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ABSTRACT

Foundation models have shown remarkable success in fitting biological visual
systems; however, their black-box nature inherently limits their utility for under-
standing brain function. Here, we peek inside a SOTA foundation model of neural
activity (Wang et al.| 2025) as a physiologist might, characterizing each ‘neuron’
based on its temporal response properties to parametric stimuli. We analyze how
different stimuli are represented in neural activity space by building decoding man-
ifolds, and we analyze how different neurons are represented in stimulus-response
space by building neural encoding manifolds. We find that the different processing
stages of the model (i.e., the feedforward encoder, recurrent, and readout modules)
each exhibit qualitatively different representational structures in these manifolds.
The recurrent module shows a jump in capabilities over the encoder module by
“pushing apart” the representations of different temporal stimulus patterns. Our
“tubularity” metric quantifies this stimulus-dependent development of neural activ-
ity as biologically plausible. The readout module achieves high fidelity by using
numerous specialized feature maps rather than biologically plausible mechanisms.
Opverall, this study provides a window into the inner workings of a prominent neural
foundation model, gaining insights into the biological relevance of its internals
through the novel analysis of its neurons’ joint temporal response patterns. Our
findings suggest design changes that could bring neural foundation models into
closer alignment with biological systems: introducing recurrence in early encoder
stages, and constraining features in the readout module.

1 INTRODUCTION

Viewed in the large, deep neural networks are intriguing models of the mouse visual system, since
they learn to predict neural responses directly from visual input (Cowley et al., [2023}; |Ustyuzhaninov
et al.,[2022; [Huang et al., 2023} |Averbeck et al.,|2006; |Qazi et al., 2025} [Li et al.} 2023)), and recent
foundation models can generalize, to some extent, beyond training data (Li et al.,2023)). Viewed in the
small, Representational Similarity Analysis (RSA) |Kriegeskorte et al.|(2008)) shows that, on average,
many units in these networks reflect properties (e.g. orientation selectivity) resembling those found in
biology (Conwell et al., 2021} Qazi et al.,|2025). However, while this progress has been impressive,
questions are arising about whether the pairwise activity of units in artificial networks agrees with
biological data (Liscai et al.,[2025)). Moreover, in the large view the input/output maps are far from
complete (normalized response correlation ceilings around 70% (Wang et al.|2025)), raising questions
about their robustness. In effect, response correlation measures how well the input drives the system to
the correct output; it does not address the inverse question of how ambiguity in the output obscures the
input. That is, one must consider both the “forward” and the “inverse” mappings. Such issues are clas-
sical in modeling: control theory teaches us that, without a perfect model, one must “look inside the
box” to achieve identifiability (cf. (Astrt‘)m, 2012)). We seek to do just this on the Foundation Neural
Network (FNN) (Wang et al., [2025). Without this, we cannot guarantee correct, robust, and general-
izable behavior, especially on out-of-distribution data, to confidently build hypotheses about the brain
using the FNN. The FNN was selected because it was trained on MICrONS, the largest available
functional connectomics dataset of the mouse visual system (Bae et al.,[2025)) and is based on artificial
and naturalistic input videos across multiple animals. The FNN thus provides the SOTA in modeling.

FNN consists of multiple stages (Figs.[IB and [6)) and millions of units, so analyses beyond pairwise
interactions—such as third- or fourth-order statistics—are computationally prohibitive. To “look
inside,” we use three techniques popular in neuroscience. These allow us to: (1) evaluate how the state
of the network represents the different stimuli; i.e. how stimuli are related to one another in global
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Figure 1: Approach and manifolds analysis A Stimulus ensemble provides input. B FNN consists
of multiple encoding blocks, modeled as convolutional layers, followed by recurrent and read-
out/interpolation layers. C The tensor of data, containing the response (in time) of each sampled unit
to the stimulus ensemble. D PeriStimulus Time Histogram: The response (instantaneous “firing rate”)
of a single unit/neuron to a stimulus pattern drifting in each of 8 different directions. The curves are
redrawn as an image, with brightness corresponding to activity. A plane through the data tensor shows
the PSTHs for each of the 6 stimulus classes, drifting in all directions. E Decoding manifold, plots
the total activity for each stimulus in PCA-reduced neural coordinates. Colors correspond to stimulus
classes in A. F The time evolution of each stimulus presentation, plotted in PCA-reduced neural coor-
dinates for the early encoder layer. Note the nested, periodic trajectories indicating a stimulus drifting
over a receptive field filter. G Encoding manifold plots individual units/neurons in stimulus/response
coordinates. Note the clustering of units with similar responses across the ensemble.

neural coordinates (Fig. |I[E); (2) to show how all the units in the network are related to each other
functionally when driven by the stimuli (Fig. Ep); i.e. how they encode information; and (3) how
the dynamics evolve as the network processes the different stimuli; i.e., how the global neural state
changes in time during a computation (Fig.[TJF). The first two techniques result in manifolds character-
izing forward and backward mappings, respectively, and the third in trajectories over these manifolds;
all can then be compared against biology. The result, in brief, is that while the FNN learned a forward
map reasonably well, it processes stimuli quite differently from the mouse, and hence is only a partial
“digital twin” in the dynamical sense. Importantly, our manifolds identify where the disparities lie.

In more detail, (1) we build neural decoding manifolds (Chung and Abbott, 2021), in which trials are
embedded in the space of neural activity coordinates (Fig.[IE), then dimensionality-reduced using
Principal Component Analysis (PCA) (Cunningham and Yul 2014). Typically, trials involving the
same stimulus cluster together, facilitating a read-out of the brain’s state. (2) To switch from trials
to neurons, we build neural encoding manifolds (Fig. |Ip) (Dyballa et al,[20244a) in which each point
is a neuron in the space of stimulus-response coordinates, dimensionality-reduced using tensor factor-
ization (Williams et al.,|2018)). Proximity between neurons in an encoding manifold denotes similar
responses to similar stimuli; i.e., groupings of neurons that are likely to share circuit properties. For
a review of classic encoding/decoding in neuroscience, see (Mathis et al.,2024). Finally, (3) the rela-
tionship between these two manifolds is captured by the temporal evolution of each neuron’s activity
for each stimulus trial. Recalling that a ‘neural computation’ can be viewed as the result of a dynami-
cal system in neural state space (Hopfield, 1984), we plot these both as PeriStimulus Time Histograms
(PSTHs, Fig.[ID) and as streamline traces (decoding trajectories, Fig. [TF). While streamline represen-
tations have been used previously for decision tasks (Duncker and Sahanil [2021)) and the motor system
(Churchland et al., 2012} |Safaie et al.,[2023), we note: (i) the activity integral along such decoding tra-
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Jjectories (Fig.[IF) defines the decoding manifold, while (ii) shared tubular neighborhoods (developed
below) specify position in the encoding manifold. These three perspectives enable us to investigate dif-
ferent aspects of alignment: (1) Decoding manifolds reveal whether the model maintains stimulus sep-
arability like biology; (2) Encoding manifolds reveal whether functional topology of neurons is brain-
like; (3) Trajectories reveal whether the model performs computations through brain-like dynamics.
Critically, a model could succeed at one level while failing at others. We use modeling tools available
online (references in Methods), stimuli similar to those used in FNN’s original training (Wang et al.|
2025), and add naturalistic flow stimuli used in mouse physiology (Dyballa et al., 2018) (Fig.[T|A).

Prior Work. There is an extensive literature on modeling biological neural responses (Averbeck
et al., |2006} [Ustyuzhaninov et al., 2022} |Qazi et al., 2025), including other foundation models
(Zhang et al.| [2025} |Azabou et al., [2023} [Ryoo et al., 2025; Ye et al., [2023}2025). We highlight that
compared to these other approaches, the FNN is concerned with predicting neural activity from input
videos. The FNN is an example of a data-driven predictive model (Klindt et al.| 2018 Turishcheva
et al., [2024; Nellen et al.,|2025) with Gaussian readout (Lurz et al.,|2021) that interprets the readout
as per-neuron basis functions with individual readout weights. The readout thus provides an encoding
embedding of biological neurons. For comparability, we use our encoding method to compare
the embeddings of biological neurons and individual readout neurons, investigating not only the
final embedding but also the readout embedding. Different loss functions have been used (Nayebi
et al.| 2023 |[Bakhtiari et al., 2021} [Shi et al., 2022), and others have studied decoding manifolds
(Froudarakais et al., [2020; Beshkov and Tiesingal 2022} |Beshkov et al.,|2024), focusing on topological
properties. For a recent general review, see [Doerig et al.| (2023). Some studies are supportive of
modeling brains with deep networks (Kriegeskorte} 2015} [Yamins et al., [2014} Margalit et al., [2024),
while others raise questions (Serre}, [ 2019a). For the reasons stated above we focus on the FNN.

