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ABSTRACT

Foundation models have shown remarkable success in fitting biological visual
systems; however, their black-box nature inherently limits their utility for under-
standing brain function. Here, we peek inside a SOTA foundation model of neural
activity (Wang et al., 2025) as a physiologist might, characterizing each ‘neuron’
based on its temporal response properties to parametric stimuli. We analyze how
different stimuli are represented in neural activity space by building decoding mani-
folds, and we analyze how different neurons are represented in stimulus-response
space by building neural encoding manifolds. We find that the different processing
stages of the model (i.e., the feedforward encoder, recurrent, and readout modules)
each exhibit qualitatively different representational structures in these manifolds.
The recurrent module shows a jump in capabilities over the encoder module by
“pushing apart” the representations of different temporal stimulus patterns. Our
novel metric of “tubularity” quantifies this stimulus-dependent development of
neural activity as biologically plausible. The readout module achieves high fidelity
by using numerous specialized feature maps rather than biologically plausible
mechanisms. Overall, this study provides a window into the inner workings of a
prominent neural foundation model, gaining insights into the biological relevance
of its internals through the novel analysis of its neurons’ joint temporal response
patterns. Our findings suggest design changes that could bring neural foundation
models into closer alignment with biological systems: introducing recurrence in
early encoder stages, and constraining features in the readout module.

1 INTRODUCTION

Deep neural network models are powerful tools for modeling the mouse visual system by learning to
predict neural responses directly from visual input (Cowley et al., 2023; Ustyuzhaninov et al., 2022;
Huang et al., 2023). While much prior work has explored different computational models (Averbeck
et al., 2006; Ustyuzhaninov et al., 2022; Qazi et al., 2025), foundation models are becoming extremely
valuable: they not only fit neural activity at the unit level but are capable of generalizing beyond
training data (Wang et al., 2025; Li et al., 2023). Nevertheless, their complexity can overwhelm
understanding. Thus, we study the recent foundation model, the FNN (Wang et al., 2025), as a
(computational) neuroscientist might. Our focus on this single model is deliberate: the FNN is the
state-of-the-art neural foundation model trained on MICrONS, the largest available functional connec-
tomics dataset of the mouse visual system (Bae et al., 2025) using artificial and ‘natural’ input videos
across multiple animals. The FNN consists of multiple stages (Figure 1C), including a recurrent
module that allows for analysis of neural dynamics over time in response to input videos. We use
modeling tools available online (references in Methods), stimuli similar to those used in FNN’s orig-
inal training (Wang et al., 2025), and add naturalistic flow stimuli used in mouse physiology (Dyballa
et al., 2018). The last of these allows us to examine out-of-distribution performance (Figure 1A).

Prior work has explored how artificial models represent neural responses (Averbeck et al., 2006;
Ustyuzhaninov et al., 2022; Qazi et al., 2025), and has examined the validity of deep neural networks
as models of the brain with regard to functionality; some are supportive (Kriegeskorte, 2015; Yamins
et al., 2014; Margalit et al., 2024), while others raise questions (Serre, 2019), in many different
species. Different loss functions have been used for fitting mouse models (Nayebi et al., 2023;
Bakhtiari et al., 2021; Shi et al., 2022), and others have studied decoding manifolds for mouse
(Froudarakis et al., 2020; Beshkov and Tiesinga, 2022; Beshkov et al., 2024), focusing on topological
properties. For a recent general review, see (Doerig et al., 2023).
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Figure 1: Set up and techniques. A: The stimuli consist of drifting gratings (at two spatial frequencies
and 8 directions of motion) plus dotted and oriented flows, at two contrasts, drifting in 8 directions.
B, C: Stimuli exercise both the mouse visual system (data from published literature, image from
Wilks et al. (2013)) and the trained FNN (this paper) to yield activity (firing rate) in time for each
direction. D: The firing rates are collected as a PeriStimulus Time Histogram (PSTH), denoted as a
heatmap image (higher firing rate is brighter). E: Neural decoding manifold (each point is a trial;
coordinates are PCA-reduced neural firings); colors for each trial point match the boxes around
stimuli in A. While the trials are weakly clustered by stimulus, the representations do not allow for
clear classification at this stage. F: Decoding trajectories show development of neural activity over
time for each stimulus, also in PCA coordinates. As expected in the early stage feedforward encoder,
neural activity barely changes after the onset of activity compared to the 0-activity point (black). Only
circular temporal developments are observable for periodic input stimuli, such as moving gratings
(light blue). G: Neural encoding manifold, in which each point is a neuron, in diffusion coordinates.
Average PSTHs for neurons in circled clusters show average activity for each of the stimulus classes
(arranged as in A). Note the multi-selectivity of neurons to different stimulus classes and especially
the “amplification” induced by neurons in cluster β. We study the encoder (shown above), recurrent
and readout modules, and ask whether they have analogues in the mouse visual system.

To understand how the FNN performs, we analyze the internal representations at each processing
stage (Figure 1) using three techniques popular in neuroscience. (1) We build neural decoding
manifolds (Chung and Abbott, 2021), in which trials are embedded in the space of neural activity
coordinates (Figure 1E), then dimensionality-reduced using PCA (Cunningham and Yu, 2014).
Typically, trials involving the same stimulus cluster together, facilitating a read-out of the brain’s
state. (2) To switch from trials to neurons, we build neural encoding manifolds (Figure 1G)
(Dyballa et al., 2024a) in which each point is a neuron in the space of stimulus-response coordinates,
dimensionality-reduced using tensor factorization (Williams et al., 2018). Proximity between neurons
in an encoding manifold denotes similar responses to similar stimuli; i.e., groupings of neurons that
are likely to share circuit properties. For a review of classic encoding/decoding in neuroscience,
see (Mathis et al., 2024). Finally, (3) the relationship between these two manifolds is captured by the
temporal evolution of each neuron’s activity for each stimulus trial. We note the popular view that a
‘neural computation’ can be viewed as the result of a dynamical system in neural state space Hopfield
(1984). We plot these both as PSTHs (Fig. 1.D.) and as streamline traces (decoding trajectories,
Fig. 1.F.). While streamline representations have been used previously for decision tasks (Duncker
and Sahani, 2021) and the motor system (Churchland et al., 2012; Safaie et al., 2023), we note: (i) the
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activity integral along such decoding trajectories (Figure 1F) defines the decoding manifold, while
(ii) shared tubular neighborhoods specify position in the encoding manifold. We introduce tubularity
metrics that quantify the relationship between artificial and biological neural response trajectories.

