectures, we use implementation from publicly available github repository
face.evoLVe.PyTorch3. We run our experiments on NVIDIA GeForce RTX 2080 Ti machines
and each experiment takes from 6 to 12 hours of compute time on one GPU.

Table 1: Details on the number of identities, total number of images and average number of images
per identity used in experiments with train and test data balance. We also report statistics for the
default train and test sets. M denotes male, F denotes female.

Setting M ids F ids Total M imgs Total F imgs M imgs/id F imgs/id Total ids Total imgs

Train default 3967 3967 70k 70k 17.65 17.65 7934 140k
Train id balance 0 - 3967 0 - 3967 0 - 70k 0 - 70k 17.65 17.65 3967 70k
Train img balance 3967 3967 14k - 56k 14k - 56k 3.53 - 14.11 3.53 - 14.11 7934 70k
Test default 406 406 7k 7k 17.24 17.24 812 14k
Test id balance 0 - 406 0 - 406 0 - 7k 0 - 7k 17.24 17.24 406 7k
Test img balance 406 406 1.4k - 5.6k 1.4k - 5.6k 3.45 - 13.80 3.45 - 13.80 812 7k

C Bias comparisons

C.1 Are models biased like humans?

Numerous psychological and sociological studies have identified gender, racial, and other biases in
human performance on face recognition tasks. Dooley et al. [12] studied whether humans and FR
models exhibit similar biases. They evaluated human and machine performance on the curated Inter-
Race test questions, and found models indeed tend to perform with comparable gender presentation
bias ratios to humans.

In this section, we use their human survey data to explore two related questions: how correlated are
model and human performance at the question level, and how does this change with different levels
of imbalance in training data? To answer these questions, we define a metric which allows us to
distinguish how well a model performs on each InterRace identification question. Let

L2 ratio =
∥vprobe − vfalse∥2

∥vprobe − vtrue∥2 + ∥vprobe − vfalse∥2
,

3https://github.com/ZhaoJ9014/face.evoLVe
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Figure 4: Pearson correlation of L2 ratio vs. human accuracy for various models as proportion of
male training data varies.
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Figure 5: Scatterplots of model L2 ratio vs. human accuracy on each question in the InterRace
identification dataset. Both models are MobileFaceNets trained with CosFace loss. (Left) a model
trained on exclusively female images. (Right) a model trained on exclusively male images.

where vprobe, vtrue, vfalse are the feature representations of the probe image, the correct gallery
image, and the nearest incorrect gallery image, respectively.4 Figure 5 depicts examples of scatterplots
comparing model confidence to human accuracy on each InterRace question.

Figure 4 shows the correlation between L2 ratio and human performance for various models at each
of the training imbalance settings that we have considered in earlier experiments. We see that the
correlation between these values over all questions tends to rise as the proportion of male training
data increases. However, the correlation when separately considering male and female questions does
not rise as monotonically, or as much, from left to right as the overall correlation does. This suggests
that the correlation between human and machine performance is largely driven by the fact that models
and humans both find identifying females more difficult than identifying males, and that this disparity
is exacerbated when the model in question is trained on male-dominated data. On the other hand, the
particular males and females that are easier or harder to identify appear to differ between models and
humans, which suggests the reasons for bias in humans and machines are different.

D Additional Plots

D.1 Plots for train set and gallery set imbalance.

Figure 6 illustrates performance of the models trained with different ratios of gender presentations in
the train set and Figure 7 depicts performance of the models trained on perfectly balanced train set,
but tested on a gallery set with different ratios of gender presentations.

4We note that other measures of confidence in a k-nearest neighbors setting, such as those discussed in [9],
are inappropriate for this application.
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Figure 6: Train Set Imbalance. Results of experiments that change the train set gender presentation
balance. Male (blue) and female (orange) accuracy are plotted against the proportion of male data in
the train set. All models are tested on the default balanced test set.
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Figure 7: Test Set Imbalance. Results of experiments that change the test set gender presentation
balance. Male (blue) and female (orange) accuracy are plotted against the proportion of male data in
the test set. All models are trained on the default balanced train set.

D.2 Results for models trained without class-balanced sampling.

To explore the effect of class-balanced sampling on the results of our experiments, we train additional
models without any oversampling strategies. Figures 8 - 10 show results of our experiments for
models trained without oversampling. We find that most trends are similar to ones observed in the
models trained with class-balanced sampling, however models trained without oversampling are
more robust to balance in the number of images per identity, see Figure 8. In particular, the effect
of balancing the number of images (dashed lines) is similar to the effect of balancing the number
of identities (solid lines) for all models, but ResNet-152 trained with ArcFace head. This leads us
to a conclusion that using class-balanced sampling strategy is not beneficial in scenarios of severe
imbalance in number of images per identity in face recognition models.
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Figure 8: Train Set Imbalance Results of experiments that change the train set gender presentation
balance for models trained without class-balanced sampling. Male (blue) and female (orange)
accuracy are plotted against the proportion of male data in the train set. All models are tested on the
default balanced test set.
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Figure 9: Test Set Imbalance. Results of experiments that change the test set gender presentation
balance for models trained without class-balanced sampling. Male (blue) and female (orange)
accuracy are plotted against the proportion of male data in the test set. All models are trained on the
default balanced train set.
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Figure 10: Train & Test Set Imbalance. Results of experiments that adjust the gender presentation
balance in both the train and test set for models trained without class-balanced sampling. Male
(blue) and female (orange) accuracy are plotted against the proportion of male data in the train and
test set.
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