To our knowledge, this is the first time all three of the encoding and decoding manifold techniques
have been utilized together for analysis of a perceptual system; i.e., toward interpretability for a
foundation model. Interpretability is a rapidly evolving field for analyzing large language models
(Elhage et al.l 2021} Bricken et al.,|2023; |Skean et al.,|2025), vision models (Simonyan et al., 2014;
Olah et al.l 2017), and recurrent models (Krakovna and Doshi-Velez, 2016). This field has been
connected to neuroscience, arguing that both aim to understand complex intelligent black boxes (Kar
et al., 2022} Tolooshams et al., [2025; He et al.| 2024; Mineault et al.,|2025). It aims to investigate
the function of individual neurons, circuits, and modules in artificial networks, while in neuroscience
it additionally focuses on the alignment between artificial models and biological systems (Kar et al.,
2022). We tackle both challenges by trying to understand what functions the FNN modules fulfill
and by testing alignment with biological representations.

Within this framework, we ask: Do neural decoding and encoding manifolds reveal new insights
into how foundation models represent temporal response patterns? Are their representations brain-
like? We hypothesize that each processing stage contributes distinct representational capabilities, all
essential for fitting neural data. In particular, one might expect the recurrent module to enrich the
temporal structure of representations, analogously to the cortex, and the encoder layers to resemble
the retina with its limited recurrence. Following a brief description of our methods, we proceed to
develop each of the manifolds in turn.

2 METHODS

Our work makes novel use of publicly available open-source resources. Specifically, we employed
the pretrained foundation model of neural activity (denoted FNN) provided by |Wang et al.| (2025)),
available here; and the stimulus generation tools and neural encoding manifold construction pipeline
introduced by Dyballa et al.| (2024a), accessible at herel. Below we briefly outline our methods, and
refer readers to Appendix [A]for the full details.

Model: The FNN consists of five modules: perspective, modulation, encoder, recurrent, and readout
(see Fig.[6). The perspective and modulation modules model the mouse’s state and transform the
inputs to approximate the actual visual information received. Thus, only the encoder, recurrent, and
readout modules perform the core computation, and are the focus of this work. The encoder module
is a 10-layer DenseNet-style convolutional encoder (Huang et al.| [2017). For analysis, we use a
subset of encoder layers; we report results from the very first layer and the last block as representative
examples (remaining layers in the appendix). Notably, the encoder includes 3D convolutions, which
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in principle enable it to capture temporal patterns for up to 12 timesteps in the last encoder layers. The
recurrent module is preceded by an attention layer and consists of a convolutional LSTM, followed
by a single convolutional layer that produces its output. This feedforward-recurrent combination
constitutes the core of the FNN, which is trained on data from all mice combined. Finally, a separate
readout module is trained on each mouse individually: it performs an interpolation on the recurrent
output followed by a linear transformation to produce the FNN output. We included one scan (session
8, scan 5) for readout and output analysis, and validated the findings on other sessions and scans. We
claim that comparison across mice on the population level, rather than on individual neurons, is valid.

Stimuli: Our stimulus set is composed of drifting square-wave gratings and optical flows with varying
spatial frequencies moving in eight directions. This yields 88 unique input sequences with stochastic
initial positions and velocities (Fig.[[]A). To ensure that these stimuli would drive the network in a
representative manner, we compared the output of the network for these stimuli with the output for
the original natural movie stimuli used to train the network (Appendix Figs. [0 and [I0); we found the
results to be quantitatively similar in all measured respects.

PSTH visualization: To visualize the network responses to stimuli concisely, we group together
the model’s PeriStimulus Time Histogram responses (PSTH) corresponding to all flow directions
of a given stimulus pattern with time on the z-axis and flow direction on the y-axis (Fig. [ID).
Decoding manifolds & trajectories: Following traditional analysis techniques, we first constructed
decoding manifolds by performing PCA on the stimulus-time-averaged activity data. Therefore, the
decoding manifold contains 48 points, one for each unique sequence, colored by the corresponding
base-stimulus (as shown in Fig. [T]A); different spatial frequencies of the same stimulus are
summarized with the same color. To construct decoding trajectories, we treated each time step as
a separate data point rather than averaging across time before applying PCA. We compared with
biological decoding trajectories using the experimental data from |Dyballa et al.|(2024a).

Tubularity: To investigate neural dynamics, we modeled trajectories by bundling them into tubular
neighborhoods around a central skeleton (Budanur, [2023). We operationlized this idea for discrete
data using the tubular neighborhood theorem (Da Silva, 2008), which guarantees that smooth
submanifolds admit non-intersecting neighborhoods diffeomorphic to their normal bundles. Let
{7:}™, C RP denote a set of m trajectories (curves). We define this set as tubular if it remains close
to a common centerline ¢ and exhibits minimal transverse intersections. Formally, the tube is obtained
by expanding ¢ with a radius profile R(-) such that all points at parameter u within distance R(u)
of ¢(u) are included. In practice, curves are first clustered (e.g., via HDBSCAN (Campello et al.,
2013) using the Sobolev H! metric, or with ground truth) to separate distinct tubes before computing
tubularity scores. We introduce tightness, which measures how tight a group of curves is around the
centerline, and crossings, measuring how many transverse crossings occur in each trajectory bundle.
Therefore, tubularity is not a trajectory-matching metric but a population-geometry metric: it assesses
the structure of collections of trajectories rather than the similarity of individual pairs.

Alignment metrics: To validate our results against the literature, we calculated scores for Repre-
sentational Similarity Analysis (RSA) (Kriegeskorte et al., 2008)), Canonical Correlation Analysis
(CCA) (Raghu et al.,[2017), Linear Predictivity (LP) (Yamins et al.,2014), and Dynamic Similarity
Analysis (DSA) (Ostrow et al.| [2023) (details in Appendix [A.12)
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Figure 2: Encoding Manifold Pipeline (A, B) A non-negative tensor factorization of the original data
tensor identifies those neural factors that account for part of the stimulus ensemble over comparable
time epochs. (C) Collecting the neural factors into a linear vector space, an adaptive-neighborhood
kernel builds a data graph. (D) Diffusion maps yield the encoding manifold.
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Encoding manifolds: To understand the response properties of neurons with respect to all stimuli
(rather than the representation of stimuli in the space of all neurons), we finally constructed encoding
manifolds. At a high level (Fig.[2), these manifolds allow one to examine the global topology of
neuronal populations based on their stimulus selectivities and temporal response patterns (Dyballa
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et al.,2024a). The neural encoding manifold was constructed in three steps. First, a 3-tensor was built
with the temporal responses from each neuron for each stimulus, and decomposed using Nonnegative
Tensor Factorization (details in Appendix), with each component comprised of neural, stimulus,
and temporal response factors. The neural factors then serve as position coordinates, embedding
the neurons into a stimulus-response framework called the neural encoding space. Second, we
constructed a data graph in this neural encoding space using the IAN algorithm (Dyballa and Zucker,
2023)). Third, applying diffusion maps (Coifman et al.| 2005} (Coifman and Lafon, |2006) to the data
graph yielded the manifold. We followed the methodological choices of |Dyballa et al.| (2024a), where
extensive parameter analysis for biological neural data was conducted.

3 RESULTS

We built encoding and decoding manifolds, as well as decoding trajectories, for all layers of the mod-
ules considered in the FNN. Here, we focus on the results that were most informative for interpreting
the computational role of each stage of the network and for comparing the FNN representations to
biological results (see Appendix for extended results). The decoding manifolds assess stimulus
separability, the encoding manifolds capture global neuronal response similarity and topology, and
the trajectories characterize response dynamics. Together, these analyses provide complementary
perspectives for evaluating brain alignment at the population level.