To our knowledge, this is the first time all three of these encoding and decoding techniques have been
utilized together for analysis of a perceptual system; i.e., toward interpretability for a foundation
model. Interpretability is a rapidly evolving field for analyzing large language models (Elhage et al.,
2021; Bricken et al., 2023; Skean et al., 2025), vision models (Simonyan et al., 2014; Olah et al.,
2017), and recurrent models (Krakovna and Doshi-Velez, 2016). The field of interpretability has been
connected to neuroscience, arguing that both aim to understand complex intelligent black boxes (Kar
et al., 2022; Tolooshams et al., 2025; He et al., 2024; Mineault et al., 2025). Interpretability aims
to investigate the function of individual neurons, circuits, and modules in artificial networks, while
in neuroscience it additionally focuses on the alignment between artificial models and biological
systems (Kar et al., 2022). We tackle both challenges by trying to understand what functions the
FNN modules fulfill and by testing alignment with biological representations.

With this framework, we ask: Do neural decoding and encoding manifolds reveal new insights into
how foundation models represent temporal response patterns? Are the representations brain-like? We
hypothesize that each processing stage contributes distinct representational capabilities, all essential
for fitting neural data. In particular, one might expect the recurrent module to enrich the temporal
structure of representations, analogous to cortex, and the encoder layers to resemble a retina with
relatively limited recurrence.

2 METHODS

Our work makes novel use of publicly available open-source resources. Specifically, we employed
the pretrained foundation model of neural activity (denoted FNN) provided by Wang et al. (2025),
available here; and the stimulus generation tools and neural encoding manifold construction pipeline
introduced by Dyballa et al. (2024a), accessible here. Below we briefly outline our methods, and
refer readers to Appendix A for the full details.

Model: The FNN consists of five modules: perspective, modulation, encoder, recurrent, and readout.
The perspective and modulation modules model the mouse’s state and transform the inputs to
approximate the actual visual information received. Thus, only the encoder, recurrent, and readout
modules perform the core computation and are the focus of this work. The encoder module is a
15-layer DenseNet-style convolutional encoder. For analysis, we use a subset of encoder layers; we
report results from the very first layer and the last block as representative examples. Notably, the
encoder includes 3D convolutions, which in principle enable the encoder to capture temporal patterns.
The recurrent module is optionally preceded by an attention layer and consists of a convolutional
LSTM, followed by a single convolutional layer that produces its output. This feedforward–recurrent
combination constitutes the core of the FNN, which is trained on data from all mice in combination.
Finally, a separate readout module is trained on each mouse individually: it performs an interpolation
on the recurrent output followed by a linear transformation to produce the FNN output.

Stimuli: Our stimulus set is composed of drifting square-wave gratings and optical flows with varying
spatial frequencies moving in eight directions. This yields 88 unique input sequences with stochastic
initial positions and velocities (Figure 1A). To ensure that these stimuli would drive the network in a
representative manner, we compared the output of the network for these stimuli with the output for
the original natural movie stimuli used to train the network (Appendix Figures 9, 10); and found the
results to be quantitatively similar in all measured respects.

PSTH visualization: To visualize the network responses to stimuli concisely, we group together
the model’s PeriStimulus Time Histogram responses (PSTH) corresponding to all flow directions
of a given stimulus pattern with time on the x-axis and flow direction on the y-axis (Figure 1D).

Decoding manifolds & trajectories: Following traditional analysis techniques, we first constructed
decoding manifolds by performing PCA on the stimulus-time-averaged activity data. In total there-
fore, the decoding manifold contains 48 points, one for each unique sequence, and colored by the
corresponding base-stimulus (shown in Figure 1). Different spatial frequencies of the same stimulus
are summarized with the same color. To construct decoding trajectories, we treat each time step
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as a separate data point rather than averaging across time before applying PCA. We compare with
biological decoding trajectories using the experimental data from Dyballa et al. (2024a).

Tubularity: To study dynamics, we considered the organization or regularity of the neural trajectories.
We formalize this as follows. Let {γi}mi=1 ⊂ RD be a set of m trajectories (curves). We say a set
of curves is tubular if it lies close to a common centerline and exhibits few transverse encounters.
Formally, a tubular neighborhood thickens a reference curve c by a radius profile R(·): points at
parameter u that are within R(u) of c(u) belong to the tube. Figure 5 illustrates this idea. In practice,
real data may contain multiple tubes; we cluster curves first (using a reasonable distance on curves,
i.e. the Sobolev H1 metric) and compute “tubularity” scores per cluster.

We formalize how “tight” a group of curves are around their centerline. We proceed as follows. Repa-
rameterize each curve by normalized arc length u∈ [0, 1] and resample to {uk}Mk=1. Let xi(uk)∈RD

denote the samples and τi(uk) their unit tangents. We define the mean curve as the pointwise average:

c(uk) =
1

m

m∑
i=1

xi(uk), ri(uk) = ∥xi(uk)− c(uk)∥.

To make tightness scale free, we estimate an inter-curve proximity scale from cross-curve neighbors:

ε = cε ·mediani,k min
j ̸=i, r

∥xi(uk)− xj(ur)∥.

With bins {Ib}Bb=1 partitioning [0, 1] and a high quantile q∈ [0.8, 0.95], the tightness score averages
quantile tube radii relative to ε for the sake of robustness to noise:

Stight =
1

B

B∑
b=1

quantileq{ ri(u) : u ∈ Ib over all curves }
ε

.

The second quantity we measure is how “uniform” the tubes are with respect to each other. That is,
the degree to which crossings occur in our defined bundle of curves. Tubes cease to be well organized
when distinct curves pass near each other with transverse directions. Let dij(u, v) = ∥xi(u)−xj(v)∥
and ϕij(u, v) = 1− ⟨τi(u), τj(v)⟩2 ∈ [0, 1] (large for near-orthogonal tangents). Using a Gaussian
kernel Kε(ρ) = exp(−ρ2/(2ε2)), we softly count encounters and normalize by scale:

Xε =
2

m(m− 1)

∑
i<j

∫ 1

0

∫ 1

0

Kε

(
dij(u, v)

)
ϕij(u, v) du dv, Scross =

Xε

ε2
.