3.1 DECODING MANIFOLDS

A Retina B Mouse D Vi1
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Output
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Figure 3: Decoding Manifolds for the mouse (A) retina and (D) visual cortex are highly clustered by
stimulus (color labels shown in top-right bar) supporting decoding (i.e., reading out the stimulus from
neural responses) in both cases. By contrast, the FNN is most clustered at the recurrent and readout
stages (E-H). Acc: classification accuracy for that layer (see Table 1). Notice how the encoder (first
stage in the FNN) differs significantly from the retina (first stage in the visual system); on the other
hand, the recurrent layer is most analogous to V1.

Table 1: Stimulus classification accuracy for Leave-One-Out 3-Nearest Neighbor (3-NN) and Logistic
Regression (LR) classifiers trained on each layer’s activations. Methods in Appendix@

Accuracy L1 L2 L4 L5 L7 L8 Rec RecOut Readout Out

LR 059 062 066 065 0.71 074 0.89 0.90 0.88 0.77
3-NN 041 0.66 058 052 053 0.61 073 0.64 0.63 0.67
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The biological decoding manifolds (Fig.[3]A, D) showed clear clustering by stimulus with some overlap
between the related 1-dot and 3-dot stimuli. It follows that neural responses at both the retina and
cortical levels can be used to “read out” the stimulus. By contrast, the first encoder layer (L1) yielded a
poorly clustered decoding manifold (Fig. [IE) in which stimulus classes were mixed. This implies that
the latent feature representation at this point within the FNN is not sufficient to distinguish between
the different stimuli (indeed, its classification accuracy is lowest; see Table[I). The decoding manifold
for layer 8 (L8) was similar to that for L1, but with greater stimulus-specific clustering. The recurrent
decoding manifold was closest to the biological data, showing more distinct clusters and greater
overlap between 1-dot and 3-dot stimuli. Following this, the readout and output decoding manifolds
showed weaker clustering, suggesting these stages are responsible for fitting neural data rather than
enriching the model’s representations. This aligns with the classification accuracy being highest
for the recurrent stage and dropping again afterwards, rather differently from biology.

3.2 ENCODING MANIFOLDS
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Figure 4: Encoding Manifolds for the mouse (A) retina and (D) visual cortex differ significantly:
retina is clustered and cortex is continuous. Example PSTHs show how functionality varies smoothly
in cortex but not in the retina. (E) The encoder stage showed a distinct arm of orientation-selective
units («), which are compatible with biological results, and another of intensity-based units (),
which are not. (F) The recurrent stage showed many direction-selective units, but the following (G)
readout stage was the most clustered among all stages. This “bottleneck” layer is then interpolated to
a continuous (H) output layer. While the topology of this final layer is similar to that of biological
visual cortex, the responses of individual units (PSTHs) are not.

The encoding manifolds were even more revealing about differences between the mouse and FNN.
Replotting data from |Dyballa et al.|(2024a)), we start with the retinal manifold (Fig. E]A). The neurons
form clear clusters, each one with distinct response patterns (PSTHs) that corresponded to known
retinal ganglion cell types. By contrast, the V1 encoding manifold is continuous, with smooth
transitions in response patterns as it is traversed. See Dyballa et al.|(20244) for further discussion.

The encoding manifold for L1 (Fig.[T|G) revealed that most neurons belonging to the same feature
map (points with the same color label) formed contiguous clusters, or regions, over the manifold;
this was not entirely surprising given the weight-sharing property of these convolutional layers.
Nevertheless, several feature maps were found mixed into the same “arm” (labeled 3). Examining
the response patterns (PSTHs) of these neurons in detail, we observed strong, continuous activity
across the entire trial duration with no selectivity for directions or stimulus classes. There was no
biological counterpart to this type of neurons.

We now move on to the late-stage encoder layer, L8 (Fig. @] E). Its encoding manifold again showed
grouping by FNN feature maps, but with more mixing than in L1. This was especially true in the
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poorly selective “intensity arm” of neurons, () which exhibited strong response (PSTHs) for all
stimuli across multiple feature maps. Further investigation revealed that the intensity arm resulted
from an FNN technical requirement: padding artifacts at the edges of feature maps. Such artifacts
are a well-known issue in convolutional models (Alsallakh et al., [2020)), and we also observed them
in [Du et al.| (2025)’s model (Fig. [I7). Sampling only from the central regions of feature maps
eliminated both the intensity arm and the shared activity pattern seen in the decoding trajectories (see
Supplemental Fig.[I6). Although these artifacts distort the representation—indeed, the smoothness of
the intensity arm reflects how padding-related information propagates across feature maps—they are
part of the network’s normal operation. Excluding them would therefore misrepresent the model’s
true internal dynamics, so we retained them in our manifold analysis.

We emphasize that the non-selective groups of neurons with high activity (labeled as 3 in Figs.
and @) were a significant departure from what is found in biological networks: in the retina, there are
no such non-selective neurons. Although low selectivity has been observed in cortex, it is restricted
to inhibitory (inter)neurons and continuously mixes with other, more selective responses; they do not
segregate into an arm or cluster (Dyballa et al.| 2024a).

The recurrent module was qualitatively different. Its encoding manifold showed that different regions
exhibited distinct selectivity and temporal response patterns, as evidenced by their PSTHs (Fig. dF).
Furthermore, although segregation by feature map was still present, there was no longer a cluster
of neurons with no selectivity; instead, the highlighted 8 group showed selectivity for particular
directions or orientations, as is typical in biological visual neurons (e.g., PSTHs in Fig. [dD).

The final stages of the network—the readout and output layers—were again different. The encoding
manifold for the readout layer analyzes the intermediate readout neurons in stimulus-response space,
not the final biological output neurons. It was highly disconnected (Fig. [d|G), with each cluster
corresponding almost exclusively to neurons sampled from a single feature map. Each feature map
exhibited a distinct response pattern that was invariant across its neurons. Compared to this, the
biological results (e.g.,|Baden et al.|(2016)); Dyballa et al.| (2024a)) showed more variability within
functional cell “types”, even in the retina. Curiously, and despite this intra-map uniformity, the
large number of feature maps (see PSTHs) and the rich dynamics within each one, somehow enable
the output to represent the complex behavior of neurons (Fig. fH). These behaviors are captured
in the FNN output via a linear combination of readout features. Since classification accuracy has
declined slightly at this stage (Supplemental Fig.[8), but orientation and direction selectivity agree
(Supplemental Fig.[I0), we conjecture that these dynamics interpolate the spiking activity individually
for each mouse data used as input. The smooth manifold aligned most closely with the biological
V1 manifold (Fig. @D), although the large number of transient responses in the FNN did not
match what was found in V1 (across different animals, scans, and sampling procedures).

3.3 DECODING TRAJECTORIES

The encoding manifolds revealed functional differences between FNN and biology: both in the
topology of the neuronal organization, and in the PSTHs i.e. temporal responses for multiple stimulus
classes. This motivated a direct analysis of the population response dynamics. The biological decod-
ing trajectories showed stimulus-dependent development of activity (Fig.[5]A,D). They formed
segregated, stimulus-dependent bundles whose temporal dynamics allowed linear separability during
much of the trial’s time course. Here, V1 activity showed more bundles and less collinear development
of trajectories. This indicates a higher complexity of response patterns in V1 compared to the retina.