Both Stight and Scross depend only on distances, unit-tangent inner products, and arc-length, so they
are invariant to translations, rotations, re-timing, and global scaling. We emphasize that, for both
scores, smaller values mean more tubular while larger values mean less tubular curve bundles.

Encoding manifolds: To understand the response properties of neurons with respect to all stimuli
(rather than the representation of stimuli in the space of all neurons), we finally construct encoding
manifolds. At a high level, these manifolds allow one to examine the global topology of neuronal
populations based on their stimulus selectivities and temporal response patterns (Dyballa et al., 2024a).
The neural encoding manifold is constructed in a three-step procedure. First, a 3-tensor is built with
the temporal responses from each neuron for each stimulus, and decomposed using Nonnegative
Tensor Factorization (details in Appendix); each component is comprised of neural, stimulus, and
temporal response factors. The neural factors then serve as position coordinates, embedding the
neurons into a stimulus-response framework called the neural encoding space. Second, we construct
a data graph in this neural encoding space using the IAN algorithm (Dyballa and Zucker, 2023).
Third, applying diffusion maps (Coifman et al., 2005; Coifman and Lafon, 2006) to the data graph
yields the manifold. We follow the methodological choices of Dyballa et al. (2024a), where extensive
parameter analysis for biological neural data was conducted.

3 RESULTS

We built encoding manifolds, as well as decoding trajectories and manifolds, for all layers (of consid-
ered modules) in the FNN. Here we highlight the results most helpful toward interpreting the computa-
tional role of each stage of the FNN network. Beginning with the the first encoder layer (L1), we found
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that its decoding manifold was poorly clustered (Figure 1E), with the different stimulus classes quite
mixed. This implies that, at this point within the FNN, the latent feature representation is not sufficient
to distinguish between the different stimuli (indeed, its classification accuracy is lowest; see Table 1).
The decoding trajectories for L1, however, reveal a more complete picture: from Figure 1F we note
that periodic stimuli are represented as loops, likely due to the translation equivariance of the convo-
lutional layers of the encoder preserving the circular geometric structure of these stimulus sequences
(Cohen and Welling, 2016). However, we see that these loops can take on many different forms (such
as the high spatial frequency gratings, shown in light blue), defined by the responses of individual
neurons to each stimulus. Finally, the encoding manifold for L1 (Figure 1G) completes the character-
ization by revealing that most neurons belonging to the same feature map (points with the same color
label) form contiguous clusters, or regions, over the manifold; this is not entirely surprising given the
weight-sharing property of these convolutional layers. Nevertheless, several feature maps are found
mixed into the same “arm” (labeled β). Examining the response profile (PSTH ensemble) of these neu-
rons in detail, we notice strong, continuous activity throughout the trial duration to all stimulus classes.

We now move on to the late-stage encoder, layer 13 (L13). First, although its encoding manifold
shows that the grouping by feature maps is still apparent, especially in the right-hand side of the
manifold (Figure 2A), the overall manifold appears less clustered and more mixed. On the other
hand, again we find a poorly-selective “intensity arm” of neurons (β) from multiple feature maps
representing a strong response to all stimuli. This is supported by plotting the mean activity of neuron
groups (inset in Figure 2A). The marked increase in response magnitude early in the trial among
units in the β arm can be readily noted in the decoding trajectories’ visualization (Figure 2B). Further
investigation revealed that the intensity arm arises from padding artifacts at the edges of feature maps.
These artifacts appear to be a common issue in convolutional models (Alsallakh et al., 2020) and
we also found them in Du et al. (2025)’s model (Figure 12). Sampling from the feature maps’ central
regions eliminates the intensity arm and the shared activity development in the decoding trajectories
(see Supplemental Figure 11). However, these artifacts impact the representation, as the smoothness
of the intensity arm visualizes the spread of the information of the intensity artifacts across the
feature maps. Since these artifacts are present during normal network operation, excluding them
would misrepresent the model’s actual internal dynamics. We therefore retain these artifacts in our
manifold analysis. The L13’s decoding manifold was qualitatively similar to Layer 1’s (not shown).

How do these findings for the encoder stage (L1 and L13) compare to the retina, the first stage in the
mouse visual system Baden et al. (2016)? We applied the same procedure to analyze the physiological
data from Dyballa et al. (2024a). The non-selective groups of neurons with high activity (β arms
in Figs. 1E and 2A) are the first departure from what is found in biological networks: in the retina
there are no such non-selective neurons. Such low-selectivity in cortex is restricted to inhibitory
(inter)neurons, and continuously mixes with other, more selective responses; they do not segregate as
an arm, or cluster. Perhaps the biggest difference is that retinal decoding trajectories formed largely
segregated, stimulus-dependent bundles whose temporal dynamics allowed for linear separability
during much of the trial’s time-course (Figure 2C,F). Thus, despite temporal convolutions, the FNN
feedforward encoder appears to lack biologically plausible stimulus-dependent temporal patterns and
mainly reports features present in the input with varying intensity.

The recurrent module is qualitatively different. Its encoding manifold shows that different regions ex-
hibit a variety of distinct selectivity and temporal response patterns, cf. their PSTHs (Figure 2D). Fur-
thermore, although the segregation by feature map is still present, no longer do we find a cluster of neu-
rons with no selectivity (e.g., the highlighted β and δ groups show selectivity for particular directions
or orientations). Moreover, this is the first stage where the FNN is capable of reasonably decoding the
different stimulus classes, as revealed by the somewhat segregated bundles of decoding trajectories
in Figure 2E. This is where the network reaches its highest stimulus classification accuracy (Table 1).

Table 1: Stimulus classification accuracy for Leave-One-Out 3-Nearest Neighbor (3-NN) and Logistic
Regression (LR) classifiers trained on each layer’s activations. Methods in Appendix A.

Accuracy Enc1 Enc3 Enc6 Enc8 Enc11 Enc13 Rec RecOut Readout Out

LR 0.59 0.62 0.66 0.65 0.71 0.74 0.89 0.90 0.88 0.77
3-NN 0.41 0.66 0.58 0.52 0.53 0.61 0.73 0.64 0.63 0.67
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A Encoding Manifold Encoding Manifold

Decoding TrajectoriesDecoding Trajectories

Decoding Trajectories Decoding Trajectories
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Figure 2: Encoding and recurrent layers. A: Encoding manifold for final encoding block. PSTHs
for arm β amplify all stimulus signals; inset shows mean response intensity development ±1 s.e.m.
within units in β (yellow) compared with others. B: Explosive growth of trajectories for FNN is
caused by initial intensity increase in β. Ensuing temporal dynamics are negligible. This differs
from the trajectory bundles found in mouse retina (C), showing stimulus dependence instead of
nonselective intensity induced temporal patterns. D: Recurrent hidden state shows multi-selectivity
of units and no explosive intensity growth (cf. inset). E: Decoding trajectories show increased
stimulus-dependent temporal patterns leading to better discriminability of stimuli in PCA space.
However, trajectories are more temporally monotonic than in primary visual cortex (F).

While the recurrent module shows the presence of stimulus-dependent temporal patterns, the organi-
zation of decoding trajectories is noticeably more entangled than both retina and V1 (compare with
Figure 2C,F). This phenomenon is quantified using tubularity metrics based on the geometry of the
observed decoding bundles (see Method). We found that retina and V1 exhibited significantly tighter
neural trajectories when compared to the FNN (one-sided Mann–Whitney U, p < 0.001, Bonferroni
corrected; Figure 3). The encoder does not produce stimulus-dependent trajectories despite tem-
poral convolutions. This is quantified by significantly higher crossings (one-sided Mann–Whitney
U, p < 0.001, Bonferroni corrected; Figure 3) between stimulus trajectory bundles compared to
post-recurrent stages. This highlights the importance of recurrence in generating more biological
temporal activity patterns.
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Retina
V1

DC

A FNN Recurrent Trajectory Bundles FNN Output Trajectory Bundles

V1 Trajectory BundlesRetina Trajectory Bundles

Tubularity: Ground Truth Bundles Tubularity: HDBSCAN BundlesE

B

Figure 3: Tubularity of recurrent module and output compared to mouse data. Similar decoding
trajectories can be clustered into bundles and averaged. Here we cluster by stimulus class; the mean
contour is displayed in the stimulus-class color for (A) the recurrent module (note class separation
developing) and (B) the output layer (note the ‘circular’ dynamics). These differ from biological
trajectories for mouse (C) retina and (D) V1. These differences are quantified by the tightness and
crossing measures (Section 2) for both ground truth (E) and unsupervised (HDBSCAN, F) groupings.
Trajectories are more tubular in biological data than in the FNN. Moreover, the crossings show
increased tubularity of post-recurrent modules compared to the encoder. The absence of tubular
clusters in the encoder caused us to omit the encoder in F.

The final stages of the network—the readout and output layers—are different again. The encoding
manifold for the readout layer is highly disconnected (Figure 4A), with each cluster corresponding
almost exclusively to neurons sampled from a single feature map. Each feature map exhibits a distinct
response pattern that is invariant across neurons within it. Compared to this, the biological results
(e.g., Baden et al. (2016); Dyballa et al. (2024a)) show more variability within cell “types”, even
in the retina. Curiously, and despite this intra-map constancy, the large number of feature maps
(see PSTHs) and the rich dynamics within each one, somehow enable the output to represent the
complex behavior of neurons (Figure 4B). These behaviors are captured in the FNN output via a
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A

B Decoding Manifold

Decoding Manifold

Decoding Trajectories

Decoding Trajectories

Encoding Manifold

Encoding Manifold

Figure 4: Contrasting the readout (A) and output (B) layers. While the decoding manifolds
and trajectories appear similar in clustered-ness with distinct cluster shapes due to transient neuron
responses, the encoding manifolds have remarkably distinct topologies: while the readout module
is highly clustered, the output is continuous. The clustered topology is caused by the interpolation
step producing a large amount of features with low within-feature variability. The smooth output is
obtained by collapsing the many feature maps to a single output by a linear combination.

linear combination of readout features. Since classification accuracy has declined slightly at this
stage, but orientation and direction selectivity agree (Supplemental Figure 11), we conjecture these
dynamics are interpolating the spiking activity individually for each mouse.

4 DISCUSSION

Decoding manifolds (and trajectories) allow us to compare whether networks can achieve similar
degrees of stimulus representation and separability. Encoding manifolds, on the other hand, allow
us to check at a global level how the responses of individual neurons (and their global organization)
compare to those of biological neurons; in other words, whether the FNN and biological networks
employ similar encoding mechanisms for achieving similar outputs. Since decoding trajectories
are a surrogate for “computation” as dynamics over neural state space (cf. (Hopfield, 1984), this
investigation moves beyond pairwise or average unit comparisons (e.g., RSA (Kriegeskorte et al.,
2008)) and may be useful in analyzing other foundation models.

Our analysis of the FNN revealed an increasing richness of representation up to the recurrent module
(cf. Hoeller et al. (2024) and contrasting with Xu et al. (2023); Nayebi et al. (2023); Froudarakis
et al. (2020)), albeit with most PSTHs revealing a lack of typical biological-like responses Ringach
et al. (2016); Ko et al. (2011). Since the FNN was trained to predict neural spike trains, classification
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evolved implicitly (cf. Table 1)). Thus it is likely that the recurrent features are sufficiently complex
for feature representation and that the subsequent modules work toward fitting the neural data instead.

However, the highly clustered topology of the latent representation found for the readout module was
not a good fit for retina or cortex (cf. Baden et al. (2016); Dyballa et al. (2024a), nor for higher visual
areas (cf. Glickfeld and Olsen (2017); Dyballa et al. (2024b); Yu et al. (2022)). Regardless, the rich
dynamics within each feature map (see PSTHs), combined with the large number of them, seem to
enable the output layer to represent the complex behavior of neurons (Figure 4B), resulting in the
network’s high performance in predicting neural activity. Still, it is somewhat surprising that such
behaviors are produced in the FNN output via a simple linear combination of readout features—one
would expect that fitting the neural activity should happen throughout the entire network, and not as a
separate appendage module.