Turning to FNN, the decoding trajectories for L1 revealed that periodic stimuli were represented as
loops (Fig. [IF). This was likely due to the translation equivariance of the convolutional layers used
in the encoder stage, which preserved the circular geometric structure of these stimulus sequences
(Cohen and Welling, [2016)). However, we saw that these loops could take on many different forms
(such as that for the high spatial frequency gratings, shown in light blue), influenced by the responses
of particular groups of neurons to each stimulus. Layer 8, by contrast, showed stimulus-independent
temporal decoding trajectories (Fig. [5E). Our analysis of removing the intensity arm from the
encoding manifold showed that this temporal development of activity could be attributed to an
non-selective increase in intensity during the first timesteps (Supplemental Fig. [I6). Without the
intensity arm, L8 has highly stationary neural activity. Thus, despite temporal convolutions, the
FNN feedforward encoder appears to lack biologically plausible stimulus-dependent temporal
patterns and primarily reports features present in the input, with varying intensities.
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Figure 5: Decoding Trajectories in the retina (A) and V1 (D) show the development of neural
activity dynamics into stimulus tubes. The encoder (E) shows only a non-selective increase in activity
(see also Figure [I6) rather than stimulus-dependent tubes. From the recurrent stage onward (F—H),
tubular trajectories similar to those seen in biological data are present. The tubularity metrics quantify
this phenomenon (St;44+), and also highlight a lack of complexity in FNN activity compared to the
biological data, reflected in their lower crossings values (S¢ross)-

The recurrent module showed a qualitative change in decoding trajectories compared to the encoder
(Fig. 5F). Similarly to the biological results, tubular temporal patterns were present at the
recurrent stage. Still, the organization of decoding trajectories was noticeably more entangled than
both retina and V1 (compare with Fig. [5]A,D). This phenomenon was quantified using tubularity
metrics based on the geometry of the observed decoding bundles (see Methods). The tightness scores
were comparable between biological and FNN data from the recurrent stage onward (Fig. 5] Table ).
The retinal trajectories were the tightest, while V1 and FNN trajectories showed more expanded cones
of trajectories. In particular, the FNN readout trajectories were less tight because they linearly spread
out from the origin. The recurrent trajectories were also spread out, but retained a tight stimulus-
dependent organization towards the end of the time frame. The tightness score for trajectories from the
output stage was difficult to interpret: the predominance of transient responses caused a convergence
towards a common point of low activity, which might bias the tightness score to be lower.

A more pronounced difference was observed in the crossings scores. Biological trajectories exhibited
more crossings than those of the FNN, despite their tight tubular development (p < 0.005, Bonferroni-
corrected, for all layers). These crossings occurred predominantly toward the end of the time frame,
when the activity seemed to settle into a steady state. Several factors could explain this pattern.
One possibility is that biological recordings contain inherently more noise, which could artificially
lead to more crossings. However, the noise observed toward the end of the biological trajectories
is of similar magnitude as the overall tube diameter. If measurement noise were the only cause, we
would expect less coherent (tubular), more erratic (noisier) trajectory development already at earlier
time steps, which is not observed. A second possibility is that the crossings reflect genuine neural
dynamics captured in the data, suggesting that biological systems exhibit more complex temporal
processing than the FNN. Modulatory phenomena such as clique-like interactions (Miller and Zucker,
1999) or traveling wave activity (Pitts and McCulloch, |1947; Milner} |1974; [Keller et al., [2024) could
generate these apparent fluctuations late in the trial. These results indicate that while parts of the
FNN reproduce certain aspects of biological temporal structure (such as tubular structure), it is not
yet capable of fitting the full intricacies of neural dynamics observed in real neural populations.

The readout and output stages exhibited tubular trajectories that were less well separated than those
observed in retina and V1 (Fig. Ep,H), consistent with the less clustered organization seen in the
decoding manifolds. In the output trajectories, the bias towards transient responses was clearly visible
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as all trajectories originated from a common point (black, high activity) and converged toward a
shared low-activity point via different paths.

3.4 REPRESENTATIONAL ALIGNMENT METRICS

To validate the results of our manifold analysis, we quantified the representational alignment of the
FNN with both V1 and retina using standard alignment metrics from the literature (Kriegeskorte
et al., |2008; Raghu et al., 2017; |Yamins et al., |2014; |Ostrow et al., [2023). We found that our
result of the recurrent module being most aligned with biology in terms of decoding analysis was
supported by these metrics (see Tables E], @) The DSA metric (Ostrow et al., [2023)), while correctly
showing higher values for tubular dynamics in the recurrent stage and after, wrongly predicted high
alignment between the FNN’s L1 and the biological data. This is likely due to tubular trajectories
arising for entirely different reasons (i.e., local stimulus periodicity). Moreover, smoothness and
neuronal responses (PSTHs) in the encoding manifold showed a clear misalignment between
the FNN’s recurrent stage and V1. This relationship was not captured by the standard metrics,
underscoring the need for our analysis at the population level.

4 DISCUSSION

Decoding manifolds and trajectories allow us to assess whether networks achieve comparable
degrees of stimulus representation and separability. Encoding manifolds, on the other hand, evaluate
at a global level how the responses and global organization of individual neurons compare to those in
biological systems; in other words, whether the FNN and biological networks employ similar encod-
ing mechanisms to produce similar outputs. Finally, decoding trajectories serve as a surrogate for
computation, reflecting the dynamics of activity over the neural state space (cf. (Hopfield,|1984))). Our
analysis of the FNN revealed an increasing richness of representation up to the recurrent module (cf.
Hoeller et al.|(2024); see also contrasts with | Xu et al.| (2023)); Nayebi et al.| (2023)); [Froudarakis et al.
(2020)). However, most PSTHs lacked the characteristic temporal response profiles observed in bio-
logical recordings Ringach et al.|(2016)); |[Ko et al.|(2011). Since the FNN was trained to predict neural
spike trains, classification behavior evolved implicitly (cf. Table EI)). Thus, it is plausible that the re-
current features are sufficiently complex for robust feature representation and that the subsequent mod-
ules serve to fit the neural data rather than to provide additional biologically meaningful computations.

However, the highly clustered topology of the latent representation observed in the readout module
was not consistent with that of the retina or cortex (cf. [Baden et al.|(2016); Dyballa et al.|(2024a), nor
with those of higher visual areas (cf. |Glickfeld and Olsen|(2017); [Dyballa et al.| (2024b); Yu et al.
(2022))). Nevertheless, the rich dynamics within each feature map (as evident in the PSTHs), together
with their large number, seem to enable the output layer to capture the complex response patterns
of neurons, resulting in the network’s strong performance in predicting neural activity. Still, it is
somewhat surprising that such biologically realistic outputs are produced at the FNN’s output through
a simple linear combination of readout features—one would expect the fitting of neural activity to
occur throughout the entire network, rather than as a separate appendage module.

Our analysis pipeline was validated by its overall agreement with commonly used alignment metrics
(Kriegeskorte et al., 2008} Yamins et al.,2014; Raghu et al.,|2017;|Ostrow et al., 2023)) in predicting the
closest alignment at the recurrent stage. However, the reliability of such metrics has been questioned
in the recent literature (Schaeffer et al., [2025; [Anonymous) [2025; Bowers et al., 2023; [Lampinen
et al.} 2025 |Dujymovic et al., [2024; Serre, 2019b). Beyond this high-level alignment, our analysis
also exposed some limitations of these alignment approaches, such as with the DSA metric (Ostrow
et al.| 2023). This highlights the advantage of our manifold-based framework over simple metric in-

Table 2: Mean representational alignment metrics. Mean taken over Representational Similarity
Analysis (RSA), Canonical Correlation Analysis (CCA), Linear Predictivity (LP) and Dynamic
Similarity Analysis (DSA) scores. Details in Appendix [A.T2); individual metric values in Table 6]

Region EncLl EncL2 EnclL4 EncL5 EncL7 EncL8 Rec Readout Output

Retina  0.26 0.26 0.30 0.33 0.28 0.28 040 0.34 0.34
V1 0.29 0.21 0.32 0.30 0.30 0.32 0.53 0.38 0.48
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spection: it provides a deeper understanding of the model’s internal computations and representations.
Tubularity was developed as a descriptive, data-driven characterization of population-level temporal
organization. Rather than constituting an optimality principle for model design, it highlighted a salient
structural property empirically present in biological recordings that was absent in early FNN layers.