Future architecture improvements: Our findings suggest actionable insights for aligning foundation
models such as the FNN closer with biological systems. (1) Feature extraction and the development
of temporal response dynamics occur simultaneously in biological systems. Enforcing temporal dy-
namics in the early layers enables more adequate modeling of rich retinal dynamics. Ideally, this early
stage recurrence would resemble amacrine cell connectivity in the retina (Marc et al., 2014). (2) While
padding is not an issue in biological systems, the biologically implausible intensity artifacts need to be
tackled. Padding artifacts are well known in convolutional architectures (Alsallakh et al., 2020). Dif-
ferent padding strategies, or tailored regularization, can address these artifacts, freeing model capacity
rather than requiring the readout to “unlearn” them. (3) The large number of readout features and their
ensuing collapse in a single linear combination step produce implausibly distinct feature represen-
tations. Enforcing mixed features while reducing their number to match biological cell type diversity
(Bae et al., 2025) could push the representation towards smoother, more biological manifolds.

Limitations: Our analysis utilized a single foundation model, due to the limited availability of other
video-based foundation models of neural activity over time. Moreover, we worked with a restricted set
of stimuli (seeMethods) to ensure comparability to biological results. However, there is evidence that
these stimuli exercise much of the mouse visual cortex Dyballa et al. (2018), so they provide at least a
necessary component for out-of-sample examination. Moreover, we show that these stimuli exercise
FNN like the natural movies on which they were trained (Appendix Figure 9), empirically validating
their usefulness. Finally, to our knowledge, the tubularity metrics represent a novel approach to
analyzing neural trajectories. As no established methodological standards currently exist, further
investigation of the metric would be valuable. Extending this, Topological Data Analysis (Carlsson,
2009; Chazal and Michel, 2021; Perea, 2018) could offer an additional method to study the invariant
properties of the manifolds we build from the artificial and biological neural systems.

5 CONCLUSION

We found a rich diversity of encoding and decoding topologies in the FNN, highlighting its capability
to fit complex neural data. Distinct representations emerge from each module, reflecting its architec-
ture: First, the recurrent module appears to learn generalizable representations of temporal stimuli,
encouraging uniformity and alignment, as in general self-supervised foundation models (Wang and
Isola, 2022). Second, we found that the readout module accounts for rich biological variability, but
does so by relying on a large number of self-similar feature maps, differing from known biological
counterparts in V1. Finally, the output layer is able to achieve a continuous representation by linearly
combining the readout representation; this ultimately enables the network to (a posteriori) associate
spike trains to the input movies.

Using our novel tubularity metrics, we found that biological data exhibit strong stimulus-dependent
structure in both retina and V1, whereas FNN encoder bundles lack tubularity. Only from the recurrent
module onward FNN activity forms bundles, reaching higher–though still sub-biological–levels of
tubularity. This emphasizes the role of recurrence in generating biologically plausible representations.

Together, these findings imply that neural foundation models may be more similar in internal operation
to other foundation models, rather than to their biological counterparts. While this does not alter the
usefulness of neural foundation models, it suggests that future architectures incorporating recurrence
in early encoding stages (e.g. emulating the amacrine connectivity in the retina (Marc et al., 2014))
and constraining feature dimensionality to match biological cell type diversity (Bae et al., 2025) could
yield models that bridge the gap between computational performance and biological plausibility.
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Appendix
A METHODS

A.1 ONLINE MATERIAL

Our work made use of publicly available open-source resources. Specifically, we employed the
pretrained FNN model provided by Wang et al. (2025), available at https://github.com/
cajal/fnn/tree/main. For the analysis of this model, we used the stimulus generation tools
and neural encoding manifold construction pipeline introduced by Dyballa et al. (2024a), accessible
at https://github.com/dyballa/NeuralEncodingManifolds.

A.2 FNN

The FNN consists of five modules: perspective, modulation, encoder, recurrent, and readout. The
perspective and modulation modules model the mouse’s state and transform the inputs to approximate
the actual visual information received. Thus, only the encoder, recurrent, and readout modules
perform the core computation and are the focus of this work.

The encoder module is a 15-layer DenseNet-style convolutional encoder. Notably, it includes 3D
convolutions, which in principle enable the encoder to capture temporal patterns. The recurrent
module is optionally preceded by an attention layer and consists of a convolutional LSTM, followed
by a single convolutional layer that produces its output. This feedforward–recurrent combination
constitutes the core of the FNN, which is trained on all data. Finally, the readout module is mouse-
specific: it performs an interpolation on the recurrent output followed by a linear transformation to
produce the FNN output. We used the FNN from session 8, scan 5.

A.3 INPUT VIDEOS AND DATA SAMPLING

We used the visual stimuli from Dyballa et al. (2024a), consisting of drifting square-wave gratings and
optical flows moving in eight directions. The flow stimuli include oriented (lines) and non-oriented
(dots) stimuli with spatial frequencies between 0.04 and 0.5 cycles

deg . This yields 88 unique input
sequences with stochastic initial positions and velocities. The stimuli were scaled and cropped to fit
the required FNN input shape of 144×256 pixels. This resulted in an image sequence: {x0, . . . ,xT },
where each xi ∈ RH×W . Stimuli were generated using the tools available at https://github.
com/dyballa/NeuralEncodingManifolds.

The FNN (Wang et al., 2025) processes 2.33-second sequences of 70 frames each, corresponding
to 30 frames per second. Since in Dyballa et al. (2024a) the trials were 1.25 s long, we adapted the
stimuli to contain 37 frames to maintain consistency with the FNN framework. We scaled all stimuli
by a factor of 0.7 to optimize stimulus discriminability across different network layers.

Neural responses were computed using PyTorch and extracted by sampling activations from 2000
units across selected FNN layers. Within each layer, 40 feature maps were sampled. Then, 50 neurons
were sampled from each feature map. The sampling probabilities of feature maps and neurons were
set to be proportional to their activation strength, biasing the sampling to include active neurons.
This sampling procedure was chosen to ensure comparability to the biological results from Dyballa
et al. (2024a). Increasing the sampling rate beyond 2000 units did not significantly alter manifold
topology but hindered cluster separation in diffusion map analysis. The resulting tensor data had
dimensions (N × S ×O × T ) with N = 2000 neurons, S = 11 stimulus types, O = 8 orientations
and T = 37 time steps. For manifold construction, the optimal spatial frequency was selected
(resulting in S = 6 stimuli) whereas for classification performance all spatial frequencies were kept.
We report results from a single random seed per layer, as preliminary analysis showed consistent
manifold structure across different random activity samples. These neural activation tensors served as
input for subsequent classification and manifold analysis. This sampling procedure was developed by
Dyballa et al. (2024a) and tested against other sampling methods there. We also experimented with
the sampling procedure, finding that random sampling and increased sampling rate did not introduce
qualitative changes to the manifolds.
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A.4 STIMULUS ADEQUACY

For every FNN layer investigated in this paper, we extracted the activation to the stim-
ulus ensemble consisting of gratings and flows (see Section A.3) as well as to a 100-
second-long natural input video from the MICrONS functional dataset (Bae et al., 2025),
downloaded from s3://bossdb-open-data/iarpa_microns/minnie/functional_
data/stimulus_movies/. Both stimulus sets produced similar activation magnitudes across
the entire network (see Figure 9), which shows the adequacy of the stimulus ensemble used for testing
the FNN.

Additionally, we calculated the orientation selectivity (OSI) and direction selectivity (DSI) for gratings
+ flows and for a pink noise stimulus, as done in Wang et al. (2025). We found comparable OSI and
DSI distributions (see Figure 10).

A.5 CLASSIFICATION ACCURACY

The stimulus classification accuracy based on the individual layer activities was obtained from
training multinomial logistic regression classifiers (scikit-learn, with solver L-BFGS) using 5-fold
cross-validation. We used only the sampled neurons for classifying the 11 stimuli. For each layer
and each time point t, two feature sets were constructed: (i) the mean activity over frames 0 → t
(increasing window) and (ii) the mean activity over frames t → end (decreasing window). The
maximal classification accuracy for all feature sets is reported in Table 1. For comparison, we also
evaluated K-nearest neighbor classifiers (K = 3) using leave-one-out cross-validation. Results are
summarized in Table 1 and Figure 8.

A.6 CONSTRUCTION OF DECODING MANIFOLDS

For building the decoding manifolds, we applied PCA (scikit-learn) to the averaged activity data. In
total, the decoding manifolds contain 48 points, consisting of 6 stimuli and 8 movement directions
each. The 6 stimuli were obtained from a majority vote of all neurons on the optimal spatial
frequency eliciting higher responses. The decoding manifolds use different colors for each stimulus,
as introduced in Figure 1. Different spatial frequencies of the same stimulus are summarized with
the same color. To construct decoding trajectories, we treated each time step as a separate data
point rather than averaging across time before applying PCA. We prepended each trajectory with
a zero-activity time step to establish a common origin for all stimulus conditions. In both cases,
we reduced the dimensionality to three components for visualization after verifying that further
dimensions did not encode qualitatively new information. We constructed biological decoding
trajectories using experimental data from Dyballa et al. (2024a), available at https://github.
com/dyballa/NeuralEncodingManifolds. For the biological decoding trajectories, we
did not use the additional zero-activity time step since a baseline activity level was already provided
by the inter-stimulus intervals in the experiments.

A.7 CONSTRUCTION OF NEURAL ENCODING MANIFOLDS

At a high level, the motivation for constructing neural encoding manifolds is to find a space in which
one can examine the global topology of neuronal populations based on their stimulus selectivities
and temporal response patterns (Dyballa et al., 2024a). The neural encoding manifold is constructed
in a three-step procedure. First, a 3-tensor is built with the temporal responses from each neuron
for each stimulus, and decomposed using Nonnegative Tensor Factorization (details below); each
component is comprised of neural, stimulus, and temporal response factors. The neural factors then
serve as position coordinates, embedding the neurons into a stimulus-response framework called the
neural encoding space. Second, we construct a data graph in this neural encoding space using the
IAN algorithm (Dyballa and Zucker, 2023). Third, applying diffusion maps (Coifman et al., 2005;
Coifman and Lafon, 2006) to the data graph yields the manifold.

The methodological choices in our manifold construction procedure are made in accordance with
Dyballa et al. (2024a), where extensive parameter analysis for biological neural data was conducted.
Since neural encoding manifolds computed with these specific parameters represent the only available
comparison for biological data from the visual system, we maintained their parameter settings to
ensure direct comparability between artificial and biological neural representations. We further
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conducted analysis for FNN-specific parameters, such as the sampling procedure, by adapting their
code to fit the FNN requirements.

A.7.1 PREPROCESSING

The input tensor of neuronal activity (see above) was preprocessed in several steps (using NumPy
and SciPy). First, the individual responses were smoothed along the time dimension using a one-
dimensional Gaussian kernel with σ = 3. Next, we grouped the stimuli into medium versus high
spatial frequencies and selected the one exhibiting higher response magnitudes. The temporal
responses for the 8 directions of motion were then concatenated together into a single vector. Finally,
we normalized each response and rescaled it by the relative activations of the neuron. The resulting
tensor T had shape ((N = 2000)× (S = 6)× (O ∗ T = 296)).

A.7.2 NONNEGATIVE TENSOR FACTORIZATION

Next, Nonnegative Tensor Factorization (see (Williams et al., 2018) for an overview and applications
to neuroscience) was applied to our tensor T. It was decomposed into typically 10–15 rank-1 tensors
which are obtained from the outer product of three vectors each. The number of components was
chosen separately for each data sample as specified in Dyballa et al. (2024a). The factors in each
component are scaled to unit length, and their magnitudes absorbed by a scalar λr:

T̃ =

R∑
r=1

λrv
(1)
r ◦ v(2)

r ◦ v(3)
r = [λ;X(1);X(2);X(3)] (1)

For the second equality, the factor matrices X(k) are constructed using the factor vectors v
(k)
r as

columns, and the vector λ contains all individual λrs.