Future architecture improvements: Our findings suggest several actionable insights for bringing
foundation models, such as the FNN, into closer alignment with biological systems. (1) Coupling
feature extraction with temporal dynamics: In biological systems, feature extraction and the develop-
ment of temporal response dynamics occur simultaneously. Enforcing temporal dynamics in the early
layers could enable more adequate modeling of the rich retinal dynamics. The FNN uses two tempo-
rally aware mechanisms in the recurrent module: attention and recurrence. We argue that recurrence,
rather than attention, is the critical mechanism, as the FNN without attention yielded equal or better
performance (Wang et al.|, [2025)). Although our analysis was limited to the published attention-based
version, we propose introducing early-stage recurrence that mimics amacrine cell connectivity in the
retina (Marc et al., 2014). (2) Addressing padding-related artifacts: While padding is not an issue in
biological systems, the resulting intensity artifacts can distort model representations. These artifacts
are well known in convolutional architectures (Alsallakh et al.,|2020)), and could be addressed through
alternative padding strategies, or tailored regularization, thereby freeing model capacity rather than
requiring the readout to “unlearn” non-biological features. (3) Revising the readout stage: The current
Gaussian readout layer (Lurz et al.l 2021) combines a large number of feature maps through a single
linear combination step, producing unrealistically distinct feature representations. Enforcing mixed
features while reducing their number to better reflect biological cell type diversity (Bae et al., [2025)
could push the representation towards smoother and more biologically realistic manifolds.

Limitations: Our analysis used a single foundation model, due to the limited availability of other
video-based foundation models of neural activity over time. Moreover, we worked with a restricted
set of stimuli (see Methods) to ensure comparability with biological data. However, there is evidence
that these stimuli exercise much of the mouse visual cortex [Dyballa et al.| (2018), so they provide at
least a necessary component for out-of-sample examination. Moreover, we show that these stimuli
elicit activity patterns in the FNN similar to those evoked by the natural movies on which they
were trained (Appendix Fig. [9), supporting their empirical validity. Finally, the tubularity metrics
introduced here represent a novel approach for quantifying the geometry of neural trajectories. As no
established methodological standards currently exist, further investigation of these metrics would
be valuable. Specifically, systematic investigations of on both biological data and synthetic datasets
would help assess robustness and for obtaining clear baselines. Additionally, incorporating curvature
information could extend the metrics to capture additional characteristics of neural trajectories.

5 CONCLUSION

We found a rich diversity of encoding and decoding topologies in the FNN, highlighting its capability
to fit complex neural data. Distinct representation patterns emerged across modules, reflecting its archi-
tecture. First, the recurrent module appears to learn generalizable representations of temporal stimuli,
promoting uniformity and alignment, as in general self-supervised foundation models (Wang and
Isola, |2022)). Second, the readout module accounts for rich biological variability, but does so through
a large number of self-similar feature maps, differing from the heterogeneous organization known in
V1. Finally, the output layer achieves a continuous representation by linearly combining the readout
features, ultimately enabling the network to associate spike trains with input movies a posteriori.

Using our novel tubularity metrics, we found that biological data exhibited strong stimulus-dependent
structure in both retina and V1, whereas the FNN encoder trajectories lacked such tubularity. Only
from the recurrent module onward did the FNN begin to form bundles of activity, reaching higher—
though still sub-biological-levels of representational cohesion. This emphasizes the role of recurrence
in generating biologically plausible temporal representations, suggesting that models may benefit from
placing recurrence after a more light-weight, local encoder (e.g., emulating the amacrine connectivity
in the retina (Marc et al.,|2014)) and that constrain feature dimensionality to reflect biological cell-type
diversity (Bae et al.| [2025)). While biological fidelity is not a prerequisite for achieving high predictive
accuracy, digital-twin use cases require enough internal alignment to support mechanistic and
interventional inference. Such designs could help bridge the gap between computational performance
and biological plausibility, moving toward truly brain-aligned foundation models.
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Figure 6: FNN architecture. Layers used for sampling are highlighted. Modulation module omitted
as it has no effect for our analysis. The FNN used GeLU activations in the convulutional layers, and
Tanh activations in the Recurrent module.

Appendix

A METHODS

A.1 ONLINE MATERIAL

Our work made use of publicly available open-source resources. Specifically, we employed the
pretrained FNN model provided by Wang et al.| (2025), available at https://github.com/
cajal/fnn/tree/main. For the analysis of this model, we used the stimulus generation tools
and neural encoding manifold construction pipeline introduced by [Dyballa et al.| (2024a), accessible
athttps://github.com/dyballa/NeuralEncodingManifolds.

A.2 FNN

The FNN consists of five modules: perspective, modulation, encoder, recurrent, and readout (Fig. @
The perspective and modulation modules model the mouse’s state and transform the inputs to
approximate the actual visual information received. Thus, only the encoder, recurrent, and readout
modules perform the core computation and are the focus of this work.

The encoder module is a 10-layer DenseNet-style convolutional encoder. Notably, it includes 3D
convolutions, which in principle enable the encoder to capture temporal patterns, for up to 12 time
steps into the past for later encoder layers. The recurrent module is optionally preceded by an
attention layer and consists of a convolutional LSTM, followed by a single convolutional layer that
produces its output. This feedforward—recurrent combination constitutes the core of the FNN, which
is trained on all data. Finally, the readout module is mouse-specific: it performs an interpolation on
the recurrent output followed by a linear transformation to produce the FNN output. We used the
FNN readout from session 8, scan 5 as this was the exemplary scan used in the authors’ tutorial. We
validated findings on several other sessions and scans.

A.3 INPUT VIDEOS

We used the visual stimuli from|Dyballa et al.|(2024a)), consisting of drifting square-wave gratings and
optical flows moving in eight directions. The flow stimuli include oriented (lines) and non-oriented
cycles

(dots) stimuli with spatial frequencies between 0.04 and 0.5 dog This yields 88 unique input
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sequences with stochastic initial positions and velocities. The stimuli were scaled and cropped to fit
the required FNN input shape of 144 x256 pixels. This resulted in an image sequence: {xq,..., X7},
where each x; € R¥>*W  Stimuli were generated using the tools available athttps://github.
com/dyballa/NeuralEncodingManifolds.

The FNN (Wang et al., |2025)) processes 2.33-second sequences of 70 frames each, corresponding
to 30 frames per second. Since in Dyballa et al.| (20244a) the trials were 1.25 s long, we adapted
the stimuli to contain 37 frames to maintain consistency with the FNN framework. This adaptation
was performed using the hyperparameters of the stimulus generation pipeline, allowing comparable
stimuli dynamically created for different lengths and number of frames.

We acknowledge a difference in the experimental setups regarding the visual field: Wang et al.
(2025) used a screen distance of 15 cm, whereas the stimuli from Dyballa et al.| (2024a)) were
originally designed for a 25 cm viewing distance. This discrepancy potentially affects the visual field
transformations performed by the model’s perspective module, as the visual angle subtended by the
stimuli differs between the two configurations. We applied a global scaling factor of 0.7 to all stimuli
to address this. This adjustment was empirically found to optimize stimulus discriminability across
network layers, effectively bridging the geometric gap between the training and analysis domains.

A.4 DATA SAMPLING

Neural responses were computed using PyTorch and extracted by sampling activations from 2000
units across selected FNN layers. Within each layer, 40 feature maps were sampled. Then, 50 neurons
were sampled from each feature map. Feature map sampling probabilities were calculated from the
mean maximum response across all neurons within each map, while neuron sampling probabilities
within each selected feature map were based on individual neuron maximum responses, biasing the
sampling to include active neurons. This sampling procedure was chosen to ensure comparability to
the biological results from |Dyballa et al.|(2024a)). This sampling procedure was tested and validated in
Dyballa et al.|(2024a); we performed further tests with random sampling to validate this bias does not
filter out relevant structures. One exemplary sampling result, showing qualitative stability of results
across sampling strategies and sizes can be found in Fig[I8] Increasing the sampling rate beyond
2000 units did not significantly alter manifold topology but hindered cluster separation in diffusion
map analysis. The resulting tensor data had dimensions (N x S x O x T') with N = 2000 neurons,
S = 11 stimulus types, O = 8 orientations and 7' = 37 time steps. For manifold construction,
the optimal spatial frequency was selected (resulting in .S = 6 stimuli) whereas for classification
performance all spatial frequencies were kept. We report results from a single random seed per
layer, as preliminary analysis showed consistent manifold structure across different random activity
samples. These neural activation tensors served as input for subsequent classification and manifold
analysis. This sampling procedure was developed by |Dyballa et al.|(2024a)) and tested against other
sampling methods there. We also experimented with the sampling procedure, finding that random
sampling and increased sampling rate did not introduce qualitative changes to the manifolds.