Decomposing the tensor T into these components is an optimization problem with the following
objective function and non-negativity constraints:

min
X(1),X(2),X(3)

1

2
||T− T̃||2 (2)

such that X(k) ≥ 0,∀k (3)

The resulting decomposition is interpretable: the third group of vectors, v(3)
r , describes different

temporal response patterns; v(2)
r contain information about which stimuli exhibit these response

patterns; and v
(1)
r are the neuronal factors determining which neurons exhibit the response patterns

characterized by v
(2)
r and v

(3)
r . During decomposition, circular permutations were applied to detect

patterns irrespective of the preferred orientations of specific neurons (again, this is necessary to
ensure compatibility with the biological results from (Dyballa et al., 2024a)).

Using the OPT method from Tensor Toolbox (Bader et al., 2023)), we ran the decomposition 50 times
(different initializations) for each number of components and dataset to ensure robust decomposition
results and the choice of the number of factors, R. The manifolds were robust to small changes
in R, therefore the heuristic for choosing R based on the explained variance of the decomposition
outlined in Dyballa et al. (2024a) proved sufficient. For building the manifolds, we used the result
with smallest reconstruction error among the 50 initializations.

A.7.3 NEURAL ENCODING SPACE

Following Dyballa et al. (2024a), we now reformulate the above decomposition to construct the
neural encoding space. By defining the diagonal matrix Λ with Λrr = λr, we obtain:

T̃ = X(1)Λ(X(2) ◦X(3)) (4)
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Since the first matrix, X(1), represents the neuronal factors, we denote it by N . Now, define a matrix
B with columns b:,r:

b:,r = vec(v(2)
r ◦ v(3)

r ) (5)

Finally, we obtain a matrix representation of T with respect to neuronal factors as XN :

XN = BΛN T (6)

This reformulation constructs the neural encoding space. The unit-norm basis vectors of this space
are given by the columns of B. We define the neural matrix containing the positions of all neurons in
this space as Nλ = NΛ. The distances between any two neurons in this space reflect their similarity
in stimulus-selective temporal response patterns. Intuitively, neurons with similar selectivity profiles
and temporal dynamics should be positioned close together, while neurons with dissimilar response
characteristics should be farther apart.

A.7.4 ITERATED ADAPTIVE NEIGHBORHOODS (IAN)

Within this neural encoding space, we construct a weighted graph of the data by inferring a similarity
kernel. This is achieved using the Iterated Adaptive Neighborhoods (IAN) algorithm (Dyballa and
Zucker, 2023), which infers an adaptive local kernel without the need for pre-specifying a fixed
neighborhood size.

IAN first constructs the unweighted Gabriel graph for the data points. In addition, a weighted
graph is constructed using a multiscale Gaussian kernel based on the discrete neighborhood graphs.
Subsequently, the graph is iteratively pruned by ensuring consistency between the discrete and
continuous neighborhoods. The resulting weighted graph is represented by the adjacency (kernel)
matrix K. This matrix contains similarities computed using locally tuned Gaussian kernels.

A.7.5 DIFFUSION MAPS

Diffusion Maps (Coifman et al., 2005; Coifman and Lafon, 2006) are a dimensionality reduction
technique that retain distances and preserve the intrinsic geometry of the manifold. The diffusion
process is based on graph Laplacian normalization from spectral graph theory.

In detail, we use the weighted graph obtained from IAN as the weighted adjacency matrix K. The
first step is to normalize and symmetrize it to produce Ms:

di =

√∑
j

Kij + ϵ (7)

Ms =
K

ddT
(8)

This normalization ensures that nodes of high degree do not dominate the analysis. We then calculate
the spectral decomposition of Ms with eigenvalues λ0 = 1 ≥ λ1 ≥ λ2... and eigenvectors ψi for
t = 1 diffusion steps using L = 20 eigenvalues:

Mt
s,ij =

L∑
l=0

λ2t
l ψl(i)ψl(j) (9)

Finally, from the spectral decomposition, we obtain the diffusion map with diffusion coordinates:
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Ψt(i) =


λt
0ψ0(i)

λt
1ψ1(i)

...
λt
L−1ψL−1(i)

 (10)

Plotting the data using these diffusion coordinates yields the neural encoding manifold.

A.7.6 ENCODING MANIFOLD VISUALIZATION

For visualization purposes, we optionally applied metric multidimensional scaling (MDS) to the
diffusion map coordinates. This was done by computing pairwise squared Euclidean distances
using the first diffusion coordinates, constructing the corresponding Gram matrix G = −0.5 ∗D2,
and applying kernel PCA to obtain a lower-dimensional embedding. This preserves the distance
relationships from the diffusion map while combining multiple diffusion coordinates, enabling a
clearer visualization of the manifold structure.

Based on the manifold topology, we selected groups of neurons to investigate via their PeriStimulus
Time Histograms (PSTH). We averaged their activity across trials and constructed the PSTHs as a
2-D heatmap, where each row contains the temporal activity in response to a particular direction of
motion (as displayed in Figure 1). Additionally, we calculated the average response intensity over
time for these groups and reported the s.e.m. using the shaded regions (see insets in Figure 2A,D).

A.8 MANIFOLD METRICS

We computed the following metrics to analyze neural encoding manifolds in Figures 6 and 7:

OSI An Orientation Selectivity Index was computed as:

OSIn = max
s

OSIn,s (11)

OSIn,s =
Rn,s(θ

∗)− 1
2

(
Rn,s(θ

∗ + 90◦) +Rn,s(θ
∗ − 90◦)

)
Rn,s(θ∗) +

1
2

(
Rn,s(θ∗ + 90◦) +Rn,s(θ∗ − 90◦)

)
+ ϵ

(12)

θ∗ = argmax
θ

Rn,s(θ) (13)

where Rn,s(θ) is the mean response of neuron n to stimulus s at orientation θ.

Mean activity We computed mean activities by averaging each neuron’s response across all time
steps, directions, and stimuli.

Temporal variance We calculated the temporal variance for each stimulus and direction combina-
tion. We then averaged these variances for each neuron.

Preferred stimulus The preferred stimulus for each neuron was obtained by finding the stimulus
exhibiting the highest average activity across stimuli and time steps for each neuron.

A.8.1 TUBULARITY IMPLEMENTATION DETAILS

For computing tubularity metrics, we (i) performed PCA on the neural activity. We visualized the
first 2 principal components, but computed 10 PCs to allow for better clustering: (ii) We clustered
curves (e.g., HDBSCAN (Campello et al., 2013) on a precomputed H1 distance) and scored clusters
separately. We also computed tubularity metrics using the ground truth stimulus clusters. (iii) For
each cluster, we formed the mean curve c(uk), computed residuals ri(uk), the cross-curve scale
ε, then computed Stight via bin-wise quantiles and Scross by discretizing the double integral on
the space of time steps and curves. (iv) For statistical analysis, we generated 100 bootstrapped
samples, and using ground-truth clusters, performed Bonferroni-corrected Mann-Whitney U tests on
our hypotheses.
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A.9 VISUALIZATIONS

Interactive three-dimensional plots of the manifolds were computed using Plotly. Other plots were
created with Matplotlib and TUEplots.

A.10 MINIMODELS

For our additional analysis in Figure 12, we used the convolutional model introduced in Du
et al. (2025). We downloaded model checkpoints from https://github.com/MouseLand/
minimodel/tree/main. We left the manifold pipeline unchanged for this experiment and
sampled activations from layer 2.

A.11 SOFTWARE

All software (Table 2) is used in accordance with its respective license.

Table 2: Software packages used in this work.
Package Version License
MATLAB Tensor Toolbox (Bader et al., 2023) 3.6 BSD-2
IAN (Dyballa and Zucker, 2023) 1.1.2 BSD-3
NeuralEncodingManifolds (Dyballa et al., 2024a) N/A BSD-2
NumPy (Harris et al., 2020) 1.25.0 BSD-3
SciPy (Virtanen et al., 2020) 1.15.3 BSD-3
scikit-learn (Pedregosa et al., 2011) 1.7.1 BSD-3
PyTorch (Paszke et al., 2019) 2.6.0 MIT
Matplotlib (Hunter, 2007) 3.10.1 PSF-based (BSD-compatible)
Plotly (Inc., 2015) 6.0.0 MIT
TUEplots (Krämer et al., 2024) 0.2.0 MIT

A.12 COMPUTE

The experiments were conducted on an HPC cluster. FNN sampling uses randomly selected GPUs
(RTX 2080 Ti, or better). All other experiments were performed on CPU. All experiments required
less than 30 GB memory. In total, 10 tensor decomposition experiments were run on CPU, each
taking 2 days on a single CPU. Preliminary results not included in the paper required another 50
tensor decomposition experiments.

A.13 LANGUAGE MODEL USAGE

At the level of individual words or partial sentences, language models were used to fix language errors.
Minor code sections were produced by language models and used only after careful inspection.

B DATA AND CODE AVAILABILITY

Upon acceptance, we will publish a GitHub repository with the full code necessary to reproduce
all experiments and figures in this paper. We will also provide rotating video animations of three-
dimensional visualizations to aid interpretation.
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C SUPPLEMENTAL FIGURES

Figure 5: A tubular neighborhood around a centerline c(u) with radius profile R(u).

Table 3: Tubularity metrics for biological and FNN data. Low tightness and crossings values
indicate high tubularity. Aligning with the visualization in Figure 3, the biological trajectories show
highly tubular organizations compared to FNN. Method details in Appendix A.8.1.

Ground Truth HDBScan

Layer Tightness Crossings Tightness Crossings # Clusters

Retina 3.08 4.58× 10−6 4.03 2.68× 10−6 4
V1 3.09 1.05× 10−5 4.07 7.56× 10−6 4
Recurrent 16.30 0.01 18.23 0.003 4
Recurrent-Out 34.51 0.003 33.50 0.002 4
Readout 47.19 0.003 37.36 0.002 4
Output 26.35 0.02 21.98 0.01 3
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Figure 6: Feedforward encoder L13: Supporting information for Figure 2. The intensity arm is
clearly visible, exhibiting high mean activity. The low temporal variance, low Orientation Selectivity
Indices, and unstructured preferred stimuli show the absence of complex activity patterns in this
intensity arm.
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Figure 7: Recurrent hidden state: Supporting information for Figure 2. In contrast to Figure 4, there
is no intensity arm dominating the manifold structure. Instead, all arms show structured, complex
selectivity patterns.
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Figure 8: Logistic regression (LR, top) and K-Nearest Neighbor (KNN, K=3, bottom) classifier
accuracy for each layer. We use increasing time windows (timesteps 0 → t, red) or decreasing time
windows (t → 37, blue) to calculate the accuracies. Shaded regions for LR show the s.e.m. The
maxima across panels are summarized in Table 1.
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Figure 9: Activation function output distributions and maxima for natural MICrONS (Bae et al.,
2025) input videos and the flow stimulus ensemble (Dyballa et al., 2024a). The comparable activity
across network layers shows the adequacy of investigating the FNN with flow stimuli. The differences
in magnitudes across layers are explained by the activations functions (GELU in the encoder, Tanh in
the recurrent and readout modules).
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Figure 10: OSI and DSI of FNN output for pink noise (as used in Wang et al. (2025)) and for the
stimulus ensemble from Dyballa et al. (2024a), meaned over the different stimuli.
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Figure 11: Encoder L13 decoding manifold, trajectories and encoding manifold without intensity
artifacts. Without the intensity artifacts there is no temporal development at all in the decoding
trajectories (comparable to encoder L1) apart from the jump after the 0-th step. The non-selective
high intensity neurons are padding artifacts at the edges of the image. In the encoder, due to spatial
convolutions, the effect of these artifacts spreads out across the feature maps. This is supported by the
intensity smoothly organizing the manifold with a transition from intensity-only neurons to selective
responses. In the recurrent stage, the function of the attention layer is capable of filtering exactly
those artifacts out. The artifacts are reintroduced by the recurrent-output convolution, but then filtered
out by the readout interpolation from central neurons only.
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Figure 12: Minimodel encoding manifold with intensity arm. The intensity artifacts are also
present in the border regions of feature maps in the model from Du et al. (2025).
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