A.5 STIMULUS ADEQUACY

For every FNN layer investigated in this paper, we extracted the activation to the stim-
ulus ensemble consisting of gratings and flows (see Section [A3) as well as to a 100-
second-long natural input video from the MICrONS functional dataset (Bae et al.. [2025),
downloaded from s3://bossdb-open—-data/iarpa_microns/minnie/functional_|
data/stimulus_movies/. Both stimulus sets produced similar activation magnitudes across
the entire network (see Fig. [0), which shows the adequacy of the stimulus ensemble used for testing
the FNN.

For orientation and direction selectivity, we followed Wang et al.[ (2025)’s procedure: We input
directional pink noise (16 directions, 37 frames) to the model and record the output activations. Addi-
tionally, we recorded the outputs for our flow stimuli. For both datasets, we computed the Orientation
Selectivity Index (OSI) and Direction Selectivity Index (DSI) and compared their distributions.
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Here, T is the mean response for angle . We found comparable OSI and DSI distributions (see

Fig. [10).
A.6 CLASSIFICATION ACCURACY

Classification performance of the stimulus set, measured using activations, serves as a proxy for
representational richness. Logistic regression is employed to assess linear separability, while k-
Nearest Neighbor (k-NN) classification is used to evaluate local geometric structure for comparison
with logistic regression.

Stimulus classification accuracy based on individual-layer activities was determined by training
multinomial logistic regression classifiers (solver: L-BFGS) with 5-fold cross-validation (CV). Only
sampled neurons were used to classify the 11 stimuli. For each layer and each time point t, two
feature sets were constructed: (i) the mean activity over frames O to t (increasing window) and (ii)
the mean activity over frames t to end (decreasing window). For comparison, K-nearest neighbor
classifiers (K=3) were also evaluated using leave-one-out CV. The value K=3 was selected as the
optimal neighborhood size. Leave-one-out CV was used for k-NN due to its suitability for small
datasets, while 5-fold CV was chosen for logistic regression to reduce computational requirements.
Results are summarized in Table [I]and Fig. ??.

A.7 CONSTRUCTION OF DECODING MANIFOLDS

For building the decoding manifolds, we applied PCA (scikit-learn) to the averaged activity data. In to-
tal, the decoding manifolds contain 48 points, consisting of 6 stimuli and 8 movement directions each.
The 6 stimuli were obtained from a majority vote of all neurons on the optimal spatial frequency elicit-
ing higher responses. The decoding manifolds use different colors for each stimulus, as introduced in
Fig.[I] Different spatial frequencies of the same stimulus are summarized with the same color. To con-
struct decoding trajectories, we treated each time step as a separate data point rather than averaging
across time before applying PCA. In both cases, we reduced the dimensionality to three components
for visualization after verifying that further dimensions did not encode qualitatively new information.
We constructed biological decoding trajectories using experimental data from |Dyballa et al.|(2024a)),
available at https://github.com/dyballa/NeuralEncodingManifolds!| For the bio-
logical decoding trajectories, we did not use the additional zero-activity time step since a baseline
activity level was already provided by the inter-stimulus intervals in the experiments.

A.8 TUBULARITY

Before calculating tubularity metrics, we standard-scale the data and apply PCA to obtain a 10-
dimensional embedding, thereby speeding up the computation. While visualizations use only the
first 2-3 dimensions, all metrics are calculated in the 10-dimensional space. To ensure comparability,
we resampled all trajectories to length 100. For statistical analysis, we generated 100 bootstrapped
samples, and using ground-truth clusters, performed Bonferroni-corrected Mann-Whitney U tests on
our hypotheses.

We formalize how “tight” a group of curves is around the centerline: We reparameterize each curve
by normalized arc length u € [0, 1] and resample to {uy } 2~ ,. Let ;(us) € RP denote the samples
and 7;(uy) their unit tangents. We define the mean curve as the pointwise average:

cur) = =Y wilw), riCu) = liCur) - elue).
i=1
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The tightness score is calculated by averaging quantile tube radii across bins {I,}£_, that partition
[0, 1], using a high quantile ¢ € [0.8,0.95] to ensure robustness to noise. We normalize each tube’s
tightness score by tube length.

B
1
Stight = 5 Z quantile,{ r;(u) : u € I, over all curves }.
b=1

The second quantity assessed is the uniformity of the tubes relative to one another. That is, the degree
to which crossings occur in our defined bundle of curves. Tubes are considered disorganized when
distinct curves pass near each other with transverse directions. Let d;;(u,v) = [|a;(u) — z;(v)||
and ¢;;(u,v) =1 — (7;(u), 7;(v))? € [0, 1] (large for near-orthogonal tangents). Using a Gaussian
kernel K_(p) = exp(—p?/(2¢2)), we softly count encounters:

2 1,1
de = m ;/0 /0 Kf(dij(“vv)) ¢ij(u, v) dudv.

Stight and Scross only depend on distance, unit-tangent inner product, and arc-length. Therefore, they
are invariant to translations, rotations, and re-timing. We emphasize that, for both scores, smaller
values indicate more tubular curve bundles, while larger values indicate fewer tubular curve bundles.

A.9 CONSTRUCTION OF NEURAL ENCODING MANIFOLDS

At a high level, the motivation for constructing neural encoding manifolds is to find a space in which
one can examine the global topology of neuronal populations based on their stimulus selectivities
and temporal response patterns (Dyballa et al.,2024a). The neural encoding manifold is constructed
in a three-step procedure. First, a 3-tensor is built with the temporal responses from each neuron
for each stimulus, and decomposed using Nonnegative Tensor Factorization (details below); each
component is comprised of neural, stimulus, and temporal response factors. The neural factors then
serve as position coordinates, embedding the neurons into a stimulus-response framework called the
neural encoding space. Second, we construct a data graph in this neural encoding space using the
IAN algorithm (Dyballa and Zucker, [2023). Third, applying diffusion maps (Coifman et al., 2005}
Coifman and Lafon| [20006) to the data graph yields the manifold.

The methodological choices in our manifold construction procedure are made in accordance with
Dyballa et al.| (2024a)), where extensive parameter analysis for biological neural data was conducted.
Since neural encoding manifolds computed with these specific parameters represent the only available
comparison for biological data from the visual system, we maintained their parameter settings to
ensure direct comparability between artificial and biological neural representations. We further
conducted analysis for FNN-specific parameters, such as the sampling procedure, by adapting their
code to fit the FNN requirements.

A.9.1 PREPROCESSING

The input tensor of neuronal activity (see above) was preprocessed in several steps (using NumPy
and SciPy). First, the individual responses were smoothed along the time dimension using a one-
dimensional Gaussian kernel with o = 3. Next, we grouped the stimuli into medium versus high
spatial frequencies and selected the one exhibiting higher response magnitudes. The temporal
responses for the 8 directions of motion were then concatenated together into a single vector. Finally,
we normalized each response and rescaled it by the relative activations of the neuron. The resulting
tensor T had shape ((IN = 2000) x (S = 6) x (O =T = 296)).

A.9.2 NONNEGATIVE TENSOR FACTORIZATION

Next, Nonnegative Tensor Factorization (see (Williams et al., 2018]) for an overview and applications
to neuroscience) was applied to our tensor T. It was decomposed into typically 1015 rank-1
tensors which are obtained from the outer product of three vectors each. We selected the number
of components separately for each data sample based on changes in explained variance and noise,
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following the procedure in|Dyballa et al.|(2024a). The factors in each component are scaled to unit
length, and their magnitudes absorbed by a scalar \,.:

R
T = Z )\Tvﬁl) o vg) ) v£3) =[N XM, x@). X(3)] 3)
r=1

For the second equality, the factor matrices X (*) are constructed using the factor vectors vgk) as

columns, and the vector A\ contains all individual \,s.

Decomposing the tensor T into these components is an optimization problem with the following
objective function and non-negativity constraints:

. 1 -
X<1>,r>?<1§>l,x<3) §||T -l @
such that X®* > 0,Vk (5)

The resulting decomposition is interpretable: the third group of vectors, V,E«g), describes different

temporal response patterns; v7(«2) contain information about which stimuli exhibit these response

patterns; and v,(«l) are the neuronal factors determining which neurons exhibit the response patterns

characterized by v£2) and v£3). During decomposition, circular permutations were applied to detect
patterns irrespective of the preferred orientations of specific neurons (again, this is necessary to

ensure compatibility with the biological results from (Dyballa et al., [2024a))).

Using the OPT method from Tensor Toolbox (Bader et al.|[2023)), we ran the decomposition 50 times
(different initializations) for each number of components and dataset to ensure robust decomposition
results and the choice of the number of factors, R. The manifolds were robust to small changes
in R, therefore the heuristic for choosing R based on the explained variance of the decomposition
outlined in |Dyballa et al.|(2024a)) proved sufficient. For building the manifolds, we used the result
with smallest reconstruction error among the 50 initializations.

A.9.3 NEURAL ENCODING SPACE

Following |[Dyballa et al.| (2024a), we now reformulate the above decomposition to construct the
neural encoding space. By defining the diagonal matrix A with A,.. = A, we obtain:

T =XWAX® oX®) (6)

Since the first matrix, X1, represents the neuronal factors, we denote it by A/. Now, define a matrix
B with columns b.

b., = vec(vg) o v£3)) @)

Finally, we obtain a matrix representation of T with respect to neuronal factors as X zr:

X = BANT ®)

This reformulation constructs the neural encoding space. The unit-norm basis vectors of this space
are given by the columns of B. We define the neural matrix containing the positions of all neurons in
this space as N, = AA. The distances between any two neurons in this space reflect their similarity
in stimulus-selective temporal response patterns. Intuitively, neurons with similar selectivity profiles
and temporal dynamics should be positioned close together, while neurons with dissimilar response
characteristics should be farther apart.
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A.9.4 ITERATED ADAPTIVE NEIGHBORHOODS (IAN)

Within this neural encoding space, we construct a weighted graph of the data by inferring a similarity
kernel. This is achieved using the Iterated Adaptive Neighborhoods (IAN) algorithm (Dyballa and
Zucker, 2023)), which infers an adaptive local kernel without the need for pre-specifying a fixed
neighborhood size.

IAN first constructs the unweighted Gabriel graph for the data points. In addition, a weighted
graph is constructed using a multiscale Gaussian kernel based on the discrete neighborhood graphs.
Subsequently, the graph is iteratively pruned by ensuring consistency between the discrete and
continuous neighborhoods. The resulting weighted graph is represented by the adjacency (kernel)
matrix K. This matrix contains similarities computed using locally tuned Gaussian kernels.

A.9.5 DIFFUSION MAPS

Diffusion Maps (Coifman et al.| 2005} (Coifman and Lafon| 2006) are a dimensionality reduction
technique that retain distances and preserve the intrinsic geometry of the manifold. The diffusion
process is based on graph Laplacian normalization from spectral graph theory.

In detail, we use the weighted graph obtained from IAN as the weighted adjacency matrix K. The
first step is to normalize and symmetrize it to produce M:

di = Z Kij +e€ (9)
\/ J

K
M, = — 10
ad” (10)
This normalization ensures that nodes of high degree do not dominate the analysis. We then calculate
the spectral decomposition of M with eigenvalues A\g = 1 > A1 > As... and eigenvectors 9, for
t = 1 diffusion steps using L = 20 eigenvalues:

L
ML= A (), ()) (11)

=0

Finally, from the spectral decomposition, we obtain the diffusion map with diffusion coordinates:

Nyt i)

. X‘id’l(l)

(i) = ; (12)
AL (@)

Plotting the data using these diffusion coordinates yields the neural encoding manifold.

A.9.6 ENCODING MANIFOLD VISUALIZATION

For visualization purposes, we optionally applied metric multidimensional scaling (MDS) to the
diffusion map coordinates. This was done by computing pairwise squared Euclidean distances
using the first diffusion coordinates, constructing the corresponding Gram matrix G = —0.5 * D2,
and applying kernel PCA to obtain a lower-dimensional embedding. This preserves the distance
relationships from the diffusion map while combining multiple diffusion coordinates, enabling a
clearer visualization of the manifold structure.

Based on the manifold topology, we selected groups of neurons to investigate via their PeriStimulus
Time Histograms (PSTH). We averaged their activity across trials and constructed the PSTHs as a
2-D heatmap, where each row contains the temporal activity in response to a particular direction of
motion (as displayed in Fig.[T). Additionally, we calculated the average response intensity over time
for these groups and reported the s.e.m. using the shaded regions (see insets in Fig.[2A,D).
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A.10 VISUALIZATIONS

Interactive three-dimensional plots of the manifolds were computed using Plotly. Other plots were
created with Matplotlib and TUEplots.

A.11 MINIMODELS

For our additional analysis in Fig. we used the convolutional model introduced in Du et al.| (2025]).
We downloaded model checkpoints from https://github.com/MouseLand/minimodel/
tree/mainl We left the manifold pipeline unchanged for this experiment and sampled activations
from layer 2.

A.12 ALIGNMENT METRICS

For comparability, the biological data was downsampled to 37 time steps for all alignment metric
calculations. Except for DSA, all metrics were calculated on the individual time steps and the
averaged.

A.12.1 REPRESENTATIONAL SIMILARITY ANALYSIS (RSA)

RSA (Kriegeskorte et al.,2008)) is computed by obtaining the Representational Dissimilarity Matrices
(RDMs) for every time step individually via RDM = 1 — PearsonCorrelation. Then, based on
the upper triangular values (excluding diagonals), the RSA scores are obtained from the Spearman’s r
(using scipy stats) between biological and artificial data.

A.12.2 CANONICAL CORRELATION ANALYSIS (CCA)

For CCA (Raghu et al.,[2017), the data was first dimensionality reduced using PCA (3 components).
Then, using sklearn’s CCA function, the first 3 canonical vectors were obtained and their correlations
between brain and model were averaged, yielding CCA.

A.12.3 LINEAR PREDICTIVITY (LP)

Linearly predicting individual biological neurons from FNN data using Ridge Regression did not
yield adequate scores due to the high amount of noise. Therefore, we again used PCA to obtain
3 components for brain data and 20 components for artificial data. We then fit Ridge Regression
(v = 1 to predict individual components of biological data using 40 random stimuli, and measured
the average performance on the 8 heldout stimuli via R? (Yamins et al., [2014).

A.12.4 DYNAMICAL SIMILARITY ANALYSIS (DSA)

For DSA (Ostrow et al., |2023)), we again simplified data using PCA (10 components) and computed
DSA scores using the DSA function from the authors. We reported inverted DSA scores (1 — DS A)
to compare with other metrics, and Z-scores compared to a null distribution of 50 samples where the
time steps of FNN data were randomly shuffled before comparing to biology.

A.12.5 CRITIQUE

The validity of these methods for comparing brains and machines has been questioned (Serre, 2019b).
Schaeffer et al.|(2025) argue that lower LP scores may correspond to less brain-like models, as, instead
of selecting biological models, LP overfits biases in linear regression. They claim that the same
holds for overfitting to other representational similarity metrics. It is unclear what brain alignment
means and what the different alignment metrics truly measure (Anonymous, |[2025). Metric variability
can fall within individual subject variability, making clear conclusions difficult (Anonymous, 2025).
Bowers et al.| (2023) question the assumption of biological visual systems being optimized to classify
objects. Also, they claim that differences in the features used in DNNs compared to those in the brain
can lead to high similarity. Moreover, simple features can be overrepresented compared to complex
features, biasing the similarity scores (Lampinen et al.,|2025)). Finally, Dujmovic et al.|(2024) find
that metrics like RSA are not robust with respect to input perturbations.
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A.13 SOFTWARE
All software (Table 3 is used in accordance with its respective license.

Table 3: Software packages used in this work.

Package Version License
MATLAB Tensor Toolbox (Bader et al., [2023)) 3.6 BSD-2
IAN (Dyballa and Zucker, 2023) 1.1.2 BSD-3
NeuralEncodingManifolds (Dyballa et al.,[2024a) N/A BSD-2
NumPy (Harris et al., 2020) 1.25.0 BSD-3
SciPy (Virtanen et al., 2020) 1.15.3 BSD-3
scikit-learn (Pedregosa et al., [2011)) 1.7.1 BSD-3
PyTorch (Paszke et al.,[2019) 2.6.0 MIT
Matplotlib (Hunter, 2007) 3.10.1 PSF-based (BSD-compatible)
Plotly (Inc.,|2015)) 6.0.0 MIT
TUEplots (Kramer et al., [2024) 0.2.0 MIT

A.14 COMPUTE

The experiments were conducted on an HPC cluster. FNN sampling uses randomly selected GPUs
(RTX 2080 Ti, or better). All other experiments were performed on CPU. All experiments required
less than 30 GB memory. In total, 10 tensor decomposition experiments were run on CPU, each
taking 2 days on a single CPU. Preliminary results not included in the paper required another 50
tensor decomposition experiments.

A.15 LANGUAGE MODEL USAGE

At the level of individual words or partial sentences, language models were used to fix language errors.
Minor code sections were produced by language models and used only after careful inspection.

B DATA AND CODE AVAILABILITY

Upon acceptance, we will publish a GitHub repository with the full code necessary to reproduce
all experiments and figures in this paper. We will also provide rotating video animations of three-
dimensional visualizations to aid interpretation.
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C SUPPLEMENTAL FIGURES

Figure 7: A tubular neighborhood around a centerline ¢(u) with radius profile R(u).

Table 4: Tubularity metrics for biological and FNN data. Low tightness and crossings values
indicate high tubularity. Aligning with the visualization in Fig.[??] the biological trajectories show
highly tubular organizations compared to FNN. Method details in Appendix ??.

Layer  Ground Truth Labels HDBSCAN Labels
Stight Scross Stight Scross Clusters

Retina  0.0688 1.29 x 1079 0.1017 1.06 x 1079
A4l 0.1357 4.06 x 1079 0.1859 3.50 x 1079
Encl 0.2018 2.87x 10794 0.7680 1.66 x 10794
Encl3 1.9885 1.77x 1079 4.3461 1.09 x 10796
Rec 0.1228 2.65x107°7 0.1697 1.53 x 10797
RecOut 0.1209 5.72x 10797 0.1650 5.34 x 10797
Readout 0.3307 3.96 x 10796 0.4320 5.40 x 10796
Output  0.1483 3.53 x 1079 0.2784 1.12 x 10796

WA A AW~ BAA
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Figure 8: Logistic regression (LR, top) and K-Nearest Neighbor (KNN, K=3, bottom) classifier
accuracy for each layer. We use increasing time windows (timesteps 0 — t, red) or decreasing time
windows (t — 37, blue) to calculate the accuracies. Shaded regions for LR show the s.e.m. The
maxima across panels are summarized in Table E

Table 5: Representational Similarity Analysis (RSA), Canonical Correlation Analysis (CCA), Linear
Predictivity (LP) and Dynamic Similarity Analysis (DSA) scores and DSA Z-scores to a time-shuffled
baseline. High values indicate closer alignment for all metrics. (see Appendix @)

Region Metric L1 L2 L4 L5 L7 L8 Rec Readout Output
Retina RSA -04 -03 -03 -01 -01 0.03 0.03 0.05 -.01
Retina CCA 0.19 025 025 030 027 026 0.34 0.25 0.32
Retina LP 0.05 006 0.17 029 026 028 043 0.24 0.26
Retina DSA 084 077 0.83 073 058 056 0.80 0.81 0.80
Retina DSA-Z 590 4.77 529 455 235 187 2.00 1.79 4.45
\"2! RSA 11 -27 -16 -22 0.10 0.08 0.46 0.08 0.41
Vi1 CCA 029 031 033 039 029 035 0.39 0.29 0.38
Vi LP 005 004 0.18 029 023 027 040 0.22 0.24
\"2! DSA 091 076 093 076 0.59 0.57 0.88 0.92 0.90
Vi1 DSA-Z 7.03 549 6.52 591 546 440 4.72 3.50 5.27

Table 6: Explained Variance (EV, in %) of decoding manifold PCA, and number of tensors (R) and

Error Percentage (EP) of tensor factorization (in %)

Metric L1 L2 L4 L5 L7 L8 Rec RecOut Readout Output
EV 4791 57.66 59.52 4820 4853 4277 57.73 53.43 53.99 5523
R 8 12 11 11 13 11 9 12 17 14
EP 37.08 2550 23.02 2335 2234 2351 15.68 16.45 13.81 9.26
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Figure 9: Activation function output distributions and maxima for natural MICrONS
[2025) input videos and the flow stimulus ensemble (Dyballa et al.,[2024a). The comparable activity
across network layers shows the adequacy of investigating the FNN with flow stimuli. The differences
in magnitudes across layers are explained by the activations functions (GELU in the encoder, Tanh in
the recurrent and readout modules).
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Figure 10: OSI and DSI of FNN output for pink noise (as used in/Wang et al.|(2025)) and for the
stimulus ensemble from [Dyballa et al. 120245]), meaned over the different stimuli.
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Figure 11: Tubularity comparison between biological and FNN data. Tightness, measuring how
close trajectories within a bundle are to their centerline, and crossings, measuring the amount of
transverse crossings in a bundle, are scores for biological and FNN data. Left: Using ground-truth

stimulus class labels. Right: Using HDBSCAN (Campello et al., 2013) labels.

A Decoding Manifold B Decoding Trajectories C Encoding Manifold

Figure 12: Encoder L2. Note the encoding manifold smoothness here results from the early layer
only capturing simple features and the dominance of intensity discussed for L8. We therefore do not
interpret this as a V1-like smooth encoding manifold.

A Decoding Manifold B Decoding Trajectories C Encoding Manifold

Figure 13: Encoder L4. Note the encoding manifold smoothness here results from the early layer
only capturing simple features and the dominance of intensity discussed for L8. We therefore do not
interpret this as a V1-like smooth encoding manifold.
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A Decoding Manifold B Decoding Trajectories C Encoding Manifold

Figure 14: Encoder L5. Note the encoding manifold smoothness here results from the early layer
only capturing simple features and the dominance of intensity discussed for L8. We therefore do not
interpret this as a V1-like smooth encoding manifold.

A Decoding Manifold B Decoding Trajectories C Encoding Manifold

Figure 16: Encoder L8 decoding manifold, trajectories and encoding manifold without intensity
artifacts. Without the intensity artifacts there is no temporal development at all in the decoding
trajectories (comparable to encoder L1) apart from the jump after the O-th step. The non-selective
high intensity neurons are padding artifacts at the edges of the image. In the encoder, due to spatial
convolutions, the effect of these artifacts spreads out across the feature maps. This is supported by the
intensity smoothly organizing the manifold with a transition from intensity-only neurons to selective
responses. In the recurrent stage, the function of the attention layer is capable of filtering exactly
those artifacts out. The artifacts are reintroduced by the recurrent-output convolution, but then filtered
out by the readout interpolation from central neurons only.
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-

Figure 17: Minimodel encoding manifold with intensity arm. The intensity artifacts are also

present in the border regions of feature maps in the model from Du et al| (2025).
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b) 2000 Neurons, 40 feature maps,  c¢) 2000 Neurons, 40 feature maps,
a) 2000 Neurons, 40 feature maps, 50 neurons each, random feature 50 neurons each, intensity-based
50 neurons each, intensity-based  map, and intensity-based neuron  feature map, and random neuron
feature map and neuron sampling. ~ sampling. sampling.

d) 2000 Neurons, 40 feature maps, e) 4000 Neurons, 80 feature maps, ) 5000 Neurons, 50 feature maps,
50 neurons each, fully random fea- 50 neurons each, intensity-based 100 neurons each, intensity-based
ture map and neuron sampling. feature map and neuron sampling.  feature map and neuron sampling.

Figure 18: Sampling tests for readout encoding manifolds. The encoding manifold for all sampling
conditions look similar, having clusters by feature maps.
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